Positivity and Monotonicity in Switched Systems: A Miscellany Workshop on Switching Dynamics and Verification IHP Paris

Ollie Mason Dept. of Mathematics & Statistics/Hamilton Institute, Maynooth University

January 2016

Ollie Mason Dept. of Mathematics & Statistics/Hamilton Institue Positivity and Monotonicity in Switched Systems: A Miscellany

- D-stability for switched positive systems.
- Stability Vs persistence for switched epidemiological models:
 - stability of the disease free equilibrium;
 - persistence and periodic orbits.
- Monotonicity and continuity for state-dependent switching.

For A ∈ ℝ^{n×n}: ρ(A) denotes its spectral radius; μ(A) denotes the spectral abscissa

$$\mu(A) = \max\{\operatorname{Re}(\lambda) \mid \lambda \in \sigma(A)\}.$$

- A is Metzler if $a_{ij} \ge 0$ for $i \ne j$.
- For a finite set *M* ⊂ ℝ^{n×n} conv(*M*) denotes its convex hull.
- A ∈ ℝ^{n×n} nonnegative or Metzler is irreducible if the associated digraph is strongly connected.

• The LTI system

$$\dot{x} = Ax$$
 (1)

< 🗇 🕨 < 🖻 🕨

is positive if $x_0 \ge 0$ implies $x(t, x_0) \ge 0$ for all $t \ge 0$.

• It is well known that (1) is positive if and only if A is Metzler.

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be Metzler. The following are equivalent:

- **1** A is Hurwitz $(\mu(A) < 0)$;
- 2 there exists some $v \gg 0$ with $Av \ll 0$;
- O-Stability: DA is Hurwitz for all diagonal matrices D ∈ ℝ^{n×n} with positive diagonal entries.

Cooperative Systems

- $D \subseteq \mathbb{R}^n$ open, connected; $f : D \to \mathbb{R}^n$ C^1 is cooperative if $\frac{\partial f}{\partial x}(a)$ is Metzler for every $a \in D$.
- Assume that D is an invariant set for

$$\dot{x}(t) = f(x(t)). \tag{2}$$

 Well known that if f is cooperative then (2) is monotone/order-preserving:

$$x_0 \leq y_0 \Rightarrow x(t, x_0) \leq x(t, y_0)$$

for all $t \ge 0$.

- Converse of this is true also if state space is locally convex.
- More generally, conditions for monotonicity are so-called Kamke-Müller conditions:

$$x \leq y, x_i = y_i \Rightarrow f_i(x) \leq f_i(y).$$

• When this holds, $x_0 \le y_0 \Rightarrow x(t, x_0) \le x(t, y_0)$ but also $x_0 \ll y_0$ implies $x(t, x_0) \ll x(t, y_0)$ for all $t \ge 0$.

The Problem

Given a set of Metzler matrices $\mathcal{M} := \{A_1, \ldots, A_m\} \subseteq \mathbb{R}^{n \times n}$, the switched system

$$\dot{x}(t) = A_{\sigma(t)}x(t) \ \sigma: [0,\infty) \to \{1,\ldots,m\}$$
 (3)

is D-stable if

$$\dot{x}(t) = D_{\sigma(t)} A_{\sigma(t)} x(t) \tag{4}$$

is globally asymptotically stable for all diagonal matrices D_1, \ldots, D_m with positive diagonal entries.

M, Bokharaie, Shorten, 2009

- If there exists $v \gg 0$ in \mathbb{R}^n with $A_i v \ll 0$ for $1 \le i \le m$, then (4) is D-stable.
- ② If (4) is D-stable, then there exists some non-zero v ≥ 0 with $A_i v ≤ 0$ for 1 ≤ i ≤ m.

In general, there is a gap between these two conditions. Consider

$$A_1 = \left(egin{array}{cc} -2 & 1 \ 2 & -2 \end{array}
ight), \ A_2 = \left(egin{array}{cc} -3 & 1 \ 2 & -1 \end{array}
ight).$$

It is possible to close this gap if our system matrices are irreducible.

Bokharaie, M, Wirth, 2010

If each A_i is irreducible then (4) is D-stable if and only if there exists some $v \gg 0$ with $A_i v < 0$ for $1 \le i \le m$.

- Combine $D_i A_i v < 0$ with irreducibility to show that any solution starting at v decreases in every component initially.
- This combined with monotonicity properties of positive LTI systems allows us to show that x(t, v, σ) → 0 as t → ∞ for any switching signal σ.
- Another application of monotonicity allows us to conclude that solutions corresponding to all initial conditions tend to zero asymptotically.

These results can be used to characterise D-stability for systems with commuting matrices.

Bokharaie, M, Wirth, 2010

If $A_iA_j = A_jA_i$ for all i, j, then (4) is D-stable if and only if A_i is Hurwitz for $1 \le i \le n$.

