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Consider applying GMRES to:

Ax = b, with non-singular A.

Two Questions

I How fast does GMRES converge ?

I How can convergence be
accelerated ?

Consider three accelerators
I Preconditioner,
I Weighted norm,

〈x,y〉W = y∗Wx,
‖x‖W =

√
x∗Wx,

I Deflation.

Objective
Choose a combination of the three
accelerators that ensures fast
convergence with respect to a (new?)
convergence bound.

High performance computing
We have domain decomposition
preconditioners and scalability in mind.
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Generalized Minimal Residual Method
I First introduced by Saad and Schultz [1986]
I Iterative algorithm. Starts with an initial guess x0 ∈ Cn.
I At iteration k:

I xk (approximate solution) characterized by:

xk = argminx∈x0+Kk(A,r0){‖b− Ax‖},

where
{

Kk(A, r0) := span
{
r0,Ar0, ... ,Ak−1r0

}
(Krylov subspace),

r0 = b− Ax0 (initial residual).
I xk and rk = b− Axk not computed at each iteration.
I Instead, orthonormal basis for Kk(A, r0) computed by updating the orthonormal

basis for Kk−1(A, r0) (Arnoldi).
I Residual ‖b− Axk‖ can be monitored. At convergence, xk computed (least squares).

Fundamental Questions

I How fast does GMRES converge ?

I How can convergence be accelerated ?

Nicole Spillane (CNRS, France) 3/31



GMRES Preconditioning (by H) and Weighting (by W) H hpd, W = H, A pd Spectral deflation Numerics Prescribe simultaneous convergence curves

Convergence of GMRES for Ax = b

Characterization of approximate solution xk at iteration k

‖rk‖ = ‖b− Axk‖

= min
x∈x0+Kk(A,r0)

‖b− Ax‖, where Kk(A, r0) := span
{
r0,Ar0, ... ,Ak−1r0

}
= min

y∈r0+AKk(A,r0)
‖y‖, where r0 +AKk(A, r0) = r0 + span

{
Ar0,A2r0, ... ,Akr0

}
= min

p∈Pk; p(0)=1
‖p(A)r0‖ where Pk: polynomials of degree at most k.

(1)Convergence estimate by worst case GMRES for non-singular A
‖rk‖
‖r0‖

6 minp∈Pk; p(0)=1 ‖p(A)‖; ‖p(A)‖ = max
y∈Cn

‖p(A)x‖/‖x‖. (2)

“By passing from [ (1) to (2)] we disentangle this matrix essence of the process from the distracting
effects of the initial vector and end up with [an] elegant mathematical problem in the bargain.”

[Greenbaum, Trefethen, SIAM Review, 1998]
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Does convergence of GMRES depend on the spectrum of A ?

Why am I raising this point ?

I I come from symmetric positive definite problems,

I For these, convergence depends only on the spectrum of A.

I The strategy for accelerating convergence is clear:

→ cluster the spectrum away from zero.

I Sidenote: conjugate gradient method rather than GMRES (short recurrence).

For non symmetric problems working on the spectrum is not sufficient.
Fundamental result by [ Greenbaum, Pták, Strakoš (1996) ]
Let r0 > r1 > r2 > · · · > rn−1 > 0. There exists an n× n matrix A and a vector b such
that, the norm of the k-th residual of GMRES applied to Ax = b is rk.
Moreover, the matrix A can be chosen to have any desired eigenvalues.
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Other bounds for GMRES
See [Embree, How descriptive are GMRES convergence bounds ? 2023] for overview and comparison.

Elman estimate [Eisenstat, Elman, Schultz, 1983]:

‖rk‖
‖r0‖

6

[
1− d(0, FOV(A))2

‖A‖2

]k/2
, where FOV(A) :=

{
〈Au,u〉
〈u,u〉

;u ∈ Cn \ {0}
}

︸ ︷︷ ︸
Field of values of A (aka numerical range)

.

