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The objective of this paper is to present a model for electricity spot prices and the
corresponding forward contracts, which relies on the underlying market of fuels, thus
avoiding the electricity non-storability restriction. The structural aspect of our model
comes from the fact that the electricity spot prices depend on the dynamics of the
electricity demand at the maturity T , and on the random available capacity of each
production means. Our model explains, in a stylized fact, how the prices of different
fuels together with the demand combine to produce electricity prices. This modeling
methodology allows one to transfer to electricity prices the risk-neutral probabilities of
the market of fuels and under the hypothesis of independence between demand and
outages on one hand, and prices of fuels on the other hand, it provides a regression-type
relation between electricity forward prices and forward prices of fuels. Moreover, the
model produces, by nature, the well-known peaks observed on electricity market data.
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In our model, spikes occur when the producer has to switch from one technology to the
lowest cost available one. Numerical tests performed on a very crude approximation of

the French electricity market using only two fuels (gas and oil) provide an illustration of
the potential interest of this model.

Keywords: Energy markets; electricity prices; fuel prices; risk-neutral probability;
no-arbitrage pricing; forward contract.

1. Introduction

In security markets, the following relationship between spot and forward prices of
a given security holds:

F (t, T ) = Ste
r(T−t), t ≤ T.

As usual, T is the maturity of the forward contract, St is the spot price at t and r is
the interest rate which is assumed constant for simplicity. We also assume no divi-
dends. The no-arbitrage arguments usually used to prove such an equality lie heav-
ily upon the fact that securities are storable at zero cost. For storable commodities
(oil, soybeans, silver. . . ), the former relation has been extended by including storage
costs and an unobservable variable called convenience yield (see Schwartz [22, 23],
and Geman [17, Sec. 3.7]). But, when one considers electricity markets (see Burger
et al. [9] or Geman and Roncoroni [18] for an exhaustive description), such a prop-
erty does not hold anymore: Once purchased, the electricity has to be consumed,
so that the above relation does not make sense. This fact is very well documented
in electricity market literature (see, e.g., Clewlow and Strickland [12]) but has not
prevented the development of many electricity spot price models following the Black
and Scholes framework [4–7, 10, 11, 15] (see Benth [4] for a survey of the literature).

Nevertheless, the non-storability of electricity is not enough to claim that no
relation holds between spot and forward prices and that no arbitrage constraint
affects the term structure of electricity prices, except the constraints coming from
overlapping forward contracts. Indeed, one could argue that even if electricity can-
not be stored, the fuels that are used to produce electricity can. To see that this
observation leads to constraints on the term structure of electricity prices, let us
consider a fictitious economy in which power is produced by a single technology —
coal thermal units with the same degree of efficiency — and that the electricity
spot market is competitive. Then, the electricity price should satisfy the following
relation:

Fe(t, T ) = qcFc(t, T ), t ≤ T,

where the subscript e stands for electricity, c stands for coal, and qc denotes the
heat rate. If there is t < T such that Fe(t, T ) > qcFc(t, T ), then one can at time t:

• Sell a forward on electricity at Fe(t, T ) and buy qc coal forward at Fc(t, T )
and, at time T :

• Sell qc coal at Sc(T ), buy electricity at Se(T ) = qcSc(T ).
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One can check that this strategy is indeed an arbitrage. Moreover, the opposite
relation can be obtained in a similar way. Here, in this fictitious economy, the
important feature is not that electricity can be produced by coal, but that the
relation between spot prices of coal and electricity is known. Furthermore, it extends
directly to forward prices.

In real economies, similar no-arbitrage relations between electricity and fuel
prices cannot be identified so easily. The reason for this is that electricity can be
produced out of many technologies with many different efficiency levels: Coal plants
more or less ancient, fuel plants, nuclear plants, hydro, solar and windfarms, and
so on. Generally, the electricity spot price is considered to be the day-ahead hourly
market price. At that time horizon, any producer will perform an ordering of its
production means on the basis of their production costs. This process refers to a
unit commitment problem and one can find a huge literature on this optimization
problem in power systems literature (see, e.g., Batut and Renaud [3] and Dentcheva
et al. [14]). Depending on the market prices of fuels and on the state of the power sys-
tem (demand, outages, inflows, wind and so forth), this ordering may vary through
time. Hence, when the forward contract is being signed, the ordering at the contract
maturity is not known.

The objective of this paper is to build a model for electricity spot prices and
the corresponding forward contracts, which relies on the underlying markets of
fuels, thus avoiding the non-storability restriction. The structural aspect of our
model comes from the fact that the electricity spot prices depend on the dynam-
ics of the electricity demand at the maturity T , and on the random available
capacity of each production means. Our model allows one to explain, in a styl-
ized fact, how the prices of different fuels together with the demand combine
to produce electricity prices. This modeling methodology allows us to transfer
to electricity prices the risk-neutral probabilities of the market of fuels, under a
certain independence hypothesis (see Assumption 2.2). Moreover, the model pro-
duces, by nature, the well-known peaks observed on electricity market data. In
our model, spikes occur when the producer has to switch from one technology
to the lowest cost available one. Moreover, the dynamics of the demand explain
this switching process. Then, one easily understands that the spikes result from
a high level of the demand which forces the producer to use a more expensive
technology.

Our model is close to Barlow’s [2], since the electricity spot price is defined
as an equilibrium between demand and production. But, in our model, the stack
curve is described by the different available capacities and not a single parametrized
curve. Moreover, this model shares some ideas with Fleten and Lemming forward
curve reconstruction method [16]. But, whereas the authors methodology relies on
an external structural model provided by the SINTEF, our methodology does not
require such inputs.

The article is structured in the following way. Section 2 is devoted to the descrip-
tion of our model. Section 3 describes the relation between future prices of electricity
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and fuels. Section 4 presents the model in the case of only two fuels. Section 5
presents numerical results showing the potential of the model on the two technolo-
gies case of the preceeding section. Finally, Sec. 6 provides some future research
perspectives.

