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Background 2

• Topological dynamics
• Topological tools: Lefschetz fixed point theorem, fixed point index,

Ważewski criterion, Conley index, Conley-Morse theory
• computer assisted proofs based on topological invariants



Topology 3



Computational Topology 4



Rigorous numerics of dynamical systems 5



Topological existence criterion 6



Ważewski Theorem 7
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Index pair and Conley index 9



Index pair and Conley index 10
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Existence results based on topological invariants 12

• bounded trajectories
• stationary trajectories
• periodic trajectories
• heteroclinic connections
• chaotic invariant sets
• semiconjugacies onto model dynamics
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Goal 14

• Combinatorization of topological dynamics
• Applications to sampled dynamics



Outline 15

• Review of the combinatorial Morse theory by Forman
• Limitations of the Forman theory
• Combinatorial multivector fields
• Isolated invariant sets, Conley index and Morse inequalities
• Examples
• Relation to classical dynamics (joint with T. Kaczynski and Th. Wanner)



Morse-Forman theory 16

• K - the collection of cells of a finite, regular, CW complex X .
• Facet relation: τ ≺ σ ⇔ τ is a facet of σ
• Facet digraph: (K2, { (σ, τ ) | τ ≺ σ })
• bdσ := { τ | τ ≺ σ }.
• cbdσ := { ρ | σ ≺ ρ }.



Discrete vector fields 17

Definition.
• A discrete vector field V on K is a partition of K into

doubletons and sigletons such that for each doubleton
{τ, σ} ∈ V either τ ≺ σ or τ � σ.
• The V -digraph of K is the facet digraph of K with the

direction reversed on the elements of V .



Paths/solutions 18
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Morse Homology 19
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•Morse complex (M,∆) := (Mq(K, V ),∆q(K, V )q∈Z of a gradient vector
field V on K:

Mq := { critical cells of dimension q }
〈∆qσ, τ〉 :=

∑
α∈P aV (σ,τ)

w(α).

Theorem. (Forman, 1995)

H∗(K) ∼= H∗(M,∆).
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1) Bring Forman’s combinatorial vector fields into the framework of classical
topological dynamics.



Goals 21

2) Extend the theory to combinatorial multivector fields.



Goals 22

2) Extend the theory to combinatorial multivector fields.



Goals 23
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3) Construct bridges between the combinatorial dynamics on the family of
cells of CW complexes and continuous dynamics on the topological space of
the complex.



Alexandrov topology on K 24

• A ⊂ K is open (closed) iff
⋃
A is open (closed) in X =

⋃
K.

• esA := clA \ A - estuary of A
• A is proper if esA is closed.
• if A is closed, then

⋃
A is a subcomplex of the CW complex X .

• A proper A ⊂ K is a zero space if H(clA, esA) = 0.



Combinatorial multivector fields 25

• A multivector is a proper V ⊂ K with a unique maximal element.
• A multivector field is a partition V of K into multivectors.
• V is regular if V is a zero space. Otherwise it is critical.



Combinatorial multivector fields 26

• A multivector is a proper V ⊂ K with a unique maximal element V ∗.
• A multivector field is a partition V of K into multivectors.
• V is regular if V is a zero space. Otherwise it is critical.



V-digraph 27
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• Vertices: cells in K
• Arrows:

– explicit: given by V
– implicit: from each maximal cell of a multivector to all its faces not in

the multivector
– loops: at each maximal cell of a critical multivector

The multivalued map ΠV : K−→→K assigns to σ all targets of edges originating
from σ.



Solutions and paths 28
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• A partial map γ : Z−→◦ K is a solution of V if it is a walk in the V-digraph,
that is:

γ(i + 1) ∈ ΠV(γ(i)) for i, i + 1 ∈ dom γ.



Isolated invariant sets 29

• V ∗ - maximal cell in V ∈ V

Sol(x,A) := { % : Z→ A a solution s.t. %(0) = x }.
InvA :=

⋃
{V ∈ V | V ⊂ A and Sol(V ?, A) 6= ∅ }

Let S ⊂ K.

Definition. S is V-invariant if InvS = S.

Definition.
• A solution γ : Z → clS is an internal tangency to S if

for some n1 < n2 < n3 we have γ(n1), γ(n3) ∈ S but
γ(n2) 6∈ S.
• S is an isolated invariant set if it is invariant and admits

no internal tangencies.



Isolated invariant sets 30
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Theorem. Let S ⊂ X be invariant. Then, S is an isolated
invariant set if and only if S is proper.



