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Switching systems 

xt+1=             
A0 xt 

A1 xt 

Point-to-point Given x0 and x*, is there a product (say, A0 A0 A1 A0 … A1) for 
which x*=A0 A0 A1 A0 … A1 x0?  

Boundedness Is the set of all products {A0, A1, A0A0, A0A1,…} bounded?   

Mortality Is there a product that gives the zero matrix? 

Global convergence to the origin Do all products of the type  
A0 A0 A1 A0 … A1 converge to zero? 



The joint spectral characteristics 
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[Gurvits 95] 



The joint spectral characteristics 
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[Protasov 97] 

(m is the number of 
matrices in   ) 



The joint spectral characteristics 
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[Furstenberg Kesten, 1960] 
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The 
feedback 
stabilization 
radius 

The joint spectral characteristics 

[J. Mason 15] 

[Fiacchini Girard Jungers 15] 

[Geromel Colaneri 06] 

[Blanchini Savorgnan 08] Alternative definition: suppose you can observe x(t) at 
every step, and apply the switching you want, as a function 
of the x(t) 



The joint spectral radius addresses the 

stability problem 

The joint spectral subradius addresses the 

stabilizability problem 

The Lyapunov exponent addresses 

the 
 stability with probability one 
(Cfr. Oseledets Theorem) 

The p-radius addresses the… p-weak 
stability 

[J. Protasov 10] 

The feedback stabilization  
radius addresses the 
 feedback stabilizability 

[J. Mason 16] 

[Fiacchini Girard Jungers 15] 

The joint spectral characteristics 



The joint spectral characteristics: 
Mission Impossible? 

 

 

 
Theorem Computing or approximating  is NP-hard 

 
 
Theorem The problem >1 is algorithmically undecidable 

 

Conjecture The problem <1 is algorithmically undecidable 
 

Theorem Even the question «                           ?» is algorithmically undecidable 
 for all (nontrivial) a and b 

 

Theorem The same is true for the Lyapunov exponent 
 
 
Theorem The p-radius is NP-hard to approximate 

See  [Blondel Tsitsiklis 97, 
 Blondel Tsitsiklis 00, 
 J. Protasov 09 
 J. Mason 15] 
 

 
Theorem The feedback stabilization radius is turing-uncomputable 
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• The CQLF method 

 

    

 

 

 

 

 

 

    

 

LMI methods 



SDP methods 

• John’s ellipsoid Theorem: Let K be a compact convex set with 
nonempty interior symmetric about the origin.  Then there is an 
ellipsoid E such that       

        [John 1948] 

 

• Theorem  For all             there exists a norm such that 

[Rota Strang, 60] 

•So we can 
approximate the unit 
ball of an extremal 
norm with an ellipsoid 



• Theorem The best ellipsoidal norm          approximates the joint 
spectral radius up to a factor  

 

K 

[Ando Shih 98] 

SDP methods 

 

Algorithm that approximates the joint spectral radius of  

arbitrary sets of m (nXn)-matrices up to an arbitrary accuracy     in                          
 operations 
 
 

There exists a Lyap. 
function of degree d 

One can improve this method by lifting techniques [Nesterov Blondel 05] 

[Parrilo Jadbabaie 08] 

PTAS  



Yet another LMI method  

• A strange semidefinite program 

 

 

 

 

 

 

 

 

 

 

 

 

• But also… 

 

 

 

 

 

 

 

 

 

 

[Goebel, Hu, Teel 06] 

[Daafouz Bernussou 01] 

[Lee and Dullerud 06] … 

[Bliman Ferrari-Trecate 03] 



Yet another LMI method 
 

• An even stranger program: 

 

 

 

 

 

 

 

 

 

 

 

 

[Ahmadi, J., Parrilo,  
Roozbehani10] 



Yet another LMI method 
 

• Questions: 

 

– Can we characterize all the LMIs that work, in a unified 
framework? 

 

– Which LMIs are better than others? 

 

– How to prove that an LMI works? 

 

– Can we provide converse Lyapunov theorems for more 
methods? 

 

There exists a Lyap. 
function of degree d 



From an LMI to an automaton 
 

• Automata representation Given a set of LMIs, construct an automaton like 
this: 

 

 

 

 

 

 

 

 

 

 

• Definition  A labeled graph (with label set A) is path-complete if for any 
word on the alphabet A, there exists a path in the graph that generates 
the corresponding word. 

• Theorem If G is path-complete, the corresponding semidefinite program is 
a sufficient condition for stability. [Ahmadi J. Parrilo Roozbehani 14] 



 

• Examples:  

– CQLF 

 

 

 

 

– Example 1 

 

 

 

This type of graph gives a max-of-quadratics  

Lyapunov function (i.e. intersection of ellipsoids) 

 

– Example 2 

This type of graph gives a common  

Lyapunov function for a generating  

set of words 

Some examples 



An obvious question: are there other 
valid criteria? 

 

• Theorem 

 

 

 

 

  

 

 

 

 

 

 If G is path-complete, the corresponding semidefinite program is a 
sufficient condition for stability. 

 

• Are all valid sets of equations coming from path-complete graphs? 

 

• …or are there even more valid LMI criteria? 

Path complete Sufficient condition 
for stability 

??? 



Are there other valid criteria? 

[J. Ahmadi Parrilo Roozbehani 15]  

Path complete Sufficient condition 
for stability 

!!! ??? 

• Theorem Non path-complete sets of LMIs are not sufficient for stability. 

 

 

 

 

 

 

 

 

 

 

• Corollary   

 It is PSPACE complete to recognize sets of equations that are a sufficient 
condition for stability 

 

• These results are not limited to LMIs, but apply to other families of conic 
inequalities 



So what now? 

After all, what are all these results useful for? 

