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3IMB, Université de Bordeaux, 351 cours de la libération, Talence,

33400, France

Abstract

The transport of photons and electrons is studied in the field of ra-
diotherapy to compute the dose, i.e. the quantity of energy transfered to
the medium by a beam of particles at each position. A kinetic model is
proposed, and to decrease the computation times, it is reduced through a
moment extraction. Entropy-based angular moment models of order up to
two (M1 and M2 models) are shown to provide accurate results compared
to a reference code with much lower computational costs.

keywords: photons and electrons transport, moment models, entropy-
based closure

1 Introduction

Transport theory is used in radiotherapy in order to model the motion of ion-
izing particles through human bodies. The aim of such therapy is to deliver a
maximum quantity of energy, i.e. a dose, to the tumor cells so that they are
destroyed and to minimize this dose in healthy tissue. The procedure of dose
deposition can be described as follows: First, beams of photons are prescribed.
They ionize the medium, i.e. they transfer a part of their energy to electrons
which acquire enough energy to be transported. Then those electrons also ion-
ize the medium. During such ionization procedure, a part of the energy of the
electrons is transfered to the atoms, this produces the dose.

This work is a follow up to [12, 26, 10]. The aim is to produce a numerical
method for dose computation based on a physical description of those inter-
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Figure 1: Schematic representation of Compton’s (left), Mott’s (midlle) and
Møller’s collisions: black balls represent atoms, red arrows are transported pho-
tons γ and blue arrows transported electrons e−.

actions. Two main families of algorigthms are generally studied for such pur-
pose: the statistical Monte-Carlo method ([4, 5]) and the deterministic discrete-
ordinates methods ([21]). Both these approaches require high computing powers
rarely available in medical centers.

Our numerical approach is deterministic and based on a kinetic model. In
order to decrease the numerical cost, the kinetic model is reduced using moments
extraction. This method was first studied for gas dynamics ([13, 20]) and was
then applied to a large range of physics such as plasma physics ([14, 15, 22, 23]),
semi-conductors ([3, 29]) or radiative transfer ([11, 19, 6]).

Through this paper, a moment model of order two, i.e. the M2 model
([26, 15]), is shown to give satifactory results with low computational cost.
In Section 2, the kinetic model and the procedure of moment extraction is de-
scribed. Section 3 presents numerical comparisons between our approach and a
reference Monte-Carlo code ([4, 5]). The last section is devoted to conclusions
and perspectives.

2 Models

In order to compute the dose, the distributions of photons and electrons needs
to be studied. First a kinetic model describing this transport is presented, then
moment extraction is used.

2.1 Kinetic model

The photons travel through the medium, and they ionize it by Compton’s effect
([18], see also Fig. 1). The electrons produced by those collisions are also trans-
ported. Their direction of flight and energy are altered by some other collisions
(Mott’s and Møller’s) with atoms. Other effects on photons and electrons are
neglected. Such transport of photons and electrons in radiation therapy can be
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modelled by the following equations ([18, 12, 25])

Ω.∇xψγ = ρ(x) [Gγ→γ(ψγ)− σT,γψγ ] , (1a)

Ω.∇xψe = ρ(x) [∂ǫ(Sψe) +Gγ→e(ψγ) +Ge→e(ψe)− σT,eψe] , (1b)

Gi→j(ψi)(x,Ω, ǫ) =

∫

S2

∫
∞

ǫ

σi→j(ǫ
′, ǫ,Ω′.Ω)ψi(x,Ω

′, ǫ′)dǫ′dΩ′. (1c)

The unknowns ψγ and ψe are the fluences of the photons and of the electrons.
They depend on position x ∈ Z, energy ǫ ∈ [0, ǫmax] and direction of flight
Ω ∈ S2. The density ρ(x), the total cross sections σT,γ(ǫ) and σT,e(ǫ), the
stopping power S(ǫ), and the different differential cross sections σγ→γ(ǫ

′, ǫ, µ),
σγ→e(ǫ

′, ǫ, µ), σe→e(ǫ
′, ǫ, µ) are known functions which can be found in [18, 25]

and reference therein. This system is composed of two transport equations.
Both equation is composed of one stationary transport term (left hand side)
and one collision term (right hand side). The number of collisions is assumed to
be proportionnal to the density ρ of the medium. The collision term for photons
(linear Boltzmann) is composed of one gain term Gγ→γ and one loss term. The
collision term for the electrons is composed of an energy derivative ([28, 25]), a
gain term of electron due to photons Gγ→e and electrons Ge→e and a loss term.

