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Main point of interest: stability/stabilizability of a discrete-time system

+ A
xin xout

described by a linear (switching ) equation

x(n+1) = A(n)x(n), n = 0,1, . . . ,

where

A(n) ∈A = {A1,A2, . . . ,Ar}, Ai ∈Rd×d,

x(n) ∈Rd.
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General problem

This problem is a special case of the more general problem:

When the matrix products Ain · · ·Ai2 Ai1 with in ∈ {1, . . . , r} converge
under different assumptions on the switching sequences {in} ?

“parallel” vs “sequential” computational algorithms: e.g., Gauss-Seidel vs Jacobi method;

distributed computations;

“asynchronous” vs “synchronous” mode of data exchange in the control theory and data
transmission (large-scale networks);

smoothness problems for Daubeshies wavelets (computational mathematics);

one-dimensional discrete Schrödinger equations with quasiperiodic potentials (theory of
quasicrystalls, physics);

linear or affine iterated function systems (theory of fractals);

Hopfield-Tank neural networks (biology, mathematics);

“triangular arbitrage” in the models of market economics;

etc.
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Joint and Lower Spectral Radii

Given a set of (d×d)-matrices A and a norm ‖ ·‖ on Rd,

ρ(A ) = lim
n→∞sup

{‖Ain · · ·Ai1‖1/n : Aij ∈A
}

is called the joint spectral radius (JSR) of A (Rota & Strang, 1960), whereas

ρ̌(A ) = lim
n→∞ inf

{‖Ain · · ·Ai1‖1/n : Aij ∈A
}

is called the lower spectral radius (LSR) of A (Gurvits, 1995).

Remark

ρ(A ) and ρ̌(A ) are well defined and independent on the norm ‖ ·‖;

‖·‖ in the definitions of JSR and LSR may be replaced by the spectral radius
ρ(·) of a matrix, see Berger & Wang, 1992 for ρ(A ) and Gurvits, 1995;
Theys, 2005; Czornik, 2005 for ρ̌(A ).
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Another Formulae for JSR

Elsner, 1995; Shih, 1999 — via infimum of norms;

Protasov, 1996; Barabanov, 1988 — via special kind of norms with
additional properties;

Chen & Zhou, 2000 — via trace of matrix products;

Blondel & Nesterov, 2005 — via Kronecker (tensor) products of matrices;

Parrilo & Jadbabaie, 2008 — via homogeneous polynomials instead of
norms;

etc.
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Stability vs Stabilizability

Difference between the joint and lower spectral radii:

The inequality ρ(A ) < 1 characterizes the Schur stability of A :

ρ(A ) < 1 =⇒ ∀{in} : ‖Ain · · ·Ai2 Ai1‖→ 0.

The inequality ρ̌(A ) < 1 characterizes the Schur stabilizability of A :

ρ̌(A ) < 1 =⇒ ∃{in} : ‖Ain · · ·Ai2 Ai1‖→ 0.
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JSR vs LSR

The LSR has ‘less stable’ continuity properties than the JSR, see
Bousch & Mairesse, 2002;

Until recently, ‘good’ properties for the LSR, including numerical
algorithms of computation, were obtained only for matrix sets A having
an invariant cone, see Protasov, Jungers & Blondel, 2009/10; Jungers, 2012;
Guglielmi & Protasov, 2013;

Bochi & Morris, 2015 started a systematic investigation of the continuity
properties of the LSR.

Their investigation is based on the concepts of dominated splitting and
k-multicones from the theory of hyperbolic linear cocycles. In particular,
they gave a sufficient condition for the Lipschitz continuity of the LSR
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First Problems

Inequalities
ρ(A ) < 1, ρ̌(A ) < 1

might seem to give an exhaustive answer to the questions on stability or
stabilizability of a switching system.

Theoretically:

this is indeed the case.

In practice:

the computation of ρ(A ) and ρ̌(A ) is generally impossible in a closed
formula form =⇒ need in approximate computational methods;

there are no a priory estimates for the rate of convergence of the related
limits in the definitions of ρ(A ) and ρ̌(A );

the required amount of computations rapidly increases in n and
dimension of a system.