2. The Model

Let (Ω,F , P) be a probability space sufficiently rich to support all the processes
we will introduce throughout this paper. Let (W 0, W ) be an (n + 1)-dimensional
standard Wiener process with W = (W 1, . . . , Wn), n ≥ 1. In the sequel, we will
distinguish between the filtration F0 = (F0

t ) generated by W 0 and the filtration
FW = (FW

t ) generated by the n-dimensional Wiener process W = (W 1, . . . , Wn).

Commodities market. We consider a market where agents can trade n ≥ 1
commodities and purchase electricity. We consider only commodities that can be
used to produce electricity. With a slight abuse of language, we will always identify
in this paper any given production technology with the corresponding commodity
(also called fuel) used. For i = 1, . . . , n, Si

t denotes the price of the quantity of
commodity i necessary to produce 1 KWh of electricity and is assumed to follow
the following SDE:

dSi
t = Si

t

µi
tdt +

n∑
j=1

σij
t dW j

t

 , t ≥ 0, (2.1)

where µi and σij are FW -adapted processes suitably integrable (see Assump-
tion 2.1).

We also assume that the market contains a riskless asset with price process

S0
t = e

R t
0 rudu, t ≥ 0,

where the instantaneous interest rate (rt)t≥0 is an FW -adapted non-negative process
such that

∫ t

0 rudu is finite a.s. for every t ≥ 0. As a consequence, (rt) is independent
of the Brownian motion W 0. We will frequently use the notation X̃t := Xt/S0

t for
any process (Xt). We make the following standard assumption (see, e.g. Karatzas
[20, Sec. 5.6]).

Assumption 2.1. The volatility matrix σt = (σij
t )1≤i,j≤n is invertible and both

matrices σ and σ−1 are bounded uniformly on [0, T ∗]×Ω. Finally, let θ denote the
market price of risk, i.e.

θt := σ−1
t [µt − rt1n], t ≥ 0,

where 1n is the n-dimensional vector with all unit entries. We assume that such a
process θ satisfies the so-called Novikov condition

E

[
exp

{
1
2

∫ T∗

0

‖θt‖2dt

}]
< ∞ a.s.
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Remark 2.1. Imposing the Novikov condition on the commodities market price of
risk ensures that the minimal martingale measure we will use for pricing in Sec. 3
is well defined. The reader is referred to Sec. 5.6 in Karatzas’s book [20].

Market demand for electricity. We model the electricity market demand by a
real-valued continuous process D = (Dt)t≥0 adapted to the filtration F0 = (F0

t )
generated by the Brownian motion W 0. Observe that, under our assumptions, the
processes Si (i = 0, . . . , n) are independent under P of the demand process D.
To be more precise, the process D models the whole electricity demand of a given
geographical area (e.g. U.K., Switzerland, Italy and so on). In this respect, it must be
strictly positive. Nevertheless, in Sec. 5, where the empirical analysis is performed,
it is more convenient to use a residual demand to reduce the number of possible
technologies. A residual demand is the whole demand less the production of some
generation assets (e.g. nuclear power, run of the river hydrolic plants, wind farms).
It is clear that the residual demand can be negative.

Electricity spot prices. We denote by Pt the electricity spot price at time t. At
any time t, the electricity producer can choose among the n commodities which is the
most convenient to produce electricity at that particular moment and the electricity
spot price will be proportional to the spot price of the chosen commodity. We recall
that the proportionality factor is already included in the definition of each Si so
that, if at time t the producer chooses commodity i then Pt = Si

t, 1 ≤ i ≤ n.
How does the electricity producer choose the most convenient commodity to use?

For each i = 1, . . . , n, we denote ∆i
t > 0 the given capacity of the ith technology for

electricity production at time t. (∆i
t) is a stochastic process defined on (Ω,F , P) and

assumed independent of (W 0, W ). We denote F∆ = (F∆
t ) its filtration. Moreover,

we assume that each ∆i
t takes values in [mi, Mi] where 0 ≤ mi < Mi are the

minimal and the maximal capacity of ith technology, both values being known to the
producer. In reality, the producer has to fill capacity constraints, so he faces demand
variability, security conditions and failures risk. Thus, if one wants to consider
capacity management and partial technology failures in the model, the production
capacity has to be modelled as a stochastic process.

For every given (t, ω), the producer performs an ordering of the commodities
from the cheapest to the most expensive. The ordered prices of commodities are
denoted by

S
(1)
t (ω) ≤ · · · ≤ S

(n)
t (ω).

This order induces a permutation over the index set {1, . . . , n} denoted by πt =
{πt(1), . . . , πt(n)}. Notice that πt defined an FW -adapted stochastic process, and
we follow the usual probabilistic notation omitting its dependence on ω.

Given a commodities order πt at time t, we set

Iπt

k (t) :=

[
k−1∑
i=1

∆πt(i)
t ,

k∑
i=1

∆πt(i)
t

)
, 1 ≤ k ≤ n,

with the convention
∑0

i=1 ≡ 0.
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For the sake of simplicity, we will assume from now on that the electricity market
is competitive and we will not take into account the short term constraints on
generation assets as well as start-up costs. Hence, the electricity spot price equals
the cost of the last production unit used in the stack curve (marginal unit). Thus,
if the market demand at time t for electricity Dt belongs to the interval Iπt

k (t), the
last unit of electricity is produced by means of technology πt(k), when available.
Otherwise, it is produced with the next one with respect to the time-t order πt.
This translates into the following formula:

Pt =
n∑

i=1

S
(i)
t 1{Dt∈I

πt
i (t)}, t ≥ 0. (2.2)

Let T ∗ > 0 be a given finite horizon, in the sequel we will work on the finite time
interval [0, T ∗]. Typically, all maturities and delivery dates of forward contracts we
will consider in the sequel, will always belong to [0, T ∗].

Assumption 2.2. Let Ft = F0
t ∨ FW

t ∨ F∆
t , t ∈ [0, T ∗], be the market filtration.

There exists an equivalent probability measure Q ∼ P defined on FT∗ , such that
the discounted prices of commodities S̃ = (S̃1, . . . , S̃n) (i.e. without electricity!) are
local Q-martingales with respect to (Ft).

