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We provide probabilistic representations of the solution of some semi-
linear hyperbolic and high-order PDEs based on branching diffusions. These
representations pave the way for an approximation of the solution by the stan-
dard Monte Carlo method, whose error estimate is controlled by the standard
central limit theorem, thus partly bypassing the curse of dimensionality. We
illustrate the numerical implications in the context of some popular PDEs in
physics such as nonlinear Klein–Gordon equation, a simplified scalar version
of the Yang–Mills equation, a fourth-order nonlinear beam equation and the
Gross–Pitaevskii PDE as an example of nonlinear Schrödinger equations.

1. Introduction. Similar to the intimate connection between the heat equation and the
Brownian motion, linear (second-order) parabolic partial differential equations are con-
nected to stochastic processes. More precisely, the Feynman–Kac formula states that a linear
parabolic PDE with infinitesimal generator L := b · ∂x + 1

2Tr[σσT∂2
xxT], and terminal con-

dition f1(·) at time T , can be written as a conditional expectation of f1(XT ) involving the
Itô process X associated with the generator L. This connection allows to devise numerically
approximations of the solution of such PDEs by probabilistic (Monte Carlo) methods, which
represents a clear advantage in high-dimensional problems as the error estimate induced by
the central limit theorem is dimension-free.

An important focus was put on the extension to nonlinear (second-order) parabolic PDEs,
see, for example, [12] for a quick review of existing methods.

– A first attempt was achieved by exploiting the stochastic representation by means of
backward stochastic differential equations, see Bally and Pagès [3], Bouchard and Touzi [6],
Zhang [22], and the extension to the fully nonlinear setting by Fahim, Touzi and Warin [11].
The induced numerical method involves repeated computations of conditional expectations,
resulting in a serious dimension dependence of the corresponding numerical methods. In fact,
as highlighted in [11], this method can be viewed as part of the traditional finite-elements
algorithm.

– For special types of nonlinearities, one may also use the representations available
in the literature on Galton–Watson branching diffusions and their extension to superpro-
cesses. While Galton–Watson branching diffusions are connected to the so-called KPP
(Kolmogorov–Petrovskii–Piskunov) equations [20], superprocesses induce a connection with
a more general class of nonlinear parabolic and elliptic PDEs, with nonlinearity depending
only on the unknown function. See, for example, Le Gall [18]. These connections have po-
tential numerical implications but still require to develop some approximation methods for
superprocesses (which, up to our knowledge, are not available in the current literature). We
also refer to the branching process interpretation of Le Jan and Sznitman [19] for the incom-
pressible Navier–Stokes equations in R3 in Fourier space, which has not been followed by
any numerical implications.
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Inspired by the extension of KPP equations by Rasulov, Raimov and Mascagni [21] and
Henry–Labordère [13] suggested a numerical method based on an extension of the McKean
[20] branching diffusion representation of the so-called KPP equation to a class of semilinear
second order parabolic PDEs with power nonlinearity in the value function u.

The resulting algorithm is purely probabilistic. In particular its convergence is controlled
by the central limit theorem, with rate of convergence independent of the dimension of the
underlying state, thus proving a high potential for high-dimensional problems.1 The validity
of this method in the path-dependent case, and for further analytic nonlinearities which are of
the power type in the triple (u, ∂xu, ∂2

xxTu) is analyzed in [13–16]. We also refer to Agarwal
and Claisse [1] for the extension to elliptic semilinear PDEs, and Bouchard, Tan, Warin and
Zou [5] for Lipschitz nonlinearity in the pair (v, ∂xv). A critical ingredient for the exten-
sion is the use of Galton–Watson trees weighted by some Malliavin automatic differentiation
weights.

Our objective in this paper is to show that the above branching diffusion approach extends
to more general Cauchy problems, including hyperbolic and higher order PDEs. Such an ex-
tension may seem to be due to the intimate connection between parabolic second order PDEs
and diffusions generators. However, probabilistic representations of some specific examples
of hyperbolic PDEs did appear in the previous literature. The first such relevant work traces
back to Kac [17] in the context of the one-dimensional telegrapher equation:

∂ttu − c∂xxu + (2β)∂tu = 0, u(0, x) ≡ f1(x), ∂tu(0, x) ≡ f2(x),

where β and c are constant parameters, and the boundary data f1, f2 are some given func-
tions. Observing that we may express u(t, x) = 1

2 [u0 + u1](t, x), where the pair (u0, u1)

solves the coupled system of first order PDEs:

∂tuj + (−1)j c∂xuj − β(u1−j − uj ) = 0,

uj (0, x) = f1(x) − (−1)j

c

∫ x

0
f2(y) dy, j = 0,1.

A branching mechanism representation of u0 and u1 is obtained by following McKean’s
representation for (interacting) KPP equations (with zero diffusion).

We next mention the work of Dalang, Mueller and Tribe [8] who introduced an alternative
stochastic representation for a class of linear Cauchy problems Lu = Fu, with a potential F ,
including the linear wave equation. Their starting point is the well-known representation

(1.1) u(t, x) = w(t, x) +
∫ t

0

∫
Rd

V (t − r, x − y)u(t − r, x − y)S(r, dy) dr,

where w is the solution with zero potential, and S is a fundamental solution, restricted to
be representable by a signed measure with supt |S(t,Rd)| < ∞. By substituting formally
u(t − r, x − y) on the right-hand side by the last expression of u, one formally obtains a
candidate representation for u as

∑
m≥0 Hm(t, x), where H0 = w, and Hm = ∫ t

0
∫
Rd V (t −

r, x − y)Hm−1(t − r, x − y)S(r, dy) dr , m ≥ 1. Finally, by convenient normalization of the
kernel S, the last expression induces a probabilistic representation.

Subsequently, Bakhtin and Mueller [2] considered the one-dimensional nonlinear wave
equation

∂2
t u − ∂2

xu = ∑
j≥0

aju
j on R+ ×R, u(0, ·) = f1, ∂tu(0, ·) = f2 on R,

1Notice however that this solves only partly the curse of dimensionality as the variance of the error may still
depend on the dimension.
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and obtained a probabilistic representation by means of stochastic cascades, which mimics
exactly the McKean branching diffusion representation of the KPP equation [20], similar to
[13, 15]. Our main contribution in this paper is to show that such a representation holds for
a wider class of Cauchy problems, in arbitrary dimension, and with analytic nonlinearity in
(u, ∂xu).

Our starting point is that the representations of [8] and [2] are closely related to the McK-
ean [20] representation of KPP equations, and the corresponding extensions in [13–15]. This
in fact opens the door to a much wider extension reported in Section 2 in the context of lin-
ear Cauchy problems with constant coefficients, and in Section 3 in the context of nonlinear
Cauchy problems with constant coefficients, and analytic nonlinearity in the value function u.
The crucial tool for our extension is the so-called Duhamel formula which expresses the solu-
tion of such an equation as the convolution (i.e., integration) of the boundary conditions with
respect to a family of fundamental solutions. This is in contrast with (1.1) which uses the sin-
gle fundamental solution S, and requires that the solution w of the zero-potential equation be
given. Then, the probabilistic representation appears naturally after convenient normalization
of the fundamental solutions.

It is also remarkable that the Malliavin automatic differentiation technique, exploited in
[14, 16] in order to address semilinear parabolic second order PDEs, extends naturally to the
context of general Cauchy problems by introducing the space gradient of the fundamental
solution. This observation is the key-ingredient for our extension in Section 4 to a general
class of semilinear Cauchy problems with analytic nonlinearity in (u, ∂xu).

The performance of the Monte Carlo numerical method induced by our representation is
illustrated in Section 5 on some relevant examples from mathematical physics. We start with
two examples of semilinear wave equations: the Klein–Gordon equation in dimensions 1,2,3,
which has a power nonlinearity in u, and a simplified version of the Yang–Mills equation (in
dimension 1), which contains a nonlinearity in the space gradient. We observe that due to
some restricting conditions which will be detailed in Sections 2, 3 and 4, our Monte Carlo
approximation method does not apply to the multi-dimensional wave equation with space
gradient nonlinearity. We next report some numerical experiments in the context of the non-
linear one-dimensional Beam equation which contains two derivatives in time and four space
derivatives. We finally consider the Gross–Pitaevskii equation in dimensions 1, 2 and 3, as an
example of nonlinear Schrödinger equations. All of the numerical results reveal an excellent
performance of our Monte Carlo approximation method.

We finally emphasize that, throughout the paper, we consider the Cauchy problem on R+×
R

d , thus ignoring the important case of restricted domain D ⊂ R
d for the space variable. We

mention that Chatterjee [7] proved that the function u(t, x) = Ex[f (tX + √
τZ,Bτ )], with

independent r.v. X,Z with standard Cauchy and normal distributions, respectively, and τ :=
inf{t > 0 : Bt /∈D} is the first exit time of an independent Brownian motion from the domain
D, solves the wave equation on R+ × D. However, this does not provide a representation
for the wave equation on a restricted space domain as the determination of f from given
f1(x) := u(0, x) and f2(x) := ∂tu(0, x) is not transparent.

2. Probabilistic representation for linear Cauchy problems.

2.1. Nonhomogeneous Cauchy problem. For a smooth function φ : R+ ×R
d −→ R, we

denote ∂0
t φ = D0φ = φ, and

∂
j
t φ := ∂jφ

∂tj
and Dαφ := ∂ |α|φ

∂x
α1
1 . . . ∂x

αd

d

, for all j ≥ 1, α ∈N
d .
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Given two integers N,M ≥ 1, we denote N
d
M := {α ∈ N

d : |α| ≤ M}, and we consider some
scalar parameters (aj )1≤j≤N, (bα)α∈Nd

M
⊂ R with

aN = 1 and
{
α ∈N

d
M : |α| = M and bα 
= 0

} 
= ∅.

