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Abstract. We aim at characterizing the existence and uniqueness of steady

solutions to hyperbolic balance laws with source terms depending discontinu-

ously on the unknown. We exhibit conditions for such differential equations to
be well-posed and apply it to a model describing boiling flows.

1. Introduction. The aim of this paper is to present a framework for the study of
steady states of 1D balance laws with sources defined as a discontinuous function
of the unknown. Such steady states satisfy systems of the form

d

dx
F (U)(x) = S(U(x)), (1a)

where the source jumps when a certain function h reaches a threshold, i.e.

S(U) =

{
S−(U) if h(U) < 0,
S+(U) if h(U) ≥ 0.

(1b)

The discontinuity of S with respect to the unknown leads to both theoretical
and numerical difficulties. Especially, Picard-Lindelöf theory is unavailable and
extensions are required.

The application we have in mind is the study of boiling flows. We aim at studying
the homogenized two-phase flow model based on a drift-flux model ([11, 10, 9]) used
for the developpement of the FLICA4 code ([15, 3, 14])

∂tU + ∂xF (U) = S(U), (2a)

U =

(
αρv, ρ, ρu, ρ

(
e+

u2

2

))T
, (2b)

F (U) =

(
αρvu, ρu, ρu

2 + p, ρ

(
(e+

u2

2
+
p

ρ
)u

))T
, (2c)

S(U) =

{
(0, 0, 0, φ)

T
if h(U) < hb,

(Kφ, 0, 0, φ)
T

if h(U) ≥ hb,
(2d)
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with a constant K > 0. Here, αρv is the density of vapor alone, and ρ, ρu, ρe
are the density, momentum and energy of the homogenized flow, i.e. of liquid and
vapor together. The source term models the heating of the fluid, through the term
φ > 0 in the energy equation, and the creation of vapor (in the first equation) when
the enthalpy h is above a boiling threshold hb.

In the next two sections, we first present a framework that guarantees the exis-
tence and uniqueness of solution of (1), first on a very simple scalar case, then on a
more general vectorial framework. This is applied to the problem (2) in Section 4.
Section 5 is devoted to conclusion and outlooks.

2. Preliminaries. Consider the Cauchy problem

dU

dx
= S(U, x), U(0) = U0. (3)

Here, S : RN × R → RN is a function of U ∈ RN and x ∈ R that may be
discontinuous. As S is not continuous, we need a definition of solutions to (3) in a
weak sense.

Definition 2.1. Let I be an open interval of R containing 0. A function U : I ⊂
R→ R is a Carathéodory solution to (3) if it is absolutely continuous and satisfies

∀x ∈ I, U(x) = U0 +

∫ x

0

S(U(y), y)dy.

In order to illustrate the difficulties emerging with discontinuous right-hand-side
(RHS) in (3), let us first consider the following simple scalar case (inspired by [12, 8])

d

dx
u =

{
s− if u < 0,
s+ if u ≥ 0,

u(0) = u0. (4)

The behavior of u away from 0 is well understood. Difficulties arise when u
reaches 0. We can list three types of behavior (represented on Fig. 1):

1. If s− ≥ 0 and s+ ≤ 0, then for all u0 ∈ R

u(x) =

 u0 + s−x if u0 ≤ 0 and x ≤ −u0

s−
,

u0 + s+x if u0 ≥ 0 and x ≤ −u0

s+
.

(5a)

However this solution can not be extended for x larger than u0/s
±.

2. If s− ≤ 0 and s+ ≥ 0, then for all u0 ∈ R

u(x) =

{
u0 + s−x if u0 ≤ 0,
u0 + s+x if u0 ≥ 0.

(5b)

Remark that, if u0 = 0, the functions x 7→ s−x and x 7→ s+x are two
Carathéodory solutions of (4).

3. If s− and s+ have strictly the same sign, say positive, then for all x ≥ 0,

u(x) =


u0 + s+x if u0 ≥ 0,

u0 + s−x if u0 ≤ 0 and x ≤ −u0

s−
,

u0 + s−
−u0

s−
+ s+

(
x− −u0

s−

)
if u0 ≤ 0 and x ≥ −u0

s−
.

(5c)
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s− > 0 s+ < 0
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Figure 1. Solutions of (5) depending on the signs of s− and s+:
from left to right, solutions of (5a), (5b) and (5c)

The solutions defined in these three cases are depicted in the phase space (x, u) on
Fig. 1. Remark that on this simple example, neither existence nor uniqueness of
a solution is guaranteed. Thus, further considerations are necessary to obtain the
well-posedness of (3) in a general case or of (1) for our applications.

