Résolution de systèmes linéaires

Enseignement spécialisé "éléments finis" – S6133/5

Christophe Bovet (christophe.bovet@onera.fr)

Onera - The French Aerospace Lab F-92322 Chatillon, France

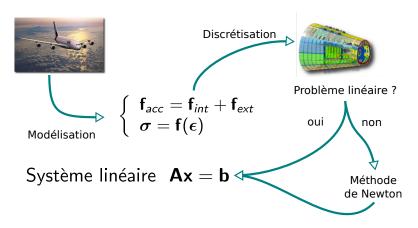
Cette œuvre est mise à disposition sous licence Attribution - Pas d'Utilisation Commerciale - Partage dans les Mêmes Conditions 3.0 France.

Pour voir une copie de cette licence, visitez

http://creativecommons.org/licenses/by-nc-sa/3.0/fr/ ou écrivez à Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

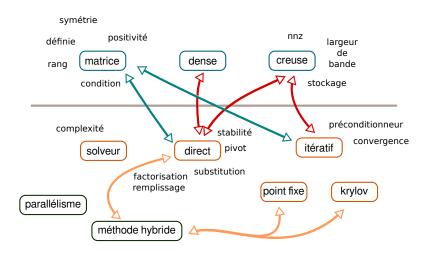
Pour récupérer les supports de cours

> git clone https://gitlab.com/chrb1/ef.git



Résoudre efficacement les grands systèmes linéaires issus de la discrétisation EF est indispensable

Schéma synoptique

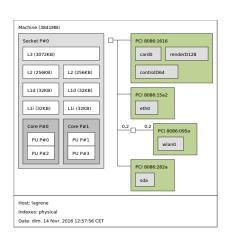


Objectifs

- Avoir un aperçu des méthodes de résolutions existantes
- ► Connaître les avantages & défauts des ≠ méthodes
- ▶ Être sensibilisé aux problématiques du monde réel : algèbre linéaire numérique (complexité, stabilité & précision, parallélisme, ...)
- Avoir des notions des mots clefs du schéma précédent

Architecture d'un ordinateur

- Unités de calculs : noeud / processeur / cœur
- ► Mémoire : cache L1/L2/L3, RAM, disque dur
- Communication: bus / réseau (gigabit, infiniband)



Architecture d'un ordinateur

Mémoire partagée (symmetric multiprocessing)

Échange rapide (accès direct) Besoin de protéger les données (mutex/semaphore)

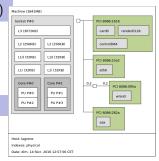
 \Rightarrow multithreading, protocole OpenMP

Mémoire séparée

Données protégées

Il faut s'occuper d'échanger les données.

⇒ Protocole MPI (message passing interface)



Architectures actuelles

Architectures mixtes plusieurs nœuds en réseau avec plusieurs cœurs à mémoire partagée.

Constat sur les architectures

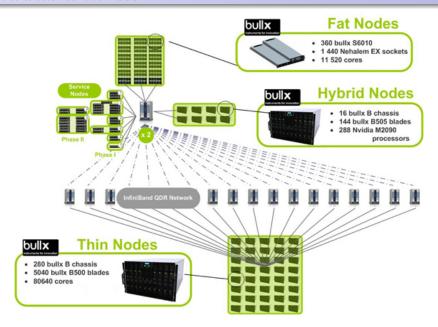


moore.html Source: www.topsour Flop/s = floating-point operation per second, ($p\acute{e}ta=10^{15}$)

 $\mathsf{Flop/s}\ \mathsf{th\'eorique} = \mathsf{c\'eurs} \times \mathsf{fr\'equence} \times \mathsf{(Flop/cycle)}$

Présentation d'un Cluster

Le calculateur Curie du TGCC



Présentation d'un Cluster

Le calculateur Curie du TGCC

Fat nodes	Thin nodes
360 BullX-S6010	5040 BullX B500
Intel NH EX 2,26 Ghz	Intel Sandy Bridge 2,7Ghz
11 520 cœurs	80 640 cœurs
128 cœurs/nœud	16 cœurs/nœuds
512 Go/nœud	4 Go/cœurs
105 TFlops	1 740 TFlops

Plan

1 Quelques rappels d'algèbre linéaire

- Contexte, vocabulaire et notations
- Élimination de Gauss

2 Méthodes directes

- Factorisation LU
- Calculs à virgule flottante
- Autres factorisations classiques
- Systèmes creux

3 Aperçu des méthodes itératives

- Méthodes itératives stationnaires
- Méthodes itératives de type Krylov

4 Aperçu d'une méthode hybride

Méthodes de décomposition de domaine

Plan

- Quelques rappels d'algèbre linéaire
 - Contexte, vocabulaire et notations
 - Élimination de Gauss
- 2 Méthodes directes
- 3 Aperçu des méthodes itératives
- 4 Aperçu d'une méthode hybride

Contexte

Équivalence système linéaire & calcul matriciel :

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

 \vdots \vdots \Leftrightarrow $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$

- ▶ **A** et **b** $(2^{nd}$ membre, right hand side) sont donnés
- ▶ On suppose **A** réelle d'ordre n et inversible $(\det(\mathbf{A}) \neq 0)$
- ▶ On cherche à calculer $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$, comment faire?
- ▶ Vocabulaire : A est dite dense s'il y a peu de a_{ij} nuls sinon elle est creuse

Vocabulaire et notations

Rappels

- ightharpoonup A est symétrique si $A^{\top} = A$
- ▶ **A** est positive si $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} \geq 0 \quad \forall \mathbf{x} \in \mathbb{R}^n$
- ▶ **A** est définie si pour $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = 0 \Rightarrow \mathbf{x} = \mathbf{0}$
- ▶ Norme matricielle :

$$\|\mathbf{A}\| = \max_{\|\mathbf{x}\|=1} \|\mathbf{A}\mathbf{x}\| = \max_{\|\mathbf{x}\|\neq 0} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}$$

► Condition de **A** (inversible) (condition number) :

$$\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\| = \left(\max_{\|\mathbf{x}\|=1} \|\mathbf{A}\mathbf{x}\|\right) / \left(\min_{\|\mathbf{y}\|=1} \|\mathbf{A}\mathbf{y}\|\right)$$