Throughout this paper, we consider nonlinear partial differential equations defined by means
of the following linear Cauchy problem

N∑
n=1

an∂
n
t u − ∑

α∈Nd
M

bαDαu = F on R+ ×R
d,(2.1)

∂n−1
t u(0, ·) = pnfn on R

d, n = 1, . . . ,N,(2.2)

where the boundary data and the source term satisfy the following conditions:

(2.3) fn :Rd −→ R, 1 ≤ n ≤ N and F :R+ ×R
d −→ R are bounded continuous,

and p1, . . . , pN are scalar parameters in the simplex:

pn > 0 for all n = 1, . . . ,N, and p1 + · · · + pN = 1.

Clearly, one can reduce to the case pn = N−1, for all n = 1, . . . ,N , however we keep in-
troducing such a finite probability measure so as to highlight that this arbitrariness may be
useful from the numerical viewpoint.

2.2. Duhamel’s formula for linear Cauchy problems. We next recall the general solution
of nonhomogeneous Cauchy problems with constant coefficients. We first introduce the C

N -
valued function with components ĝ := (ĝ1, . . . , ĝN):

(2.4) ĝ(t, ξ) := (2π)−
d
2 etB(ξ)T

e1, t ≥ 0, ξ ∈ R
d,

where (e1, . . . , eN) is the canonical basis of RN ,

(2.5) B(ξ) :=

⎛
⎜⎜⎜⎜⎝

0
... IN−1
0

b(ξ) −a1 · · · −aN−1

⎞
⎟⎟⎟⎟⎠ and b(ξ) := ∑

α∈Nd
M

i|α|bαξα, ξ ∈ R
d,

with ξα := ξ
α1
1 . . . ξ

αd

d , for all multi-index α ∈ N
d . The polynomial function b : Rd −→ R is

called the symbol of the Cauchy problem (2.1).
As standard, we denote by S the Schwartz space of rapidly decreasing functions on R

d ,
and by S ′ the corresponding dual space of tempered distributions. We recall that this space
contains all (distributions represented by) polynomially growing functions. However, notice
that in dimension d = 1, by taking M = 1, N = 2, b0 = 0, b1 = 0, and b2 = −1, we obtain
ĝ(t, ξ) = etξ2

. In particular, ĝ(t, ·) /∈ S ′ for all t > 0 (this corresponds the Heat equation
with the wrong sign for the diffusion coefficient). For this reason, the following assumption
is needed. Unfortunately, we could not find in the literature any sufficient conditions on the
coefficients of the PDE.

ASSUMPTION 2.1. There exists T ∈ (0,∞] such that ĝ(t, ·) ∈ S ′ for all t ∈ [0, T ).

Under this assumption, we may introduce the so-called Green functions as the inverse
Fourier transform with respect to the space variable:

(2.6) g(t, ·) := F−1ĝ(t, ·), t ∈ [0, T ),
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in the distribution sense, that is, 〈F−1ĝ(t, ·), ϕ〉 = 〈ĝ(t, ·),F−1ϕ〉 for all ϕ ∈ S , t ∈ [0, T ),
where

F−1ϕ(x) := (2π)−d/2
∫
Rd

eiξ ·xϕ(ξ) dξ for all ϕ ∈ S.

ASSUMPTION 2.2. For all n = 1, . . . ,N :

(i) (t, x) �−→ (gn(t, ·) ∗ φ)(x) is continuous on [0, T ) × R
d , for all bounded continuous

function φ on R
d ;

(ii) gn(t, ·) may be represented by a signed measure gn(t, dx) = g+
n (t, dx) − g−

n (t, dx),
with total variation measure |gn| := g+

n + g−
n absolutely continuous with respect to some

probability measure μn; the corresponding densities γn, γ +
n and γ −

n , defined by

g+
n (t, dx) = γ +

n (t, x)μn(t, dx), g−
n (t, dx) = γ −

n (t, x)μn(t, dx), γn := γ +
n − γ −

n ,

satisfy |γn(t, ·)|∞ < ∞, γn(t,R
d) < ∞, and γN(·,Rd) ∈ L

1([0, t]) for all t ∈ [0, T ).

Again, we could not find any sufficient conditions on the coefficients of the PDE which
guarantee the validity of the last requirements. Notice that there is no hope for item (i) to hold
without any further conditions. For instance, Example 2.9 below illustrates a situation where
g1(t, ·) /∈ L

1(R), even in one space dimension. Then, the constant function ϕ := 1 is so that
gn(t, ·) ∗ 1 = ∞.

REMARK 2.3. As gn(t, ·) ∈ L
1(Rd) by Assumption 2.2, we may choose μn(t, dz) =

‖gn(t, ·)‖−1
L1(Rd )

|gn|(t, dz) and γn(t, z) = sgn(gn)(t, z)‖gn(t, ·)‖L1(Rd ), where sgn(α) :=
1{α≥0} − 1{α<0}, and we may have a simplified statement of Assumption 2.2 in terms of
this particular choice of dominating measures. However by introducing more general domi-
nating measures μn, we would like to highlight that this additional degree of freedom may
have important numerical implications of the subsequent representation results of the paper.

PROPOSITION 2.4. Let F, (fn)1≤n≤N be as in (2.3). Then, under Assumptions 2.1 and
2.2, the Cauchy problem (2.1)–(2.2) has a unique solution in C0

b([0, T ) ×R
d,R) given by

u(t, x) :=
N∑

n=1

pn

(
fn ∗ gn(t, ·))(x) +

∫ t

0

(
F(t − s, ·) ∗ gN(s, ·))(x) ds,

t ∈ [0, T ), x ∈ R
d .

(2.7)

Of course the last result is well known, however we emphasize that it is usually stated under
different assumptions on gn, fn and F . Namely, one may typically relax Assumption 2.2
and assume that f and F have bounded support so as to guarantee that the convolutions
involved in the representation (2.7) are well defined and satisfy the property F(fn ∗gn(t, ·)) =
(2π)

d
2 F(fn)F(gn(t, ·)) for all t ∈ [0, T ), n = 1, . . . ,N . Our conditions in Proposition 2.4

are suitable for the subsequent use in this paper both for the nonlinear extension and, more
importantly, for the numerical implications in terms of Monte Carlo approximation.

For the convenience of the reader, we report the proof of Proposition 2.4.

PROOF. First, the conditions on the densities γn contained in Assumption 2.2 guarantee
that the function u defined in (2.7) is bounded and continuous. Then the distribution repre-
sented by u is in S ′, and we may define the corresponding Fourier transform in the space



BRANCHING DIFFUSION REPRESENTATION FOR NONLINEAR CAUCHY PROBLEMS 2355

variable û(t, ·) := F(u(t, ·)) in the distribution sense. By standard calculation using the prop-
erties of the Fourier transform, we see that

(2.8) û(t, ξ) =
N∑

n=1

pnf̂n(ξ)ĝn(t, ξ) +
∫ t

0
F̂ (t − s, ξ)ĝN(s, ξ) ds, t ≥ 0, ξ ∈ R

d,

where f̂ := F(f ) and F̂ := F(F (t, ·)). By the definition of ĝ in (2.4), we see that, for every
fixed ξ ∈ R

d , the function û(·, ξ) is the unique solution of the ODE

(2.9)
N∑

n=1

an∂
n
t û − b(ξ)û = F̂ (·, ξ) on R+, ∂n−1

t û(0, ξ) = pnf̂n(ξ), n = 1, . . . ,N,

which can be written equivalently in terms of the function v̂ := (û, ∂t û, . . . , ∂N−1
t û)�:

∂t v̂ = Bv̂ + F̂ eN, on R+ and v̂(0, ·) =
N∑

n=1

pnf̂nen.

Obviously, the last ODE has a unique solution with closed form obtained by the variation of
the constant method v̂(t, ξ) := etB(ξ)v̂(0, ξ) + ∫ t

0 esB(ξ)F̂ (t − s)eN ds, whose first entry in-
duces the solution û introduced in (2.8). To conclude the proof, it suffices to observe that any
solution ũ ∈ C0

b([0, T ) × R
d) of the Cauchy problem (2.1)–(2.2) has a well-defined Fourier

transform in the distribution sense satisfying the ODE (2.9) for all fixed ξ ∈ R
d . �

REMARK 2.5. For later use, we provide some details about the diagonalization of the
matrix B(ξ), needed for the computation of the Green functions g as the inverse Fourier
transform of the associated ĝ. Direct examination reveals that the eigenvalues of the matrix
B(ξ) are the roots of the corresponding characteristic polynomial b(ξ)−∑N

n=1 anλ
n. Assume

that B(ξ) has N distinct (simple) eigenvalues (λj (ξ))1≤n≤N ∈ C
N . Then, denoting by diag[λ]

the diagonal matrix with diag[λ]j,j = λj , it follows that

B(ξ) = P(ξ)diag
[
λ(ξ)

]
P(ξ)−1, where P(ξ)j, := λ(ξ)j ,1 ≤ j,  ≤ N.

The matrix P(ξ) is the so-called Vandermonde matrix whose inverse is given by

{
P(ξ)−1}

j,n = �n(ξ)

λj (ξ)
∏

 
=j (λ − λj )(ξ)
, j, n = 1, . . . ,N,

where

�N(ξ) = 1 and �n(ξ) := (−1)n−1
∑

1≤1≤···≤N−n≤N

1,...,N−n 
=n

(λ1 · · ·λN−n
)(ξ) for n < N.