- This follows easily as it is straightforward to show that there must exist some $v \gg 0$ with $A_i v \ll 0$ for $1 \le i \le n$.
- This result and the original sufficient condition for D-stability extends to nonlinear cooperative vector fields.

A compartmental SIS model for structured populations was analysed in [Fall, Iggidr, Sallet and Tewa, 2007].

- Population divided into n groups; each group divided into susceptibles (S_i) and infectives (I_i).
- N_i total population of group i.
- μ_i birth rate and death (non-disease related) rate of group *i*.
- β_{ij} infectious rate for contacts between group j and i.
- γ_i recovery rate for group *i*.

• This leads to the time-invariant SIS model:

$$\dot{S}_{i}(t) = \mu_{i}N_{i} - \mu_{i}S_{i} - \sum_{j=1}^{n} \beta_{ij}\frac{S_{i}(t)I_{j}(t)}{N_{i}} + \gamma_{i}I_{i}(t)$$

$$\dot{I}_{i}(t) = \sum_{j=1}^{n} \beta_{ij}\frac{S_{i}(t)I_{j}(t)}{N_{i}} - (\gamma_{i} + \mu_{i})I_{i}(t).$$

• Clearly, N_i is constant for each group.

SIS model for structured population

• Let $x_i(t) = \frac{l_i(t)}{N_i}$ denote the proportion of group *i* infected at time *t*;

• $\hat{\beta}_{ij} = \frac{\beta_{ij}N_j}{N_i}$, $\alpha_i = \gamma_i + \mu_i$. We can write the system as:

$$\dot{x}_i(t) = (1 - x_i(t)) \sum_{j=1}^n \hat{\beta}_{ij} x_j(t) - \alpha_i x_i(t),$$

with $\alpha_i > 0$, $\beta_{ij} \ge 0$.

• This basic model can be written in the compact form:

$$\dot{x} = [-D + B - \operatorname{diag}(x)B]x, \tag{5}$$

•
$$D = \operatorname{diag}(\alpha_i)$$
 and $B = (\hat{\beta}_{ij})$.

• $\Sigma_n := \{x \in \mathbb{R}^n_+ : x_i \le 1, i = 1, ..., n\}$ is invariant and the origin is an equilibrium - *disease-free equilibrium*.

Stability of Disease-Free Equilibrium (DFE)

Let $R_0 = \rho(D^{-1}B)$. This plays the role of the basic reproduction number and acts as a threshold parameter for the model.

Fall et al, 2007

Consider the system (5). Assume that the matrix B is irreducible. The DFE at the origin is globally asymptotically stable if and only if $R_0 \leq 1$.

Not difficult to see that

$$R_0 \leq 1 \Leftrightarrow \mu(-D+B) \leq 0.$$

Fall et al, 2007

Consider the system (5) and assume that B is irreducible. There exists a unique endemic equilibrium \bar{x} in $int(\mathbb{R}^n_+)$ if and only if $R_0 > 1$. Moreover, in this case, \bar{x} is asymptotically stable with region of attraction $\Sigma_n \setminus \{0\}$.

As above, the condition $R_0 > 1$ is equivalent to $\mu(-D+B) > 0$.

We consider a switched version of this model to handle uncertainty and time-variation.

• D_1, \ldots, D_m diagonal, B_1, \ldots, B_m nonnegative in $\mathbb{R}^{n \times n}$.

$\dot{x} = (-D_{\sigma(t)} + B_{\sigma(t)} - \operatorname{diag}(x)B_{\sigma(t)})x.$ (6) • $\sigma : [0, \infty) \to \{1, \dots, m\}$ measurable switching signal.

伺下 イヨト イヨト ニヨ

Linearised System

The linearisation of this system is

$$\dot{x} = (-D_{\sigma(t)} + B_{\sigma(t)})x \tag{7}$$

with the associated set of system matrices

$$\mathcal{M} = \{-D_1 + B_1, \ldots, -D_m + B_m\}.$$

- System matrices are all Metzler.
- ② A natural generalisation of the condition $R_0 ≤ 1$ is to consider the *joint Lyapunov exponent* of \mathcal{M} .

Joint Lyapunov Exponent

 For each switching signal σ, the evolution operator is given by the solution of the matrix differential equation:

$$\dot{\Phi}_{\sigma}(t) = A_{\sigma(t)} \Phi_{\sigma}(t), \ \Phi(0) = I.$$

- For each t, H_t denotes the set of all time evolution operators for time t.
- We then define the operator semigroup

$$\mathcal{H} := \cup_{t \ge 0} \mathcal{H}_t.$$

 $(\mathcal{H}_0 = \{I\})$

Joint Lyapunov Exponent

• The growth rate at time t is given by

$$\rho_t(\mathcal{M}) := \sup_{\sigma} \frac{1}{t} \log \|\Phi_{\sigma}(t)\|.$$

• The joint Lyapunov exponent (JLE) is then given by

$$\rho(\mathcal{M}) = \lim_{t \to \infty} \rho_t(\mathcal{M}).$$

• The JLE can be thought of a generalisation of the spectral abscissa to othe switched system.