On a toujours $\kappa(\mathbf{A}) \geq 1$

Élimination de Gauss

- Popération sur les lignes jusqu'à obtenir un syst. tri. sup. \rightarrow succession de systèmes lin. $(\mathbf{A}^{(k)}, \mathbf{b}^{(k)})_k$ on pose $\mathbf{A}^{(1)} = \mathbf{A} \quad \mathbf{b}^{(1)} = \mathbf{b}$
- On pose $m_{i1} = a_{i1}^{(1)}/a_{11}^{(1)}$, on réalise ligne $i m_{i1}$ ligne 1 (hyp $a_{11} \neq 0$.)

$$\begin{array}{llll} a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \cdots + a_{1n}^{(1)}x_n = b_1^{(1)} \\ a_{21}^{(1)}x_1 + a_{22}^{(1)}x_2 + \cdots + a_{2n}^{(1)}x_n = b_2^{(1)} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1}^{(1)}x_1 + a_{n2}^{(1)}x_2 + \cdots + a_{nn}^{(1)}x_n = b_n^{(1)} \end{array} \Rightarrow \begin{array}{lll} a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \cdots + a_{1n}^{(1)}x_n = b_1^{(1)} \\ a_{22}^{(2)}x_2 + \cdots + a_{2n}^{(2)}x_n = b_2^{(2)} \\ \vdots & \vdots & \vdots \\ a_{n2}^{(2)}x_2 + \cdots + a_{nn}^{(2)}x_n = b_n^{(2)} \end{array}$$

▶ À l'étape k

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - m_{ik} a_{kj}^{(k)} = a_{ij}^{(k)} - \frac{a_{ik}^{(k)} a_{kj}^{(k)}}{a_{kk}^{(k)}} \quad i, j = k+1, \dots, n$$

$$b_i^{(k+1)} = b_i^{(k)} - m_{ik} b_k^{(k)} \quad i = k+1, \dots, n \qquad a_{kk}^{(k)} \text{ est appelé pivot}$$

ightharpoonup À l'étape n on a un système tri. sup., $ightharpoonup m{A}^{(n)}m{x} = m{U}m{x} = m{b}^{(n)}$

Élimination de Gauss : changement de pivot

Si $a_{kk}^{(k)} = 0$, il faut permuter des lignes, on parle de changement de pivot

$$\begin{array}{llll} a_{11}^{(1)}x_1+a_{12}^{(1)}x_2+\cdots+a_{1n}^{(1)}x_n=b_1^{(1)} \\ a_{21}^{(1)}x_1+a_{22}^{(1)}x_2+\cdots+a_{2n}^{(1)}x_n=b_2^{(1)} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1}^{(1)}x_1+a_{n2}^{(1)}x_2+\cdots+a_{nn}^{(1)}x_n=b_n^{(1)} \end{array} \Rightarrow \begin{array}{lll} a_{11}^{(1)}x_1+a_{12}^{(1)}x_2+\cdots+a_{1n}^{(1)}x_n=b_1^{(1)} \\ a_{22}^{(2)}x_2+\cdots+a_{2n}^{(2)}x_n=b_2^{(2)} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n2}^{(1)}x_1+a_{n2}^{(1)}x_2+\cdots+a_{nn}^{(1)}x_n=b_n^{(1)} \end{array}$$

- Remarque : la condition $a_{ii} \neq 0$ n'est pas suffisante pour empêcher l'apparition de pivots nuls.
- Exemple :

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 7 & 8 & 9 \end{bmatrix}$$

Élimination de Gauss : changement de pivot

Si $a_{kk}^{(k)} = 0$, il faut permuter des lignes, on parle de changement de pivot

$$\begin{array}{llll} a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \cdots + a_{1n}^{(1)}x_n = b_1^{(1)} \\ a_{21}^{(1)}x_1 + a_{22}^{(1)}x_2 + \cdots + a_{2n}^{(1)}x_n = b_2^{(1)} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1}^{(1)}x_1 + a_{n2}^{(1)}x_2 + \cdots + a_{nn}^{(1)}x_n = b_n^{(1)} \end{array} \Rightarrow \begin{array}{lll} a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \cdots + a_{1n}^{(1)}x_n = b_1^{(1)} \\ a_{22}^{(2)}x_2 + \cdots + a_{2n}^{(2)}x_n = b_2^{(2)} \\ \vdots & \vdots & \vdots \\ a_{n2}^{(2)}x_2 + \cdots + a_{nn}^{(2)}x_n = b_n^{(2)} \end{array}$$

- Remarque : la condition $a_{ii} \neq 0$ n'est pas suffisante pour empêcher l'apparition de pivots nuls.
- Exemple:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 7 & 8 & 9 \end{bmatrix} \quad \Rightarrow \quad \mathbf{A}^{(2)} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & -1 \\ 0 & -6 & -12 \end{bmatrix}$$

Élimination de Gauss : changement de pivot

Si $a_{kk}^{(k)} = 0$, il faut permuter des lignes, on parle de changement de pivot

$$\begin{array}{llll} a_{11}^{(1)}x_1+a_{12}^{(1)}x_2+\cdots+a_{1n}^{(1)}x_n=b_1^{(1)} & & a_{11}^{(1)}x_1+a_{12}^{(1)}x_2+\cdots+a_{1n}^{(1)}x_n=b_1^{(1)} \\ a_{21}^{(1)}x_1+a_{22}^{(1)}x_2+\cdots+a_{2n}^{(1)}x_n=b_2^{(1)} & & a_{22}^{(1)}x_2+\cdots+a_{2n}^{(1)}x_n=b_1^{(1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1}^{(1)}x_1+a_{n2}^{(1)}x_2+\cdots+a_{nn}^{(1)}x_n=b_n^{(1)} & & a_{n2}^{(2)}x_2+\cdots+a_{nn}^{(2)}x_n=b_n^{(2)} \end{array}$$

- Nombre d'opérations pour le passage de $\mathbf{A}^{(1)}$ à $\mathbf{A}^{(2)}$
 - $(n-1)^2$ multiplications, $(n-1)^2$ additions, (n-1) divisions
- ▶ Pour toutes les étapes
 - $\sum_{k=1}^{n} (n-k)^2 = \sum_{k=1}^{n-1} k^2 = n^3/3 + n^2/2 + n/6$
 - $\sum_{k=1}^{n} k = n(n+1)/2 = n^2 + \dots$
- ► Complexité algorithmique : $\simeq 2/3n^3 + o(n^3)$ flop