Hourglass Alternative
and constructivity of

spectral characteristics
of matrix products

VICTOR KOZYAKIN

Introduction
Joint and Lower Spectral Radii

Stability vs Stabilizability

Problems

Constructive
computability of
spectral characteristics

Finiteness Conjecture

Independent Row Uncertainty

Hourglass Alternative
Idea of Proof

H -sets of Matrices

Semiring Theorem

Main Result

Questions

Individual Trajectories
One-step Maximization

Multi-step Maximization

Minimax Theorem

Acknowledgments

Р

Э
First Problems (cont.)

The following problems of stability and stabilizability of linear switching
systems are not new per se, but are remaining to be relevant.

Problem

How to describe the classes of switching systems (classes of matrix sets A ), for
which the JSR ρ(A ) could be constructively calculated?

Problem

How to describe the classes of switching systems (classes of matrix sets A ), for
which the LSR ρ̌(A ) could be constructively calculated?
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Another Problem that is Barely Mentioned in the Theory of Matrix Products

It is of crucial importance that in the control theory, in general, systems are
composed not of a single block but of a number of interconnected blocks, e.g.

+ A2

A1

+ A3

A4

+
xin xout

When these blocks are linear and functioning asynchronously, each of them is
described by the equation

xout(n+1) = Ai(n)xin(n), xin(·) ∈RNi , xout(·) ∈RMi , n = 0,1, . . . ,

where the matrices Ai(n), for each n, may arbitrarily take values from some set
Ai of (Ni ×Mi)-matrices, where i = 1,2, . . . ,Q and Q is the total amount of blocks.
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Another Problem (cont.)

Question

What can be said about stability or stabilizability of a system, whose blocks may
be connected in parallel or in series, or in a more complicated way, represented
by some directed graph with blocks placed on its edges?

Disappointing Remark:

Under such a connection of blocks, the classes of matrices describing the
transient processes of a system as a whole became very complicated and their
properties are practically not investigated.

So, the following problem is also urgent:

Problem

How to describe the switching systems for which the question about stability or
stabilizability can be constructively answered not only for an isolated switching
blocks but also for any series-parallel connection of such blocks?
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Constructive computability
of spectral characteristics
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Finiteness Conjecture

The possibility of ‘explicit’ calculation of the spectral characteristics of sets of
matrices is conventionally associated with the validity of the finiteness
conjecture (Lagarias & Wang, 1995) according to which the limit in the formulas

ρ(A ) = lim
n→∞sup

{‖Ain · · ·Ai1‖1/n : Aij ∈A
}

,

ρ̌(A ) = lim
n→∞ inf

{‖Ain · · ·Ai1‖1/n : Aij ∈A
}

is attained at some finite value of n.

This finiteness conjecture was disproved

for JSR: Bousch & Mairesse, 2002. The ‘explicit’ counterexamples to the
finiteness conjecture was built by Hare, Morris, Sidorov & Theys, 2011;
Morris & Sidorov, 2013; Jenkinson & Pollicott, 2015.

for LSR: Bousch & Mairesse, 2002; Czornik & Jurgaś, 2007.
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Finiteness Conjecture (cont.)

Despite the finiteness conjecture is false, attempts to discover new classes of
matrices for which it still occurs continues.

Should be borne in mind:

The validity of the finiteness conjecture for some class of matrices provides
only a theoretical possibility to ‘explicitly’ calculate the related spectral
characteristics, because in practice calculation of the spectral radii ρ(An · · ·A1)
for all possible sets of matrices A1, . . . ,An ∈A may require too much computing
resources, even for relatively small values of n.

⇓
From the practical point of view, the most interesting are the cases when the
finiteness conjecture holds for small values of n.
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Finiteness Conjecture (cont.)

The Finiteness Conjecture is known to be valid in the following cases:

A is a set of commuting matrices;

A is a set of upper or lower triangular matrices

A is a set of isometries in some norm up to a scalar factor (that is, ‖Ax‖ ≡λA‖x‖ for some
λA).

A is a ‘symmetric’ bounded set of matrices: together with each matrix A contains also the
(complex) conjugate matrix (Plischke & Wirth, 2008). This class includes all the sets of
self-adjoint matrices.

A is a set of the so-called non-negative matrices with independent row uncertainty
(Blondel & Nesterov, 2009).

A is a pair of 2×2 binary matrices, i.e. matrices with the elements {0,1}
(Jungers & Blondel, 2008).

A is a pair of 2×2 sign-matrices, i.e. matrices with the elements {−1,0,1}
(Cicone, Guglielmi, Serra-Capizzano & Zennaro, 2010).