Therefore, by the definition of ĝn in (2.4), we have for (r, ξ) ∈ R+ ×R
d :

(2.10) ĝn(r, ξ) = (2π)−
d
2 �n(ξ)

N∑
j=1

erλj (ξ)∏
 
=j (λ − λj )(ξ)

, n = 1, . . . ,N.

2.3. Probabilistic representation. Let (�,F,P) be a probability space supporting two
random variables τ and I , with

(2.11) τ and I independent, P[τ ∈ dt] = ρ(t)1{t≥0} dt and P[I = n] = pn,n = 1, . . . ,N,

for some C0(R+,R) density function ρ > 0 on (0,∞). We shall denote ρ̄(t) := ∫ ∞
t ρ(s) ds.
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Recall the densities γn and the dominating probability measures μn(t, ·), n = 1, . . . ,N ,
introduced in Assumption 2.2. For all t ≥ 0, we introduce the random variables

(2.12) Xn
t := x + Zn

t independent of (I, τ ), with P
[
Zn

t ∈ dz
] = μn(t, dz), n = 1, . . . ,N.

The following representation is a rewriting of Proposition 2.4 in terms of the last notation.

PROPOSITION 2.6. Let (fn)1≤n≤N and F be as in (2.3). Then, under Assumptions 2.1
and 2.2, the unique C0

b([0, T ] ×R
d,R) solution of the Cauchy problem (2.1)–(2.2) is:

u(t, x) = E

[
1{τ≥t}

γI (t,Z
I
t )

ρ̄(t)
fI

(
XI

t

) + 1{τ<t}
γN(τ,ZN

τ )

ρ(τ )
F

(
t − τ,XN

τ

)]
, t < T ,x ∈ R

d .

2.4. Examples. We conclude this section by examining some examples. In particular Ex-
ample 2.9 does not satisfy Assumption 2.2.

EXAMPLE 2.7 (Heat equation). Let N = 1, M = 2, bα = 0 whenever |α| ≤ 1, and b1,1 =
b2,2 = 1, b1,2 = b2,1 = 0. Then B(ξ) = b(ξ) = −|ξ |2, ξ ∈ R

d , implying that Assumption 2.3
is valid with T = ∞, and

g1(r, z) := (2π)−d
∫

e−|ξ |2r+iξz dξ = (4πr)−d/2e−|z|2
4r , (r, z) ∈ R+ ×R

d,

is the heat kernel which is positive, has unit total mass, and satisfies Assumption 2.2. Then,
choosing γ1(t, ·) = 1 leads to Z1

t = √
2tZ with Z ∈ N(0, Id) a d-Gaussian r.v.

EXAMPLE 2.8 (Airy equation). Let d = 1, N = 1, M = 3, b0 = b1 = b2 = 0 and b3 = 1.
Then B(ξ) = b(ξ) = −iξ3 is scalar valued, and

g1(r, z) := (2π)−1
∫

eiξz−rξ3
dξ = (3r)−1/3Ai

(
(3r)−1/3z

)
, (r, z) ∈ R+ ×R,

where we introduced the Airy function Ai(x) := (π)−d
∫ ∞

0 cos (− ξ3

3 + xξ) dξ , x ∈ R. Notice
that

∫ |g1|(t, dz) = ∞, so that Assumption 2.2 fails in this example.

EXAMPLE 2.9 (Wave equation). Let N = 2, with a1 = 0, M = 2, bα = 0 whenever |α| ≤
1, and b1,1 = b2,2 = 1, b1,2 = b2,1 = 0. Then

B(ξ) =
(

0 1
−|ξ |2 0

)
, eB(ξ)r = (2π)−

d
2

(
cos

(
r|ξ |) |ξ |−1 sin

(
r|ξ |)

−|ξ | sin
(
r|ξ |) cos

(
r|ξ |)

)
, ξ ∈ R

d,

and, for (r, z) ∈ R+ ×R
d ,

g2(r, dz) = (2π)−d
∫ sin (r|ξ |)

|ξ | eiξ ·z dξ,

g1(r, dz) = (2π)−d
∫

cos
(
r|ξ |)eiξ ·z dξ = ∂rg2(r, dz).

Direct calculations, using Kirchhoff’s formula (in) see, for example, [10]), provide

g2(r, dz) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2
1{|z|<r} dz for d = 1,

1

2π

(
r2 − |z|2)− 1

2 1{|z|<r} dz for d = 2,

σr(dz)

4πr
for d = 3,
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where σr(dz) denotes the surface area on ∂B(0, r). We directly compute that
‖g2(t, ·)‖L1(Rd ) = t . Then, choosing γ2(t, ·) = t leads to Z2

t = tZ where:
• in dimension d = 1, Z has a uniform distribution on [−1,1],
• in dimension d = 2, the law of Z is defined by the density 1

2π
1√

1−z2
1|z|<1,

• in dimension d = 3, the law of Z is 1
4π

μS2(dz), where μS2 denotes the volume measure
on the unit sphere.

EXAMPLE 2.10 (Beam equation). Let d = 1, N = 2, with a1 = 0, M = 4, b1 = b2 =
b3 = 0 and b4 = 1 corresponding to the fourth-order PDE ∂2

t u + D4u = 0. Then,

g1(r, z) = ∂rg2(r, z) and g2(r, z) = √
rG

(
z√
r

)
where

G(0) = (2π)−
1
2 ,(2.13)

2G′(x) = Im
(∫ x√

2π

0
eiπt2/2 dt

)
− Re

(∫ x√
2π

0
eiπt2/2 dt

)
, x ∈ R.

Note that
∫
R

|G(x)|dx < ∞ as G(x) ∼|x|→∞ ( 2
π
)

1
2 x−2(cos(x2

4 ) − sin(x2

4 )). Then, we may
choose γ2(t, z) = t‖G‖L1(Rd )sgnG(z), thus inducing Z2

t = √
tZ with Z distributed according

to ‖G‖−1
L1(Rd )

|G(z)|.

All of the results of the present paper extend to the case of Cauchy problems for complex-
valued functions, with coefficients (an)1≤n<N and (bα)α∈Nd

M
in C, thus allowing to include,

for instance, the Schrödinger equation (see Example 2.11) and its semilinear extension as
the Gross–Pitaevskii PDE (see Section 5.4). This extension follows by simply applying the
methodology described throughout the paper separately to the real part and the imaginary
part of the representation.

EXAMPLE 2.11 (Schrödinger equation and analytical continuation). Consider the
Schrödinger equation of a free particle (with source term)

(2.14) i∂tu = −1

2
�u + F, u(0, ·) = f1.

The corresponding Duhamel formula is

u(t, x) =
∫
Rd

f1(y)g1(t, x − y)dy − i

∫ t

0

∫
Rd

g1(s, x − y)F (s, y) ds dy,

with g1(t, x) = (2πit)
−d
2 e− x2

2it . Note the coefficient −i in front of F as a1 = i here. By setting
y − x = √

itz, this can be written as

u(t, x) =
∫ ∞e

− iπ
4

−∞e
− iπ

4
f1

(
x + e

iπ
4
√

tz
)
e− z2

2 dz − i

∫ t

0

∫ ∞e
−iπ

4

−∞e
−iπ

4
F

(
s, x + e

iπ
4
√

sz
)
e− z2

2 dzds.

By assuming that |f1(x + e
iπ
4 +iθ

√
tR)|e−R2

2 cos(2θ) and |F(s, x + e
iπ
4 +iθ√sR)|e−R2

2 cos(2θ)

goes to zero as R → ∞ when θ ∈ [−π
4 ,0]d ∪ [3π

4 , π]d , the integration over z in

[−∞e− iπ
4 ,∞e− iπ

4 ]d can be deformed into [−∞,+∞]d by analytical continuation and we
obtain for some standard Gaussian r.v. Z on R

d :

u(t, x) = E
[
f1

(
x + e

iπ
4
√

tZ
)] − i

∫ t

0
E

[
F

(
s, x + e

iπ
4
√

sZ
)]

ds.
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3. A first class of semilinear Cauchy problems. In this section, we consider the semi-
linear Cauchy problem:

N∑
n=1

an∂
n
t u − ∑

α∈Nd
M

bαDαu = ∑
j≥0

qjcju
j on R+ ×R

d,(3.1)

∂n−1
t u(0, ·) = pnfn on R

d, n = 1, . . . ,N,(3.2)

where the nonlinearity is defined by means of an atomic probability measure (qj )j≥0, with
qj ≥ 0 and

∑
j≥0 qj = 1, together with the functions

(3.3) cj :R+ ×R
d −→ R, j ≥ 0, bounded continuous, for all j ≥ 0.

The power series on the right-hand side of (3.1) is well defined provided that

(3.4) H1(s) := ∑
j≥0

qj‖cj‖∞sj

has a strictly positive radius of convergence, so that it is well defined at least in some neigh-
borhood of the origin.

3.1. The branching mechanism. A particle of generation ν ∈ N is a multi-integer k :=
(0, k1, . . . , kν) ∈ Kν := {0}×N

ν . With this notation, the ancestor is denoted by 0, the children
of the ancestor by (0,1), (0,2), . . ., the children of (0,1) are (0,1,1), (0,1,2), . . ., and so on.