Résolution de systèmes triangulaires

On arrive au système triangulaire supérieur

$$u_{11}x_1 + u_{12}x_2 + \dots + u_{1n}x_n = b_1$$

 $u_{22}x_2 + \dots + u_{2n}x_n = b_2$
 \vdots
 $u_{nn}x_n = b_n$

Résolution par substitution rétrograde (backward subst., row version)

$$x_n = \frac{b_n}{u_{nn}}$$

 $x_i = \frac{1}{u_{ii}}(b_i - \sum_{j=i+1}^n u_{ij}x_j), i = n-1, \dots, 1$

Résolution de systèmes triangulaires

Résolution par substitution rétrograde (backward subst., row version)

$$x_n = \frac{b_n}{u_{nn}}$$

 $x_i = \frac{1}{u_{ii}}(b_i - \sum_{j=i+1}^n u_{ij}x_j), i = n-1,...,1$

- Nombre d'opérations
 - ▶ Pour x_i $(n-i-1) \times 1 \div \Rightarrow$ pour tous les $x_i \sum_{i=1,n} i = n(n+1)/2$
 - ▶ Pour x_i (n-i-2)+, 1 −. pour tous les $x_i \sum_{i=1,n-1} i = n(n-1)/2$
- ► Complexité algorithmique : n² flop

Plan

- 1 Quelques rappels d'algèbre linéaire
- 2 Méthodes directes
 - Factorisation LU
 - Calculs à virgule flottante
 - Autres factorisations classiques
 - Systèmes creux
- 3 Aperçu des méthodes itératives
- 4 Aperçu d'une méthode hybride

Theorem

Soit A inversible, l'élimination de Gauss donne

$$PA = LU$$

où \boldsymbol{P} est une matrice de permutation, \boldsymbol{L} est triangulaire inférieure à diagonale unitaire et \boldsymbol{U} est triagulaire supérieure.

► Remarque : Matrice de permutation

$$m{P} = egin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \Rightarrow \quad m{P} egin{pmatrix} \ell_1 \\ \ell_2 \\ \ell_3 \end{pmatrix} = egin{pmatrix} \ell_2 \\ \ell_1 \\ \ell_3 \end{pmatrix}$$

- ▶ Remarque : suivant les propriétés de A, l'absence de pivot nul est garantie (matrice à diagonale dominante, matrice SDP)
- ► En l'absence de pivot nul, l'élimination de Gauss donne

$$m{A} = m{L} m{U}$$
 avec $m{L} = egin{pmatrix} 1 & & & & \\ m_{21} & 1 & & & \\ \vdots & \ddots & \ddots & & \\ m_{n1} \dots & m_{nn-1} & 1 \end{pmatrix}$ et $m{U} = egin{pmatrix} u_{11} \dots & u_{1n} \\ u_{22} \dots & u_{2n} \\ & \ddots & \vdots \\ & & u_{nn} \end{pmatrix}$

► Étape k de l'élimination de Gauss

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} a_{kj}^{(k)} = a_{ij}^{(k)} - m_{ik} a_{kj}^{(k)} \quad i, j = k+1, \dots, n$$

 $lackbox{ On pose } m{M}_k = m{I}_n - m{m}_k m{e}_k^{ op} ext{ avec } m{m}_k = [0,\dots,0,m_{k+1,k},\dots,m_{n,k}]^{ op}$

$$\mathbf{A}^{(k+1)} = \mathbf{M}_k \mathbf{A}^{(k)}$$

Esprit de la démonstration :

► On a

$$(\mathbf{M}_{n-1}\mathbf{M}_{n-2}\cdots\mathbf{M}_1)\mathbf{A}=\mathbf{U}$$

L triangulaire inférieure car produit de matrice tri. inf.

$$\mathbf{A} = (\mathbf{M}_{n-1}\mathbf{M}_{n-2}\cdots\mathbf{M}_1)^{-1}\mathbf{U} = \mathbf{L}\mathbf{U}$$

- $lackbox{ On remarque } oldsymbol{M}_k^{-1} = oldsymbol{I}_n + oldsymbol{m}_k oldsymbol{e}_k^ op$
- ► En explicitant les M_i^{-1}

$$\mathbf{L} = (\mathbf{I}_n + \mathbf{m}_1 \mathbf{e}_1^{\top}) \dots (\mathbf{I}_n + \mathbf{m}_{n-1} \mathbf{e}_{n-1}^{\top})$$

- ► Au final

$$\boldsymbol{L} = (\boldsymbol{I}_n + \sum_i \boldsymbol{m}_i \boldsymbol{e}_i^{\top})$$

En pratique, on veut souvent résoudre plusieurs second membres. La substitution à la volée de \boldsymbol{b} n'est pas souhaitée

Calcul de la factorisation LU

$$LU = PA$$

Alors

$$LUx = PAx = Pb$$

2 Résolution d'un système tri. inf. à diagonale unitaire

3 Résolution d'un système tri. supérieur

$$Ux = y$$
 (remontée, backward substitution)

Theorem (Existence et unicité)

Soit la matrice $\mathbf{A} \in \mathbb{R}^{n \times n}$. La factorisation \mathbf{LU} existe et est unique ssi toutes les sous-matrices \mathbf{A}_i d'ordre $i = 1, \dots, n-1$ sont inversibles.

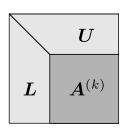
Si A est inversible, on peut toujours se ramener au cas ci-dessus grâce à des permutations.

Complexité

- ► Coût du calcul de $LU \simeq 2/3n^3 + o(n^3)$
- ▶ Coût de résolution d'un système triangulaire $\simeq n^2$
- Coût de stockage, en dense il suffit d'un vecteur suppl. pour P.

Algorithme LU de base sans changement de pivot

```
def lu_kji(A):
    """ Factorisation LU (ver. kji) sans pivot """
    n, m = A.shape
    if(n != m):
        raise ValueError("Only square matrix allowed")
    for k in xrange(0, n):
        if abs(A[k,k]) < 1.0e-20:
            raise ArithmeticError("Null pivot")
        A[k+1:,k] /= A[k,k] # i = k+1:n
        for j in xrange(k+1,n):
        A[k+1:,j] -= A[k+1:,k] * A[k,j]
        return A</pre>
```



Remarques : raisonnement simplifié

- Arithmétique exacte (spécifités du calcul sur ordinateur)
- Algèbre linéaire dense (spécifités des EDP)

Élimination de Gauss et calculs à virgule flottante

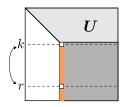
Pivot partiel **PA** = **LU**

ightharpoonup Exemple ($k \ll 1$)

$$m{A} = egin{bmatrix} k & 1 & 0 \\ 10 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad m{x}_{\mathrm{ex}} = egin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad \Rightarrow \quad m{b} = egin{bmatrix} k+1 \\ 11 \\ 1 \end{bmatrix}$$