A is a bounded family of matrices, whose matrices, except perhaps one, have rank 1
(Morris, 2011; Dai, Huang, Liu & Xiao, 2012; Liu & Xiao, 2012; Liu & Xiao, 2013;
Wang & Wen, 2013).
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Sets of Matrices with Independent Row Uncertainty

Theorem (Blondel & Nesterov, 2009)

Both ρ(A ) and ρ̌(A ) can be constructively calculated provided that A is a set of
non-negative matrices with independent row uncertainty.

Definition (Blondel & Nesterov, 2009)

A set of N ×M-matrices A is called a set with independent row uncertainty, or
an IRU-set, if it consists of all the matrices

A =


a11 a12 · · · a1M

a21 a22 · · · a2M

· · · · · · · · · · · ·
aN1 aN2 · · · aNM

 ,

each row ai = (ai1,ai2, . . . ,aiM ) of which belongs to some set of M-rows A (i),
i = 1,2, . . . ,N .
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Sets of Matrices with Independent Row Uncertainty (cont.)

Example

Let the sets of rows A (1) and A (2) be as follows:

A (1) = {(a,b), (c,d)}, A (2) = {(α,β), (γ,δ), (µ,ν)}.

Then the IRU-set A consists of the following matrices:

A11 =
(

a b
α β

)
, A12 =

(
a b
γ δ

)
, A13 =

(
a b
µ ν

)
,

A21 =
(

c d
α β

)
, A22 =

(
c d
γ δ

)
, A23 =

(
c d
µ ν

)
.
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Sets of Matrices with Independent Row Uncertainty (cont.)

Example

Let
A (1) = {(a11,a12), (1,0)}, A (2) = {(a21,a22), (0,1)}.

Then the IRU-set A consists of the following matrices:

A11 =
(

a11 a12

a21 a22

)
, A12 =

(
a11 a12

0 1

)
, A21 =

(
1 0

a21 a22

)
, A22 =

(
1 0
0 1

)
.

Matrices of such a kind are known long ago in the computational mathematics
and control theory:

matrices A12,A21 are used in place of A11 during transition from ‘parallel’ to
‘sequential’ computational algorithms: e.g., from the Jacobi method to the
Gauss-Seidel one;

matrices Aij arise in the control theory in description of ‘data loss’
information exchange.
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Sets of Matrices with Independent Row Uncertainty (cont.)

Finiteness Theorem (Blondel & Nesterov, 2009; Nesterov & Protasov, 2013)

If an IRU-set of non-negative matrices A is compact then

ρ(A ) = max
A∈A

ρ(A), ρ̌(A ) = min
A∈A

ρ(A).

Remark

For IRU-sets of arbitrary matrices, the Blondel-Nesterov-Protasov theorem is
not valid.
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Hourglass Alternative
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How to prove the Blondel-Nesterov-Protasov theorem?

The original proof of the Finiteness Theorem is quite cumbersome, so outline
the idea of alternative proof (Kozyakin, 2016).

Main observation: for IRU-sets of non-negative matrices the following
assertion holds:

Hourglass Alternative

Given a matrix Ã ∈A and a vector u > 0

⇓
H1: either Au ≥ Ãu for all A ∈A or ∃ Ā ∈A : Āu ≤ Ãu and Āu 6= Ãu;

H2: either Au ≤ Ãu for all A ∈A or ∃ Ā ∈A : Āu ≥ Ãu and Āu 6= Ãu.
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Graphical Interpretation

Rotate this Figure 45◦ counterclockwise!
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Assertion H1 of the Hourglass Alternative
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Idea of Proof of the Blondel-Nesterov-Protasov Theorem

Let Ã ∈A be such that ρ(Ã) = max
A∈A

ρ(A) and u > 0 be the leading eigenvalue of Ã.

Hourglass Alternative

⇓
Au ≤ Ãu ∀A ∈A

⇓
Ain · · ·Ai1 u ≤ Ãnu ∀Aij ∈A

⇓
ρ(Ain · · ·Ai1 ) ≤ ρn(Ã) ∀Aij ∈A

⇓
ρ(A ) ≤ max

A∈A
ρ(A) ( ≤ ρ(A ) )
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H -sets of Matrices

The Hourglass Alternative is the only property which was used in the proof of
the Blondel-Nesterov-Protasov Finiteness theorem! So,

Let us axiomatize this property!

Definition (Kozyakin, 2016)

A set of positive matrices A is called an H -set, if it satisfies the Hourglass
Alternative.