This hypothesis is equivalent to assuming absence of arbitrage in the market of
fuels (see [13]). Notice that we are not making this assumption on the electricity
market, as announced in the introduction. Thanks to relation (2.2), any electricity
derivative can be viewed as a basket option on fuels. Hence, Assumption 2.2 allows
us to properly apply the usual risk neutral machinery to price electricity derivatives.

The market of commodities and electricity is clearly incomplete, due to the pres-
ence of additional unhedgeable randomness source W 0 driving electricity demand
D. Thus, in order to price derivatives on electricity we have to choose an equivalent
martingale measure among infinitely many to use as a pricing measure. One possi-
ble choice is the following: Let Q = Qmin denote the minimal martingale measure
introduced by Föllmer and Schweizer [19], i.e.

dQ

dP
= exp

{
−
∫ T∗

0

θu · dWu − 1
2

∫ T∗

0

‖θu‖2du

}
(2.3)

where we recall that θt = σ−1
t (µt − rt1n) is the market price of risk for the com-

modities market (S1, . . . , Sn). In the previous formula as well as in the sequel of
this paper x · y denotes the scalar product between two vectors x, y.

Notice that, due to Assumption 2.1, such a measure is well defined, i.e. (2.3)
defines a probability measure on FT∗ , which is equivalent to the objective measure P.

Remark 2.2. Furthermore, it can be easily checked that under Q the laws of
processes W 0 and ∆i (1 ≤ i ≤ n) are the same as under the objective probability P

and the independence between the filtrations F0, F∆ and FW is preserved under
Q. This property will be very useful in the proof of Proposition 3.1.
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Under such a probability Q the prices of commodities Si, 1 ≤ i ≤ n, satisfy the
SDEs

dSi
t = Si

t

rtdt +
d∑

j=1

σi,j
t dW Q,j

t

 , Si
0 > 0,

whose solutions are given by

Si
t = Si

0 exp
{∫ t

0

(
ru − 1

2
‖σi

u‖2

)
du +

∫ t

0

σi
u · dW Q

u

}
, t ≥ 0,

where W Q = (W Q,1, . . . , W Q,d) is an n-dimensional Brownian motion under Q, and
σi = (σi,1, . . . , σi,n).

The measure Q will be used as pricing measure in the rest of the paper. We
recall that in the literature, such a measure Q is related to locally risk minimization
procedure, in the sense that, given a contingent claim H with some maturity T > 0,
EQ[H̃ ] is the minimum price allowing an agent to approximately (and locally in L2)
hedge the claim (see Schweizer’s survey [24] for further details).

Remark 2.3. Notice that including storage costs ci and convenience yields δi

changes only the drift coefficients in commodities dynamics from rt to rt + ci − δi.

3. Electricity Forward Prices

We now consider a so-called forward contract on electricity with maturity T1 > 0
and delivery period [T1, T2] for T1 < T2 ≤ T ∗, i.e. a contract defined by the payoff

(T2 − T1)−1

∫ T2

T1

PT dT (3.1)

at the maturity T1, whose time-t price Ft(T1, T2) is to be paid at T1.
The following observation is crucial: According to formula (2.2), the payoff (3.1)

can be expressed in terms of prices of fuels, so that in our model the forward
contract on electricity can be viewed as a forward contract on fuels and since the
classical no-arbitrage theory makes sense on the market of fuels, it can also be
used to price electricity derivatives such as (3.1). In other terms, our production-
based structural model relating electricity and fuels allows us to transfer the whole
no-arbitrage classical approach from fuels to electricity market, so overcoming the
non-storability issue.

By Assumption 2.2 and classical result on forward pricing (see [8, Chap. 26]), it
immediately follows that:

Ft(T1, T2) =
1

T2 − T1

∫ T2

T1

E
Q
t [e−

R T
t

ruduPT ]

E
Q
t [e−

R
T
t

rudu]
dT, (3.2)

E
Q
t denoting the conditional Q-expectation given market’s filtration Ft, for t ≥ 0.
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Let T ∈ [T1, T2]. It is convenient for the next calculations to introduce the
forward measure QT defined by the density

dQT

dQ
:=

e−
R T

t
rudu

Bt(T )
on FW

T ,

where

Bt(T ) := E
Q
t [e−

R
T
t

rudu]

is the time-t price of a zero-coupon bond with maturity T . Then:

Ft(T1, T2) =
1

T2 − T1

∫ T2

T1

EQT [PT |Ft]dT (3.3)

=
n∑

i=1

1
T2 − T1

∫ T2

T1

EQT [S(i)
T 1{DT ∈I

πT
i (T )}|Ft]dT. (3.4)

We denote by Πn the set of all permutations over the index set {1, . . . , n}. Let
π ∈ Πn be a given non-random permutation. Under the assumption Si

t ∈ L1(Qt)
for any t ≥ 0 and 1 ≤ i ≤ n, we can define the following changes of probability
on FW

T :

dQi
T

dQT
=

Si
T

EQT [Si
T ]

, 1 ≤ i ≤ n, T ≤ T ∗.

Proposition 3.1. If our model assumptions hold and if Si
T ∈ L1(QT ) for all T ∈

[T1, T2] and 1 ≤ i ≤ n, we have

Ft(T1, T2) =
1

T2 − T1

n∑
i=1

∑
π∈Πn

×
∫ T2

T1

F
π(i)
t (T )Qπ(i)

T [πT = π|FW
t ]QT [DT ∈ Iπ

i (T )|F0,∆
t ]dT, (3.5)

for t ∈ [0, T1], where F i
t (T ) denotes the price at time t of forward contract on the

ith commodity with maturity T and F0,∆
t is the natural filtration generated by both

W 0 and ∆.

Proof. Notice first that

Ft(T1, T2) =
1

T2 − T1

∫ T2

T1

Ft(T )dT,

where Ft(T ) = EQT [PT |Ft] can be interpreted as the t-price of a forward contract
with maturity T and instantaneous delivery at maturity. By the definition of elec-
tricity forward price Ft(T ), we have

Ft(T ) =
n∑

i=1

EQT [S(i)
T 1{DT ∈I

πT
i (T )}|Ft]

=
n∑

i=1

∑
π∈Πn

EQT [Sπ(i)
T 1{DT ∈Iπ

i (T )}1{πT =π}|Ft].
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If we use the mutual (conditional) independence between W , W 0 and ∆ as in
Remark 2.2, we get

Ft(T ) =
n∑

i=1

∑
π∈Πn

EQT [Sπ(i)
T 1{πT =π}|FW

t ]QT [DT ∈ Iπ
i (T )|F0,∆

t ].