Au lieu de se satisfaire de $a_{kk}^{(k)} \neq 0$, on permute la ligne i qui maximise $|a_{ik}^{(k)}|, i \geq k$

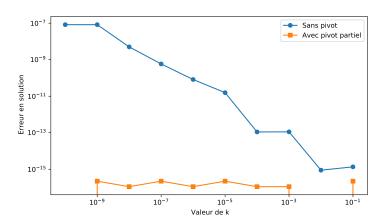
- ▶ Requiert (n k) tests
- lacktriangle N'affecte pas les lignes de $oldsymbol{U}$ déjà factorisées



Élimination de Gauss et calculs à virgule flottante

Exemple $(k \ll 1)$

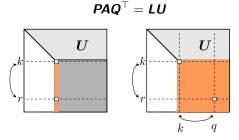
$$\mathbf{A} = \begin{bmatrix} k & 1 & 0 \\ 10 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{x}_{\text{ex}} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad \Rightarrow \quad \mathbf{b} = \begin{bmatrix} k+1 \\ 11 \\ 1 \end{bmatrix}$$



Élimination de Gauss et calculs à virgule flottante

Pivot total PAQ = LU

Si le pivot partiel n'est pas suffisant, il existe le pivotage total (ou complet).



▶ Requiert $(n-k)^2$ tests

Calculs à virgule flottante : le scaling

- La présence de grands pivots ne suffit pas à garantir la précision de la solution.
- Exemple:

$$\textbf{\textit{A}} = \begin{bmatrix} -10^9 & 10^8 & 10^8 \\ 10^8 & 10^{-6} & 0 \\ 10^8 & 0 & 1 \end{bmatrix} \quad \textbf{\textit{x}}_{ex} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \ \Rightarrow \ \textbf{\textit{b}} = \textbf{\textit{Ax}} \quad \textbf{\textit{x}}_{num} = \begin{bmatrix} 1 \\ 0.9981378 \\ 1.0018622 \end{bmatrix}$$

Le scaling consiste a utiliser des matrices diagonales D_1 , D_2 inversible pour uniformiser les ordres de grandeurs

$$\mathbf{A}\mathbf{x} = \mathbf{b} \quad \Leftrightarrow \quad \begin{cases} D_1 \mathbf{A} D_2 \mathbf{x}^* = D_1 \mathbf{b} \\ \mathbf{x} = D_2 \mathbf{x}^* \end{cases}$$

Calculs à virgule flottante : le raffinement itératif

 Pour les matrices mal conditionnées, la méthode du raffinement itératif permet d'améliorer la qualité de la solution

Exemple :

Algorithme 1 : Raffinement itératif

Données : ϵ tolérance utilisateur, \mathbf{A} , \mathbf{b} Entrées : $\mathbf{x}^{(0)} = \mathrm{gauss}(\mathbf{A}, \mathbf{b})$, i = 0 répéter

$$r^{(i)} = b - Ax^{(i)}$$

$$z = \text{gauss}(A, r^{(i)})$$

$$x^{(i+1)} = x^{(i)} + z$$

$$| x^{(i+1)} = x^{(i)} + z$$

$$\text{jusqu'à } ||z|| \le \epsilon ||x^{(i+1)}||$$

$$\mathbf{A} = \begin{bmatrix} k & 1 & 0 \\ 10 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} k+1 \\ 11 \\ 1 \end{bmatrix}$$

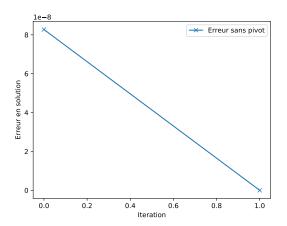
Solution exacte :

$$\mathbf{x} = \begin{bmatrix} 1. \\ 1. \\ 1. \end{bmatrix}$$

Calculs à virgule flottante : le raffinement itératif

Exemple :

$$m{A} = egin{bmatrix} k & 1 & 0 \\ 10 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad m{b} = egin{bmatrix} k+1 \\ 11 \\ 1 \end{bmatrix} \quad m{x}_{\text{ex}} = egin{bmatrix} 1. \\ 1. \\ 1. \end{bmatrix} \quad m{x}^{(0)} = egin{bmatrix} 1.000000008 \\ 1. \\ 1. \end{bmatrix}$$



Autres factorisations classiques

► Variante de la factorisation *LU* :

$$LDU^{\star} = PA$$

Avec D diagonale et U^* tri. sup. à diagonale unitaire.

- Ces factorisations ne profitent pas des propriétés de **A**.
- ► Si A est symétrique → factorisation de Crout (pivotage symétrique)

$$LDL^{\top} = PAP^{\top}$$

Coût du calcul $\simeq 1/3n^3$

▶ Si **A** est SDP, tous les termes $D_{ii} > 0$ → factorisation de Cholesky.

$$\mathbf{L}_{c}\mathbf{L}_{c}^{\top}=\mathbf{A}$$

Coût du calcul $\simeq 1/3n^3$, pas besoin de pivoter *a priori*.

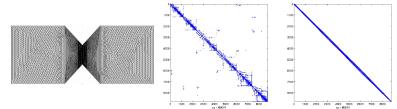
Est-ce que la complexité compte?

► En dense, coût d'une facto *LU* et temps de calcul

	Flop/s de l'ordinateur			
n	10^{9}	10^{12}	10^{15}	
10 ⁴	10 min	1 sec	$1~\mu s$	
10^{6}	20 ans	7 mois	10 min	
10 ⁸			20 ans	

 $> 10^8 dofs$

► Heureusement les systèmes sont souvent creux



Source : Analyse des solides déformables par la méthode des éléments finis, Bonnet, Frangi

Remarques & références

- Remarques
 - ► Sans info. supplémentaire, les méthodes solve utilisent une *LU*
 - ▶ Si vous connaissez les propriétés de **A**, utilisez les bonnes méthodes!
 - ▶ Ne codez pas vos propres méthodes (sauf si ça vous amuse)
- Quelques références

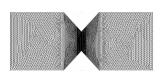
 - Librairies compilées

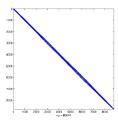
```
Eigen http://eigen.tuxfamily.org/
GNU Scientific library http://www.gnu.org/software/gsl/
LAPACK http://www.netlib.org/lapack/
```