Pseudo-spectral bound:

‖rk‖
‖r0‖

6
L(Γε)

2πε
min

p∈Pk; p(0)=1
max

z∈σε(A)
|p(z)|,

where L(Γε) is the contour-length of the boundary Γε of σε(A), and

σε(A) := {z ∈ C; s is an eigenvalue of A+E and‖E‖ < ε}is the ε-pseudospectrum of A.

Applied in [Marchand, Galkowski, Spence and Spence, 2022] to GMRES for Helmholtz.Nicole Spillane (CNRS, France) 6/31
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Slow and fast convergence of GMRES, an illustration

iterations

re
si
du

al
s

stagnation

stagnation

divergence

slow convergence (and divergence)
fast convergence
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GMRES for Ax = b preconditioned by (HL,HR)

and weighted by W (a hpd matrix)

Solve HLAHRu = HLb followed by x = HRu.

At iteration k, rk := b− Axk satisfies:

‖HLrk‖

W

= min
y∈r0+AKk(HA,Hr0)

‖HLy‖

W

= min
q∈Pk; q(0)=1

‖HLq(AH)r0‖

W

,

I H = HRHL is the combined preconditioner,
I Kk(HA,Hr0) := span{Hr0,HAr0, ... , (HA)k−1r0} is the Krylov subspace,
I A good choice of preconditioner reduces the iteration count.
I A good preconditioner is not too costly to apply.

I W induces 〈x,y〉W = y∗Wx and ‖ · ‖W . all 〈·, ·〉 in GMRES replaced by 〈·, ·〉W.

References
I [Cai (1989)] [Cai and Widlund (1992)] [Essai’s thesis w/ Brezinski (1998)]

I [Sarkis, Szyld (2007)], [Pestana, Wathen (2013)], [Güttel, Pestana (2013)], [Embree, Morgan, Nguyen
(2017)], [Embree (2023)], [S, Matalon (2025)]
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A short interlude (in connection with my poster)

I asked AI if attendees of DD29 precondition on the left or on the right.
I Chat GPT: In summary: At DD29, the overwhelming majority of talks and tutorials on

domain-decomposition preconditioners assume right-preconditioning by default, especially in
the context of flexible or adaptable iterative solvers. i

I Perplexity AI: There is no indication that one approach is universally preferred over the other
at the DD29 conference; rather, both are actively used and studied by participants.

I asked you if you precondition on the left or on the right? (56 replies)

 

left right split only PCG It varies/ I don’t know I don’t precondition

24

14 1

4 8 5

And does it matter? (37 replies)
yes no

27 10

You can still vote.

Final results during P. Matalon’s talk

(Thursday 14:40 – CT01).
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Redundancy between (left,right) preconditioning and weighting
GMRES for Ax = b preconditioned by (HL,HR) and weighted by W (a hpd
matrix)
At iteration k, rk := b− Axk satisfies:

‖rk‖HL
∗WHL 6

‖HLrk‖W = min
q∈Pk; q(0)=1

‖HLq(AH)r0‖W

= min
q∈Pk; q(0)=1

‖q(AH)r0‖HL
∗WHL .

I H = HRHL is the combined preconditioner,

I There is a redundancy between (left,right) preconditioning and weighting.

I Weighting is Preconditioning by similarity transform
[Gutknecht and Loher, Abstract for a talk, 2001]

Without loss of generality, assume right preconditioned weighted GMRES:
‖rk‖W
‖r0‖W

6 min
q∈Pk; q(0)=1

‖q(AH)‖W; ‖q(AH)‖W = max
y∈Cn

‖p(AH)x‖W/‖x‖W.
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Crouzeix and Palencia theory
The field of values is a (1 +

√
2)-spectral set. [Crouzeix, Palencia, 2017]

Theorem
For any matrix B ∈ Cn×n and polynomial q,

‖q(B)‖W 6 (1 +
√
2) max

z∈FOVW(B)
|q(z)|,

where, FOVW(B) :=
{
〈Bz, z〉W
〈z, z〉W

; z ∈ Cn \ {0}
}

is the W-field of values of B.