Using the change of probability dQ
π(i)
T /dQT yields

EQT [Sπ(i)
T 1{πT =π}|FW

t ] = F
π(i)
t (T )Qπ(i)

T [πT = π|FW
t ],

so giving, after integrating between T1 and T2 and dividing by T2−T1, the announced
formula.

The main formula (3.5) provides a formal expression to the current intuition
of electricity market players that the forward prices are expected to be equal to
a weighted average of forward prices of fuels. Such weights are determined by the
crossing of the expected demand with the expected stack curve of the technologies.
We will see in Sec. 5 that this model is able to explain the spikes of electricity.
Nonetheless, we can already observe that formula (3.5) reproduces the stylized fact
that the paths of electricity forward prices are much smoother than those of spot
prices. This is due to the averaging effect of the conditional expectation on the
indicator functions appearing in formula (2.2), even in the degenerate case when
the delivery period reduces to a singleton.

In the next section, we will perform some explicit computations of the condi-
tional probabilities involved in the previous formula for electricity forward prices,
under more specific assumptions on the dynamics of prices and demand.

4. A Model with Two Technologies and Constant Coefficients

In order to push further the explicit calculations, we assume now that the volatilities
of fuels are constant, i.e. σi,j

t = σi,j for some constant numbers σi,j > 0, 1 ≤ i, j ≤ n,
and that the interest rate is constant rt = r > 0. Under the latter simplification,
the forward-neutral measures QT all coincide with the minimal martingale measure
Q = Qmin. Similar closed-form expressions can be obtained by assuming a Gaussian
Heath-Jarrow-Morton model for the yield curve.

Let us assume from now on that only two technologies are available, i.e. n = 2.

Dynamics of capacity processes ∆i. In order to get explicit formulae for forward
prices we have to specify the dynamics of each capacity process ∆i. We assume
that the probability space (Ω,F , P) supports four (independent) standard Poisson
processes N1,u

t , N1,d
t , N2,u

t and N2,d
t with constant intensities λu

1 , λd
1, λ

u
2 , λd

2 > 0 and
we assume that each ∆i follows

d∆i
t = (mi − Mi)1(∆i

t=Mi)dN i,d
t + (Mi − mi)1(∆i

t=mi)dN i,u
t , ∆i

0 = Mi (4.1)

Remark 4.1. Basically we are assuming that each capacity i can take only two
values Mi > mi and it switches from mi to Mi (resp. from Mi to mi) when the
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process N i,u (resp. N i,d) jumps. Each capacity evolves independently of each other.
At t = 0 both technologies have maximal capacity Mi. The fact that the intensities
of upside and downside jumps of ∆i are not necessarily equal introduces a skewness
in the probability of being at capacity Mi or mi.

Let T be any time in the delivery period [T1, T2]. First observe that, since ∆ is
independent of W 0 and its law is invariant under the probability change from P to
Q = QT as in Remark 2.2, we have QT [∆π(1)

T = x1|F0,∆
t ] = P[∆π(1)

T = x1|∆t] as
well as

QT [∆π(1)
T = x1, ∆

π(2)
T = x2|F0,∆

t ] = P[∆π(1)
T = x1, ∆

π(2)
T = x2|∆t]

for x1 ∈ {m1, M1} and x2 ∈ {m2, M2}.
As a consequence of the previous assumption on the dynamics of capacities ∆i,

the conditional probabilities QT [DT ∈ Iπ
k (T )|F0,∆

t ] appearing in the main formula
(3.5) can be decomposed as follows

QT [DT ∈ Iπ
1 (T )|F0,∆

t ] = QT [DT ≤ ∆π(1)
T |F0,∆

t ]

= P[∆π(1)
T = m1|F∆

t ]QT [DT ≤ m1|F0
t ]

+ P[∆π(1)
T = M1|F∆

t ]QT [DT ≤ M1|F0
t ]

A similar decomposition for QT [DT ∈ Iπ
2 (T )|F0,∆

t ] holds too. It is clear now that
the building blocks appearing in such formulae are the probabilities P[∆k

T = x|∆k
t ]

and QT [DT ≤ y|F0
t ].

It remains to compute P[∆k
T = x|F∆

t ] for k = 1, 2 and x = Mk, mk. As an
example, we will compute P[∆k

T = mk|∆0 = Mk]. For the sake of simplicity, we will
drop for a while the index k from the notation, that is we will write ∆T for ∆k

T , M

for Mk, and so on.
Let τd be the last jump time of the process Nd

t before T , i.e. τd = sup{t ∈
[0, T ] : ∆Nd

t = 1} with the convention that sup ∅ = 0. Notice that on the event
{τd > 0} we have {∆T = m} = {Nu

τd = Nu
T }. On the other hand, on the set

{τd = 0} the process ∆ has no jump downwards over the time interval [0, T ], so
that P(∆T = m, τd = 0|∆0 = M) = 0. Using the independence between Nd and
Nu and the stationarity of Nu, one has

P[∆T = m|∆0 = M ] = E[P(Nu
τd = Nu

T |τd)1τd>0]

= E[P(Nu
T−τd = 0|T − τd)1T−τd<T ]

= E[e−λu(T−τd)1T−τd<T ].

By the time-reversal property of the standard Poisson process,1 the random variable
T − τd has the same law as T d

1 ∧ T , where T d
1 is the first jump time of (Nd

t )t≥0. We

1The process (Nd
T − Nd

(T−t)−)t≥0 has the same law as (Nd
t )t≥0.
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recall that T1 has exponential law with parameter λd. Thus we have

P[∆T = m|∆0 = M ] = E[e−λu(T d
1 ∧T )1T d

1 <T ] = E[e−λuT d
1 1T d

1 <T ]

=
λd

λd + λu
(1 − e−(λd+λu)T )

The general result follows by stationarity:

P[∆k
T = mk|∆k

t = Mk] =
λd

k

λd
k + λu

k

(1 − e−(λd
k+λu

k )(T−t)), k = 1, 2. (4.2)

Using the same arguments, one can obtain similar expressions for the remaining
probabilities P[∆k

T = x|F∆
t ] for k = 1, 2 and x = Mk, mk.