Voir aussi http://en.wikipedia.org/wiki/Comparison_of_linear_algebra_libraries

Systèmes creux

- Les systèmes provenant d'EDPs sont souvent creux
- ▶ On parle de systèmes creux quand le nombre de valeur non nulle de \boldsymbol{A} est en O(n)
- Exploiter le caractère creux du système permet de diminuer considérablement le coût de calcul d'une factorisation
- Certaines matrices creuses ont des structures particulières comme les matrices bandes ou blocs



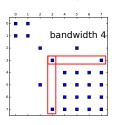


Source : Analyse des solides déformables par la méthode des éléments finis, Bonnet, Frangi

Matrices bandes

- ▶ **A** a une largeur de bande inférieure p si $a_{ij} = 0$ quand i > j + p
- ▶ **A** a une largeur de bande supérieure q si $a_{ii} = 0$ quand j > i + q
- Propriété :

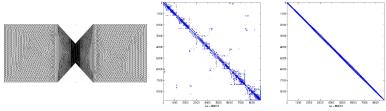
Soit \boldsymbol{A} inversible., la factorisation LU existe et \boldsymbol{L} a une largeur de bande inférieur p, \boldsymbol{U} a une largeur de bande supérieure q



- ► On peut ne stocker que la bande
- Calcul uniquement des valeurs dans la bande
- ► Complexité de la factorisation en O(2npq)
- Complexité des substitutions en O(np) et O(nq)

Stockage creux

▶ Pour une matrice bande, on stocke la bande dans une matrice dense



Source : Analyse des solides déformables par la méthode des éléments finis, Bonnet, Frangi

- Dans le cas général, ≠ stockages sont possibles (COO, CSR, CSC, ...)
- Exemple du stockage COO (i,j,aij) i = [11234]i = [12232]aij = [11 45 6 22 3] n = 4

$$\mathbf{A} = \begin{bmatrix} 11 & 45 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 22 & 0 \\ 0 & 3 & 0 & 0 \end{bmatrix}$$

nnz = 5

nnz nombre de valeurs non nulles

Factorisation et stockage creux

- ▶ On considère la factorisation LU de la matrice **A** creuse
- Les matrices **L** et **U** sont en général creuses également
- ► Elles sont par contre (beaucoup) plus remplies

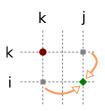
$$nnz(\textbf{A}) \ll nnz(\textbf{L})$$
 et $nnz(\textbf{A}) \ll nnz(\textbf{U})$

- ▶ Le remplissage ou fill-in est la différence de nnz entre A et L ou U
- Le fill-in augmente la mémoire nécessaire et le coût de la factorisation
- ► En plus de toutes les problématiques vues précédemment (changement de pivots, scaling, ...), il faut veiller à minimiser ce remplissage

Source du fill-in

Retour sur l'élimination de Gauss

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - \frac{a_{ik}^{(k)} a_{kj}^{(k)}}{a_{kk}^{(k)}}$$
 k



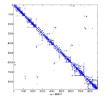
- $\ \ \, \grave{\mathsf{A}} \; \mathsf{l'\acute{e}tape} \; k+1, \; a_{ij}^{(k+1)} \neq 0 \; \mathsf{si} \; \left\{ \begin{array}{l} a_{ij}^{(k)} \neq 0 \\ a_{ik}^{(k)} \neq 0 \; \mathsf{et} \; a_{ki}^{(k)} \neq 0 \; \mathsf{(structural fill-in)} \end{array} \right.$
- Exemple de la matrice flèche

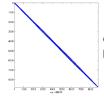
$$\begin{pmatrix} x \times x & x \\ x & x \\ x & x \end{pmatrix} \Rightarrow \begin{pmatrix} \star \star \star \star \\ \star \star \star \star \\ \star \star \star \star \end{pmatrix} \quad \text{mais} \quad \begin{pmatrix} x & x \\ x & x \\ x & x \\ x & x & x \end{pmatrix} \Rightarrow \begin{pmatrix} \star & \star \\ \star & \star \\ \star \star \star \end{pmatrix}$$

$$\begin{pmatrix} x & x \\ x & x \\ x & x \\ x & x & x \end{pmatrix} \Rightarrow \begin{pmatrix} \star & \star \\ \star & \star \\ \star & \star \\ \star & \star & \star \end{pmatrix}$$

Analyse symbolique

- ▶ Permutater des lignes et des colonnes de A permet de réduire significativement le remplissage
- ▶ On factorise $A^* = P_1AQ_1$ où P_1 et Q_1 sont des matrices de permutations.
- La phase d'analyse symbolique vise à trouver P_1 et Q_1 pour minimiser le remplissage
- ► Cette phase s'appuie uniquement sur le profile de **A**
- ▶ Elle fait appel à de notions complexes de théorie des graphes
- ► Exemple : algorithme de type Cuthill-McKee pour minimiser la largeur de bande de A*





Complexité en $O(m \log(m)nnz)$ avec m le plus haut degré du graphe.

Factorisation et stockage creux

- Les permutations ont un rôle double
 - ► Garantir la stabilité et limiter la propagation des erreurs d'arrondis
 - Limiter le remplissage
- La factorisation de ${m A}^\star = {m P}_1 {m A} {m Q}_1$ peut nécessiter des changements de pivots
- ▶ Il faut veiller à ne augmenter trop le remplissage

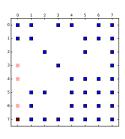
$$\boldsymbol{L}\boldsymbol{U} = \boldsymbol{P}_{2}\boldsymbol{A}^{\star}\boldsymbol{Q}_{2} = \boldsymbol{P}_{2}\boldsymbol{P}_{1}\boldsymbol{A}\boldsymbol{Q}_{1}\boldsymbol{Q}_{2}$$

Pivots candidats (threshold pivot): au lieu de choisir

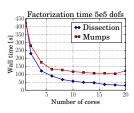
$$p = \underset{i > k}{\operatorname{argmax}}(|a_{ik}^{(k)}|)$$

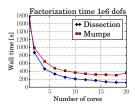
on choisit le pivot qui minimise le *fill-in* parmi les pivots candidats vérifiant :

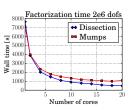
$$|a_{ik}^{(k)}| \ge \tau |\max a_{pk}^{(k)}|$$



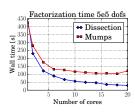
Exemple : cube élastique linéaire (c3d20)

