Positivity and Monotonicity in Switched Systems: A Miscellany

Workshop on Switching Dynamics and Verification IHP Paris

Ollie Mason

Dept. of Mathematics \& Statistics/Hamilton Institute, Maynooth University

January 2016

Talk Outline - 3 Problems

- D-stability for switched positive systems.
- Stability Vs persistence for switched epidemiological models:
- stability of the disease free equilibrium;
- persistence and periodic orbits.
- Monotonicity and continuity for state-dependent switching.

Notation

- For $A \in \mathbb{R}^{n \times n}: \rho(A)$ denotes its spectral radius; $\mu(A)$ denotes the spectral abscissa

$$
\mu(A)=\max \{\operatorname{Re}(\lambda) \mid \lambda \in \sigma(A)\} .
$$

- A is Metzler if $a_{i j} \geq 0$ for $i \neq j$.
- For a finite set $\mathcal{M} \subset \mathbb{R}^{n \times n} \operatorname{conv}(\mathcal{M})$ denotes its convex hull.
- $A \in \mathbb{R}^{n \times n}$ nonnegative or Metzler is irreducible if the associated digraph is strongly connected.

Background

- The LTI system

$$
\begin{equation*}
\dot{x}=A x \tag{1}
\end{equation*}
$$

is positive if $x_{0} \geq 0$ implies $x\left(t, x_{0}\right) \geq 0$ for all $t \geq 0$.

- It is well known that (1) is positive if and only if A is Metzler.

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be Metzler. The following are equivalent:
(1) A is Hurwitz $(\mu(A)<0)$;
(2) there exists some $v \gg 0$ with $A v \ll 0$;
(3) D-Stability: DA is Hurwitz for all diagonal matrices
$D \in \mathbb{R}^{n \times n}$ with positive diagonal entries.

Cooperative Systems

- $D \subseteq \mathbb{R}^{n}$ open, connected; $f: D \rightarrow \mathbb{R}^{n} C^{1}$ is cooperative if $\frac{\partial f}{\partial x}(a)$ is Metzler for every $a \in D$.
- Assume that D is an invariant set for

$$
\begin{equation*}
\dot{x}(t)=f(x(t)) . \tag{2}
\end{equation*}
$$

- Well known that if f is cooperative then (2) is monotone/order-preserving:

$$
x_{0} \leq y_{0} \Rightarrow x\left(t, x_{0}\right) \leq x\left(t, y_{0}\right)
$$

for all $t \geq 0$.

Cooperative and Monotone Systems

- Converse of this is true also if state space is locally convex.
- More generally, conditions for monotonicity are so-called Kamke-Müller conditions:

$$
x \leq y, x_{i}=y_{i} \Rightarrow f_{i}(x) \leq f_{i}(y)
$$

- When this holds, $x_{0} \leq y_{0} \Rightarrow x\left(t, x_{0}\right) \leq x\left(t, y_{0}\right)$ but also $x_{0} \ll y_{0}$ implies $x\left(t, x_{0}\right) \ll x\left(t, y_{0}\right)$ for all $t \geq 0$.

D-Stability for Switched Linear Systems

The Problem

Given a set of Metzler matrices $\mathcal{M}:=\left\{A_{1}, \ldots, A_{m}\right\} \subseteq \mathbb{R}^{n \times n}$, the switched system

$$
\begin{equation*}
\dot{x}(t)=A_{\sigma(t)} x(t) \sigma:[0, \infty) \rightarrow\{1, \ldots, m\} \tag{3}
\end{equation*}
$$

is D-stable if

$$
\begin{equation*}
\dot{x}(t)=D_{\sigma(t)} A_{\sigma(t)} x(t) \tag{4}
\end{equation*}
$$

is globally asymptotically stable for all diagonal matrices D_{1}, \ldots, D_{m} with positive diagonal entries.

D-Stability for Switched Linear Systems

M, Bokharaie, Shorten, 2009

(1) If there exists $v \gg 0$ in \mathbb{R}^{n} with $A_{i} v \ll 0$ for $1 \leq i \leq m$, then (4) is D-stable.
(2) If (4) is D-stable, then there exists some non-zero $v \geq 0$ with $A_{i} v \leq 0$ for $1 \leq i \leq m$.

