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Switching systems

Ay X
Xer1=
A; X,

Point-to-point Given X, and X, is there a product (say, A, Ay A; A, ... A;) for

which x«=Ay Ag Ay Ag ... Ay X,?

Mortality Is there a product that gives the zero matrix?

Boundedness Is the set of all products {A,, A, AjAy, AsA4, ...+ bounded?

Global convergence to the origin Do all products of the type ‘
Ay Ay AL A, ... A; converge to zero?



The joint spectral characteristics
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The joint spectral characteristics

| e The joint spectral
radius
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The joint spectral characteristics

1/(pt) _ .
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The joint spectral characteristics

/) The Lyapunov
_fliiit{ {H 414 ‘M‘} Exponent
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The joint spectral characteristics

pz(X) =inf{\ > 0:30(0),0(1),

p(Z) = supegn pu(X)

The
feedback
stabilization

~n ¢ radius

L3
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[Blanchini Savorgnan 08]
[Fiacchini Girard Jungers 15]

[J. Mason 15]



The joint spectral characteristics
Po(B) = 1nf{A > 0: 30(0),0(1), ..., 3M > 0st. |z,,(t)| < MN|z|,¥t >0} | The
pE) = supyezn (%) feedback
stabilization
... radius

I = Aa(o)fﬂo
Ly = Aa(1)931

L3 = AU(Z)mQ

>

Geromel Colaneri 06]

[Blanchini Savorgnan 08]
[Fiacchini Girard Jungers 15]

[J. Mason 15]




The joint spectral characteristics

px(X) = inf{A > 0: 30(0), (1), ri
LX) = supycpn fa(2) feedback
| , Stabilization
Tyt radius
\“ <
! | P / ‘ )

W\

L3

[Geromel Colaneri 06]

Alternative definition: suppose you can observe x(t) at

[Blanchini Savorgnan 08]

every step, and apply the switching you want, as a function [Fiacchini Girard Jungers 15]
of the x(t)

[J. Mason 15]



The joint spectral characteristics

)= | [ T Hr/t The joint spectral radius addresses the
= llm |max ||[A;As... A; i
P ool sy stability problem
1/t The joint spectral subradius addresses the
(X)) = lim [mm Ads. . A ] problem
j(T) = lim | min 4,44
The p-radius addresses the... p-weak
stability ;5
pp(z) = lim [ m- Z H 41 42 4th ] . [J. Protasov 10]
t—00 ] (& |
A et |
1t The Lyapunov exponent addresses
m the
= lml H |44y M] stability with probability one
A;eXt (Cfr. Oseledets Theorem)

The feedback stabilization
radius addresses the
feedback stabilizability

[J. Mason 16]
[Fiacchini Girard Jungers 15]

px(X) =nf{A > 0:30(0),0(1), ..M > 0 8.t. |2,,(t)] < M|z, ¥t > 0}
p(X) = Sup,cpn fa(X)




The joint spectral characteristics:
Mission Impossible?

Theorem Computing or approximating p is NP-hard

Theorem The problem p>1 is algorithmically undecidable

Conjecture The problem p<1 is algorithmically undecidable @

Theorem Even the question « |p — | < a 4+ bp ?» is algorithmically undecidable
for all (nontrivial) a and b

Theorem The same is true for the Lyapunov exponent

Theorem The p-radius is NP-hard to approximate

Theorem The feedback stabilization radius is turing-uncomputable

See [Blondel Tsitsiklis 97,
Blondel Tsitsiklis 00,
J. Protasov 09
J. Mason 15]
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The CQLF method

inTEH+
S.t.
AT PA

Y A

LMI methods




SDP methods

e Theorem Forall £ = 00 there exists a norm such that

VA € Y,Vr, |Az| < (p+€)|x|  [RotaStrang, 60]

John’s ellipsoid Theorem: Let K be a compact convex set with
nonempty interior symmetric about the origin. Then there is an
ellipsoid E such that EFc K cnE

[John 1948]

A

vV 2E

eSO we can E
approximate the unit
ball of an extremal
norm with an ellipsoid

v




SDP methods

e Theorem The best ellipsoidal norm || . ||z, approximates the joint
spectral radius up to a factor /= [Ando Shih 98]

»

p < max||Allp, < Vip
1

=P S PP /
1

— Ok S
! ==

There exists a Lyap.