Dynamics of the electricity demand D. We also assume that the residual
demand is defined by a mean-reverting Ornstein-Uhlenbeck process. It is well-known
that this process has a positive probability to be negative. Nonetheless, in the
empirical study, it will be applied to a residual demand, which can be negative
(see Sec. 2).

dDt = a(b(t) − Dt)dt + δdW 0
t , D0 > 0, (4.3)

for given strictly positive constants a and δ, and a long-term mean b(t) which can
vary with time, to incorporate annual seasonal effects as in [2]:

b(t) = b0 + b1 cos(2πt − b2) − 2π

a
sin(2πt − b2),

where b0, b1 and b2 are (positive) constants. Then we set b̃(t) = b0 +b1 cos(2πt−b2).
In this case, there are explicit formulae for Q[DT ≤ x1|F0

t ] and Q[x1 < DT ≤
x1 + x2|F0

t ], for any 0 ≤ t ≤ T and x1, x2 ∈ R, given by

Q[DT ≤ x1|F0
t ] = Φ

x1 − b̃(T ) − (Dt − b̃(t))e−a(T−t)

δ
√

1
2a (1 − e−2a(T−t))

 (4.4)

Q[x1 < DT ≤ x1 + x2|F0
t ] = Φ

(x1 + x2) − b̃(T ) − (Dt − b̃(t))e−a(T−t)

δ
√

1
2a (1 − e−2a(T−t))


−Φ

x1 − b̃(T ) − (Dt − b̃(t))e−a(T−t)

δ
√

1
2a (1 − e−2a(T−t))

 , (4.5)

where Φ denotes the cumulative distribution function of an N (0, 1) random variable.
Let T ∈ [T1, T2]. The next step consists in computing the law of the cou-

ple (S1
T , S2

T ) under each probability Q
π(i)
T for any permutation π ∈ Π2 and any

i = 1, 2, in order to get an explicit expression for the conditional probability
Q

π(i)
T [πT = π|FW

t ] = Qπ(i)[πT = π|FW
t ] appearing in formula (3.5). It can

be easily done in this setting by using multidimensional Girsanov’s theorem
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(see, e.g. Karatzas and Shreve’s book [21, Theorem 5.1 in Chap. 3]). Indeed, if
we denote σi the 2-dimensional vector (σi,1, σi,2) and we set

Zi
t :=

dQi
T

dQ
|FW

t
,

we get that

Zi
t = exp

{
σi · W Q

t − 1
2
‖σi‖2t

}
, t ∈ [0, T ].

A simple application of Girsanov’s theorem provides the following Qi
T -dynamics

of each price process Sj for j = 1, 2:

Sj
t = Sj

0 exp
{(

r − 1
2
‖σj‖2 + σj · σi

)
t + σj · Ŵt

}
, t ∈ [0, T ],

where Ŵ = (Ŵ 1, Ŵ 2) is a 2-dimensional Brownian motion under Qi
T . The following

result follows from direct calculation.

Proposition 4.1. Let T2 > T1 > 0. Under our model assumptions, the price at
time t of an electricity forward contract with maturity T1 and delivery period [T1, T2],
denoted by Ft(T1, T2), is given by the following formula:

Ft(T1, T2) =
∑

π∈Π2

1
T2 − T1

∫ T2

T1

(A1(t, T ) + A2(t, T ))dT, (4.6)

where

A1(t, T ) :=
∑

{x1=mπ(1),Mπ(1)}
F

π(1)
t (T )Qπ(1)

T [πT = π|FW
t ]P[∆π(1)

T = x1|∆t]

×Q[DT ≤ x1|F0
t ]

A2(t, T ) :=
∑

{x1=mπ(1),Mπ(1);

x2=mπ(2),Mπ(2)}

F
π(2)
t (T )Qπ(2)

T [πT = π|FW
t ]P[∆π(1)

T = x1, ∆
π(2)
T = x2|∆t]

×Q[x1 < DT ≤ x1 + x2|F0
t ]

where, for any π ∈ Π2 and i = 1, 2, the conditional probabilities Q[DT ≤ x1|F0
t ]

and Q[x1 < DT ≤ x1 + x2|F0
t ] are given by (4.4) and (4.5), and

Q
π(i)
T [πT = π|FW

t ] = 1 − Φ(m(t)/γ(t)),

where m(t) and γ(t) are defined as follows:

m(t) = ln
S

π(1)
t

S
π(2)
t

−
(

1
2
‖σπ(1) − σπ(2)‖2 − (σπ(1) − σπ(2)) · σπ(i)

)
(T − t)

γ2(t) = ‖σπ(1) − σπ(2)‖2(T − t).



November 25, 2009 9:17 WSPC-104-IJTAF SPI-J071 00552

A Structural Risk-Neutral Model of Electricity Prices 937

Proof. It suffices to combine the different formulae obtained in this section and
observe that for any π ∈ Π2 and i = 1, 2 we have

Q
π(i)
T [πT = π|F0

t ] = Q
π(i)
T [Sπ(1)

T ≤ S
π(2)
T |FW

T ] = Q
π(i)
T [X ≤ 0|FW

t ]

where X := ln(Sπ(1)
T /S

π(2)
T ). Under Q

π(i)
T ,

X = ln
S

π(1)
t

S
π(2)
t

+
2∑

j=1

(σπ(1),j − σπ(2),j)(Ŵ j
T − Ŵ j

t )

−
2∑

j=1

(
1
2
((σπ(1),j)2 − (σπ(2),j)2) − (σπ(1),j − σπ(2),j)σπ(i),j

)
(T − t).