Hence, W-GMRES preconditioned on the right by H converges as:

‖rk‖W
‖r0‖W

6 (1 +
√
2) min

q∈Pk; q(0)=1
max

z∈FOVW(AH)
|q(z)|.
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With loss of generality, assume that:
I H is Hermitian positive definite (hpd),

I W = H,

I A is positive definite (pd).
Same setting as:

I [Starke, 1997]
[Klawonn and Starke, 1999]

I [Chan, Chow, Saad, and Yeung, 1999]
Advantages:

I The min-max problem is posed over

FOVH(AH) =

{
〈HAHz, z〉
〈Hz, z〉

; z ∈ Cn \ {0}
}
.

I No extra application of H at each iteration.
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Continue with H hpd and W = H

Let M :=
A+ A∗

2
and N :=

A− A∗

2
(Hermitian + skew-Hermitian splitting).

I Convergence Bounds

FOVH(AH) ⊂
{
〈HMHz, z〉
〈Hz, z〉

; z ∈ Cn \ {0}
}

︸ ︷︷ ︸
∈R

+

{
〈HNHz, z〉
〈Hz, z〉

; z ∈ Cn \ {0}
}

︸ ︷︷ ︸
∈iR

⊂ [λmin(HM),λmax(HM)] + i[−ρ(NH), ρ(NH)]

⊂ [λmin(HM),λmax(HM)] + i[−ρ(M−1N)λmax(HM), ρ(M−1N)λmax(HM)].

λmin and λmax: min and max of the (real) eigenvalues,

ρ: spectral radius i.e. module of eigenvalue of maximal module.
I Fast convergence if

I H is a good preconditioner for both M and N.

I or, H is a good preconditioner for M and problem is mildly non-Hermitian.
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Min-max problem on a rectangle: Mk := min
q∈Pk; q(0)=1

max
z∈[1,µ]+i[−ρ,ρ]

|q(z)|

Re z

Im z

1 + iρ

1− iρ µ− iρ

µ+ iρ

2a− 1

r

a

Mk 6

[
ρ√

1 + ρ2

]k

as long as µ 6 2ρ2 + 1.

[Opfer, Schober, 1984]

Re z

Im z

1 + iρ

1− iρ µ− iρ

µ+ iρ

√ µ
2 +

ρ
2

Mk 6 min

2 + γβ ,
2

1 − γk+1
β

 γ
k
β ,

γβ depends on µ2 + ρ2 .

[Beckermann, Goreinov, Tyrtyshnikov, 2006]

Re z

Im z

1 + iρ

1− iρ µ− iρ

µ+ iρ

(µ+ 1)/2

δ = 0.85

δ = 0.70

δ = 0.55

δ = 0.40

δ = 0.25

δ = 0.10

Mk 6 Ck

(
a

d

)∣∣∣∣Ck

(
c

d

)∣∣∣∣−1
.

(a, c, d) define ellipse,
Ck : Chebyshev polynomial

[Saad, 2003]
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Min-max problem on a rectangle: Mk := min
q∈Pk; q(0)=1

max
z∈[1,µ]+i[−ρ,ρ]

|q(z)|

Conformal Mapping [Beckermann, Goreinov, Tyrtyshnikov, 2006]
Let φ denote the Riemann conformal mapping from C \ [1,µ] + i[−ρ, ρ] onto the
exterior of the closed unit disk with φ(∞) = ∞, then

Mk 6 min
{
2 + γ,

2

1− γk+1

}
γk, γ :=

1

φ(0)
.

Faber Polynomial [Beckermann, 2005]
Let Fk be the k-th Faber polynomial for [1,µ] + i[−ρ, ρ], then

Mk 6
2

|Fk(0) |
.

Both computed by Matlab’s Schwarz-Christoffel Toolbox by [Driscoll, Trefethen].
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Min-max problem min
q∈Pk; q(0)=1

max
z∈Ω

|q(z)| on rectangle
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Advection-Diffusion-Reaction : What to expect ?
Lagrange Finite Element discretization of∫
Ω
((c0 +

1

2
div a)uv + ν∇u · ∇v)︸ ︷︷ ︸

”M”

+

∫
Ω
(
1

2
a · ∇uv − 1

2
a · ∇vu)︸ ︷︷ ︸

”N”

=
∫
Ω fv.