We set by convention K0 := {0}, and we denote by K := ⋃
ν≥0 Kν the collection of

all particles. For ν ≥ 1, and a particle k := (0, k1, . . . , kν) ∈ Kν , we denote by k− :=
(0, k1, . . . , kν−1) ∈ Kν−1 its parent particle.

We next introduce independent families of random variables (τk, I
0
k , Jk)k∈K:

• I 0
k and τk are i.i.d. copies of the random variables I and τ , respectively, as introduced in

(2.11);
• Jk are i.i.d. random variables with P[Jk = j ] = qj for all j ≥ 0.

The time occurrences of the branching events, prior to t , are recorded through the sequence
(T t

k )k defined for all t ≥ 0 by

T t
0− := 0 and T t

k := t ∧ (
T t

k− + τk

)
, for all k ∈ K.

With these notation, each particle k lives on the time interval [T t
k−, T t

k ]. The branching mech-
anism is then the following:

• Start from particle 0.
• At the first branching time T t

0 = t ∧ τ0, particle zero dies out; if T t
0 < t , it generates J0

descendants labelled (0,1), . . . , (0, J0).
• Each descendant particle k undergoes the same behavior, independently of its peer-

particles: it dies out at the branching time T t
k , and generates Jk descendants labelled

(k,1), . . . , (k, Jk), whenever T t
k < t .

• We denote by Kt
s the collection of all living particles at time s, and by Kt := ⋃

s≤t Kt
s

the collection of all particles which have been living prior to time t . For simplicity we set
Kt := Kt

t .
• We finally denote for all particles k ∈ Kt

(3.5) I t
k := I 0

k 1k∈Kt + N1k∈Kt\Kt
.
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3.2. Probabilistic representation. Given the branching mechanism defined in the previ-
ous subsection, we introduce the corresponding branching process:

(3.6) X0
0 = x and Xk

T t
k
:= X

k−
T t

k−
+ Zk

T t
k

for all k ∈ Kt ,

where (Zk
T t

k
)k are independent with distribution, conditional on the type I t

k and the lifetime

T t
k − T t

k− of the particle k, given by

(3.7) P
[
Zk

T t
k
∈ dz|I t

k,�T t
k

] = μIt
k

(
�T t

k , dz
)

with �T t
k := T t

k − T t
k− .

We now introduce, for all t ≥ 0, and x ∈ R
d , the random variable

(3.8) ξt,x := ∏
k∈Kt

γI t
k
(�T t

k ,Zk
T t

k
)

ρ̄(�T t
k )

fI t
k

(
Xk

t

) ∏
k∈Kt\Kt

γN(�T t
k ,Zk

T t
k
)

ρ(�T t
k )

cJk

(
t − T t

k ,Xk
T t

k

)
.

Recall the power series H1 defined in (3.4).

ASSUMPTION 3.1. The power series H1 has a radius of convergence R1 ∈ (0,∞], and:

(i) r1 := sup1≤n≤N ‖fn‖∞‖γn‖∞ < R1;
(ii) there are constants T > 0 and s1 > r1 such that

∫ s1
r1

H1(s)
−1 ds = T ‖γN‖∞.

We observe that in most of the practical situations, only a finite number of coefficients cj

are nonzero, inducing R1 = +∞. In this case (i) is a slight reinforcement of Assumption 2.2.
Finally, (ii) is a standard condition for Galton–Watson branching mechanisms.

THEOREM 3.2. Let f ∈ C0
b(Rd,Rn) and cj ∈ C0

b(R+ × R
d,R). Then, under Assump-

tions 2.1, 2.2 and 3.1, we have ξt,x ∈ L
1 and u(t, x) := E[ξt,x] is a solution of the semilinear

Cauchy problem (3.1)–(3.2).

PROOF. 1. We first verify the L1-integrability of ξt,x . From the expression of ξt,x in (3.8),
we see that

(3.9) |ξt,x | ≤ χt := ∏
k∈Kt

r1

ρ̄(�T t
k )

∏
k∈Kt\Kt

cJk
‖γN‖∞

ρ(�T t
k )

.

Our objective is now to prove that t �−→ ω(t) := Eχt < ∞. By standard arguments, this
function is related to the ODE

(3.10) ∂tw = ‖γN‖∞H1(w) and w(0) = r1.

Let us first verify that this ODE has a nonexploding solution under Assumption 3.1(ii). As the
power series function H1 has radius R1, the condition r1 < R1 is necessary to find a (finite)
solution of the last ODE. Next, for an arbitrary L > 0, notice that H1 is Lipschitz on [−L,L],
so that the last ODE has a unique nonnegative solution w up to TL, where

lim
t→TL

w(t) = L whenever TL < ∞,

and the nonnegativity of w follows from the fact that w(0) > 0 and all derivatives H
(i)
1 (0) ≥ 0

for all i ≥ 0. Then, it follows from direct integration of the ODE that

‖γN‖∞TL =
∫ TL

0

∂sw

H1(w)
(s) ds =

∫ L

r1

ds

H1(s)
as long as TL < ∞.
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This proves that w is a nonexploding solution on [0, T ] if and only if
∫ s1
r1

ds
H1(s)

= ‖γN‖∞T

for some constant s1 > r1. Under this condition, we obtain by direct integration of (3.10)

w(t) = r1 + ‖γN‖∞
∑
j≥0

qj c̄j

∫ t

0
w(s)j ds

= E

[
r11{τ0≥t}

ρ̄(t)
+ 1{τ0<t}

‖γN‖∞‖cJ0‖∞
ρ(τ0)

w(τ0)
J0

]

= E

[
r11{τ0≥t}

ρ̄(t)
+ 1{τ0<t}

‖γN‖∞‖cJ0‖∞
ρ(τ0)

× ∏
k∈K1

t

(r11{T t
k ≥t}

ρ̄(τk)
+ 1{T t

k <t}
‖γN‖∞‖cJ0‖∞

ρ(τk)
w

(
T t

k

)Jk

)]
,

where Kn
t denotes the particles generated after n branching events prior to t and the last two

equalities follow from the definition of the branching mechanism together with the tower
property. Iterating up to the nth generation, this provides

v(t) = Eχn
t where

χn
t := ∏

k∈Kn
t

r1

ρ̄(�T t
k )

∏
k∈⋃

j<n K
j
t

‖γN‖∞‖cJ0‖∞
ρ(�T t

k )

+ ∏
k∈⋃

j≤n K
j
t

‖γN‖∞‖cJ0‖∞
ρ(�T t

k )

∏
k∈Kn+1

t

w
(
T t

k−
)Jk− .

As w ≥ 0, it follows that χn
t ≥ 0, and we deduce from Fatou’s lemma that ∞ > w(t) =

lim infn→∞Eχn
t ≥ Eχt , implying the required integrability of the bound χt in (3.9).

2. We next prove that v(t, x) := E[ξt,x] is a solution of the nonlinear Cauchy problem
(3.1). To see this, observe that

ξt,x = 1{τ0≥t}
γI t

0
(t,Z0

t )

ρ̄(t)
fI t

0

(
X0

t

) + 1{τ0<t}
γN(τ0,Z

0
τ0

)

ρ(τ0)
cJ0

(
t − τ0,X

0
τ0

) J0∏
j=1

ξ
(j)

t−τ0,X
0
τ0

,

where ξ
(j)

t−τ0,X
0
τ0

have the same distribution, conditional on (τ0,X
0
τ0

). Taking expectations, and

using the tower property, it follows from the definition of the function v that

v(t, x) = E

[
1{τ0≥t}

γI t
0
(t,Z0

t )

ρ̄(t)
fI t

0

(
X0

t

) + 1{τ0<t}
γN(τ0,Z

0
τ0

)

ρ(τ0)
cJ0

(
t − τ0,X

0
τ0

)
v
(
t − τ0,X

0
τ0

)J0

]

=
N∑

n=1

∫
pn

(
fn ∗ gn(t, ·))(x) +

∫ t

0

(
F(t − s, ·) ∗ gN(s, ·))(x) ds,

where F := ∑
j≥0 qj cj v

j . Since v is bounded, it follows from Proposition 2.4 that v is a
C0

b([0, T ] ×R
d,R) solution of the nonlinear Cauchy problem (3.1)–(3.2). �

REMARK 3.3 (Finite propagation speed). From the simulation of Z2
t in the case of the

wave equation, we deduce directly the finite propagation speed property: If f1 = f2 = 0 and
c0 = 0 on a ball B(x0, t0) of center x0 and radius t0, then u = 0 is a solution of the PDE
within the cone K(x0, t0) := {(x, t) : 0 ≤ t ≤ t0 and |x − x0| ≤ t0 − t}.
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Motivated by the numerical implications of Section 3.3, we now provide some sufficient
conditions for ξt,x to have a finite pth moment. In particular, for p = 2, this guarantees
that the error estimate of the Monte Carlo approximation induced by the representation of
Theorem 3.2 is characterized by the standard central limit theorem, independently of the
dimension d of the space variable x. Our first requirement is on the power series:

(3.11) Hp(s) := ∑
j≥0

(
qj‖cj‖∞

)p
sj .

ASSUMPTION 3.4. The power series Hp has a radius of convergence Rp ∈ (0,∞], and:

(i) rp := max1≤n≤N ‖fn‖p∞‖γnρ̄
1−p
p ‖p∞ < Rp , and αp := ‖γNρ

1−p
p ‖p∞ < ∞;

(ii) there are constants T > 0 and sp > rp such that
∫ sp
rp Hp(s)−1 ds = αpT .