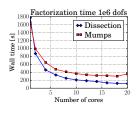


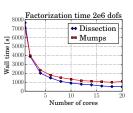


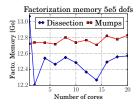


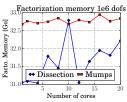
Exemple : cube élastique linéaire (c3d20)

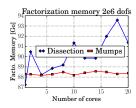












Synthèse

Les solveurs directs sont

- des variantes de l'élimination de Gauss
- ▶ ils fonctionnent en 3 phases

Fact. symbolique \rightarrow Fact. numérique \rightarrow descente-remontée

- robustes : ils fournissent la solution exacte (arithmétique exacte) en un nombre fini d'opération (qui peut être grand)
- coûteux en mémoire (les ressources croissent fortement avec la taille du problème)
- ▶ le conditionnement de A influe uniquement sur la qualité de la solution (remèdes : pivot, scaling, raffinement itératif)

Remarques & références

- Remarques
 - Si vous connaissez les propriétés de A, utilisez les bonnes méthodes!
 - ▶ Ne codez pas vos propres méthodes (sauf si c'est votre métier)
- Quelques références
 - Langages interprétés
 Python Scipy :

scipy.sparse & scipy.sparse.linalg

Matlab:

http://fr.mathworks.com/help/matlab/sparse-matrices.html

Librairies compilées

MUltifrontal Massively Parallel sparse direct Solver (MUMPS)

http://mumps.enseeiht.fr/

Supernodal LU (SuperLU)

http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

Parallel Sparse matriX package (PaStiX)

http://pastix.gforge.inria.fr/

Plan

- 1 Quelques rappels d'algèbre linéaire
- 2 Méthodes directes
- 3 Aperçu des méthodes itératives
 - Méthodes itératives stationnaires
 - Méthodes itératives de type Krylov
- 4 Aperçu d'une méthode hybride

Pourquoi utiliser des méthodes itératives?

- Les solveurs directs sont robustes mais très gourmand en mémoire
- ► La parallélisation est possible mais pas évidente (échange de complément de Schur)
- Pour les très gros problèmes il faut penser aux méthodes itératives ou hybrides
- **En dense**, un produit MV en $O(n^2) o$ uniquement utile pour le creux
- ► Solveurs itératifs presque *embarrassingly parallel*

$$\mathbf{A}\mathbf{x} \quad \Rightarrow \quad \begin{bmatrix} \mathbf{A}_{11} \ \mathbf{A}_{12} \\ \mathbf{A}_{21} \ \mathbf{A}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$

Méthodes itératives stationnaires

Principe

- ightharpoonup On souhaite résoudre Ax = b avec A très grande et creuse
- lacksquare Construire une suite de vecteurs tels que $\lim_{k o +\infty} {m x}_k = {m A}^{-1} {m b} = {m x}^\star$
- \triangleright Soit x_k l'approximation au pas k

$$\mathbf{x}^{\star} = \mathbf{x}_k + \mathbf{e}_k$$
 (erreur)

$$\mathbf{A}\mathbf{e}_k = \mathbf{A}\mathbf{x}^* - \mathbf{A}\mathbf{x}_k := \mathbf{r}_k$$
 (résidu) d'où $\mathbf{x}^* = \mathbf{x}_k + \mathbf{A}^{-1}\mathbf{r}_k$

- ▶ Idée : remplacer **A** par une matrice proche mais facilement inversible
- ▶ Une méthode itérative est convergente ssi la suite $(x_n)_n \to x^* \; \forall$ init. x_0
- ► Choix du critère d'arrêt $\| \mathbf{r}_k \| \le \epsilon \| \mathbf{r}_0 \|$ (résidu) $\| \mathbf{x}_{k+1} \mathbf{x}_k \| \le \epsilon \| \mathbf{x}_k \|$ (stagnation)

Méthodes itératives stationnaires

Principe

- ► Soit *M* une matrice inversible qui
 - est une bonne approximation de A
 - soit facile à calculer
 - ightharpoonup permette de résoudre facilement le système Mz = r
- ► *M* est appelé **préconditionneur**
- Au lieu de résoudre $\mathbf{x}^* = \mathbf{x}_k + \mathbf{A}^{-1}\mathbf{r}_k$, on itère :

$$egin{aligned} oldsymbol{r}_k &= oldsymbol{b} - oldsymbol{A} oldsymbol{x}_k \ oldsymbol{x}_{k+1} &= oldsymbol{x}_k + oldsymbol{M}^{-1} oldsymbol{r}_k \end{aligned}$$

▶ Trois étapes : calcul de résidu \rightarrow résolution du pb préconditionné \rightarrow maj solution

Préconditionnements de type décomposition

- ightharpoonup Décomposer la matrice A = M N où M est « facilement inversible »
- ➤ Suivant le choix de **M** on obtient ≠ méthodes avec des propriétés de convergence différentes
- ► Exemples : si $\mathbf{A} = \mathbf{D} \mathbf{E} \mathbf{F}$ avec \mathbf{E} tri. inf. stricte \mathbf{E} tri. sup. stricte
- ▶ M = D → méthode de Jacobi (convergence garantie si A est à diag. dom. stricte)
- $m{M} = m{D} m{E}
 ightarrow$ méthode de Gauss-Seidel (convergence garantie si A est SPD)

Méthodes itératives de type Krylov

Avec les méthodes itératives stationnaires précédentes

$$\mathbf{x}_k = \mathbf{x}_{k-1} + \mathbf{M}^{-1}\mathbf{r}_{k-1} = \mathbf{x}_{k-1} + \mathbf{z}_{k-1}$$

- $m{z}_k = Q_k(m{M}^{-1}m{A})m{z}_0$ où Q_k est le polynôme $Q_k(X) = (1-X)^k$ $Q_k \in \mathcal{K}_k(m{M}^{-1}m{A},m{z}_0) = \mathrm{Vect}\left(m{z}_0, (m{M}^{-1}m{A})m{z}_0, \dots, (m{M}^{-1}m{A})^{k-1}m{z}_0\right)$
- $ightharpoonup \mathcal{K}_k(\mathbf{M}^{-1}\mathbf{A}, \mathbf{z}_0)$ est l'espace de Krylov généré par le couple $(\mathbf{M}^{-1}\mathbf{A}, \mathbf{z}_0)$
- ightharpoonup Les méthodes de type Krylov ajoutent une contrainte sur z_k tel que

$$\begin{cases} \mathbf{x}_k \in \mathbf{x}_0 + \mathcal{K}_k(\mathbf{M}^{-1}\mathbf{A}, \mathbf{z}_0) \\ \mathbf{z}_k \perp_? \mathcal{K}_k(\mathbf{M}^{-1}\mathbf{A}, \mathbf{z}_0) \end{cases}$$