In general, there is a gap between these two conditions.
Consider

$$
A_{1}=\left(\begin{array}{cc}
-2 & 1 \\
2 & -2
\end{array}\right), A_{2}=\left(\begin{array}{cc}
-3 & 1 \\
2 & -1
\end{array}\right)
$$

D-Stability for Switched Linear Systems

It is possible to close this gap if our system matrices are irreducible.

Bokharaie, M, Wirth, 2010

If each A_{i} is irreducible then (4) is D-stable if and only if there exists some $v \gg 0$ with $A_{i} v<0$ for $1 \leq i \leq m$.

- Combine $D_{i} A_{i} v<0$ with irreducibility to show that any solution starting at v decreases in every component initially.
- This combined with monotonicity properties of positive LTI systems allows us to show that $x(t, v, \sigma) \rightarrow 0$ as $t \rightarrow \infty$ for any switching signal σ.
- Another application of monotonicity allows us to conclude that solutions corresponding to all initial conditions tend to zero asymptotically.

D-Stability for Switched Linear Systems

These results can be used to characterise D-stability for systems with commuting matrices.

Bokharaie, M, Wirth, 2010

If $A_{i} A_{j}=A_{j} A_{i}$ for all i, j, then (4) is D-stable if and only if A_{i} is Hurwitz for $1 \leq i \leq n$.

- This follows easily as it is straightforward to show that there must exist some $v \gg 0$ with $A_{i} v \ll 0$ for $1 \leq i \leq n$.
- This result and the original sufficient condition for D-stability extends to nonlinear cooperative vector fields.

SIS model for structured population

A compartmental SIS model for structured populations was analysed in [Fall, Iggidr, Sallet and Tewa, 2007].

- Population divided into n groups; each group divided into susceptibles (S_{i}) and infectives (I_{i}).
- N_{i} - total population of group i.
- μ_{i} - birth rate and death (non-disease related) rate of group i.
- $\beta_{i j}$ - infectious rate for contacts between group j and i.
- γ_{i} - recovery rate for group i.

SIS model for structured population

- This leads to the time-invariant SIS model:

$$
\begin{aligned}
& \dot{S}_{i}(t)=\mu_{i} N_{i}-\mu_{i} S_{i}-\sum_{j=1}^{n} \beta_{i j} \frac{S_{i}(t) I_{j}(t)}{N_{i}}+\gamma_{i} I_{i}(t) \\
& \dot{I}_{i}(t)=\sum_{j=1}^{n} \beta_{i j} \frac{S_{i}(t) I_{j}(t)}{N_{i}}-\left(\gamma_{i}+\mu_{i}\right) I_{i}(t)
\end{aligned}
$$

- Clearly, N_{i} is constant for each group.

SIS model for structured population

- Let $x_{i}(t)=\frac{l_{i}(t)}{N_{i}}$ denote the proportion of group i infected at time t;
- $\hat{\beta}_{i j}=\frac{\beta i j N_{j}}{N_{i}}, \alpha_{i}=\gamma_{i}+\mu_{i}$. We can write the system as:

$$
\dot{x}_{i}(t)=\left(1-x_{i}(t)\right) \sum_{j=1}^{n} \hat{\beta}_{i j} x_{j}(t)-\alpha_{i} x_{i}(t)
$$

with $\alpha_{i}>0, \beta_{i j} \geq 0$.

SIS model - compact description

- This basic model can be written in the compact form:

$$
\begin{equation*}
\dot{x}=[-D+B-\operatorname{diag}(x) B] x \tag{5}
\end{equation*}
$$

- $D=\operatorname{diag}\left(\alpha_{i}\right)$ and $B=\left(\hat{\beta}_{i j}\right)$.
- $\Sigma_{n}:=\left\{x \in \mathbb{R}_{+}^{n}: x_{i} \leq 1, i=1, \ldots, n\right\}$ is invariant and the origin is an equilibrium - disease-free equilibrium.

Stability of Disease-Free Equilibrium (DFE)

Let $R_{0}=\rho\left(D^{-1} B\right)$. This plays the role of the basic reproduction number and acts as a threshold parameter for the model.

Fall et al, 2007

Consider the system (5). Assume that the matrix B is irreducible. The DFE at the origin is globally asymptotically stable if and only if $R_{0} \leq 1$.