THEOREM 3.5. Let f ∈ C0
b(Rd,Rn) and cj ∈ C0

b(R+ × R
d,R). Then, under Assump-

tions 2.1, 2.2 and 3.4, we have ξt,x ∈ L
p for all t ∈ [0, T ].

PROOF. Similar to the calculation in the previous proof, we have

|ξt,x |p ≤ ∏
k∈Kt

rp

ρ̄(�T t
k )

∏
k∈Kt\Kt

αp‖cJk
‖p∞

ρ(�T t
k )

.

The right-hand side is now related to the ODE

∂tw = αpHp(w) and w(0) = rp.

The integrability of |ξt,x |p can now be verified by following the same line of argument as in
Step 1 of the proof of Theorem 3.2. �

3.3. Numerical implications. Assuming that uniqueness holds for the nonlinear Cauchy
problem (3.1)–(3.2), the representation of Theorem 3.2 opens the door to a Monte Carlo
approximation for the solution u. This is easily obtained by producing independent copies
(ξ s

t,x)s≥1 copies of the r.v. ξt,x , so that

ûS(t, x) := 1

S

S∑
s=1

ξ s
t,x −→ u(t, x), a.s. as S → ∞,

by the law of large numbers.
Moreover, under Assumption 3.4 with p = 2, we have E[ξ2

t,x] < ∞ by Theorem 3.5, and
it follows from the central limit theorem that

√
S(ûS − u)(t, x) −→ N

(
0,Var[ξt,x]), in distribution.

This shows that the error estimate of our Monte Carlo approximation is of the order
√

S, and
is therefore dimension-free. Again, notice however that this solves only partly the curse of
dimensionality, as the variance of the error is driven by Var[ξt,x] which may still be exploding
in terms of the dimension parameter. Despite this, we emphasize that the present method is
the first attempt in the literature to address the approximation of initial value problems in high
dimension.

Finally, we discuss the complexity of our numerical method in Section 5.1.2 when we
detail our algorithm.
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4. Further nonlinear Cauchy problems. In this section, we consider the following
semilinear Cauchy problem with polynomial nonlinearity in the pair (u,Du):

N∑
n=1

an∂
n
t u − ∑

α∈Nd
M

bαDαu = ∑
j≥0

qj cj,0u
j,0

H∏
h=1

(cj,h · Du)j,h on R+ ×R
d,(4.1)

∂n−1
t u(0, ·) = pnfn on R

d, n = 1, . . . ,N,(4.2)

where (j )j≥0 ⊂ N
1+H is a sequence of vector integers j = (j,0, . . . , j,H ), and the non-

linearity is defined by means of an atomic probability measure (qj )j≥0, with qj > 0 and∑
j≥0 qj = 1, together with the functions

(4.3) cj,0 ∈ C0
b

(
R+ ×R

d,R
)

and cj,h ∈ C0
b

(
R+ ×R

d,B1
(
R

d))
, j ≥ 0,1 ≤ h ≤ H.

Here, B1(R
d) denotes the unit ball in R

d in the sense of the Euclidean norm. Notice that the
above Cauchy problem covers the particular case of (3.1)–(3.2) by setting j,h = 0 for all
h = 1, . . . ,H .

By standard Fourier transform theory, the partial gradients of the Green functions g =
(gn)1≤n≤N , in the distribution sense, are given by

Dgn(t, ·) = iF−1(
ξ �→ ξ ĝn(t, ξ)

)
, t ≥ 0, n = 1, . . . ,N.

Similar to the probability measures μn introduced in Assumption 2.2, we now assume that
the distributions Dgn can be represented by signed measures.

ASSUMPTION 4.1.

(i) For all n = 1, . . . ,N and m = 1, . . . , d , the distribution ∂xmgn(t, ·) may be represented
by a signed measure with total variation |∂xmgn(t, ·)|.

(ii) The measure |Dgn(t, ·)| := ∑
m |∂xmgn(t, ·)| is absolutely continuous w.r.t. some prob-

ability measure μ1
n(t, ·) so that we may define the density vector γ 1

n = (γ 1
n,1, . . . , γ

1
n,d) by

Dgn(t, dx) = γ 1
n (t, x)μ1

n(t, dx), t ≥ 0, x ∈ R
d .

Notice that although γ 1
n (t, ·) is defined dμ1

n(t, ·)-a.s. this will be sufficient for our needs.
Our starting point is the following “automatic differentiation property”, which follows by
direct differentiation of the Duhamel formula of Proposition 2.4.

PROPOSITION 4.2. In addition to the conditions of Proposition 2.4, let Assumption 4.1
hold true. Then, the solution u of the linear Cauchy problem (2.1)–(2.2) is differentiable with
respect to the space variable with

Du(t, x) = E

[
1{τ≥t}

γ 1
I (t,Z

1,I
t )

ρ̄(t)
fI

(
X

1,I
t

) + 1{τ<t}
γ 1
N(τ,Z1,N

τ )

ρ(τ )
F

(
t − τ,X1,N

τ

)]
,

where (τ, I ) are as in (2.11), and X1,n
τ = x +Z1,n

τ , with Z
1,n
t distributed as μ1

n(t, ·) indepen-
dent of (I, τ ).

EXAMPLE 4.3. Let us illustrate the last result on our main examples.

(i) Heat equation: we directly compute that Dg1(t, dx) = − x
2t

g1(t, dx).
(ii) Wave equation, d = 1: we have Dg2(t, dx) = 1

2(δ(x + t) − δ(x − t)) dx, but Dg1 =
D2g2 cannot be represented as a signed measure, thus violating Assumption 4.1. However,
we may still handle the one-dimensional wave equation by reducing to the case f1 = 0, see
Section 5.2.
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(iii) Wave equation, d > 1: Assumption 4.1 is not satisfied as Dg1 and Dg2 involve first-
order derivative of the delta function supported on the light cone {(x, t) : t2 − x2 = 0}.

(iv) Beam equation: we have Dg2(t, dx) = G′( x√
t
) dx.

In order to introduce the probabilistic representation of the solution of (4.1)–(4.2), we
consider the branching mechanism defined in Section 3.1, where we modify the definition
of the independent i.i.d. random variables (Jk)k∈K and we introduce the types of particles
(θ t

k)k∈K as follows:

• P[Jk = j ] = qj for all j ≥ 0, and we denote J̄k,−1 := 0, J̄k,h := J̄k,h−1 + Jk,h, h =
0, . . . ,H ;

• an arbitrary particle k ∈ Kt \ Kt branches at time Tk into J̄k,H particles; the hth block of
descendant particles are labelled

(4.4) (k, j), j = J̄k,h−1 + 1, . . . , J̄k,h, h = 0, . . . ,H ;
• we assign to the hth block of new particles (4.4) the types:

(4.5) θ t
(0) := 0 and θ t

(k,j) := h for k ∈ Kt \Kt , j = J̄k,h−1 +1, . . . , J̄k,h, h = 0, . . . ,H.

Finally, we introduce a branching process which differs slightly from (3.6)–(3.7). Let

(4.6) X̂0
0 = x and X̂k

T t
k
:= X̂

k−
T t

k−
+ Ẑk

T t
k

for all k ∈ Kt ,

where (Zk
T t

k
)k are independent with distribution, conditional on (I t

k, θ
t
k) and the lifetime

�T t
k := T t

k − T t
k− of the particle k, given by

(4.7) P
[
Ẑk

T t
k
∈ dz|I t

k, θ
t
k,�T t

k

] = 1{θ t
k=0}μIt

k

(
�T t

k , dz
) + 1{θ t

k 
=0}μ1
I t
k

(
�T t

k , dz
)
.

The main goal of this section is to provide a representation of the solution of the Cauchy
problem (4.1)–(4.2) by means of the random variable

(4.8) ξ̂t,x := ∏
k∈Kt

Wk

ρ̄(�T t
k )

[
fI t

k

(
X̂k

t

)−1{θ t
k 
=0}fI t

k

(
X̂k

Tk−
)] ∏

k∈Kt\Kt

Wk

ρ(�T t
k )

cJk,0
(
t −T t

k , X̂k
T t

k

)
,

where the random weights Wk are given by

Wk := 1{θ t
k=0}γI t

k

(
�T t

k , Ẑk
T t

k

) + 1{θ t
k 
=0}cJk,θ

t
k

(
t − T t

k−, X̂k−
T t

k−

) · γ 1
I t
k

(
�T t

k , Ẑk
T t

k

)
, k ∈ Kt .

Here Wk accounts for the differentiation which corresponds to introducing the corresponding
weight γ 1 as in Proposition 4.2 in case of a nonzero type particle. We also emphasize the
presence of an additional correction in the first product of (4.8) over the particles k ∈ Kt ,
consisting in substracting 1{θ t

k 
=0}fI t
k
(X̂k

Tk−), compare with (3.8) where no such correction
is needed. Similar to [14], this correction is necessary in order to control for the potential
explosion due to the automatic differentiation weight in the case where the particle has a
nonzero type, and achieved by requiring the addition Lipschitz condition on the boundary
data f , see Theorem 4.4 below.

We denote

r̂p := sup
0≤t≤T

1≤n≤N

{
‖fn‖p∞

∫ ∣∣γn(t, z)
∣∣p−1|gn|(t, dz)

}

∨
{
‖∇fn‖p∞

∫
|z|p∣∣γ 1

n (t, z)
∣∣p−1|Dgn|(t, dz)

}
(4.9)
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/ρ̄(t)p−1,

α̂p := sup
0≤t≤T

{∫ |γN(t, z)|p−1|gN(t, dz)|} ∨ {∫ |γ 1
N(t, z)|p−1|DgN(t, dz)|}

ρ(t)p−1 .(4.10)

We shall provide in Proposition 4.8 below some sufficient conditions which guarantee that the
coefficients α̂p and r̂p are finite. The following result provides a probabilistic representation
of the solution of the semilinear Cauchy (4.1) under a condition involving the above r̂p and
α̂p . Recall the power series Hp introduced in (3.11).