Thus, conditioned to FW
t , the random variable X is normal with mean m(t) and

variance γ2(t), where

m(t) = ln
S

π(1)
t

S
π(2)
t

−
2∑

j=1

(
1
2
((σπ(1),j)2 − (σπ(2),j)2) − (σπ(1),j − σπ(2),j)σπ(i),j

)
(T −t)

and

γ2(t) =
2∑

j=1

(σπ(1),j − σπ(2),j)2(T − t).

Notice that only the mean m(t) depends on π(i). Finally, we have

Q
π(i)
T [πT = π|FW

t ] = Q
π(i)
T [X ≤ 0|FW

t ]

= Q
π(i)
T [(X − m(t))/γ(t) ≤ −m(t)/γ(t)|FW

t ]

= Φ(−m(t)/γ(t)) = 1 − Φ(m(t)/γ(t)),

where Φ is the c.d.f. of a standard gaussian random variable. The proof is
complete.

5. Numerical Results

To provide a coherent and tractable framework for numerical examples, we follow
the two fuels model of the previous section and we push further the simplification.

Data choice. We test the model on the French deregulated power market. The
data cover the period going from January 1st, 2007 to December 31st, 2008. For
the demand process (Dt), we used the data provided by the French TSO, RTE,
on its web site.2 The hourly demand can be retrieved. The two technologies we
have chosen are natural gas plants and fuel combustion turbines. They are known
to frequently determine the spot price during peaking hours, since they are the
most expensive ones. Moreover, a decomposition of the production is provided by

2RTE: www.rte-france.fr.
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RTE for each type of generation asset (nuclear, hydrolic plants, coal and gas, fuels,
peak). Hence, it allowed us to deduce the residual demand addressed to gas and
fuels technologies by subtracting the nuclear and hydraulic production from the
demand. Since these two technologies are setting the price during peaking hours,
we focus our analysis on one particular hour of the day. We have chosen the 12th
hour, which is usualy the first peaking hour of the day (the next one being 19th
hour). The electricity spot and future prices are provided by Powernext. The CO2

prices are provided by PointCarbon data. For fuel and gas prices, we used Platt’s
data. Gas prices are quoted in GBP and fuel prices in USD. We used the daily
exchange rate to convert GBP into EUR.

Reconstruction of S1
t and S2

t . In our model, we need to rebuild the spot prices of
the two technologies S1

t and S2
t . To tackle the problem of aggregating the numerous

gas and fuel power plants into only two technologies, we used the information pro-
vided by the French Ministry of Industry on electricity production costs.3 It gives
an average heat rate for each techology. We also use an average emission rate for
CO2 emissions of each technology. Furthermore, for fuel power plants production
costs, one need to take into account the transportation cost from ARA zone to the
location of the plants. We use an average fixed cost. Thus, we obtain the following
expressions for the prices of the two technologies:{

S1
t = 101.08 · Sg

t + 0.49 · Sco2
t

S2
t = 0.38 · Sf

t + 0.88 · Sco2
t + 13.44

where Sg, Sf and Sco2 denote respectively gas (AC/therm), fuel and carbon emission
prices (AC/ton).

Remark 5.1. One can observe that the ordering between the two technologies
never changes on historical data. Fuel combustion turbines are known to be more
expensive than gas plants. If the prices of technologies follow the dynamics given by
(2.1), the probability to have different orders π(t) ∈ Π can be positive. Nevertheless,
for a reasonable choice of parameters, this probability can be made sufficiently small.
Hence, we make the rough approximation that P(S1

t < S2
t ) = 1 for all t.

Estimation of electricity demand. The demand process given by expression
(4.3) is estimated via the Maximum Likelihood Principle. Recall that the demand
process is given by:

Dt = b̃(t) + Xt = b0 + b1 cos(2πt − b2) + Xt

where Xt is an Ornstein-Uhlenbeck process with a known Likelihood expression
(see [1, Sec. 5]). For a discrete sample (Dt1 , . . . , Dtn) observed at fixed times with

3Ministère de l’Industrie et des Finances, www.energie.minefi.gouv.fr/energie/electric/
f1e elec.htm, see “Les coûts de référence de la production électrique”.
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Fig. 1. Midday daily demand (day-ahead peakload demand from 01/01/2007 to 31/12/2008, RTE)
and simulation with fitted parameters. In black line, we showed the long trend b̃(t).

Table 1. Parameters estimation for
the demand process.

b̂0 b̂1 b̂2 â δ̂

4814 905 0 87.55 17256

a constant time step (ti − ti−1) = ∆t, i = 1 · · ·n, an expression of the Likelihood is

L(b0, b1, b2, a, δ, Dt1 , . . . , Dtn)

=
1

(
√

2πv)n
exp

(
− 1

2v

n−1∑
i=1

((Dti+1 − b̃(ti+1)) − ea∆t(Dti − b̃(ti)))2
)

,

where v = δ2 e2a∆t−1
2a and b̃(t) is the same as above. We maximize numerically this

expression to obtain an estimation for the set of parameters. We then test the
hypothesis that each parameter is null and finally obtain the set given in Table 1.
The parameter b̂2 is not significantly different from 0 with threshold 99%, thus it is
taken to be zero.

Estimation of capacity process. For two technologies, the implementation of
formula (2.2) is very simple. We define the following variables:

R1 = min(D+
t , ∆1

t ), R2 = min((Dt − ∆1
t )

+, ∆2
t ),

where here Dt is the sum of residual demands for the two technologies. The electric-
ity spot price is defined by the following rule: If R2 is positive, then we take P = S2,
and if it is zero, P = S1. However, in our electricity spot market model, applying
this rule to estimate the capacity processes ∆1 and ∆2 would lead to claiming that
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only the second technology (the most expensive one) is being used. Hence, to take
into account all the complexity of the short-term bidding process involving produc-
tion constraints (start-up cost, ramp constraints, minimal runtime...), we introduce
a threshold ∆̄1 such that the price is given by the second technology althought
R1 = ∆̄1 < ∆1.

Noting that the inequality on R1 is equivalent to R2 > (∆1− ∆̄1), the threshold
∆̄1 is obtained by solving the following program:

min
(∆1−∆̄1)

n∑
i=1

R(Pti − S1
ti
1{R2

ti
≤(∆1−∆̄1)} − S2

ti
1{R2

ti
>(∆1−∆̄1)}).