Not difficult to see that

$$
R_{0} \leq 1 \Leftrightarrow \mu(-D+B) \leq 0
$$

Endemic Equilibria

Fall et al, 2007

Consider the system (5) and assume that B is irreducible. There exists a unique endemic equilibrium \bar{x} in int $\left(\mathbb{R}_{+}^{n}\right)$ if and only if $R_{0}>1$. Moreover, in this case, \bar{x} is asymptotically stable with region of attraction $\Sigma_{n} \backslash\{0\}$.

As above, the condition $R_{0}>1$ is equivalent to $\mu(-D+B)>0$.

Switched Model

We consider a switched version of this model to handle uncertainty and time-variation.

- D_{1}, \ldots, D_{m} diagonal, B_{1}, \ldots, B_{m} nonnegative in $\mathbb{R}^{n \times n}$.

$$
\begin{equation*}
\dot{x}=\left(-D_{\sigma(t)}+B_{\sigma(t)}-\operatorname{diag}(x) B_{\sigma(t)}\right) x \tag{6}
\end{equation*}
$$

- $\sigma:[0, \infty) \rightarrow\{1, \ldots, m\}$ measurable switching signal.

Linearised System

The linearisation of this system is

$$
\begin{equation*}
\dot{x}=\left(-D_{\sigma(t)}+B_{\sigma(t)}\right) x \tag{7}
\end{equation*}
$$

with the associated set of system matrices

$$
\mathcal{M}=\left\{-D_{1}+B_{1}, \ldots,-D_{m}+B_{m}\right\} .
$$

(1) System matrices are all Metzler.
(2) A natural generalisation of the condition $R_{0} \leq 1$ is to consider the joint Lyapunov exponent of \mathcal{M}.

Joint Lyapunov Exponent

- For each switching signal σ, the evolution operator is given by the solution of the matrix differential equation:

$$
\dot{\Phi}_{\sigma}(t)=A_{\sigma(t)} \Phi_{\sigma}(t), \Phi(0)=l
$$

- For each t, \mathcal{H}_{t} denotes the set of all time evolution operators for time t.
- We then define the operator semigroup

$$
\mathcal{H}:=\cup_{t \geq 0} \mathcal{H}_{t}
$$

$$
\left(\mathcal{H}_{0}=\{I\}\right)
$$

Joint Lyapunov Exponent

- The growth rate at time t is given by

$$
\rho_{t}(\mathcal{M}):=\sup _{\sigma} \frac{1}{t} \log \left\|\Phi_{\sigma}(t)\right\| .
$$

- The joint Lyapunov exponent (JLE) is then given by

$$
\rho(\mathcal{M})=\lim _{t \rightarrow \infty} \rho_{t}(\mathcal{M}) .
$$

- The JLE can be thought of a generalisation of the spectral abscissa to othe switched system.

Stability of the DFE for Switched SIS Model

Assume $\operatorname{conv}(\mathcal{M})$ contains an irreducible matrix.

Ait-Rami, Bokharaie, M, Wirth, 2014

The DFE of (6) is uniformly globally asymptotically stable if $\rho(\mathcal{M}) \leq 0$.

- Proving the result for $\rho(\mathcal{M})<0$ is straightforward using monotonicity techniqes.
- The existence of extremal norms plays a key role in the (far) subtler case $\rho(\mathcal{M})=0$.

Persistence

Let a mapping $\eta: \Sigma_{n} \rightarrow \mathbb{R}_{+}$be given.

Strong Persistence

A semiflow $\phi: \Sigma_{n} \times \mathbb{R}_{+} \rightarrow \Sigma_{n}$ is strongly persistent if

$$
\liminf _{t \rightarrow \infty} \eta(\phi(t, x))>0 \forall x, \eta(x)>0
$$

Uniform Strong Persistence

A semiflow $\phi: \Sigma_{n} \times \mathbb{R}_{+} \rightarrow \Sigma_{n}$ is uniformly strongly persistent if there is some $\epsilon>0$ such that:

$$
\liminf _{t \rightarrow \infty} \eta(\phi(t, x))>\epsilon \forall x, \eta(x)>0
$$

Endemic Behaviour - Persistence

Ait-Rami, Bokharaie, M, Wirth, 2014

Consider the switched SIS model (6). Assume that there exists some $R \in \operatorname{conv}(\mathcal{M})$ with $\mu(R)>0$. Then there exists a switching signal σ such that for all $x^{0}>0,1 \leq i \leq n$

$$
\liminf _{t \rightarrow \infty} x_{i}\left(t, x^{0}, \sigma\right)>0
$$

Under the hypotheses of the theorem, there is a switching signal for which the resulting semiflow is strongly persistent in every population group.