Méthodes itératives de type Krylov

ightharpoonup Les méthodes de type Krylov ajoutent une contrainte sur ${m r}_m$ tel que

$$\begin{cases} \mathbf{x}_m \in \mathbf{x}_0 + \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0) \\ \mathbf{r}_m \perp_? \mathcal{K}_m(\mathbf{A}, \mathbf{r}_0) \end{cases}$$

- ➤ Suivant les propriétés de A, le choix du type l'orthogonalité permet de définir plusieurs approches (CG, GMRes, OrthoDir, BiCG, CGS, ...)
- ► Si **A** est SDP le Gradient Conjugué (CG) est la meilleure solution

$$\begin{cases} \mathbf{x}_m \in \mathbf{x}_0 + \mathcal{K}_m(\mathbf{K}, \mathbf{r}_0) \\ \mathbf{r}_m \perp \mathcal{K}_m(\mathbf{K}, \mathbf{r}_0) \end{cases}$$

- ightharpoonup Avec le CG, x_k minimise la **A**-norme de l'erreur sur l'espace de Krylov.
- ▶ Dans le contexte parallèle, l'expression de la contrainte nécessite des communications globales

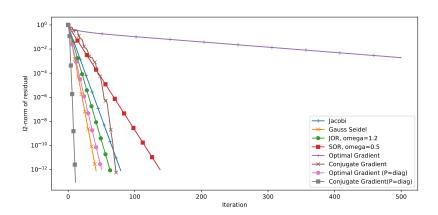
Quelques exemples

Matrice symétrique

```
def example_generator(n=100, k=1e3, off=1.):
    """ Generate an example and plot the results """
    b = np.random.rand((n))
    L = np.random.rand((n*n)); L.shape = n, n
    A = - (L + L.transpose())
    A += k * np.diag(np.random.rand(n) + off)

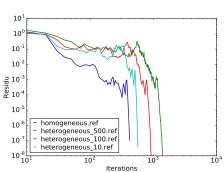
P = A.diagonal()
    def prec(r, z):
    z[:] = r/P; return z
```

Quelques exemples



Exemple provenant d'une EDP et conditionnement

- ▶ Plaque lamifiée élastique linéaire $n \simeq 21\,000$,
- ► Solveur : Gradient conjugué
- ▶ Préconditionneur : factorisation de cholesky incomplète



Synthèse

- Les méthodes itératives nécessitent très peu de mémoire
- ▶ Elles peuvent donc résoudre de très gros problèmes
- ► Choisir un bon préconditionneur n'est pas toujours évident
- La vitesse de convergence dépend du conditionnement de l'opérateur à résoudre
- Les méthodes de Krylov convergent généralement plus rapidement
- ▶ Elles requièrent cependant plus de communications

Plan

- 1 Quelques rappels d'algèbre linéaire
- 2 Méthodes directes
- 3 Aperçu des méthodes itératives
- 4 Aperçu d'une méthode hybride
 - Méthodes de décomposition de domaine

Méthodes hybrides

- Les méthodes modernes combinent méthodes directes et itératives
- ▶ Objectif : combiner les avantages de chaque approche
- Exemples:
 - Méthodes itératives par blocs solveur itératif stationnaire méthodes directes sur les sous-blocs
 - Méthodes itératives avec préconditionneur par facto. incomplète
 - Méthode de type décomposition de domaine solveurs directs pour les problèmes locaux solveurs de Krylov pour équilibrer l'interface
 - Méthodes multi-grilles solveurs itératifs stationnaires préconditionneur avec une méthode DD

Méthodes hybrides

- Les méthodes modernes combinent méthodes directes et itératives
- ▶ Objectif : combiner les avantages de chaque approche
- Exemples:
 - Méthodes itératives par blocs solveur itératif stationnaire méthodes directes sur les sous-blocs
 - Méthodes itératives avec préconditionneur par facto. incomplète
 - Méthode de type décomposition de domaine solveurs directs pour les problèmes locaux solveurs de Krylov pour équilibrer l'interface
 - Méthodes multi-grilles solveurs itératifs stationnaires préconditionneur avec une méthode DD

Méthodes de décomposition de domaine

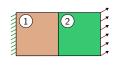
Système global

$$\mathbf{K}\mathbf{u} = \mathbf{f}$$
 avec \mathbf{K} SDP

Décompo. sans recouvrement

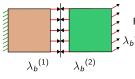
$$\mathbf{K}^{(s)}\mathbf{u}^{(s)}=\mathbf{f}^{(s)}+\lambda^{(s)},\ s=1,2$$
 $\lambda_b^{(1)}+\lambda_b^{(2)}=0$ $\mathbf{u}_b^{(1)}-\mathbf{u}_b^{(2)}=0$

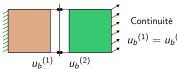
▶ Problème global ⇔
 Équilibre locaux
 Équilibre interface
 Continuité interface



Problème init.

Decompositio





Décomposition en deux sous domaines

On suppose les K_{ii}^s inversibles.

$$\begin{pmatrix}
\mathbf{K}_{ii}^{(1)} & 0 & \mathbf{K}_{ib}^{(1)} \\
0 & \mathbf{K}_{ii}^{(2)} & \mathbf{K}_{ib}^{(2)} \\
\mathbf{K}_{bi}^{(1)} & \mathbf{K}_{bi}^{(2)} & \mathbf{K}_{bb}^{(1)} + \mathbf{K}_{bb}^{(2)}
\end{pmatrix}$$

$$= \begin{pmatrix}
\mathbf{I} & 0 & 0 \\
0 & \mathbf{I} & 0 \\
\mathbf{K}_{bi}^{(1)} & \mathbf{K}_{ii}^{(1)^{-1}} & \mathbf{K}_{bi}^{(2)} & \mathbf{K}_{ii}^{(2)^{-1}} & \mathbf{I}
\end{pmatrix}
\begin{pmatrix}
\mathbf{K}_{ii}^{(1)} & 0 & 0 \\
0 & \mathbf{K}_{ii}^{(1)} & 0 \\
0 & \mathbf{K}_{ii}^{(2)} & 0 \\
0 & 0 & \mathbf{S}
\end{pmatrix}
\begin{pmatrix}
\mathbf{I} & 0 & \mathbf{K}_{ii}^{(1)^{-1}} & \mathbf{K}_{ib}^{(1)} \\
0 & \mathbf{I} & \mathbf{K}_{ib}^{(2)^{-1}} & \mathbf{K}_{ib}^{(2)} \\
0 & 0 & \mathbf{I}
\end{pmatrix}$$