The function of interest for medical physicists is the dose given by

D(x) =

∫ ǫmax

0

S(ǫ)

∫

S2

ψe(x, ǫ,Ω)dΩdǫ.

The solution ψ of equation (1) depends on 3 variables of space x ∈ R
3, 2 vari-

ables of direction Ω ∈ S2 and 1 variable of energy ǫ ∈ R
+. Solving numerically

this equation is generally made by the use of Monte-Carlo algorithms (see e.g.
[4, 5]) or of discrete-ordinates methods (see e.g. [21]). Both of these numerical
methods typically require more numerical effort than is normally available in
medical centers.

2.2 Moments models

The computational costs can be significantly reduced by working with moments
ψi instead of fluences ψ. Let us define ψi, the moment of order i of ψ by

ψi =

〈

Ω⊗ · · · ⊗ Ω
︸ ︷︷ ︸

i times

ψ

〉

=

∫

S2

Ω⊗ · · · ⊗ ΩψdΩ.
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Here ⊗ denotes the tensorial product. Extracting moments of (1) yields equa-
tions satisfied by the moments ψi. Moments of order 0 to 2 of (1) yield

∇x.ψ
1
γ =ρ

[
G0

γ→γ(ψ
0
γ)− σTψ

0
γ

]
, (2a)

∇x.ψ
2
γ =ρ

[
G1

γ→γ(ψ
1
γ)− σTψ

1
γ

]
, (2b)

∇x.ψ
3
γ =ρ

[
G2

γ→γ(ψ
2
γ)− σTψ

2
γ

]
, (2c)

∇x.ψ
1
e =ρ

[
∂ǫ(Sψ

0
e) +G0

γ→e(ψ
0
γ) +G0

e→e(ψ
0
e)− σT,eψ

0
e

]
, (2d)

∇x.ψ
2
e =ρ

[
∂ǫ(Sψ

1
e) +G1

γ→e(ψ
1
γ) +G1

e→e(ψ
1
e)− σT,eψ

1
e

]
, (2e)

∇x.ψ
3
e =ρ

[
∂ǫ(Sψ

2
e) +G2

γ→e(ψ
2
γ) +G2

e→e(ψ
2
e)− σT,eψ

2
e

]
, (2f)

where Gk
i→j are given by

G
0

i→j(ψ
0

i ) =

∫
∞

ǫ

σ
0

i→j(ǫ
′

, ǫ)ψ0

i (x, ǫ
′)dǫ′, G

1

i→j(ψ
1

i ) =

∫
∞

ǫ

σ
1

i→j(ǫ
′

, ǫ)ψ1

i (x, ǫ
′)dǫ′,

G
2

i→j(ψ
2

i ) =

∫
∞

ǫ

3σ2

i→j − σ0

i→j

2
(ǫ′, ǫ)ψ2

i (x, ǫ
′) +

σ0

i→j − σ2

i→j

2
(ǫ′, ǫ)tr(ψ2

i )(x, ǫ
′)Iddǫ′.

The moments of the exact solution (ψγ , ψe) to (1) solve (2). In order to
reduce computational times, one can solve (2) instead of (1). However the
solution to (2) is not unique since this system has more unknowns (ψi

γ , ψ
i
e) than

equations. The common idea to close the system is to reconstruct some function
ψR from the first moments ψi for i ≤ 2 and then approximate ψ3 by

ψ3 ≈ 〈Ω⊗ Ω⊗ ΩψR〉 .