Example

any IRU-set of positive matrices is an H -set;

any set of positive matrices A = {A1,A2, . . . ,An} satisfying A1 ≤ A2 ≤ ·· · ≤ An

(called linearly ordered set) is an H -set.

Not every set of positive matrices is an H -set.
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Properties of H -sets of Matrices

Recall the Minkowski operations of addition and multiplication for sets of
matrices:

A +B := {A+B : A ∈A , B ∈B},

A B := {AB : A ∈A , B ∈B},

tA =A t := {tA : t ∈R, A ∈A }

Remark on the Operations of Minkowski

The addition of sets of matrices corresponds to the parallel coupling of
independently operating asynchronous controllers functioning independently.

The multiplication corresponds to the serial coupling of asynchronous
controllers.
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Properties of H -sets of Matrices

Denote the totality of all H -sets of (N ×M)-matrices by H (N ,M).

Theorem (Kozyakin, 2016)

The following is true:

(i) A +B ∈H (N ,M), if A ,B ∈H (N ,M);

(ii) A B ∈H (N ,Q), if A ∈H (N ,M) and B ∈H (M ,Q);

(iii) tA =A t ∈H (N ,M), if t > 0 and A ∈H (N ,M).

The totality H (N ,N) is endowed with additive and multiplicative group
operations, but itself is not a group, neither additive nor multiplicative.

After adding the zero additive element {0} and the identity multiplicative
element {I} to H (N ,N), the resulting totality H (N ,N)∪ {0}∪ {I} becomes a
semiring in the sense of Golan, 1999.
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Properties of H -sets of Matrices (cont.)

Remark

By the above theorem any finite sum of any finite products of sets of matrices
from H (N ,N) is again a set of matrices from H (N ,N). Moreover, for any
integers n,d ≥ 1, all the polynomial sets of matrices

P(A1,A1, . . . ,An) =
d∑

k=1

∑
i1,i2,...,ik∈{1,2,...,n}

pi1,i2,...,ikAi1Ai2 · · ·Aik ,

where A1,A1, . . . ,An ∈H (N ,N) and the scalar coefficients pi1,i2,...,ik are positive,
belong to the set H (N ,N).

Theorem (Kozyakin, 2016)

Let A ∈H (N ,N). Then

ρ(A ) = max
A∈A

ρ(A), ρ̌(A ) = min
A∈A

ρ(A).
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Main Result

What does it imply for the control theory?
Theorem

Given a system formed by a series-parallel connection of blocks corresponding to
some H -sets of non-negative matrices Ai, i = 1,2, . . . ,Q.

Then the question of stability (stabilizability) of such a system can be
constructively resolved by finding a matrix at which max

A∈A
ρ(A) is attained, where

A is the Minkowski polynomial sum of the matrix sets Ai, i = 1,2, . . . ,Q,
corresponding to the structure of coupling of the related blocks.

+ A2

A1

+ A3

A4

+
xin xout



Hourglass Alternative
and constructivity of

spectral characteristics
of matrix products

VICTOR KOZYAKIN

Introduction
Joint and Lower Spectral Radii

Stability vs Stabilizability

Problems

Constructive
computability of
spectral characteristics

Finiteness Conjecture

Independent Row Uncertainty

Hourglass Alternative
Idea of Proof

H -sets of Matrices

Semiring Theorem

Main Result

Questions

Individual Trajectories
One-step Maximization

Multi-step Maximization

Minimax Theorem

Acknowledgments

Р

Э
Questions

Any other examples of H -sets of matrices?

Is it possible to extend this approach to non-positive matrices?

What can be said about control systems with non-directed coupling of
blocks?

etc.
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Individual Trajectories
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One More Problem

Both, the JSR and the LSR of a matrix set, describe the limiting behavior of the
‘multiplicatively averaged’ norms of the matrix products, ‖Ain · · ·Ai1‖1/n. That is,

they characterize the stability or stabilizability of a system ‘as a whole’.

Often there arise the problem to find, for a given x, a sequence of matrices that
would ensure the fastest ‘increase or decrease’ of the quantities

ν(Ain · · ·Ai1 x),

where ν(·) is a numerical function.

Examples of the function ν(·) are the norms

‖x‖1 =
∑

i
|xi|, ‖x‖2 =

√∑
i
|xi|2, ‖x‖∞ = max

i
|xi|.
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One More Problem (cont.)