1
p < 1/ n2d = function of degree d

— One can improve this method by lifting techniques [Nesterov Blondel 05]

[Parrilo Jadbabaie 08]
@ Algorithm that approximates the joint spectral radius of
> : . :
—~ arbitrary sets of m (nXn)-matrices up to an arbitrary accuracy € in
PTAS O(n™<) Operations

v



Yet another LMI method

e A strange semidefinite program

min, g+ r

S.t.

AT PiA, = r2Py,

A({Pzﬂl j "?"2P1,,

P ~ 0.

p<r
[Goebel, Hu, Teel 06]
e Butalso... [Daafouz Bernussou 01]

[Bliman Ferrari-Trecate 03]
[Lee and Dullerud 06] ...



Yet another LMI method

e An even stranger program:

min,.cp+

S.t.

Al PA,

(A A1) T P(AsA))
(A3)TP(A3)

P

) <

Y TATATA

"T‘2 P
rt P,
"T‘4 P,,

[Ahmadi, J., Parrilo,
Roozbehanil0]



Yet another LMI method

e (Questions: ‘

— (Can we characterize all the LMIs that work, in a unified
framework?

— Which LMIs are better than others?
— How to prove that an LMI works?

— (Can we provide converse Lyapunov theorems for more
methods?

1
2/

1
p<1/n2d =

pr < p < p

There exists a Lyap.
function of degree d




From an LMI to an automaton

e Automata representation Given a set of LMIs, construct an automaton like

this: _
ATPLA, < 2P < >h

min,.cp+
8.1 42 A
A?PlAl = Tgpl? ~ {1]
A?Pgﬂl = Tgpl? ‘\_l/

A
P, -~ 0.

e Definition A labeled graph (with label set A) is path-complete if for any
word on the alphabet A, there exists a path in the graph that generates
the corresponding word.

e Theorem If G is path-complete, the corresponding semidefinite program is
a sufficient condition for stability. [Ahmadi J. Parrilo Roozbehani 14]



Some examples

e Examples: Ay
T =
-A;:\j
A.
E Ag A,
— Example 1 ~—

<®
©
N

A
This type of graph gives a max-of-quadratics
Lyapunov function (i.e. intersection of ellipsoids)

o A4
— Example e
P 4_1::

This type of graph gives a common

Lyapunov function for a generating CL_):

set of words
As Ay




An obvious question: are there other

e Theorem valid criteria?
AZ 4 min?"ER"‘ r
/-\ L 8.1
&= <o
\/ Agﬂﬂz = TQPQ:
A ATP A, =< 2P,
P, ~ 0

Path complete Sufficient condition
for stability

If G is path-complete, the corresponding semidefinite program is a
sufficient condition for stability.

e Are all valid sets of equations coming from path-complete graphs?

e ...or are there even more valid LMI criteria?



Are there other valid criteria?

* Theorem Non path-complete sets of LMIs are not sufficient for stability.
[J. Ahmadi Parrilo Roozbehani 15]

Ay A MiN,.-p+ T
N A s.t.

< > ATPA, < 2P,
\/ Ag Pl Ag i Tg PQ,
‘41 A?Pgﬂl j Tgpl?

F; ~ 0.

Path complete Sufficient condition
for stability

e Corollary

It is PSPACE complete to recognize sets of equations that are a sufficient
condition for stability

e These results are not limited to LMIs, but apply to other families of conic
inequalities



So what now?

After all, what are all these results useful for?