Applying this method here leads to writing (ψ3
e , ψ

3
γ) as a function of the moments

(ψi
γ , ψ

i
e) for i ≤ 2, then the system (2) has as many unknowns as equations, and

it has a unique solution.
The moment problem consists in finding (or chosing) one function ψR having

the moments (ψ0, ψ1, ψ2). Using a decomposition in spherical harmonics leads
to writing ψR as a polynomial of degree 2, i.e.

ψR(Ω) = λ̄.m̄(Ω),

where m̄(Ω) is a basis of polynomial of degree 2 and λ̄ is the unique scalar vector
of the same size such that the moments of ψR are (ψ0, ψ1, ψ2). This closure is
called the P2 closure. This closure is very easy to compute. For our purpose, we
prefer not to use the P2 model for two reasons: first the P2 ansatz can become
negative which may produce instabilities (this problem was studied in [16, 24]).
Second, radiotherapy requires the computation of the dose produced by beams
of particles. Such beams are modelled by narrow Gaussians in Ω, which is badly
approximated by polynomial ansatz.

Among the possible candidates for ψR (having the moments (ψ0, ψ1, ψ2)),
we chose the one that minimizes Boltzmann entropy function

H(f) = f log(f)− f,
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which leads to the so-called M2 models. The solution ψR to that minimization
problem has the form ([7, 8, 9])

ψR(Ω) = exp(λ̄.m̄(Ω)). (3)

Chosing this ansatz, the moments system of equations has an entropy and is
hyperbolic ([20]). Remark although that other choices of entropy are
available for H (see e.g. [19]). Beam like distribution can be approached by
this ansatz. This will also be discussed in the next section.

The coefficients of λ̄ are generally determined by solving a minimization
problem ([17, 2, 1])

λ̄ = argmin
ā

〈exp(ā.m̄(Ω))〉 − ā.ρ̄, (4)

where ρ̄ are the moments ψi associated to m̄(Ω) reordered into a vector, i.e.
ρ̄ = 〈m̄(Ω)ψ〉 .

Solving such problem may also be computationally costly. As an alternative,
we use the approximation proposed in [26] for the M1 and the M2 closure.

The M1 equations are (2a,2b,2d,2e) where the closure ψ2 is obtained by
the previous entropy minimization method. In that case, the ansatz (3) is
invariant by rotation around the axis ψ1/|ψ1|, which leads to write the
closure ψ2 under the form (see [19] for the details)

ψ2 = ψ0

(
1− χ

2
Id+

3χ− 1

2

ψ1 ⊗ ψ1

|ψ1|2

)

.

Here only the Eddington factor χ needs to be determined, this is one scalar
function of one scalar |ψ1|/ψ0 which can easily be approximated ([26]).

In the M2 case, the ansatz (3) does not present such rotational
invariance, and no such simple decomposition was found for the M2

closure. Instead, we constructed a polynomial fit such that ψ3 is correct for
some special values of (ψ0, ψ1, ψ2) where ψ3 is unique (see [26] for the details).
For instance, when studying a 1D or 2D problem, the approximation of ψ3 does
not produce artificial transverse fluxes.

3 Numerical results

The kinetic (1), the M1 (2a,2b,2d,2e) and the M2 (2) models with the approxi-
mated closure ([26]) are compared on several test cases.

The kinetic equation is solved using upwind schemes in 1D and the proba-
bilistic PENELOPE Monte-Carlo code ([4, 5]) in 2D. The moments equations
are solved using the relaxation approach described in [27].

Both tests consist in computing the dose produced by a beam of particles
inside a uniform water phantom (i.e. density ρ fixed at 1). Beams are prescribed
as boundary condition

ψ(x = 0, y, ǫ,Ω) = 1010 exp
(
−200(ǫ0 − ǫ)2

)
exp

(
−1000(Ω− e1)

2
)
. (5)
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Figure 2: Normalized dose produced by a 10 MeV electron beam in a 1D water
phantom using a kinetic, aM1 and aM2 solver with the approximated closures.