Convergence bound wrt min-max on
[1,κ(HM)] + i[−ρ(M−1N)κ(HM), ρ(M−1N)κ(HM)].

Bound for ρ(M−1 N) (Proof uses [Bonazzoli, Claeys, Nataf, Tournier (2021)] )

ρ(M−1N) 6 ‖M−1N‖M 6
1

2

‖a‖L∞(Ω)√
inf(ν) inf(c0 + 1

2 div(a))
.

If H is Domain Decomposition for M with GenEO coarse space
[S., Dolean, Hauret, Nataf, Pechstein, and Scheichl, 2013]

κ(HM) does not
depend on:

I discretization step h

I number of subdomains or processors on a supercomputer.

→ Scalability and h-independence
Nicole Spillane (CNRS, France) 17/31
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Scalability without deflation
I Freefem++ with ffddm developed by Tournier, Hecht, Jolivet, Nataf.
I Weighted GMRES with (DD + GenEO) preconditioner of M.

-ffddm_schwarz_method asm
-ffddm_geneo_threshold 0.15
-ffddm_schwarz_coarse_correction BNN.

I
∫
Ω
((c0 +

1

2
div a)uv + ν∇u · ∇v) +

∫
Ω
(
1

2
a · ∇uv − 1

2
a · ∇vu) =

∫
Ω
fv.

I a = 2π[−(y − 0.1), x− 0.5]
I c0 = ν = 1

Iteration count when number of subdomains and h vary

Number of subdomains 4 8 16 32
h = 1/200 19 20 20 20
h = 1/500 18 19 19 20

→ Scalability and h-independence BUT degrades when ρ(M−1N) increases.
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Bibliography : origins of non symmetric DD
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Looking forward to MS7 to learn more
This afternoon and tomorrow morning.
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Bibliography: methods that most resemble our work
I Exploit the splitting A = M+ N :

Z.-Z. Bai, G. H. Golub, and M. K. Ng, Hermitian and skew-Hermitian splitting methods
for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003),
pp. 603–626.

I Solve (A+ E)x = b with A spd.
Later Called CSPD for Coarse Grid + spd preconditioning.

J. Xu and X.-C. Cai, A preconditioned GMRES method for nonsymmetric or indefinite
problems, Math. Comput., 59 (1992), pp. 311–319.

I See also:

X.-C. Cai, W. D. Gropp, and D. E. Keyes, A comparison of some domain decomposition
algorithms for nonsymmetric elliptic problems, in Fifth International Symposium on
Domain Decomposition Methods for Partial Differential Equations, Philadelphia, PA,
1992.

J. Xu, A new class of iterative methods for nonselfadjoint or indefinite problems, SIAM J.
Numer. Anal., 29(2), 1992.
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Deflation
Following [Tang, Nabben, Vuik, Erlangga (2009)] [García Ramos, Kehl, Nabben (2020)]
I Choose Y,Z ∈ Kn×m two full rank matrices.
I Let PD = I− AZ(Y∗AZ)−1Y∗ (Projection if Y∗AZ is non-singular)
I Solve in two steps

Ax = b ⇔ PDAx = PDb︸ ︷︷ ︸

preconditioned W-

GMRES

and (I− PD)Ax = (I− PD)b︸ ︷︷ ︸
Direct solve

I PD is efficient if m is not too large and PDAx = PDb is easier to solve by GMRES.

Requirements:

I Y∗AZ is non-singular for the projection operators to be well defined,

I Y∗H−1Z is non-singular so that GMRES iterations well defined.
[Brown and Walker, 1997]

Remark: Both OK if Y = AZ = AHY → Not what we do.
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Improve the ρ(M−1N), or ρ(HN), part of the bound

Convergence has been bounded with respect to

I either [1,κ(HM)] + i[−ρ(M−1N)κ(HM), ρ(M−1N)κ(HM)],

I or [λmin(HM),λmax(HM)] + i[−ρ(HN), ρ(HN)],
(where again, M = 1/2(A+ A∗), N = 1/2(A+ A∗), H:hpd preconditioner.)