 

 

 

 

 

 

 

 

 Optimize on optimization problems! 

 This framework is generalizable to harder problems 

• Constrained switching systems 

• Controller design for switching systems 

• Automatically optimized abstractions of cyber-physical systems 

• … 
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Constrained switching sequences 

Switching sequences on regular languages 
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Constrained switching sequences 

Switching sequences on regular languages 
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Stability 



Constrained switching and 
multinorms 

• CJSR as an infimum over sets of norms   

Theorem: 
admits a  
Quadratic Multinorm 

[Philippe, Essick, Dullerud, J. 2014] 

Corollary: One can again develop a PTAS based on 
Path-complete methods 
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Applications of Wireless Control Networks 

Industrial automation 

Environmental Monitoring, 

Disaster Recovery and 

Preventive Conservation 

Supply Chain and 

Asset Management 

Physical Security 

and Control 



Wireless control networks 

A large scale decentralized 
control network 

A green building 

impact of 

failures 

[Ramanathan Rosales-Hain 00] 
[alur D'Innocenzo Johansson 
 Pappas  Weiss 10] 
[Mazo Tabuada 10]  
[Zhu Yuan Song Han Başar 12] 
… 



Motivation 



Previous work 

[Jungers D’Innocenzo Di 
Benedetto, TAC 2015] 



Today 

[Jungers Kundu Heemels, 2016] 



V(t) u(t) 

Controllability with packet dropouts 

u(0) 

The delay is constant, but some packets are dropped 

A data loss signal determines the packet dropouts 
 
…this is a switching system! 

u(0) 

1 or 0 
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V(t) u(t) 

Controllability with packet dropouts 

The delay is constant, but some packets are dropped 

A data loss signal determines the packet dropouts 
 
…this is a switching system! 

U(2) 

1 or 0 



V(t) u(t) 

Controllability with packet dropouts 

The delay is constant, but some packets are dropped 

A data loss signal determines the packet dropouts 
 
…this is a switching system! 

u(4) u(4) 

1 or 0 



The switching signal 

We are interested in the controllability of such a system 

Of course we need an assumption on the switching signal 
 
The switching signal is constrained by an automaton 
          Example: 
Bounded number of 
  consecutive dropouts (here, 3) 

The controllability problem: For any starting point x(0), and any target x*, 
does there exist, for any switching signal, a control signal u(.) and a time T  
such that    x(T)=x* ? 



The dual observability problem 

Observability under intermittent outputs is  algebraically 
equivalent  (and perhaps more meaningful) 

V(t) u(t) 

P Y(k) Network 
O 



Controllability with Packet Dropouts 
 

We are given a pair (A,b) and an automaton 

The controllability problem: for any starting point x(0), and any target x*, 
does there exist, for any switching signal, a control signal u(.) and a time T  
such that    x(T)=x* ? 

 Theorem: Deciding controllability of switching systems is  
 undecidable in general (consequence of [Blondel Tsitsiklis, 97]) 



We are given a pair (A,b) and an automaton 

The controllability problem: for any starting point x(0), and any target x*, 
does there exist, for any switching signal, a control signal u(.) and a time T  
such that    x(T)=x* ? 

 
 
 
  

 Theorem [Baabali Egerstedt 2005]: There exists some l such that : lf for all l<L, 
the pairs (A ,Bi) are controllable, then the system is controllable 

Baabali & Egerstedt’s framework (2005) 

l 

X(t+1)=Ax + Bi u(t) 
Here, the switching is on the 
input matrix Bi  

• Only a sufficient condition 
• The set of pairs to check can be huge (more than exponential) 

Controllability with Packet Dropouts 
 



We are given a pair (A,b) and an automaton 

The controllability problem: for any starting point x(0), and any target x*, 
does there exist, for any switching signal, a control signal u(.) and a time T  
such that    x(T)=x* ? 

Controllability with Packet Dropouts 

Proposition: The system is controllable iff the generalized controllability matrix  
 
 
 
is bound to become full rank at some time t   



Our algorithm 

From this, we obtain an algorithm to decide controllability: 

Semi-algorithm 1: For every cycle of the automaton, check if it leads to an 
infinite uncontrollable signal 
Semi-algorithm 2: For every finite path, check whether it leads to a 
controllable signal ( i.e. a full rank controllability matrix). 
 
 
 
  

 Theorem: Given a matrix A and two vectors b,c, the set of paths such that 

 
 
is never full rank is either empty, or contains a cycle in the automaton. 
  

Thus, we have a purely algebraic problem: is it possible to find a path in the 
automaton such that the controllability matrix is never full rank? 



Proof of our theorem 

Theorem ([Skolem 34]): Given a matrix A and two vectors b,c, the set of values 
n such that 
 
is eventually periodic. 
 
 
 
  

We managed to rewrite our controllability conditions in terms of a linear 
iteration 
 
 Theorem: Given a matrix A and two vectors b,c, the set of paths such that 

 
 
is never full rank is either empty, or contains a cycle in the automaton. 
 
 
 
  

Now, how to optimally chose the control signal, if one does not know the 
switching signal in advance?  



Outline 

• Joint spectral characteristics 

 

 

• Path-complete methods for switching systems stability 

 

 

• Applications:  

• WCNs and packet dropouts 

• Switching delays 

 

 

• Conclusion and perspectives 



 

 

 

 

 

The controller design problem: a 2D system with two possible delays 

 

 

 

LTIs with switched delays 
Example 

That is, a linear controller is not always sufficient 

• Theorem: For the above system, there exist values of the parameters 
such that no linear controller can stabilize the system, but a nonlinear 
bang-bang controller does the job. [J. D’Innocenzo Di Benedetto 2014] 
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Conclusion: a perspective on switching systems 
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