In the next section, we focus on a vectorial ODE. We prove its well-posedness
under a condition corresponding to a vectorial version of the third case (5c).

3. A framework for ODE with Heaviside RHS. Consider now the problem

d

dx
U(x) =

{
S−(U(x), x) if h(U(x)) < 0,
S+(U(x), x) if h(U(x)) ≥ 0,

U(0) = U0, (6)

where the unknown U(x) ∈ RN is vectorial and the enthalpy h(U) is scalar.
We seek a natural framework for (6) to be well-posed. The result below could be

obtained as a corollary of e.g. [13, 4, 5] or through Filippov’s theory ([7, 1, 6]). Here
we present a simple condition on the surface h(U) = 0 under which any solution
changes sign at most once. The solution is then obtained by gluing together two
solutions obtained with the Picard-Lindelöf theorem.

Lemma 3.1. Suppose that

• h ∈ C1(RN ,R),
• Both S− and S+ satisfy the hypothesis of the Picard-Lindelöf theorem: conti-

nuity with respect to x and locally Lipschitz continuity with respect to U ,
• ∀x ∈ R, and ∀V ∈ RN , such that h(V ) = 0,

(∇Uh(V ).S−(V, x)) > 0 and (∇Uh(V ).S+(V, x)) > 0. (7)

Then, for any Carathéodory solutions Ū to (6), there exists at most one point x0 ∈ R
such that h(Ū)(x0) = 0, and h(Ū) is strictly negative on x < x0 and strictly positive
on x > x0.

Remark 1. The vector∇Uh(V ) is normal to the hypersurface {U ∈ RN , s.t. h(U) =
0}. Thus, the condition (7) imposes that the vector fields S− and S+ are both push-
ing the solution toward the same side of h(U) = 0. The solution is then constructed
by following S− until it reaches h(U) = 0, and then following S+ (see Fig. 2).

Proof. First, we remark that, as h is C1(RN ,R) and the Carathéodory solution
Ū is absolutely continuous, then h(Ū) is continuous and has a derivative almost
everywhere which is

d

dx
h(Ū)(x) = ∇Uh(Ū)(x).S(Ū(x), x). (8)
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h(V ) < 0 h(V ) > 0

h(V ) = 0

∇Uh(U(x0))

×
U0

S−(U(x0))

U(x)S+(U(x0))

Figure 2. Representation, for a problem of the form (6) in R2, of
the solution U(x) ∈ R2, the hypersurface {V ∈ R2 s.t. h(V ) = 0}
and the vectors S−(U(x0)), S+(U(x0)) and ∇Uh(U(x0))

Then, assume there exists a point x0 such that h(Ū(x0)) = 0. Then, for all y ≥ 0
(we may reason similarly for y < 0),

h(Ū)(x0 + y) =

∫ x0+y

x0

∇Uh(Ū)(x).S(Ū(x), x)dx

≥
∫ x0+y

x0

min(∇Uh(Ū)(x).S−(Ū(x), x),∇Uh(Ū)(x).S+(Ū(x), x))dx,

The function in the last integral is continuous and strictly positive at x = x0 by (7).
Thus there exists ε > 0 such that

∀x ∈]x0, x0 + ε[, h(Ū)(x) > 0, and ∀x ∈]x0 − ε, x0[, h(Ū)(x) < 0. (9)

Suppose by contradiction that there exists x1 > x0 such that h(Ū)(x1) = 0. The
continuity of h(Ū) and (9) yield the existence of x2 in (x0, x1), such that h(Ū(x2)) =
0. Repeating this operation, we construct a sequence (xi)i∈N of distinct points where
h(Ū) is null, and that converges towards a limit denoted by x∞ by dichotomy.
Considering that

|h(Ū)(x∞)| =
∣∣∣∣h(Ū)(xi) +

∫ x∞

xi

∇Uh(Ū)(x).S(Ū(x), x)dx

∣∣∣∣
≤ |x∞ − xi|‖∇Uh(Ū)(x)‖∞,[x0,x1]‖S(Ū(x), x)‖∞,[x0,x1].

we obtain xi →i→+∞ x∞ and h(Ū(x∞)) = 0, which contradicts the existence of the
interval (9). Once we know that h(Ū) has at most one zero, (9) gives the sign of
h(Ū) on both sides.

Proposition 1. Under the hypothesis of Lemma 3.1, for all initial conditions
U0 ∈ RN , there exists a unique maximal solution U to (6) that is absolutely contin-
uous. Furthermore, this solution U depends continuously on U0.