Stability of the DFE for Switched SIS Model

Assume $\operatorname{conv}(\mathcal{M})$ contains an irreducible matrix.

Ait-Rami, Bokharaie, M, Wirth, 2014

The DFE of (6) is uniformly globally asymptotically stable if $\rho(\mathcal{M}) \leq 0$.

- Proving the result for ρ(M) < 0 is straightforward using monotonicity techniqes.
- The existence of extremal norms plays a key role in the (far) subtler case $\rho(\mathcal{M}) = 0$.

Persistence

Let a mapping $\eta: \Sigma_n \to \mathbb{R}_+$ be given.

Strong Persistence

A semiflow $\phi: \Sigma_n imes \mathbb{R}_+ o \Sigma_n$ is strongly persistent if

$$\liminf_{t\to\infty}\eta(\phi(t,x))>0\,\,\forall x,\eta(x)>0.$$

Uniform Strong Persistence

A semiflow $\phi: \Sigma_n \times \mathbb{R}_+ \to \Sigma_n$ is uniformly strongly persistent if there is some $\epsilon > 0$ such that:

$$\liminf_{t\to\infty}\eta(\phi(t,x))>\epsilon \,\,\forall x,\eta(x)>0.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Ait-Rami, Bokharaie, M, Wirth, 2014

Consider the switched SIS model (6). Assume that there exists some $R \in \operatorname{conv}(\mathcal{M})$ with $\mu(R) > 0$. Then there exists a switching signal σ such that for all $x^0 > 0$, $1 \le i \le n$

$$\liminf_{t\to\infty} x_i(t,x^0,\sigma) > 0.$$

Under the hypotheses of the theorem, there is a switching signal for which the resulting semiflow is strongly persistent in every population group.

Outline of Proof

• We take $R = \kappa_1(D_1 + B_1) + \ldots + \kappa_m(D_m + B_m)$ and consider the autonomous SIS system

$$\dot{x}(t) = \hat{f}(x) = (\hat{D} + \hat{B})x - \operatorname{diag}(x)\hat{B}x$$
(8)

with
$$\hat{D} = \kappa_1 D_1 + \cdots + \kappa_m D_m$$
, $\hat{B} = \kappa_1 B_1 + \cdots + \kappa_m B_m$.

- This has an endemic equilibrium x̂ which is asymptotically stable with region of attraction ℝⁿ₊ \ {0}.
- Moreover, there is some vector v ≫ 0 such that the solution φ(t, v) of (8) is monotonically increasing.

Outline of Proof

 For any *T* > 0, we can define a periodic switching signal *σ* as follows.

$$\sigma(t) = 1 \text{ for } 0 \le t < \kappa_1 T$$
 $\sigma(t) = i \text{ for } (\sum_{j=1}^{i-1} \kappa_j) T \le t < (\sum_{j=1}^{i} \kappa_j) T$

for $2 \leq i \leq m$. Finally, $\sigma(t + T) = \sigma(t)$ for all $t \geq 0$.

- Using techniques from averaging theory for ODEs, we can then approximate the solution of the switched system with that of the autonomous system possessing an endemic equilibrium.
- Methods from monotone systems and differential inequalities allow us to conclude the result.

In fact, under the same hypotheses, we can establish the existence of a periodic orbit.

Ait-Rami, Bokharaie, M, Wirth, 2014

Consider the switched SIS model (6). Assume that there exists some $R \in \operatorname{conv}(\mathcal{M})$ with $\mu(R) > 0$. Then there exists a switching signal σ and some $x^0 \gg 0$ such that the orbit

$$x(t, x^0, \sigma)$$

is periodic.

• Use same averaged system and switching signal as in the previous result to define:

$$S_1(x^0) := \int_0^1 \hat{f}(\phi(s,x^0)) ds, S_2(x^0) := \int_0^1 f_{\sigma(s)}(x(s,x^0,\sigma)) ds.$$

 From the properties of *f̂*, we can find a neighbourhood Ω in int(Σ_N) and *x̂* ∈ Ω such that:

S₁(
$$\hat{x}$$
) = 0;
 S₁(z) ≠ 0 for all z ∈ bd(Ω).

• We next apply an approximation theorem from averaging theory for ODEs to conclude:

$$\max_{z\in\bar{\Omega}}\|S_1(z)-S_2(z)\|_{\infty}<\min_{z\in\mathrm{bd}(\Omega)}\|S_1(z)\|_{\infty}$$

provided we choose the period T > 0 appropriately.