Ay A MiN,.-p+ T
7~ AN .t
=) Ynn - on
AgPlﬂg j TQPQ,
F; ~ 0

Optimize on optimization problems!
This framework is generalizable to harder problems
e Constrained switching systems
e Controller design for switching systems
e Automatically optimized abstractions of cyber-physical systems
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e Constrained switching systems
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o Automatically optimized abstractions of cyber-physical systems




Constrained switching sequences

Switching sequences on regular languages

G(V,E) Directed & Labeled €= (v;,v;,k) € E ke {l,---,N}

0(1), 0(2), .-+ admissible if dp = {(Uiavj: 0(1))7 (vja vy, 0(2))7 T }

everything f 2 .
C

... abcabcabc ...

e :




Constrained switching sequences

Switching sequences on regular languages
G(V,E) Directed & Labeled e=(vi,v;,k) e E ke{l,--- N}

o(1),0(2), - admissible if 3p = {(vs,v;,0(1)), (vj,ve,0(2)), ---}

4 i
Stability
limt_mo Tt — llmt_>oo Aa(t—l) et AJ(O)xO =0
Vrg € R", Vo(0),0(1),--- € G
- J




Constrained switching and

multinorms
e CJSR as an infimum over sets of norms
p(G(V, E), M) = e ol
inf
|"la"'7|'||V|ﬂY Cﬁ'} —>
[Agz]; < 7|zl & ER

7|4

\V/(’Uijvj,k) c E, Vx c R™

4 )
Theorem:
_1/27 o admits a
\ plG, M) <n = S(Gr, M7) Quadratic Multinorm y
4 )
Corollary: One can again develop a PTAS based on
Path-complete methods

. J
[Philippe, Essick, Dullerud, J. 2014]
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Wireless control networks

impact of impact of
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control network
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Motivation

IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 55. NO. 8, AUGUST 2010 1781

Networked Control Systems With Communication
Constraints: Tradeoffs Between Transmission
Intervals, Delays and Performance

W. P. Maurice H. Heemels, Member, IEEE. Andrew R. Teel, Fellow, IEEE. Nathan van de Wouw, Member. IEEE,
and Dragan NeSic, Fellow, IEEE

Roughly speaking, the network-induced imperfections and
constraints can be categorized in five types:

(1) Quantization errors in the signals transmitted over the net-

work due to the finite word length of the packets;

(1) Packet dropouts caused by the unreliability of the
network;

(111) Variable sampling/transmission intervals;

(1v) Variable communication delays;

(v) Communication constraints caused by the sharing of the
network by multiple nodes and the fact that only one node
1s allowed to transmit its packet per transmission.



Previous work

IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 55. NO. 8, AUGUST 2010 1781

Networked Control Systems With Communication
Constraints: Tradeoffs Between Transmission
Intervals, Delays and Performance

W. P. Maurice H. Heemels, Member, IEEE. Andrew R. Teel, Fellow, IEEE. Nathan van de Wouw, Member. IEEE,
and Dragan NeSic, Fellow, IEEE

Roughly speaking, the network-induced imperfections and
constraints can be categorized in five types:
(1) Quantization errors in the signals transmitted over the net-

work due to the finite word length of the packets;
(1) Packet dropouts caused by the unreliability of the

network;
(111) Variable sampling/transmission intervals;
[Jungers D'Innocenzo Di (iv) Variable communication delays;
Benedetto, TAC 2015] (v) Communication constraints caused by the sharing of the

network by multiple nodes and the fact that only one node
is allowed to transmit its packet per transmission.



Today

IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 55. NO. 8, AUGUST 2010 1781

Networked Control Systems With Communication
Constraints: Tradeoffs Between Transmission
Intervals, Delays and Performance

W. P. Maurice H. Heemels, Member, IEEE. Andrew R. Teel, Fellow, IEEE. Nathan van de Wouw, Member. IEEE,
and Dragan NeSic, Fellow, IEEE

Roughly speaking, the network-induced imperfections and
constraints can be categorized in five types:

(1) Quantization errors in the signals transmitted over the
network due to the finite word length of the packets:

(1) Packet dropouts caused by the unreliability of the net-

[Jungers Kundu Heemels, 2016] work:

(111) Variable sampling/transmission intervals;

(iv) Variable communication delays;

(v) Communication constraints caused by the sharing of the
network by multiple nodes and the fact that only one
node 1s allowed to transmit its packet per transmission.