If A is a finite set consisting of K elements then to find the value of

max
Aij∈A

ν(Ain · · ·Ai1 x) (∗)

one need, in general, to compute K n times the values of the function ν(·).

Problem

How to describe the classes of switching systems (the classes of matrix sets A ),
for which the number of computations of ν(·) needed to calculate the quantity
(∗) would be less than K n?

It is desirable that the required number of computations would be of order Kn.

A similar problem on minimization of ν(Ain · · ·Ai1 x) can also be posed.
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One-step Maximization

First consider the problem of finding

max
A∈A

ν(Ax),

where A is assumed to be compact.

By Assertion H2 of the Hourglass Alternative, for any matrix Ã ∈A , either
Ax ≤ Ãx for all A ∈A or there exists a matrix Ā ∈A such that Āx ≥ Ãx and
Āx 6= Ãx.

This, together with the compactness of the set A , implies the existence of a
matrix A(max)

x ∈A such that,

Ax ≤ A(max)
x x, ∀ A ∈A .
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One-step Maximization (cont.)

Theorem

Let A be a compact H -set of non-negative (N ×N)-matrices, ν(·) be a
coordinate-wise monotone function, and x ∈RN , x ≥ 0, be a vector.

(i) Then
max
A∈A

ν(Ax) = ν(A(max)
x x).

(ii) Let, additionally, the function ν(·) be strictly coordinate-wise monotone. If

max
A∈A

ν(Ax) = ν(Ãx)

then
Ãx = A(max)

x x.
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Multi-step Maximization

We turn now to the question of determining the quantity ν(Ain · · ·Ai1 x) for some
n > 1 and x ∈RN , x ≥ 0. With this aim in view, let us construct sequentially the
matrices A(max)

i , i = 1,2, . . . ,n, as follows:

the matrix A(max)
1 is constructed in the same way as was done in the

previous section: A(max)
1 = A(max)

x0
;

if the matrices A(max)
i , i = 1,2, . . . ,k, have already constructed then the

matrix A(max)
k+1 , depending on the vector

xk = A(max)
k · · ·A(max)

1 x,

is constructed to maximize the function

ν(AA(max)
k · · ·A(max)

1 x) = ν(Axk)

over all A ∈A in the same manner as was done in the previous section. So,
the matrix A(max)

k+1 is defined by the equality A(max)
k+1 = A(max)

xk
.
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Multi-step Maximization (cont.)

Theorem

Let A be a compact H -set of non-negative (N ×N)-matrices, ν(·) be a
coordinate-wise monotone function, and x ∈RN , x ≥ 0, be a vector.

(i) Then
max

An,...,A1∈A
ν(An · · ·A1x) = ν(A(max)

n · · ·A(max)
1 x).

(ii) Let, additionally, the set A consist of positive matrices and the function ν(·)
be strictly coordinate-wise monotone. If

max
An,...,A1∈A

ν(An · · ·A1x) = ν(Ãn · · · Ã1x)

then
Ãi · · · Ã1x = A(max)

i · · ·A(max)
i x, i = 1,2, . . . ,n.
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Minimax Theorem
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Minimax Theorem

Minimax Theorem

Let A ∈H (N ,M) and B ∈H (M ,N). Then

min
A∈A

max
B∈B

ρ(AB) = max
B∈B

min
A∈A

ρ(AB).

Asarin, Cervelle, Degorre, Dima, Horn & Kozyakin, 2015 used a restricted form
of this theorem to investigate the so-called matrix multiplication games (to be
presented at STACS 2016, Orléans, France, February 17-20).

Remark

In the Minimax Theorem, A and B may be replaced by any compact subsets of
conv(A ) and conv(B), respectively.
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Minimax Theorem: Difficulty of Proof

1 The vast majority of proofs of the minimax theorems heavily employ some
kind of convexity in one of the arguments of the related function and
concavity in the other (see, e.g., survey Simons, 1995).

2 We were not able to find suitable analogs of convexity or concavity of the
function ρ(AB) with respect to the matrix variables A and B.

3 In our context, due to the identity

ρ(AB) ≡ ρ(BA),

the role of the matrices A and B is in a sense equivalent. Therefore, any
kind of ‘convexity’ of the function ρ(AB) with respect, say, to the variable A
would have to involve its ‘concavity’ with respect to the same variable,
which casts doubt on the applicability of the ‘convex-concave’ arguments
in the proof of the Minimax Theorem.
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