THEOREM 4.4. Let Assumptions 2.1, 2.2 and 4.1 hold true, and assume that f is
bounded and Lipschitz. Let p > 1, and ρ be a positive density function with support on
(0,∞) such that the constants r̂p and α̂p defined in (4.9)–(4.10) satisfy

(4.11) r̂p < Rp, α̂p < ∞ and
∫ ŝp

r̂p

ds

Hp(s)
= α̂pT for some ŝp > r̂p and T > 0.

Then, ξ̂t,x ∈ L
p for t ∈ [0, T ], and u(t, x) := E[ξ̂t,x] is a bounded continuous solution of the

semilinear Cauchy problem (4.1).

PROOF. Similar to the proof of Theorem 3.2, we directly estimate that

|ξ̂t,x |p ≤ ∏
k∈Kt

1

ρ̄(�T t
k )p

(
1θ t

k=0‖fI t
k
‖p∞

∣∣γI t
k

(
�T t

k , Ẑk
T t

k

)∣∣p + 1θ t
k 
=0‖∇fI t

k
‖p∞

∣∣Zk
T t

k

∣∣p|Wk|p)

× ∏
k∈Kt\Kt

∣∣∣∣ Wk

ρ(�T t
k )

∣∣∣∣p‖cJk,0‖p∞.

By the independence of the �T t
k ’s and the Zk

T t
k
’s, this provides

E|ξ̂t,x |p ≤ E
∏

k∈Kt

r̂p

ρ̄(�T t
k )

∏
k∈Kt\Kt

α̂p‖cJk,0‖p∞
ρ(�T t

k )
.

The required result follows by the same line of argument as in the proof of Theorem 3.2. �

In the rest of this section, we provide sufficient conditions for r̂p and α̂p to be finite, as
required in (4.11). In preparation for this, we need some estimates on the Green functions
gn, n = 1, . . . ,N . Recall that {α ∈ N

d
M : |α| = M and bα 
= 0} 
= ∅, and define the principal

symbol

bM(ξ) := iM
∑

|α|=M

bαξα = eiπηM(ξ)
∣∣bM(ξ)

∣∣

where ηM(ξ) := 1 + M − sg{bM(ξ)}
2

; ξ ∈ R
d .

LEMMA 4.5. For all ξ ∈ R
d , the matrix B(ε−1ξ) has N simple eigenvalues λn(ε

−1ξ),
n = 1, . . . ,N , for sufficiently small ε > 0, with asymptotics

lim
ε↘0

ε
1
σ λn

(
ε−1ξ

) = λ0
n(ξ) := ∣∣bM(ξ)

∣∣ 1
N e

iπ
N

(ηM(ξ)+2n), where σ := N

M
.
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PROOF. Recall from Remark 2.5 that the spectrum of the matrix B(ε−1ξ) consists of the
solutions of the characteristic polynomial

∑N
n=1 anλ

n = b(ε−1ξ).
As {α ∈ N

d
M : |α| = M and bα 
= 0} 
= ∅, we see that εMb(ε−1ξ) −→ bM(ξ). Then,

denoting by λε an arbitrary solution of the last characteristic polynomial, it follows that
εM ∑N

n=1 anλ
n
ε −→ bM(ξ), and we deduce that (λε)ε>0 has no finite accumulation point.

Together with the normalization aN = 1, this in turn implies that
∑N

n=1 anλ
n
ε ∼ λN

ε as ε ↘ 0,
and therefore

lim
ε↘0

εMλN
ε = bM(ξ) = ∣∣bM(ξ)

∣∣eiπηM(ξ) := λ0
N(ξ)N,

which can be written equivalently as limε↘0(ε
M
N

λε

λ0
N(ξ)

)N = 1. Hence, the limiting spectrum

of the matrix B(ε−1ξ) consists of N simple eigenvalues expressed in terms of the unit roots:

lim
ε↘0

ε
M
N λn

(
ε−1ξ

) = λ0
N(ξ)e

2niπ
N = λ0

n(ξ), n = 1, . . . ,N. �

The last result shows that the asymptotics of B(ε−1ξ) are in the context of Remark 2.5.
Then, it follows that the space Fourier transforms of the Green functions are given by (2.10).
Then, by convenient scaling, we expect the corresponding limits

(4.12) ĝ0
n := (2π)−

d
2 �0

n

N∑
j=1

e
λ0

j∏
 
=j (λ

0
 − λ0

j )
, n = 1, . . . ,N,

with

�0
N(ξ) := 1, �0

n(ξ) := (−1)n−1
∑

1≤1≤···≤N−n≤N

1,...,N−n 
=n

(
λ0

1
· · ·λ0

N−n

)
(ξ) for n < N.

In order to justify this convergence, we need the following additional condition.

ASSUMPTION 4.6. For all ϕ ∈ S , the family {t1−nĝn(t, t
−σ ·)ϕ, t ∈ (0, ε]} is uniformly

integrable in R
d , for some ε > 0.

We finally introduce the corresponding scaled Green functions

gσ
n (t, ·) := gn(t, ·) ◦ (

tσX
)−1

, t ∈ [0, T ], n = 1, . . . ,N,

where X the canonical map on R
d , that is, X(x) = x for all x ∈ R

d . In particular, in the case
where gn can be represented by a function, gσ

n (t, x) = tσdgn(t, t
σ x).

ASSUMPTION 4.7.

(i) The functions t �−→ ∫ |z|p|γ 1
n (t, z)|pμ1

n(t, dz), n = 1, . . . ,N and t �−→∫ |γ 1
N(t, z)|pμ1

N(t, dz) are continuous on (0, T ];
(ii) γ 1

n (t, tσ z) = O(1) near the origin t = 0, n = 1, . . . ,N ;
(iii) The following families are uniformly integrable for some ε > 0:{

z �−→ |z|p∣∣γ 1
n

(
t, tσ z

)∣∣p−1∣∣Dgσ
n

∣∣(t, dz)
}
t≤ε, 1 ≤ n ≤ N and{

z �−→ ∣∣γ 1
N

(
t, tσ z

)∣∣p−1∣∣Dgσ
N

∣∣(t, dz)
}
t≤ε.

PROPOSITION 4.8. Let Assumptions 2.1, 2.2, 4.1, 4.6 and 4.7 hold true. Assume further
that the density ρ ∈ C0(R+), strictly positive on (0,∞), and limt↘0 tN−1+σpρ(t)1−p < ∞.
Then, for any bounded Lipschitz function f , we have r̂p + α̂p < ∞.
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To prepare the proof of this result, we isolate the following pointwise convergence.

LEMMA 4.9. The space Fourier Green functions ĝ satisfy the short time asymptotics

t1−nĝn

(
t, t−σ ξ

) −→ ĝ0
n(ξ) as t ↘ 0, for all ξ ∈R

d .

If in addition Assumption 4.6 holds true, then the last convergence holds in S ′, and the short
time asymptotics of the scaled Green functions are given by

t1−ngσ
n (t, ·) −→ g0

n := F−1ĝ0
n as t ↘ 0, in S ′, n = 1, . . . ,N.

PROOF. First, the pointwise convergence of Ĝn(t, ·) := t1−nĝn(t, t
−σ ·) towards ĝ0

n, as
t ↘ 0, follows from direct application of Lemma 4.5 together with the observations re-
ported in Remark 2.5. The uniform integrability condition of Assumption 4.6 guarantees
that 〈Ĝn(t, ·), ϕ〉 −→ 〈ĝ0

n(t, ·), ϕ〉 for all ϕ ∈ S , that is, Ĝn(t, ·) −→ ĝ0
n as t ↘ 0 in S ′. This

in turn implies the convergence of the corresponding Fourier inverse F−1Ĝn(t, ·) towards
g0

n := F−1ĝ0
n as t ↘ 0 in S ′. It remains to relate the distribution F−1Ĝn(t, ·) to the Green

function gn. To see this, we use the properties of the Fourier transform in S ′ as defined by
means of arbitrary test functions ϕ ∈ S as follows:〈

F−1Ĝn, ϕ
〉 = 〈

Ĝn,F
−1ϕ

〉 = tσd 〈
ĝn(t, ·), (

F−1ϕ
)(

tσ ·)〉 = tσd 〈
gn(t, ·),F((

F−1ϕ
)(

tσ ·))〉.
We finally observe by direct calculation that F((F−1ϕ)(λ·)) = λ−dϕ(λ−1·) for all ϕ ∈ S and
all constant λ ∈ R. Then〈

F−1Ĝn, ϕ
〉 = 〈

gn(t, ·), ϕ(
t−σ ·)〉 = 〈

gσ
n (t, ·), ϕ〉

.

By the arbitrariness of ϕ ∈ S , this provides that F−1Ĝn(t, ·) = gσ
n (t, ·), thus completing the

proof. �

PROOF OF PROPOSITION 4.11. By Assumption 4.1(i), together with the fact that ρ̄(T ) ≤
ρ ≤ 1 on [0, T ], we only need to justify that

sup
0≤t≤T

1≤n≤N

∫
|z|p∣∣γ 1

n (t, z)
∣∣p−1|∂xgn|(t, dz))

+ sup
0≤t≤T

ρ(t)1−p
∫ ∣∣γ 1

N(t, z)
∣∣p−1|∂xgN |(t, dz)) < ∞.