The function R is a risk criterion: we tested two cases, the L1 and the L2 norms.
The absolute error (L1) showed a global minimum and the quadratic error (L2)
showed a local minimum on a reasonable interval (very high price peaks disturb
the convergence). Thus, we use the L1 criterion to determine that the intermediate
parameter ∆1 − ∆̄1 equals 610 MW. Eventually, we have new values for (Dt −
∆1

t )1{Dt>∆1
t} and since we know exactly when Pt = Si

t, for i = 1, 2, the estimation
of the model on historical data is straightforward (see Fig. 2).

Finally, we can estimate parameters for the capacity process ∆1
t as Dt = R1

t +R2
t

is available. Theoretically, capacity thresholds mi and Mi are structural and are
known to producers. But, since they vary over time due to maintenance scheduling
and weather conditions, we estimate their constant counterparts. Moreover, we had
to deal with the fact that in our model ∆1 does take two values. Thus, we proceed
in two steps. First, we filter the data to define a ∆1

t taking only two values. Second,
we estimate the free parameters λu

1 and λd
1 using that filtered time series.

The capacity process ∆1 is partially hidden, since it is observed only if
Dt > ∆1

t . Thus, we suppose that we observe data at discrete times ti, and
we calibrate the capacity levels by minimizing the quadratic error between the

Fig. 2. Midday daily prices and model fitted on historical data (POWERNEXT r©day-ahead peak-
load prices from 01/01/2007 to 31/12/2008).
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series (∆1
ti
1{Dti

>∆1
ti
})i=1...n and two constant values, under the following struc-

tural constraints:

M1 ≥ sup
t∈[0,T ],Dt≤∆1

t

Dt; m1 ≥ inf
t∈[0,T ],Dt>∆1

t

Dt.

Solving this calibration problem, we deduce the transformed serie ∆̃1 which takes
two values:

∆̃ti = m11|∆ti
−m1|<|∆ti

−M1| + M11|∆ti
−m1|≥|∆ti

−M1|, i = 1 · · ·n.

On that series, we estimate λu
1 and λd

1 by observing the series (∆̃1
ti
1{Dti

>∆̃1
ti
})i=1...n.

We denote (tk(i))i=1...n the subgrid of the discrete times where tk(i) is the last time
before ti when we observe (∆1

ti
)i=1...n. Then, by the Bayes rule and the independence

between Dt and ∆̃1
t , the probability Q[∆̃1

ti
= x|Dti > ∆̃1

ti
, ∆̃1

tk(i)
], for i = 1 . . . n, is

given by:

Qi[x] := Q[∆̃1
ti

= x|Dti > ∆̃ti , ∆̃
1
tk(i)

] =
P[∆̃1

ti
= x|∆̃1

tk(i)
]Q[Dti > x]

Q[Dti > ∆̃1
ti
|∆̃1

tk(i)
]

.

If follows that:

Qi[x] ≡
P[∆̃1

ti
= x|∆̃1

tk(i)
]Q[Dti > x]

P[∆̃1
ti

= M1|∆̃1
tk(i)

]Q[Dti > M1] + P[∆̃1
ti

= m1|∆̃1
tk(i)

]Q[Dti > m1]
.

An expression of the Likelihood for the given sample is:

L(λu
1 , λd

1, ∆̃t1 , . . . , ∆̃tn , Dt1 , . . . , Dtn)

=
n∏

i=1

(Qi[x]
1{∆̃1

ti
=x}(1 − Qi[x])

(1−1{∆̃1
ti

=x})
)
1{Dti

>∆̃1
ti

} .

We maximize this expression to obtain the intensities. The values of the param-
eters of the capacity process are summarized in Table 2. We notice that λu

1 > λd
1

means that P[∆̃1
T = M1] > P[∆̃1

T = m1] for a sufficiently long maturity T .

A comparison with a naive econometric model. To evaluate the benefit
of adding the demand and production capacity to the market model, we make
a comparison between a simple econometric approach and ours. We consider the

Table 2. Parameters for the capacity process.

M1 (MW) m1 (MW) λu
1 (y−1) λd

1 (y−1)

5708 4292 34.78 24.89
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alternative linear model:

Pt = α0 + α1S
1
t + α2S

2
t + εt, (5.1)

where εt is a Gaussian white noise. We compare the linear model (5.1) to ours
where we add some free linear parameters and a Gaussian noise to facilitate the
comparison:

Pt = β0 +
∑

i=1,2

βiS
i
t1{Dt∈I

πt
i (t)} + εt.

In both cases, we estimate the parameters using a quadratic loss minimization.
Table 3 as well as Fig. 3 shows that including explicitly demand and production
capacity in the model, produces a better fit.

Forward prices computation. Following the approximation given in Remark 5.1,
in the case of two fuels, the expression (3.5) becomes

Ft(T1, T2) =
1

T2 − T1

∫ T2

T1

∑
x1=m1,M1

P[∆1
T = x1|∆t](F 2

t (T ) + (F 1
t (T ) − F 2

t (T ))

× (Q[DT ≤ x1|F0
t ])
)
dT. (5.2)

Table 3. Model comparison. Corr = correlation with historical price; MaxE := maximum
error; MAE := mean absolute error; MSE = mean square error; MPE = Mean percentage
error. Errors are calculated w.r.t. historical data (POWERNEXT r©day-ahead prices from
01/01/2007 to 31/12/2008).

Price Corr MaxE MAE MSE MPE

Linear model 0.756 406.96 18.35 919.53 23.734%
Structural model 0.702 385.23 17.54 786.20 23.956%

Fig. 3. Prices and econometric estimation of our model and a linear model (POWERNEXT r©day-
ahead prices from 01/01/2007 to 31/12/2008).
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We do not have forward prices F i
t (T ) at our disposal but only swap prices, i.e.

values of 1
T2−T1

∫ T2

T1
F i

t (T )dT for delivery periods [T1, T2]. Nevertheless, we make the
approximation that:

F i
t (T ) ≈ 1

T2 − T1

∫ T2

T1

F i
t (T )dT, T ∈ [T1, T2].