Index pairs 31
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Definition. A pair P = (P1, P2) of closed subsets of X is
an index pair for S iff

(i) x ∈ P2, y ∈ P1 ∩ ΠV(x) ⇒ y ∈ P2,
(ii) x ∈ P1, ΠV(x) \ P1 6= ∅ ⇒ x ∈ P2,

(iii) S = Inv(P1 \ P2).



Conley index 32
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Theorem.
• For every S an isolated invariant set (clS, esS) is an index

pair for S.
• If P and Q are index pairs for S, then H(P1, P2) and
H(Q1, Q2) are isomorphic .



Conley index 33

Definition. The Conley index of S is the homology

H(P1, P2)

for any index pair P of S.

The Conley polynomial of S is

pS(t) :=

∞∑
i=0

βi(S)ti,

where βi(S) := rank Hi(P1, P2).



Attractors and repellers 34
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Let S ⊂ K be isolated invariant.

• N ⊂ S is a trapping region (backward trapping region) if for every
solution γ : Z+ → S (γ : Z− → S) condition γ(0) ∈ N implies
im γ ⊂ N .
• A is an attractor (repeller) in S if iff there is a (backward) trapping region
N such that A = InvN .



Attractors and repellers 35
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Theorem. The following conditions are equivalent:

(i) A is an attractor,
(ii) A is isolated invariant and closed in S.

Theorem. The following conditions are equivalent:

(i) R is a repeller,
(ii) R is isolated invariant and open in S.



α and ω limit sets 36
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% : Z→ S - a full solution. The α and ω limit sets of % are

α(%) :=
⋂
k≤0

Inv imσk%|Z−,

ω(%) :=
⋂
k≥0

Inv imσk%|Z+.



Morse decompositions 37

A B

C D E F

G H I J K

L M N O

P Q

Definition. The collection M = {Mp | p ∈ P } is a
Morse decomposition of S if M is a family of mutually disjoint
isolated invariant subsets of S and for every solution % either
im % ⊂ Mp for some p ∈ P or there exists p, p′ ∈ P such that

p < p′, α(%) ⊂Mp′, ω(%) ⊂Mp.



Morse-Conley graph 38
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Morse inequalities 39

Theorem. Given a Morse decomposition M =
{Mι | ι ∈ P } of an isolated invariant set S we have∑

ι∈P

pMι(t) = pS(t) + (1 + t)q(t)

for some non-negative polynomial q.

Σ0

Σ1⋁Σ2

Σ1

Σ2

Σ0⋁Σ1

Σ1

Σ2 p1(t) = 1

p2(t) = 1 + t

p3(t) = t

p4(t) = t

p5(t) = t + t2

p6(t) = t2

p7(t) = t2∑
ι∈P

pMι(t) = 2 + 4t + 3t2 = 1 + (1 + t)(1 + 3t) = pS(t) + (1 + t)q(t)



Refinements. 40

A multivector field W is a refinement of V if each multivector in V is W-
compatible.



Refinements. 41



Modelling a differential equation. 42

ẋ1 = −x2 + x1(x
2
1 + x22 − 4)(x21 + x22 − 1)

ẋ2 = x1 + x2(x
2
1 + x22 − 4)(x21 + x22 − 1)



Modelling a differential equation - cmvf. 43



Modelling a differential equation - cvf. 44



Modelling a randomly selected vectors. 45



Relation to classical theory 46

X - the collection of cells of a CW complex X =
⋃
X .

Conjecture. Given a Morse decomposition

M = {Mp | p ∈ P }
of X , there exists a flow ϕ on X and a Morse decomposition
M = {Mp | p ∈ P } of ϕ such that for any interval I in P the

Conley indexes of M(I) and M(I) coincide.

Theorem. (T. Kaczynski, MM, Th. Wanner)
Assume X is the collection of cells of a simplicial complex X =⋃
X . Given a Morse decomposition M = {Mp | p ∈ P } of

X , there exists an usc, acyclic valued, homotopic to identity,
multivalued map F : K−→→K and a Morse decomposition M =
{Mp | p ∈ P } of the induced multivalued dynamical system
such that for any interval I in P the Conley indexes of M(I)

and M(I) coincide.



Conclusions and future work 47

• Forman theory generalizes to combinatorial multivector
fields.
• Combinatorial multivector fields capture more dynamical

features than vector fields do.
• The theory, both for vector and multivector fields, may be

extended towards an analogue of Morse-Conley theory.
• It resembles in many, but not all aspects the classical theory.
• It provides a very concise description of dynamics.

Current and future work:

• applications to the analysis of sampled dynamics
• formal ties between classical and combinatorial theory
• efficient algorithms for concise approximation of classical dynamics
• continuation results
• connection matrix theory
• time-discrete dynamical systems
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