Assumption 4.7(i) ensures that the functions inside the last suprema are continuous on (0,∞).
Then, in order to prove that r̂p and α̂p are finite, it suffices to verify that the functions inside
the last supremum are bounded near t = 0.

To see this, we first observe that the convergence of the scaled Green functions in S ′ in
Lemma 4.9 implies that

(4.13) t1−n+σ |α|Dαgσ
n (t, ·) −→ Dαg0

n as t ↘ 0, in S ′, for all α ∈ N
d, n = 1, . . . ,N.

Then, we compute by a direct change of variables that∫
|z|p∣∣γ 1

n (t, z)
∣∣p−1|∂xgn|(t, dz) =

∫ ∣∣tσ z
∣∣p∣∣γ 1

n

(
t, tσ z

)∣∣p−1∣∣∂xg
σ
n

∣∣(t, dz)

= tn−1+σp
∫

|z|pt1−n
∣∣γ 1

n

(
t, tσ z

)∣∣p−1∣∣∂xg
σ
n

∣∣(t, dz)

= O
(
tn−1+σp)

near the origin,
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by Assumption 4.7(ii)–(iii), together with (4.13). This implies that the limit is zero as n ≥ 1
and p > 1. Similarly,

ρ(t)1−p
∫ ∣∣γ 1

N(t, z)
∣∣p−1|∂xgN |(t, dz)

= tN−1+σpρ(t)1−p
∫

t1−N
∣∣γ 1

N

(
t, tσ z

)∣∣p−1∣∣∂xg
σ
N

∣∣(t, dz)

= O
(
tN−1+σpρ(t)1−p)

near the origin,

again by Assumption 4.7(ii)–(iii). �

5. Numerical examples.

5.1. Wave semilinear PDE. We consider the nonlinear Klein–Gordon wave equation in
R

d for 1 ≤ d ≤ 3:

(5.1)
(
∂2
t t − �

)
u + u3 + u2 = 0, u(0, x) = f1(x), ∂tu(0, x) = f2(x).

To the best of our knowledge, the current literature only considers approximation of the so-
lution by deterministic numerical schemes, see, for example, [9]. Due to the curse of dimen-
sionality, mainly d = 1 and d = 2 have been considered. To illustrate the efficiency of our
algorithm, we solve this equation in d = 1,2 and 3. In our numerical experiments, we take
the initial conditions

f1(x) := − 12

9 + 2(
∑d

i=1 xi)2
and f2(x) := −48

√
d + 1(

∑d
i=1 xi)

(2(
∑d

i=1 xi)2 + 9)2
,

for which the explicit solution is u(t, x) = − 12
9+2(

√
d+1t−∑d

i=1 xi)
2 .

We choose ρ(t) = βe−βt and ρ̄(t) = e−βt . For convenience, we set u(t, x) := U(t, x) +
f1(x), and we compute that U satisfies the nonhomogeneous nonlinear wave PDE(

∂2
t t − �

)
U + U3 + (3f1 + 1)U2 + (

3f 2
1 + 2f1

)
U + (

f 3
1 + f 2

1 − �f1
) = 0,

U(0, x) = 0, ∂tU(0, x) = f2(x).

Note that as U(0, x) = 0, we do not need to simulate our branching particles according to the
distribution g1 but only g2. This was our motivation for introducing the function U .

We directly compute that rp < (1+d
6 )ptp and αp < tpβ1−p . Furthermore, |(3f1 + 1)|∞ =

1, |(3f 2
1 + 2f1)|∞ = 8/3 and |(f 3

1 + f 2
1 − �f1)|∞ < 1. This implies that the assumptions in

Theorem 3.5 are satisfied.
The Monte Carlo approximation of U(t,X0) (and therefore u(t,X0) = U(t,X0)+f1(X0))

can be described by the following meta-algorithm.

5.1.1. Meta-algorithm.

1. Start at t0 = 0 at the position X0 and initialize a weight W := 1.
2. Simulate an exponential r.v. τ with (arbitrarily) constant intensity β (i.e., default time)

and simulate the particle at the new position Xτ = X0 + Zτ at τ . More precisely, we draw
uniform variables (Ui)i=1,2 on [0,1] and set

Z1
τ = τ(2U1 − 1), d = 1,

Z1
τ =

√
1 − U2

1 cos(2πU2)τ, Z2
τ =

√
1 − U2

1 sin(2πU2)τ, d = 2,

Z1
τ = cos(2πU1) cos(2πU2)τ, Z2

τ = sin(2πU1) cos(2πU2)τ,

Z3
τ = sin(2πU2)τ, d = 3.



2368 P. HENRY-LABORDÈRE AND N. TOUZI

FIG. 1. Galton–Watson trees associated to ξ
(1)
t,X0

and ξ
(2)
t,X0

.

At t1 := τ < t , the particle dies and we create 0, 1, 2 or 3 descendants with probability
p := 1/4. We then multiply the weight W by the mass τ and according to the number of
descendants, we update again the weight W by

W :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W × (−p−1)(
f 3

1 + f 2
1 − �f1

)
(Xτ )β

−1eβ(t1−t0) if 0 descendant,

W × (−p−1)(
3f 2

1 + 2f1
)
(Xτ )β

−1eβ(t1−t0) if 1 descendant,

W × (−p−1)
(3f1 + 1)(Xτ )β

−1eβ(t1−t0) if 2 descendants,

W × (−p−1)
β−1eβ(t1−t0) if 3 descendants,

where 0 descendant means that the particle dies.
3. For each descendant, we apply independently Steps 2 and 3 until the default time—

say τn—is greater than the maturity t . In this case, we multiply W by

W := W × eβ(t−τn−1).

4. Finally, for all particles alive at time t (with locations (Xk
t )k∈Kt ), compute

W
∏

k∈Kt

f2
(
Xk

t

)
,

and average the result using M Monte Carlo paths.

5.1.2. Complexity. Our algorithm boils down to the simulation of uniform random vari-
ables in order to generate the Z’s, the exponential r.v. τi and the number of descendants at
each τi . As our Monte Carlo estimator is square-integrable, the rate of convergence is given
by the central limit theorem. In our numerical experiment, we compute the standard deviation
of our Monte Carlo estimator in order to check the convergence. We should emphasize again
that we do need to fine-tune some numerical parameters and no approximations are needed.

We emphasize again that the present method is the first attempt in the literature to address
the problem of numerical approximation of the solution of a general initial value problem.
Therefore, we have no benchmark for the comparison of our numerical results, and we restrict
the following section to the illustration of the efficiency of our approximation method.

5.1.3. Numerics. In Figure 1, we have plotted two examples of Galton–Watson trees
corresponding to the functionals

ξ
(1)
t,X0

:= 1

β2p2 (3f1(Xτ1 + 1)eβτ1eβ(τ3−τ1)e3β(t−τ3)eβ(t−τ1)f2
(
X6

t

)
f2

(
X5

t

)
f2

(
X4

t

)
f2

(
X2

t

)
,

ξ
(2)
t,X0

:= − 1

β3p3 (3f1(Xτ4 + 1)
(
3f 2

1 + 2f1
)(

X6
t

)
× eβτ1eβ(τ4−τ1)eβ(τ6−τ4)f2

(
X7

t

)
f2

(
X5

t

)
f2

(
X3

t

)
f2

(
X2

t

)
× eβ(t−τ6)eβ(t−τ4)e2β(t−τ1).
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FIG. 2. Numerical solutions of the nonlinear Klein–Gordon PDE (5.1) for d = 1,2,3 as a function of x0 (all
the coordinates in R

d are equal to x0) and t = 1.

In the present very simple examples, in order to alleviate the figure, we have used simpler
notation to label the branching particles than those in Section 3.1.

Note that by construction, the result is independent of β when M is large. There is an
optimal choice of β that minimizes the variance of our Monte Carlo estimator. We have
chosen β = 1 in our numerical experiments and M = 222 for which the standard deviation
of our estimator is less than 0.01. Below, we have plotted our numerical result for u(t,X0)

again our analytical solution for d = 1,2,3 as a function of x0 ∈ [0,1.5] (all the coordinates
in R

d are equal to x0) and t = 1, see Figure 2. We obtain a perfect match. In order to see
that our numerical solutions captures perfectly the additional nonlinearity u3 + u2, we have
also shown for completeness the (analytical) solution of the linear wave equation (denoted
“LinearKG”):

(5.2) (∂tt − �)u = 0, u(0, x) = f1(x), ∂tu(0, x) = f2(x).

This also highlights that the nonlinear PDE differs from the linear PDE that is simpler to
solve.

5.2. Yang–Mills PDE: A toy model. Here we consider the semilinear wave equation in
R:

(5.3) ∂ttu − �u + u3 + u∂xu = 0, u(0, x) = f1(x), ∂tu(0, x) = f2(x).

We take the initial conditions

f1(x) = − 1

1 − x
, f2(x) = 1

(1 − x)2 ,

for which the explicit solution is u(t, x) = − 1
1+t−x

. Assumption (2.2) is satisfied for g2 only
for d = 1, this is why we restrict to this case. For d > 1, ∇g2 involves a derivative of delta
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function supported on the lightcone. Notice that the singularity of f1 and f2 are not seen by
our numerical algorithm because of our choice of the initial position x0 and the finite speed
property of the wave equation: The singularity x = 1 is not attainable.