Controllability with packet dropouts

The delay is constant, but some packets are dropped

;,t:(l) — AJ;(O) 1 Bu(O) o= 1001...
g(0) =1

! x{k}h

A data loss signal determines the packet dropouts o&(t)=10r0

Ax(t) + bu(t), if o(t)
Ax(t), if o(t)

...this is a switching system! z(t+1) = { [1]=
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(1) =0

T
o

! x{k}h

A data loss signal determines the packet dropouts o&(t)=10r0
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Controllability with packet dropouts

The delay is constant, but some packets are dropped
o(0) = 1 (1) = Aw(0) + Bu(0) 71000
o(1) =0 r(2) = A%2(0) + ABu(0)

- ECR

A data loss signal determines the packet dropouts o&(t)=10r0
. L , _ Ax(t)+ bu(t), it o(t) =1,
...this is a switching system! r(t+1) = {Am(t)? if o (t) — 0



Controllability with packet dropouts

The delay is constant, but some packets are dropped
;,t:(l) — AJ__-(O) 1 Bu(o) o=1001...
£(2) = A%2(0) + ABu(0)

o(0)
a(1)

1
(2)

|| "
= O =

! x{k}h

A data loss signal determines the packet dropouts o&(t)=10r0

Ax(t) + bu(t), if o(t)

...this is a switching system! r(t+1)= { Ax(t) if o (t)

L,
0



Controllability with packet dropouts

The delay is constant, but some packets are dropped

_, r(1) = Ax(0) + Bu(0) 7= 1001
=0 x(2) = A%2(0) + ABu(0)

=0 r(3) = A%2(0) + A*Bu(0)

! x{k}h

A data loss signal determines the packet dropouts o&(t)=10r0

...this is a switching system! r(t+1) = {jig% + bu(t), ;t: o (1)



Controllability with packet dropouts

The delay is constant, but some packets are dropped
r(1) = Ax(0) + Bu(0) 7= 1001

o(0) =1
a(1) =0 r(2) = A%2(0) + ABu(0)
0(2) =0 1(3) = A%2(0) + A%2Bu(0)

r(4) = A*2(0) + A°Bu(0) + Bu(3)

d

x(k)

A data loss signal determines the packet dropouts ()= 10r 0

Ax(t) + bu(t), it o(t)
Ax(t), if o(t)

...this is a switching system! r(t+1)= { [1]=



The switching signal

We are interested in the controllability of such a system
£(1) = Ax(0) + Bu(0) [ 7Z100
x(2) = A%2(0) + ABu(0)
1(3) = A%2(0) + A%2Bu(0)
r(4) = A*2(0) + A°Bu(0) + Bu(3)

a(0)
(1)
o(2)

Il
= O =

Of course we need an assumption on the switching signal

The switching signal is constrained by an automaton
Example:

Bounded number of
consecutive dropouts (here, 3) < >

SOWC
o~%

The controllability problem: For any starting point x(0), and any target x*,

does there exist, for any switching signal, a control signal u(.) and a time T

such that X(T)=x*?




The dual observability problem

Observability under intermittent outputs is algebraically
equivalent (and perhaps more meaningful)

Network Y(k)

r(t+1) = Az(t),



Controllability with Packet Dropouts

We are given a pair (A,b) and an automaton ; j ‘
o(0) =1 x(1) = Ax(0) + Bu(0) ' C
o(1)=0 2(2) = A%(0) + ABu(0)

0(2) =0 £(3) = A32(0) + A2Bu(0)

w(4) = A*x(0) + A3Bu(0) + Bu(3)

o=1001...

The controllability problem: for any starting point x(0), and any target x*,
does there exist, for any switching signal, a control signal u(.) and a time T
such that




Controllability with Packet Dropouts

We are given a pair (A,b) and an automaton ; j ‘
o(0) =1 x(1) = Ax(0) + Bu(0) ' C
o(1)=0 2(2) = A%(0) + ABu(0)

7(2) =0 £(3) = A32(0) + A2 Bu(0)

w(4) = A*x(0) + A3Bu(0) + Bu(3)

o=1001...