Proof. We prove the case h(U0) < 0, the other one being completely similar. Ac-
cording to Lemma 3.1, there is at most one point x0 where h(U) switches sign, and
as h(U(0)) < 0 it is larger than 0. Thus, any Carathéodory solution U takes the
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form

U(x) = U0 +


∫ x

0

S−(U(y), y)dy if x < x0,∫ x0

0

S−(U(y), y)dy +

∫ x

x0

S+(U(y), y)dy otherwise.
(10)

The existence and uniqueness follows from the Picard-Lindelöf theory. Indeed on
x < x0 the solution coincides with the solution of the Cauchy problem

V ′(x) = S−(V (x), x), V (0) = U0

which exists and is unique as S− is continuous and locally Lipschitz continuous with
respect to its first variable. Then on x ≥ x0, it coincides with the solution of the
Cauchy problem

V ′(x) = S+(V (x), x), V (x0) = U(x0).

To conclude the proof it remains to show that x0 is a continuous function of the
initial data U0. Fix U0 and x0 such that

ϕ(U0, x0) = h(U(x0)) = h

(
U0 +

∫ x0

0

S−(U(y), y)dy

)
= 0

As ∂ϕ
∂x0

(U0, x0) = ∇Uh (U(x0)) · S−(U(x0), x0) is not null by (7), the implicit func-
tion theorem yields the result.

4. Application to homogenized two-phase fluid models. First, we rewrite
Proposition 1, then we apply it to a reformulation of (2).

4.1. With a non-linear flux. When the flux function F in (1) is non-linear, we
may simply adapt Proposition 1 into the following result.

Corollary 1. Suppose that

• F ∈ C1(RN ,RN ),
• h ∈ C1(RN ,R),
• S− and S+ are continuous w.r.t. x and locally Lipschitz continuous w.r.t. U ,
• ∀x ∈ [0, L], and ∀V ∈ RN , s.t. h(V ) = 0,

∇Uh(V ).(DF (V ))−1.S−(V, x) > 0, and ∇Uh(V ).(DF (V ))−1.S+(V, x) > 0. (11)

Then, for all initial conditions U0 ∈ RN satisfying det (DF (U0)) 6= 0, there exists a
unique maximal solution U to (1) absolutely continuous and satisfying det (DF (U)) 6=
0. Furthermore, this solution depends continuously on U0.

Remark 2. Requiring that DF (U) is invertible corresponds to imposing that the
flows remains subsonique and admissible, which is commonly admitted for practical
applications. This condition may restrict the size of the spatial domain.

Proof. Any Carathéodory solution U to (1) is differentiable almost everywhere.
Thus, as F ∈ C1(RN ,RN ), then F (U) is absolutely continuous and differentiable
almost everywhere, and its derivative equals almost everywhere

d

dx
F (U)(x) = DF (U)(x).

d

dx
U(x).
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Thus any solution to (1) of such regularity and satisfying det (DF (U)) 6= 0, also
solves the Cauchy problem

d

dx
U(x) =

{
(DF (U)(x))−1.S−(U(x), x) if h(U)(x) < 0,
(DF (U)(x))−1.S+(U(x), x) if h(U)(x) ≥ 0.

(12)

Using Proposition 1 and the hypothesis, (12) has a unique solution U and it depends
continuously on U0.

4.2. On the boiling flow model. Now, we aim to apply this result to (1). In

order to apply Corollary 1, we rewrite the problem with a new set of unknowns Ũ
such that

• we can perform the computations required in (11) ;
• it has a physical interpretation.

We chose for variables

Ũ = (cv, q, p, h),

where cv is the volume fraction of vapor, q is the momentum. The enthalpy h is
chosen among the variables to simplify the definition of ∇Uh and q to simplify the
definition of DF̃ . These variables Ũ are commonly defined based on U as

Ũ = φ−1(U) =

(
αρv
ρ
, ρu, p, e+

p

ρ

)
, U = φ(Ũ) =

(
cv
τ
,

1

τ
, q,

h

τ
− p+

τq2

2

)
,

where τ = 1
ρ is the specific volume. We close the new system, not by expressing p

as a function of U (it is a variable in the new system), but by fixing

τ = cvτv + (1− cv)τl,

as a convex combination of the vapor and liquid specific volumes τv and τl, where
τv(p, h) and τl(p, h) are given C1(R2,R) functions of p and h, and independent of q
and cv. These functions are commonly tabulated.