This example can be interpreted as a scalar version of the Yang–Mills hyperbolic system.
Indeed, the Lagrangian associated to the Yang–Mills theory on R

1+d is∫
Fa

μνF
μνa d4x, Fμνa := ημαηνβF a

αβ

with η00 = −1, ηii = 1, i = 1, . . . d and 0 otherwise. Here we use the convention of implicit
summation for repeated indices (a,μ, ν). The curvature is Fa

μν := ∂μAa
ν −∂νA

a
μ −f a

bcA
b
μAc

ν .
The Euler–Lagrange equations (written in the gauge frame ∂μAμ,a = 0) give the system of
hyperbolic PDE

∂μFμνa + f a
bcA

b
μFμνc = 0.

Note that the initial boundary conditions at t = 0, Aa
ν(t = 0, x) and ∂tA

a
ν(t = 0, x) need

to satisfy a constraint condition in order to preserve the gauge condition for all t . Using
the expression for the curvature Fa

μν , we get that Aμa := ημαAa
α is solution of a system of

hyperbolic PDE of the form

�Aνa − f a
bcA

μb∂μAνc + f a
bcA

b
μ

(
∂μAνc − ∂νAμc − f c

deA
μdAνe) = 0

with � := ∂tt − �. This can be schematically written as

�A − f A∂A − f 2A3 = 0

hence our PDE (5.3).
Note that our branching Monte Carlo algorithm can be easily adapted to solve a system of

semilinear PDEs. All we need to do is to index particles with a type (μa) corresponding to
a coordinate of the solution, see an example with the complex Gross–Pitaevskii equation in
Section 5.4.

As in the previous section, we set u(t, x) = f1(x) + U(t, x) for which U satisfies the
nonhomogeneous hyperbolic PDE

∂ttU − �U + U3 + 3f1U
2 + U

d∑
i=1

∂xi
U +

(
3f 2

1 (x) +
d∑
i

∂xi
f1

)
U + f1

d∑
i

∂xi
U

+
(
f 3

1 +
d∑
i

f1∂xi
f1 − �f1

)
= 0, U(0, x) = 0, ∂tu(0, x) = f2(x).

The Monte Carlo approximation of U(t,X0) (and therefore u(t,X0) = U(t,X0) + f1(X0))
can be described by the following meta-algorithm:

1. Start with a type (0) particle at t0 = 0 at position X0, and initialize a weight W := 1;
2. Simulate an exponential r.v. τ with (arbitrarily) constant intensity β , and simulate the

particle at the new position Xτ = X0 + Zτ at τ . More precisely, we draw a uniform variable
(U) on [0,1] and set Zτ = τ(2U − 1);

3. At t1 := τ < t , the particle dies and we create 0, 1, 2 or 3 descendants with probability
p := 1/6; in case of 1 descendant, the type assigned is (0) or (1); similarly, in case of 2 de-
scendants, their types can be both (0), both (1), or one of each type; in case of 3 descendants,
they are all of type (0); we then multiply the weight W by the mass τ (see Remark 2.3) if the



BRANCHING DIFFUSION REPRESENTATION FOR NONLINEAR CAUCHY PROBLEMS 2371

FIG. 3. Numerical solution of the 1-d semilinear wave PDE (5.3) as a function of x0 and t = 1.

type of the particle is (0) and according to the number of descendants and type, we update
also the weight W by

W :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W − p−1(
f 3

1 + f1∂xf1 − �f1
)
(Xτ )β

−1eβ(t1−t0), 0 descendant,

W × −p−1(
3f 2

1 (x) + ∂xf1
)
(Xτ )β

−1eβ(t1−t0), 1 descendant, type (0),

W × −p−1f1(Xτ )β
−1eβ(t1−t0), 1 descendant, type (1),

W × (−3/p)f1(Xτ )β
−1eβ(t1−t0), 2 descendants, type (0),

W × −p−1β−1eβ(t1−t0), 2 descendants, type (0) and (1),

W × −p−1β−1eβ(t1−t0), 3 descendants,

where 0 descendant means that the particle dies. The particle of type (1) is then simulated on
the light cone, meaning that Zτ = τ or Zτ = −τ with probability 1/2. In the last case, the
weight is multiplied by −1.

4. For each particle, we apply independently Steps 2 and 3 until the default time—say
τn—is greater than the maturity t . In this case, we multiply W by

W := W × eβ(t−τn−1).

5. Finally, compute for all particles in Kt

W
∏

k∈Kt

(
f2

(
Xk

t

)
1type=0 − f2

(
Xk

t − �Xk
t

)
1type=1

)
,

where �Xk
t = ±(t − τn−1) with probability 1/2 and average the result using M Monte Carlo

paths.

Below, we have plotted our numerical result for u(t,X0) again our analytical solution
for d = 1 as a function of x0 ∈ [3,5] and t = 1, see Figure 3. We obtain a perfect match.
For completeness, we have also shown the (analytical) solution of the linear wave equation
(denoted “Linearwave”)

(5.4) (∂tt − �)u = 0, u(0, x) = f1(x), ∂tu(0, x) = f2(x)

to show that our numerical solutions capture perfectly the additional nonlinearity u3 + u∂xu.
Note that as Xt ∈ [x0 − t, x0 + t], the singularity of f2 at x = 1 is not relevant.

5.3. Nonlinear beam PDE. We consider the nonlinear beam equation:

(5.5) ∂2
t u + ∂4

xu + u2 + h(t, x) = 0, u(0, x) = tanh(x), ∂tu(0, x) = cosh(x)−2,
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FIG. 4. Numerical solution of nonlinear beam PDE (5.5) for d = 1 as a function of x0 and t = 0.5.

for which the explicit solution is u(t, x) = tanh(x + t) for a suitable choice of h. Here we
follow the same discussion as in Section 5.1. Below, we have plotted our numerical result
for u(t,X0) again our exact solution for d = 1 as a function of x0 ∈ [−0.5,0.5] and t = 0.5,
see Figure 4. Here we obtain a small error due to the fact that the one-dimensional density

|G(z)|∫
R

|G(z)|dz
with G given by (2.13) has been computed on an interval [−10,10] and stored for

computational purpose.

5.4. Gross–Pitaevskii PDE. The Gross–Pitaevskii PDE reads

(5.6) i∂tu(t, x) = −1

2
�u(t, x) + h

∣∣u(t, x)
∣∣2u(t, x), x ∈ R

d

with h a constant. This equation describes a Bose–Einstein condensate at zero or very low
temperature. This has been recently solved using a time-splitting spectral method [4]. This
deterministic method suffers from the curse of dimensionality and requires suitable mesh
size controls. Below, we present our Monte Carlo algorithm. We emphasize again that our
algorithm is partially immune to the dimension, as the error is controlled by the standard cen-
tral limit theorem (with variance possibly dimension-dependent), so that convergence to the
true solution is guaranteed provided that the standard deviation of our Monte Carlo estimate
converges to zero.

We set h := −1 and f1(x) :=
√

d

cosh(
∑d

i=1 xi)
for which the explicit solution is

u(t, x) = e
idt
2

√
d

cosh(
∑d

i=1 xi)
.

PDE (5.6) can be written as a two-dimensional PDE system with polynomial nonlinearity:

i∂tu(t, x) = −1

2
�u + guu∗u,

−i∂tu
∗(t, x) = −1

2
�u∗ + guu∗u∗.

From Example 2.11, Zτ = e
iπ
4
√

τZ ∈ C
d and Z∗

τ = e− iπ
4
√

τZ ∈ C
d with Z ∈ N(0, d).

Meta-algorithm.

1. Start at t0 = 0 at the position X0 with a particle of type 0 and initialize a complex weight
W := 1.
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FIG. 5. Numerical solutions for Re(u(t, x0)) (left) and Im(u(t, x0)) (right) of the Gross–Pitaevskii PDE (5.6)
for d = 1,2,3 as a function of x0 (all the coordinates in R

d are equal to x0) and t = 0.1.

2. Simulate an exponential r.v. τ with (arbitrarily) constant intensity β and simulate the

particle at the new (complex) position Xτ = X0 + e
iπ
4
√

τZ (resp. Xτ = X0 + e− iπ
4
√

τZ) at
τ if the particle is of type 0 (resp. of type 1) with Z a d-dimensional standard (real) Gaussian
variable.

At t1 := τ < t , the particle dies and we create 2 descendants of type 0 and one of type 1
(resp. 2 descendants of type 1 and one of type 0) if the particle is of type 0 (resp. type 1). We
then multiply the weight W by

W :=
{
W × (i)β−1eβ(t1−t0) type 0,

W × (−i)β−1eβ(t1−t0) type 1.

3. For each descendant, we apply independently Steps 2 and 3 until the default time—say
τn—is greater than the maturity t . In this case, we multiply W by

W := W × eβ(t−τn−1).
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4. Finally, for all particles alive at time t (with locations (Xk
t )k∈Kt ), compute

W
∏

k∈Kt :Type =0

f1
(
Xk

t

) ∏
k∈Kt :Type =1

f1
(
Xk

t

)∗
,

and average the result using M Monte Carlo paths.

We have chosen β = 1 in our numerical experiments and M = 222 for which the standard
deviation of our estimator is less than 0.01. Below, we have plotted our numerical result for
Re(u(t, x0)) and Im(u(t, x0)) again our analytical solution for d = 1,2,3 as a function of
x0 ∈ [0,1.5] (all the coordinates in R

d are equal to x0) and t = 0.1, see Figure 5. We obtain
a perfect match. For completeness, we have also shown the (numerical) solution of the linear
Schrödinger equation (i.e., g := 0), denoted “Linear”.
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