Outline of Proof

- We take $R=\kappa_{1}\left(D_{1}+B_{1}\right)+\ldots+\kappa_{m}\left(D_{m}+B_{m}\right)$ and consider the autonomous SIS system

$$
\begin{equation*}
\dot{x}(t)=\hat{f}(x)=(\hat{D}+\hat{B}) x-\operatorname{diag}(x) \hat{B} x \tag{8}
\end{equation*}
$$

with $\hat{D}=\kappa_{1} D_{1}+\cdots+\kappa_{m} D_{m}, \hat{B}=\kappa_{1} B_{1}+\cdots+\kappa_{m} B_{m}$.

- This has an endemic equilibrium \hat{x} which is asymptotically stable with region of attraction $\mathbb{R}_{+}^{n} \backslash\{0\}$.
- Moreover, there is some vector $v \gg 0$ such that the solution $\phi(t, v)$ of (8) is monotonically increasing.

Outline of Proof

- For any $T>0$, we can define a periodic switching signal σ as follows.

$$
\begin{gathered}
\sigma(t)=1 \text { for } 0 \leq t<\kappa_{1} T \\
\sigma(t)=i \text { for }\left(\sum_{j=1}^{i-1} \kappa_{j}\right) T \leq t<\left(\sum_{j=1}^{i} \kappa_{j}\right) T
\end{gathered}
$$

for $2 \leq i \leq m$. Finally, $\sigma(t+T)=\sigma(t)$ for all $t \geq 0$.

- Using techniques from averaging theory for ODEs, we can then approximate the solution of the switched system with that of the autonomous system possessing an endemic equilibrium.
- Methods from monotone systems and differential inequalities allow us to conclude the result.

Endemic Behaviour - Periodic Orbits

In fact, under the same hypotheses, we can establish the existence of a periodic orbit.

Ait-Rami, Bokharaie, M, Wirth, 2014

Consider the switched SIS model (6). Assume that there exists some $R \in \operatorname{conv}(\mathcal{M})$ with $\mu(R)>0$. Then there exists a switching signal σ and some $x^{0} \gg 0$ such that the orbit

$$
x\left(t, x^{0}, \sigma\right)
$$

is periodic.

Outline of Proof

- Use same averaged system and switching signal as in the previous result to define:

$$
S_{1}\left(x^{0}\right):=\int_{0}^{1} \hat{f}\left(\phi\left(s, x^{0}\right)\right) d s, S_{2}\left(x^{0}\right):=\int_{0}^{1} f_{\sigma(s)}\left(x\left(s, x^{0}, \sigma\right)\right) d s
$$

- From the properties of \hat{f}, we can find a neighbourhood Ω in $\operatorname{int}\left(\Sigma_{N}\right)$ and $\hat{x} \in \Omega$ such that:
(1) $S_{1}(\hat{x})=0$;
(2) $S_{1}(z) \neq 0$ for all $z \in \operatorname{bd}(\Omega)$.

Outline of Proof

- We next apply an approximation theorem from averaging theory for ODEs to conclude:

$$
\max _{z \in \bar{\Omega}}\left\|S_{1}(z)-S_{2}(z)\right\|_{\infty}<\min _{z \in \operatorname{bd}(\Omega)}\left\|S_{1}(z)\right\|_{\infty}
$$

provided we choose the period $T>0$ appropriately.

- Using a result from Degree Theory for nonlinear maps, this implies that S_{1} and S_{2} have the same number of zeros in Ω.
- The zero of S_{2} corresponds to a periodic orbit of the switched system.

Summary of the Situation

- \mathcal{M} irreducible and $\rho(\mathcal{M}) \leq 0$ means that DFE is GAS Disease dies out.
- Each B_{i} irreducible and $\mu(R)>0$ for some $R \in \operatorname{conv}(\mathcal{M})$ means that there is a strongly persistent switching signal, and an endemic periodic orbit.
- If $\mu(R)>0$ for some $R \in \operatorname{conv}(\mathcal{M})$, then $\rho(\mathcal{M})>0$.
- In general there is a gap between these two conditions (Fainshil, Margaliot, Chigansky, 2009).