The controllability problem: for any starting point x(0), and any target x*,

does there exist, for any switching signal, a control signal u(.) and a time T
such that X(T)=x*?

Baabali & Egerstedt’s framework (2005)

Here, the switching is on the
X(t+1)=Ax + Bi u() | > input matrix Bi )

¢ Only a sufficient condition
e The set of pairs to check can be huge (more than exponential)



Controllability with Packet Dropouts

We are given a pair (A,b) and an automaton ; j ‘
o(0) =1 x(1) = Ax(0) + Bu(0) ' C
o(1)=0 2(2) = A%(0) + ABu(0)

7(2) =0 £(3) = A32(0) + A2 Bu(0)

w(4) = A*x(0) + A3Bu(0) + Bu(3)

o=1001...

The controllability problem: for any starting point x(0), and any target x*,

does there exist, for any switching signal, a control signal u(.) and a time T
such that X(T)=x*?

Proposition: The system is controllable iff the generalized controllability matrix
C,(t) = [A" Vbo(0)| A" 2bo(1)]...|Abo(t —2)|bo(t — 1))

is bound to become full rank at some time t



Our algorithm

IS

Thus, we have a purely algebraic problem: is it possible to find a path in the
automaton such that the controllability matrix is never full rank?

C,(t) = [A" Voo (0)| A" 2bo(1)|...|Abo(t —2)|bo(t — 1))

=» Theorem: Given a matrix A and two vectors b,c, the set of paths such that

Co(t)

is never full rank is either empty, or contains a cycle in the automaton.

From this, we obtain an algorithm to decide controllability:

Semi-algorithm 1: For every cycle of the automaton, check if it leads to an
infinite uncontrollable signal

Semi-algorithm 2: For every finite path, check whether it leads to a
controllable signal ( i.e. a full rank controllability matrix).



Proof of our theorem

Theorem ([Skolem 34]): Given a matrix A and two vectors b,c, the set of values

cTA"b = 0

n such that

is eventually periodic.

We managed to rewrite our controllability conditions in terms of a linear
iteration

=» Theorem: Given a matrix A and two vectors b,c, the set of paths such that

Co(t)

is never full rank is either empty, or contains a cycle in the automaton.

Now, how to optimally chose the control signal, if one does not know the
switching signal in advance? @
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LTIs with switched delays
Example

The controller design problem: a 2D system with two possible delays

e e W A—y ( cos() sin(o) )

< = —> \ —sin(«) cos(alpha)
<€ v 4 >
. ) (1
7_/$_ D =1{0,1}

« Theorem: For the above system, there exist values of the parameters
such that no linear controller can stabilize the system, but a nonlinear
bang-bang controller does the job. [3. DInnocenzo Di Benedetto 2014]

That is, a linear controller is not always sufficient
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Conclusmn a perspectlve on switching systems

(sensor)
networks

Wireless
control

[Gurvits,
1995]

Bisimulation
design

consensus
problems

& Social/big
} data control

[Rota, Strang, 1960]

P
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properties Negative Techniques Ad hoc
Complexityresults (S-procedurel technigues



Thanks!

Ads
The JSR Toolbox:

http://www.mathworks.com/matlabcentral/fil
eexchange/33202-the-jsr-toolbox

[Van Keerberghen, Hendrickx, J. HSCC 2014]
The CSS toolbox, 2015

Questions?

Several open positions:
raphael.jungers@uclouvain.be

References:
http://perso.uclouvain.be/raphael.jungers/

EECI Course,
L’Aquila, April 4-8

Joint work with

A.A. Anmadi (Princeton), M-D di
Benedetto (I'Aquila), V. Blondel
(UCLouvaln) J. Hendrlckx (UCLouvain) _
A. D'innocenzo (I'Aquila), M. Heemels
TU/e), A. Kundu TU e), P. Parrilo hh

éMIT), M. Philiippe (UCLouvain), V.

Protasov (Moscow), M. Roozbe am European Embedded Control Institute
(MITg
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