One may think that this approximation is quite rough for forward gas prices,
since the spot market has daily granularity; but, for the prices of fuels, it is quite
reasonable since spot prices take only one value per month.

We calibrate the spot price model on the former period, till June 2008, and then
backtest it on future prices from July 2008 to February 2009. On that sufficiently
wide interval, we focus on two assets: The two quarters ahead and three quarters
ahead futures, covering Spring 2009 (April, May, June) and Summer 2009 (July,
August and September). The results are illustrated on Figs. 4 and 5. We see that,
as expected, the predicted price overestimates the real price. Indeed, we estimated
the model on high peak hours of each day, which is over the mean price most of
the time. However we observe strong correlation between predicted and historical
prices as shown in Table 4.

Calibration on forward prices. The model gives two relations between the price
of power and the prices of commodities. As we estimated the parameters on spot
prices, we will now do the same on forward prices. Using formula (5.2), and under
the previous assumptions on prices F i

t (T ), i = 1, 2, the model can be calibrated
directly on forward prices. However, given the great number of parameters, we must
fix some of them in order to solve the identification problem: The capacity levels M1

and m1, and the parameters of the demand Dt are now fixed. Thus, the probability
P[∆1

T = x|∆t] for x = m1, M1, which is integrated on the period [T1, T2], is the

Fig. 4. Forward prices: model anticipations and market data (POWERNEXT r©Future prices on
peak load from 01/07/2008 to 27/02/2009, 169 obs.). Left = Spring 2009; right = Summer 2009.



November 25, 2009 9:17 WSPC-104-IJTAF SPI-J071 00552

944 R. Aı̈d et al.

Fig. 5. Forward yields: model anticipations and market data (POWERNEXT r©Future yields on
peak load from 01/07/2008 to 27/02/2009, 169 obs.). Up = Spring 2009; down = Summer 2009.

Table 4. Model anticipations results. Corr = correlation with historical price; E = yield mean
(in parenthesis the real asset value); V = yield variance; ME = maximum price error; MAE =
mean absolute error; MSE = mean squared error; MPE = mean percentage error. Errors are
calculated w.r.t. historical data.

Asset Corr E[∆Ft(T1, T2)] V[∆Ft(T1, T2)] MaxE MAE MSE MPE

Spring 2009 0.958 -0.582 (-0.403) 2.409 (1.840) 49.624 24.815 851.981 28.297%
Summer 2009 0.939 -0.505 (-0.402) 2.174 (2.014) 30.928 11.995 213.484 12.695%

only free variable. The goal is to calibrate numerically this variable on the following
expression:

Ft(T1, T2) = f1(λ, ∆t, Dt)F 1
t (T1, T2) + (1 − f1(λ, ∆t, Dt))F 2

t (T1, T2)

where

f1(λ, ∆t, Dt) =
∑

x=m1,M1

1
T2 − T1

∫ T2

T1

P[∆1
T = x|∆1

t ]Q[DT = x|Dt]dT.

These expressions depend on ∆t and Dt via the formulae (4.4) and (4.2). Thus,
f1(λ, ∆t, Dt) actually depends on t in an explicit manner. For the sake of simplicity,
we make a few more approximations. Indeed, calibration can be difficult because
of the fact that e−(λd

1+λu
1 )(T−t) is very small when T 
 t. Hence, if T 
 t or the

parameters λ [relation (4.2)] and a [relation (4.4)] are large enough, we can make
the following approximations: P[∆T = x|∆t] ∼= limT↑∞ P[∆T = x] and Q[DT >

x|Dt] ∼= limT↑∞Q[DT > x]. Thus, the calibration is equivalent to a linear model
estimation under constraints, whose coefficients are f1(λ) and 1 − f1(λ).

Under that approximation, we obtain P[∆T = M1] and P[∆T = m], giving the
expected failure probabilities for the cheapest technology on the delivery period
[T1, T2]. The computation gives a sound result for calibration on Summer 2009
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Fig. 6. Spot price simulation. Parameters calibrated on the period 01/2007–12/2008. We
use two thresholds for very high price peaks (when Dt > 8500MWh, the price is fixed to
500AC) and low demand prices (when Dt < 0MWh, the price is fixed to 15AC). The process
is simulated on 780 points (3 years).

Future price (P[∆T = M1] = 0.865), but not for Spring 2009 Future, which is
clearly overestimated. We explain this drawback by the fact that we used the two
most expensive technologies to price electricity.

Spot price simulations. Our model can be easily improved to obtain trajectories
with high spikes. If the residual demand Dt is negative, it corresponds to the case
when nuclear power is the marginal unit of the system. Its cost is well-known to
be constant over time (∼= 15AC/MWh). On the other hand, if the residual demand
Dt exceeds the total capacity ∆1

t + ∆2
t of our two technologies, it corresponds to

situations when electricity has to be imported. In the French market, which is a
structural exporter, it corresponds to tension on the system and electricity is bought
at high cost. This high cost is arbitrarily fixed to a constant value (500AC/MWh). In
order to simulate the prices of commodities, we quickly estimate on our first sample
of data (January 2007 to December 2008) the multivariate diffusion process given
by the relation (2.1). Figure 6 shows that this simple device allows us to get visible
spikes.

6. Conclusion and Perspectives

By building a market model for electricity and fuels, we provided a possible answer
to the issue of pricing electricity-based derivatives using a risk-neutral approach, as
in security markets. This model should be considered more as a methodology than
as a definitive model for electricity spot and forward prices. Indeed, we think it may
offer many perspectives for further developments. We see three different areas to
explore. First, we assumed competitive equilibrium on the spot market; this assump-
tion could be changed to take into account possible strategic bidding, so quantifying
the possible deviation of forward electricity prices from their equilibrium due to
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frictions on the spot. Second, the spot market could be extended to a multizonal
framework to take into account the fact that electricity is exchanged between differ-
ent countries and that a spot price is formed in each country. Finally, the relation
linking forward electricity prices to forward fuels prices could be extended to a wider
class of contingent claims. We hope to develop these points in future papers.
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