JLE and Convex Hull

- For $\mathcal{M} \subseteq \mathbb{R}^{2 \times 2}$ consisting of Metzler matrices:

$$
\rho(\mathcal{M})>0
$$

implies the existence of some $R \in \operatorname{conv}(\mathcal{M})$ with $\mu(R)>0$ (Gurvits, Shorten, M, 2007).

- This means that for a population consisting of two groups if each B_{i} is irreducible:
(1) $\rho(\mathcal{M}) \leq 0$ implies the DFE is GAS;
(2) $\rho(\mathcal{M})>0$ implies that there is a persistent switching signal and a periodic orbit.

Some Natural Extensions

- Does our condition for strong persistence imply uniform strong persistence? If not, what extra conditions are required?
- Does the same condition imply persistence in the case where $\operatorname{conv}(\mathcal{M})$ is irreducible?
- Does $\rho(\mathcal{M})>0$ imply that there is a persistent switching signal in general?
- Is the periodic orbit attractive?
- Can the analysis be extended to more complex epidemiological and rumour-spreading models?

Monotonicity and Piecewise Systems

- \mathcal{D} a region in $\mathbb{R}^{n}, \phi: \mathcal{D} \rightarrow \mathbb{R}$ a C^{2} function.
- $D_{f}=\{x \in \mathcal{D}: \phi(x)<0\}, D_{g}=\{x \in \mathcal{D}: \phi(x)>0\}$.
- f and g are C^{1} vector fields defined on neighbourhoods of D_{f} and D_{g} respectively.

Key Question

When is

$$
\dot{x}(t)= \begin{cases}f(x) & \text { if } x \in D_{f} \tag{9}\\ g(x) & \text { if } x \in \overline{D_{g}} .\end{cases}
$$

monotone?

Monotonicity and Piecewise Systems

- $S:=\{x \in \mathcal{D}: \phi(x)=0\}$.

Locally Monotone

For all x_{0}, y_{0} in $\mathcal{D} \backslash S$ with $x_{0} \leq y_{0} x\left(t, x_{0}\right) \leq x\left(t, y_{0}\right)$ for $t \in[0, \delta]$ for some $\delta>0$.

Monotone

For all x_{0} in \mathcal{D} there exists a unique solution and $x_{0} \leq y_{0}$ implies $x\left(t, x_{0}\right) \leq x\left(t, y_{0}\right)$ for all t for which they are defined.

Monotonicity and Piecewise Systems

- For local monotonicity, f and g must satisfy the Kamke Muller conditions in U_{f}, U_{g}.
- For $a \in S, I_{0}(a)$ denote those i in $\{1, \ldots, n\}$ such that there are indices j_{1}, j_{2} distinct to i with $(\nabla \phi(a))_{j_{1}}<0$, $(\nabla \phi(a))_{j_{2}}>0$.

O'Donoghue, M, Middleton, 2012

If $I_{0}(a)=\{1, \ldots, n\}$, the following are equivalent:
(1) (9) is locally monotone;
(2) $f(a)=g(a)$ for all $a \in S$;

- (9) is monotone.

Some References

More details can be found in:

- Extremal Norms for Positive Linear Inclusions, O. Mason and F. Wirth, Linear Algebra and its Applications, 2014.
- Stability Criteria for SIS Epidemiological Models under Switching Policies, M. Ait-Rami, V. Bokharaie, O. Mason and F. Wirth, Discrete and Continuous Dynamical Systems, 2014.
- On the D-stability of linear and nonlinear positive switched systems, V. Bokharaie, O. Mason and F. Wirth, Proceedings of the 19th MTNS, 2010
- On the Kamke-Muller conditions, monotonicity and continuity for bi-modal, piecewise smooth systems. Y. O'Donoghue, O. Mason and R. Middleton, Systems and Control Letters, 2012.

Thanks

Sincere thanks to everyone who has worked with me on these questions:

- Fabian Wirth;
- Vahid Bokharaie;
- Yoann O'Donoghue;
- Rick Middleton;
- Robert Shorten;
- Leonid Gurvits.

Thanks

Sincere thanks to everyone who has worked with me on these questions:

- Fabian Wirth;
- Vahid Bokharaie;
- Yoann O'Donoghue;
- Rick Middleton;
- Robert Shorten;
- Leonid Gurvits.

THANK YOU FOR YOUR ATTENTION!