Complément de Schur

$$\begin{split} \boldsymbol{S} &= \boldsymbol{K}_{bb} - \boldsymbol{K}_{bi}^{(1)} \boldsymbol{K}_{ii}^{(1)^{-1}} \boldsymbol{K}_{ib}^{(1)} - \boldsymbol{K}_{bi}^{(2)} \boldsymbol{K}_{ii}^{(2)^{-1}} \boldsymbol{K}_{ib}^{(2)} \\ &= \left(\boldsymbol{K}_{bb}^{(1)} - \boldsymbol{K}_{bi}^{(1)} \boldsymbol{K}_{ii}^{(1)^{-1}} \boldsymbol{K}_{ib}^{(1)} \right) + \left(\boldsymbol{K}_{bb}^{(2)} - \boldsymbol{K}_{bi}^{(2)} \boldsymbol{K}_{ii}^{(2)^{-1}} \boldsymbol{K}_{ib}^{(2)} \right) \end{split}$$

Décomposition en deux sous domaines

$$\begin{aligned}
\mathbf{K}\mathbf{u} &= \mathbf{f} \\
\begin{pmatrix}
\mathbf{K}_{ii}^{1} & 0 & 0 \\
0 & \mathbf{K}_{ii}^{2} & 0 \\
0 & 0 & \mathbf{S}
\end{pmatrix}
\begin{pmatrix}
\mathbf{I} & 0 & \mathbf{K}_{ii}^{1-1} & \mathbf{K}_{ib}^{1} \\
0 & \mathbf{I} & \mathbf{K}_{ib}^{2-1} & \mathbf{K}_{ib}^{2} \\
0 & 0 & \mathbf{I} & 0 \\
\mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\
\mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\
\mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\
\mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\
\mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\
\mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\
\mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\
\mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\
\mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\
\mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\
\mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\
\mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\
\mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\
\mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\
\mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\
\mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\
\mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\
\mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I}$$

Algorithme 2 : Méthode de décomposition de domaine, principe de base

Factorisation parallèle de $K_{::}^{(s)}$

Calcul parallèle des RHS condensé $\boldsymbol{b}^s = \boldsymbol{f}_b^s - \boldsymbol{K}_{bi}^s \boldsymbol{K}_{ii}^{s-1} \boldsymbol{f}_i^s$ puis assemblage avec son voisin

Résolution du système d'interface $\boldsymbol{S}\boldsymbol{u}_b = \boldsymbol{b}$ via un solveur itératif

Descente remontée parallèle de

$$(\boldsymbol{K}_{ii}^{(s)})^{-1} \quad \Rightarrow \quad \overset{\cdot}{\boldsymbol{u}_{i}^{s}} = \boldsymbol{K}_{ii}^{s-1}(f_{i}^{s} - \boldsymbol{K}_{bi}^{s}\boldsymbol{u}_{b})$$

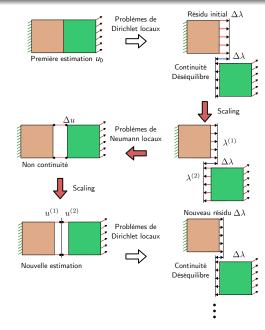
Méthode Balancing Domain Decomposition (BDD)

 L'opérateur est une somme de compléments de Schur locaux

$$\boldsymbol{S}\boldsymbol{u}_b = (\boldsymbol{S}^{(1)} + \boldsymbol{S}^{(2)})\boldsymbol{u}_b$$

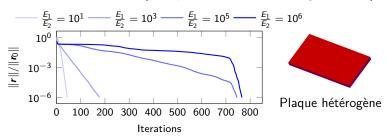
 Pour le préconditionneur, on approche l'inverse de la somme par la somme des inverses

$${\pmb M} = ({\pmb S}^{(1)+} + {\pmb S}^{(2)+})$$



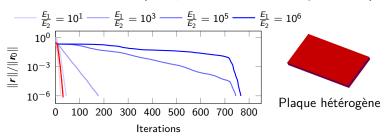
Méthode BDD

- Les méthodes DD classiques restent sensibles au conditionnement du problème
- ▶ Des solutions existent (multipreconditionnement, augmentation)



Méthode BDD

- Les méthodes DD classiques restent sensibles au conditionnement du problème
- ▶ Des solutions existent (multipreconditionnement, augmentation)



Étude d'extensibilité faible hétérogène (élasticité linéaire)

Paramètres $\tau=0.01,~E_1/E_2=10^6,~H/h=29,$ (Occigen cluster, 4Gb/core)

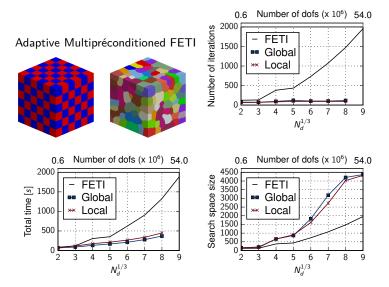
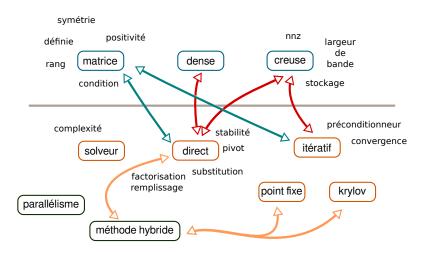


Schéma synoptique



Références

- Méthodes numériques en général
 - Quarteroni, A. M., Sacco, R., & Saleri, F. (2008). Méthodes numériques : algorithmes, analyse et applications. Springer Science & Business Media.
- Algèbre linéaire dense
 - ▶ Golub & van Loan : Matrix Computations, 3rd ed., Johns Hopkins, 1996.
- Solveurs directs creux
 - I. Duff, A. Erisman, J. Reid: Direct Methods for Sparse Matrices, Oxford University Press, 1986.
 - ► T. Davis : Direct Methods for Sparse Linear Systems, SIAM,2006.
- Solveurs de Krylov
 - Y. Saad: Iterative Methods for Sparse Linear Systems, 2nd ed., pp. 103–128, SIAM, 2003.
 - Van der Vorst, H. A. (2003). Iterative Krylov methods for large linear systems (Vol. 13). Cambridge University Press.