We impose a zero distribution function on the other boundary. The boundary
conditions for the moment systems are defined by extracting moments from
these boundary conditions.

10MeV electron beam in 1D water phantom:
The first test is a 1D computation for a 10MeV electron beam (ψγ = 0 and

ψe is given by (5) with ǫ0 = 10MeV ) in a 6cm long medium.
The dose normalized by

∫

S2

∫ ǫmax

0

ψedǫdΩ

is represented for the different models on Fig. 2 and the computation times for
this test case are gathered in Table 1.

Model Kinetic M1 M2

Computation times 3 min < 1 sec < 1 sec

Table 1: Computation times for the 1D electron beam test with the different
models

The MN models have the right behaviour. Indeed the dose obtained with
those model have the same shape as the one of the kinetic reference (slowly
increasing at the entry of the medium and then falling to zero after the maximum
at 3cm), although the dose obtained with the M1 model is inaccurate. The
maximum dose obtained with the M1 model is lower than the ones with the
M2 and the kinetic models, and it drops faster after the maximum with those
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two models than with the M1 model. The slope at the entry is also inaccurate.
These differences are due to an overestimation of the diffusion for theM1 model.
The results of theM2 model follow more precisely those of the kinetic reference.
As described in Table 1, solving theM1 orM2 equations accelerates significantly
the computations compared to solving the kinetic equations.

1MeV photon beam in 2D water phantom:
The second test consists in computing the dose produced by the a 1cm long

1MeV photon beam (on the boundary ψe = 0 and ψγ is given by (5) with
ǫ0 = 1MeV for y ∈ [3.5cm, 4.5cm]) in a 50cm×8cm water phantom. In order to

γ

Figure 3: Configuration of the 2D photon test case

compare the results with the moment models with those of PENELOPE Monte-
Carlo code, the dose is normalized by the maximum dose. This normalized dose
is also called percentage dose depth (PDD).

The Fig. 4 depicts the dose along the lines at y = 4cm (i.e. in the middle of
the beam along its axis). The computational time for this 2D test are gathered
in table 2.

Model Kinetic M1 M2

Computation times 10 h 5 min 6 min

Table 2: Computation times for the 2D photon beam test with the different
models

The M1 and the M2 model are both very close to the reference kinetic, and
the computational times are still much lower for the moments solver. The M1

model gives much more accurate results for the photons beam case than for the
electron beam case.

This difference of accuracy can be explain by the physics of the collision and
the MN approximation. The MN ansatz (3) is accurate for single beam-like
distributions (one narrow Gaussian) and in the isotropic limit (constant distri-
bution). It is however inaccurate between those two limits. The higher the order
N of the model, the better the ansatz ψR approximates arbitrary ψ (especially
between those two limits). The advantages of the M2 model compared to the
M1 can be seen when studying the intermediate case between the diffusion limit
and the beam limit. When prescribing electron beams the electrons progres-
sively lose energy and the fluence progressively isotropises , i.e. the continuous
slowing down approximation (CSDA, [28]) can be applied to electrons cross sec-
tions (Mott and Møller’s primary electron). So the M2 model is better than the
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Figure 4: Normalized dose produced by a 1 MeV photon beam in a 2D water
phantom along the axis of the beam (i.e. the line y = 4cm), using a Monte-
Carlo, a M1 and a M2 solver with the approximated closures.

M1 model on the electron test case. When studying photon beams of 1MeV, the
photons pass quickly from a beam-like state to an isotropic state (the CSDA is
invalid for those cross sections). So the difference between the M1 and the M2

model is smaller for the photon case.

4 Conclusion

A moment approach was presented and the moment models of order one and
two were considered. Solving the moments equations (both M1 or M2 equa-
tions) requires lower computational times than a full kinetic solver. They were
tested and compared to a full kinetic solver for two numerical test consisting
of computing the dose produce by an electron beam in a 1D medium and by a
photon beam in a 2D medium. These test show that theM1 model is inaccurate
when the distribution function isotropises slowly, and the M2 model is accurate
for a wider range of physical phenomena.
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