This is the plan

I Choose H such that the spectrum of (HM) is nice,

I Deflate away the vectors that make ρ(M−1N) or ρ(HN) large.

Nicole Spillane (CNRS, France) 22/31
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Crouzeix-Palencia analysis of deflated GMRES under our assumptions

The deflated problem is: PDAx = PDb; PD = I− AZ(Y∗AZ)−1Y∗

which we precondition on the right by H and solve by H-weighted GMRES.

‖rk‖H
‖r0‖H

6 (1 +
√
2) min

q∈Pk; q(0)=1
max
z∈Ω

|q(z)|,

where

Ω = FOVH (
PDAH| range(PD)

)
⊂

{
〈HMHx,x〉
〈Hx,x〉

;x ∈ range(PD)

}
︸ ︷︷ ︸

⊂[λmin(HM),λmax(HM)]

+

{
〈HNHx,x〉
〈Hx,x〉

;x ∈ range(PD)

}
︸ ︷︷ ︸

⊂iR

.

by applying the theorem in the Hilbert space (range(PD), 〈, 〉W, ‖‖W)
and with the technical assumption that Y = HAZ.
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Spectral Deflation space
I There exists a basis (y1, ... ,yn) of Cn such that

H−1yk = λkNyk; 〈yk,yl〉H−1 = δkl,

because H−1 is hpd, N is skew-Hermitian.

I Set Y (in PD = I− AZ(Y∗AZ)−1Y∗) s.t. range(Y) = span {yk; |λk| > τ} . Then,

range(PD) = ker(Y∗) = span
{
H−1yk; |λk| 6 τ

}
.

I Finally,

FOVH (
PDAH| range(PD)

)
⊂ [λmin(HM),λmax(HM)] +

{
〈HNHx,x〉
〈Hx,x〉

;x ∈ range(PD)

}
⊂ [λmin(HM),λmax(HM)] + i[−τ , τ ].

→ Convergence bound that depends only on spectrum of HM and τ .
Nicole Spillane (CNRS, France) 24/31
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Scaled Jordan block unpreconditioned – Deflation of eigenvectors of HM

A =


1 0.99

1 0.99
. . . . . .

1 0.99
1


A ∈ R1000×1000; A pd

Observations
I κ(M) = 199.

I Deflating 50 eigenvectors
decreases iteration count by 348.

I Deflating 100 eigenvectors
decreases iteration count by 600.

0 200 400 600 800 1000 1200
10 -13

10 -12

10 -11

10 -10

10 -09

10 -08

10 -07

10 -06

10 -05

10 -04

10 -03

10 -02

10 -01

1000

1001

1002

m	=	0

m	=	10

m	=	50

m	=	100

m	=	200

m	=	300

m	=	400

m	=	500

m 0 10 50 100 200 300 400 500
iter 1000 959 652 400 188 110 73 51

m is the number of deflated vectors.
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Back to Advection-Diffusion-Reaction preconditioned by DD
Domain decomposition preconditioner H (hpd) for M

κ(HM) = 14.3.

Lagrange Finite Element discretization of∫
Ω
((c0 +

1

2
div a)uv + ν∇u · ∇v)︸ ︷︷ ︸

”M”

+

∫
Ω
(
1

2
a · ∇uv − 1

2
a · ∇vu)︸ ︷︷ ︸

”N”

=
∫
Ω fv.