Rewriting the steady state of (2) in terms of Ũ reads

d

dx
F̃ (Ũ) = S̃(Ũ) (13)

F̃ (Ũ) = F ◦ φ(Ũ) =

(
cvq, q, τq

2 + p,
τ2q3

2
+ qh

)
,

S̃(Ũ) = S ◦ φ(Ũ) =

{
(0, 0, 0, φ) if h < hb,
(Kφ, 0, 0, φ) if h ≥ hb.

We obtain in the end the following requirement.

Proposition 2. Suppose that

∀p ∈ R+, q2 ∂τ

∂p
(p, hb) + 1 > Kq2[τ(τv − τl)](p, hb) > 0. (14a)

Then, for all boundary conditions Ũ(0) = Ũ0 = (cv,0, q0, p0, h0) satisfying

q0 6= 0, and q2
0

(
∂τ

∂p
+ τ

∂τ

∂h

)
(p0, h0) + 1 6= 0, (14b)

there exists a unique maximal solution U absolutely continuous to (13). Further-

more, this solution depends continuously on Ũ0.
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Remark 3. Condition (14b) corresponds to imposing that the flow remains sub-

sonique. This formula is obtained by imposing the invertibility of DF̃ (Ũ) which is

necessary and sufficient to ensure the uniqueness of a steady solution Ũ . Of course,
one also need φ to be a bijection to ensure the existence of a unique solution U to
the original equation.

The formula (14b) refers not directly to the speed of sound, because in a non-

steady framework, Ũ is not transported, but U is. The speed of sound would be
obtained from the eigenvalues of DF (U) = DF̃ (φ−1(U)).Dφ−1(U). In the incom-
pressible case ∂pτ = 0, one finds after computations that those eigenvalues are

τq ±
√
τ/ ∂τ∂h and twice τq, where one identifies the velocity u = τq and the speed

of sound yields c =
√
τ/ ∂τ∂h .

Proof. First, one verifies that dq
dx = 0, thus q 6= 0 is constant and (13) reduces to

d

dx
F̄ (Ū) = S̄(Ū) S̄(Ū) =

{
(0, 0, φ) if h < hb,
(Kφ, 0, φ) if h ≥ hb,

Ū = (cv, p, h), F̄ (Ū) =

(
cvq, τq

2 + p, q

(
τ2q2

2
+ h

))
.

One computes

DF̄ (Ū) =

 q 0 0
q2(τv − τl) q2 ∂τ

∂p + 1 q2 ∂τ
∂h

q3τ(τv − τl) q3τ ∂τ∂p q
(
q2τ ∂τ∂h + 1

)
 , (15)

the determinant of which yields

Det := det
(
DF̄ (Ū)

)
= q2

[
q2

(
∂τ

∂p
+ τ

∂τ

∂h

)
+ 1

]
,

which is non-zero at the boundary by hypothesis. Inverting (15) yields

(DF̄ (Ū))−1 =
1

Det


q
(

1 + q2
(
∂τ
∂p + τ ∂τ∂h

))
0 0

−q3(τv − τl) q2
(
q2τ ∂τ∂h + 1

)
−q3 ∂τ

∂h

−q3τ(τv − τl) −q4τ ∂τ∂p q
(
q2 ∂τ

∂p + 1
)
 .

Multiplying it by the source term and by ∇Ūh(Ū) = (0, 0, 1) leads to

∇Ūh(V ).(DF̄ (V ))−1.S̄−(V, x) =
qφ

Det

(
1 + q2 ∂τ

∂p

)
,

∇Ūh(V ).(DF̄ (V ))−1.S̄+(V, x) =
qφ

Det

(
1 + q2

(
∂τ

∂p
−Kτ(τv − τl)

))
.

If (14b) holds, these two values are positive and we may apply Corollary 1.

5. Conclusion and outlook. We have described, in a theoretical framework, a
set of conditions providing the existence and uniqueness of a steady solution, in the
sense of Carathodory, to hyperbolic systems of balance laws. We have applied it
for the study of a boiling flow model. The resulting conditions on the physical pa-
rameters for such steady flows to exists are twofold. First, the flow needs to remain
subsonic in the whole spatial domain, this constrains the domain length and the
boundary conditions. Second, if the source is discontinuous along an hypersurface
in the phase space, then the source and the flux on both sides need to be defined
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in such a way that the flow may only cross the discontinuity hypersurface in one
direction.

In the present work, we have only considered boundary conditions on one sides,
which suffice to study time independent flow. Though, it is more common in this
field to use two boundaries with further requirements (see typically [2] for unsteady
flows).

At the numerical level, capturing equilibrium states such as steady states for
balance laws has been widely studied. Though, the discontinuity of source terms of
the form (1) brings new difficulties, the study of which is left for future work.
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