- Using a result from Degree Theory for nonlinear maps, this implies that S₁ and S₂ have the same number of zeros in Ω.
- The zero of S_2 corresponds to a periodic orbit of the switched system.

- *M* irreducible and *ρ*(*M*) ≤ 0 means that DFE is GAS -Disease dies out.
- Each B_i irreducible and μ(R) > 0 for some R ∈ conv(M) means that there is a strongly persistent switching signal, and an endemic periodic orbit.
- If $\mu(R) > 0$ for some $R \in \operatorname{conv}(\mathcal{M})$, then $\rho(\mathcal{M}) > 0$.
- In general there is a gap between these two conditions (Fainshil, Margaliot, Chigansky, 2009).

• For $\mathcal{M} \subseteq \mathbb{R}^{2 \times 2}$ consisting of Metzler matrices:

$$\rho(\mathcal{M}) > 0$$

implies the existence of some $R \in \text{conv}(\mathcal{M})$ with $\mu(R) > 0$ (Gurvits, Shorten, M, 2007).

- This means that for a population consisting of two groups if each *B_i* is irreducible:
 - $\rho(\mathcal{M}) \leq 0$ implies the DFE is GAS;
 - ρ(M) > 0 implies that there is a persistent switching signal and a periodic orbit.

- Does our condition for strong persistence imply *uniform* strong persistence? If not, what extra conditions are required?
- Does the same condition imply persistence in the case where conv(*M*) is irreducible?
- Does ρ(M) > 0 imply that there is a persistent switching signal in general?
- Is the periodic orbit attractive?
- Can the analysis be extended to more complex epidemiological and rumour-spreading models?

Monotonicity and Piecewise Systems

• \mathcal{D} a region in \mathbb{R}^n , $\phi : \mathcal{D} \to \mathbb{R}$ a C^2 function.

•
$$D_f = \{x \in \mathcal{D} : \phi(x) < 0\}$$
, $D_g = \{x \in \mathcal{D} : \phi(x) > 0\}.$

• f and g are C^1 vector fields defined on neighbourhoods of D_f and D_g respectively.

Key Question

When is

$$\dot{x}(t) = egin{cases} f(x) & ext{if } x \in D_f \ g(x) & ext{if } x \in \overline{D_g}. \end{cases}$$

(9)

monotone?

Monotonicity and Piecewise Systems

•
$$S := \{x \in \mathcal{D} : \phi(x) = 0\}.$$

Locally Monotone

For all x_0, y_0 in $\mathcal{D} \setminus S$ with $x_0 \leq y_0 \ x(t, x_0) \leq x(t, y_0)$ for $t \in [0, \delta]$ for some $\delta > 0$.

Monotone

For all x_0 in \mathcal{D} there exists a unique solution and $x_0 \leq y_0$ implies $x(t, x_0) \leq x(t, y_0)$ for all t for which they are defined.

Monotonicity and Piecewise Systems

- For local monotonicity, f and g must satisfy the Kamke Muller conditions in U_f , U_g .
- For a ∈ S, l₀(a) denote those i in {1,..., n} such that there are indices j₁, j₂ distinct to i with (∇φ(a))_{j1} < 0, (∇φ(a))_{j2} > 0.

O'Donoghue, M, Middleton, 2012

If $I_0(a) = \{1, \ldots, n\}$, the following are equivalent:

(9) is locally monotone;

2)
$$f(a)=g(a)$$
 for all $a\in S$;

伺 と く ヨ と く ヨ と

Some References

More details can be found in:

- Extremal Norms for Positive Linear Inclusions, O. Mason and F. Wirth, Linear Algebra and its Applications, 2014.
- Stability Criteria for SIS Epidemiological Models under Switching Policies, M. Ait-Rami, V. Bokharaie, O. Mason and F. Wirth, Discrete and Continuous Dynamical Systems, 2014.
- On the D-stability of linear and nonlinear positive switched systems, V. Bokharaie, O. Mason and F. Wirth, Proceedings of the 19th MTNS, 2010
- On the Kamke-Muller conditions, monotonicity and continuity for bi-modal, piecewise smooth systems. Y. O'Donoghue, O. Mason and R. Middleton, Systems and Control Letters, 2012.

Sincere thanks to everyone who has worked with me on these questions:

- Fabian Wirth;
- Vahid Bokharaie;
- Yoann O'Donoghue;
- Rick Middleton;
- Robert Shorten;
- Leonid Gurvits.

Sincere thanks to everyone who has worked with me on these questions:

- Fabian Wirth;
- Vahid Bokharaie;
- Yoann O'Donoghue;
- Rick Middleton;
- Robert Shorten;
- Leonid Gurvits.

THANK YOU FOR YOUR ATTENTION!