0 100 200 300 400 500 600
0

20

40

60

k

λ
k

Module of eigenvalues of M−1N and HN

Nx = λH−1x
Nx = λMx

Gevp Nx = λMx Nx = λH−1x
ρ = |λ1| 64.5 48.9

|λ101| 12.7 11.7

|λ301| 7.11 7.10

|λ600| 4.69 4.87
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Convergence improves with deflation

0 50 100 150 200

10−9

10−6

10−3

100

iteration count

H
-n
or
m

of
re
si
d
u
al

Convergence for various deflation spaces

m = 0

m = 100; M−1N
m = 100; HN ; Y = HAZ
m = 100; HN ; Y = Z
m = 100; HN ; NY = Z

m = 300; M−1N
m = 300; HN ; Y = HAZ
m = 300; HN ; Y = Z
m = 300; HN ; NY = Z
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A puzzle: Comparison of W-GMRES and GMRES

We compare
I Weighted GMRES

i.e, W = H, with right
preconditioning.
Minimize: ‖ri‖W.

I (Unweighted) GMRES
i.e, W = I, with left
preconditioning.
Minimize: ‖Hri‖.

Stopping criterion
‖Hri‖/‖Hr0‖ < 10−10. 00 1100 220000 221100 330000 331100 440000 441100

2200 5566

2200 5577

2200 5588

2200 5599

2200 5511

2200 55::

2200 5544

2200 5533

2200 5522

220000

220022

220033

;<=>?@AB>CDEEFEGE0

H>?@AB>CDEEFEGE0

;<=>?@AB>CDEEFEGE200

H>?@AB>CDEEFEGE200

;<=>?@AB>CDEEFEGE2000

H>?@AB>CDEEFEGE2000

→ the weight helps with the proof, not with the convergence.

Nicole Spillane (CNRS, France) 28/31



Prescribe simultane-
ous convergence curves

1 GMRES

2 Preconditioning (by H) and Weighting
(by W)

3 H hpd, W = H, A pd

4 Spectral deflation

5 Numerics

6 Prescribe simultaneous convergence
curves



GMRES Preconditioning (by H) and Weighting (by W) H hpd, W = H, A pd Spectral deflation Numerics Prescribe simultaneous convergence curves

Any non-increasing curves are simultaneously possible
Joint work with Pierre Matalon (École polytechnique) inspired by [Greenbaum, Pták and Strakoš, 1996]

Theorem 1: Weighted and unweighted
Consider two prescribed convergence curves:

I r0 > r1 > r2 > ... for I-GMRES,

I r′0 > r′1 > r′2 > ... for W-GMRES.

There exists a system Ax = b and a hpd weight matrix W such that both convergence
curves are realized. Additionally, the eigenvalues of A can be prescribed.

Theorem 2: Left and right preconditioning.
Consider two prescribed convergence curves:

I r0 > r1 > r2 > ... for right preconditioned GMRES,

I r′0 > r′1 > r′2 > ... for left preconditioned GMRES.

There exists a system Ax = b and a preconditioner H such that both convergence
curves are realized. Additionally, the eigenvalues of AH can be prescribed.

Pierre Matalon is speaking about this result (and more) on Thursday at 14:40 in CT01.Nicole Spillane (CNRS, France) 29/31
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Conclusion
For pd A, proposed a pair of accelerators (H hpd, W = H) [S, SISC, 2024]
I Polynomial convergence bound that depends only on

I either, λmin(HM), λmax(HM) and ρ(NH),
I or, κ(HM) and ρ(M−1N).

I Achieve scalability if HM ”scales”.

I Achieve h-independence for Advection-Diffusion-Reaction.

Added spectral deflation of high-frequency eigenvectors of HN (or M−1N)
[S, Szyld, SIMAX, 2024] [S, Szyld, Preprint, 2025]

I Replaces ρ(NH) or ρ(M−1N) in the bound by the frequency threshold τ .

I Reduces the iteration count as predicted.

In an effort to compare convergence of GMRES and W-GMRES
[Matalon, S, Preprint, 2025]

I Simultaneous prescription of two convergence curves.
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Thank you for you attention.

This work was supported in part by ANR project DARK (ANR-24-CE46-1633).
(ANR is the French national research agency)

I will be looking for a postdoc in 2026.
Get in touch if you enjoy Krylov subpace methods and Domain Decomposition.

You may also enjoy the talks by:
E. Fressart, P. Matalon, E. Parolin, T. Raynaud, R. Scheichl.
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