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Abstract

The aim of this paper is to address the effect of the carbon emis-

sion market on the production policy of the emitting production firms.

We investigate this effect in the cases where there is no large carbon

producer, where there is a large producer who can not affect the risk

premia, and where there is a large producer who can change the risk

premia by its production. We ignore any possible investment of the

production firm in pollution reducing technologies. We formulate op-

timal production policy by a stochastic optimization problem. Then,

we show that the market reduces the optimal production policy of the

small producer and the large producer who does not affect the risk

premia of the market. However, dependent on the way the large pro-

ducer activities change the market risk premia, the large producer can

optimally produce more than what she used to do before the existence

of the emission market.
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1 Introduction

The long term costs of global warming is believed to be significantly more

than the cost of controlling it by reducing the pollution due to greenhouse

gases (see [8]). One direct way to reduce the emission is to impose the

taxation on the installations whose production increases the pollution. One

can propose the standard taxation system which imposes a limitation level

on the production of each installation over a time period and any amount

of production above this level will be penalized. This taxation method has

some significant disadvantages. First, there is no change in the production

of the installations whose current optimal production policy does not reach

the level. Second, there is no benefit for those who are below their level to

keep their position. This effect also creates incentive to merge with other

installation who needs to produce above their level.

The Kyoto protocol in 1997 concerns with the reduction of the green-

house gases including CO2 and is accepted by several countries e.g. Euro-

pean Union members. In 2000, the European Commission launch European

Climate Change Program (ECCP) to implement Kyoto protocol in Europe.

As an alternative to standard taxation, ECCP proposed European Union

Emission Trading Scheme (EU ETS) which provides a way to control the

emission of CO2 within carbon polluters through trading the papers which

allows them extra emission. More precisely, ETS imposes a cap over the total

carbon emission. Within ETS, certain industrial installations with intensive

carbon pollution are given free allowances. If any installation wants to pro-

duce more than her initial allowance, she should buy allowance through EU

ETS. However, the allowances will be needed if the total carbon emission

per member state violates imposed cap. On the other hand, if such in-

stallations, are far away from their production limit, they could sell their

allowance through the market.

First phase of the program was run from January 2005 to the end of

2007. All the included installations who violate their limits, were supposed

to provide enough allowances, if the cap on total emission is reached. The

cap for the second phase (2008–2012) has been revised after the collapse in

the first phase in April 2006 due to the release of the information about the

unreachability to total carbon emission cap. Moreover in the second phase,

ECCP proposed to relevant installations to put off execution of the first
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phase emission allowance to the second phase by paying 40 euros per tone.

The same mechanism is determined for second phase and third phase by the

cost of 100 euros per tone. This mechanism, which is referred to as banking,

proposes an option for the allowance holder to execute the allowance to offset

the excess production or to keep it for the next phase. For more details see

[2], [3], [4], [5] [6] and [8].

Nowadays, there are other regional markets implementing similar schemes

as EU ETS, e.g. the US REgenial CLean Air Incentive Market (RECLAIM)

or Regional Greenhouse Gas Incentive (RGGI). Throughout this paper, by

emission market we mean the emission trading scheme EU ETS.

In this paper, we analyze the effect of emission market in reducing the

carbon emission through the change on production policy of the relevant

firms. The firm’s objective is to maximize her utility on her wealth which

is made of both the profit of her production and the value of her carbon

allowance portfolio over her production and her portfolio strategy. We solve

the utility maximization problem on portfolio strategy by the duality argu-

ment and then on the production by the use of Hamilton–Jacobi–Bellman

(HJB) equations.

We observe that the market always reduces the optimal production pol-

icy of the small producers and large producers who can not affect the risk

premia. However, under certain cases, the large producer can have a larger

optimal production in the market. The comparison is based on the fact that

negative of the derivative of the value function with respect to the total

emission imposed by the firm is equal to the price of the carbon allowance,

under some assumptions.

2 Small producer with one-period carbon emission

market

Let (Ω,F ,P) be a complete probability space endowed with a one-dimensional

Brownian motion W . We denote by F = {Ft, t ≥ 0} the completed canonical

filtration of the Brownian motion W , and by Et := E[·|Ft] the conditional

expectation operator given Ft.
We consider a production firm with preferences described by the utility

function U : R −→ R ∪ {∞} assumed to be strictly increasing, strictly

concave and C1 over {U <∞}. We denote by πt(ω, q) the (random) time t
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rate of profit of the firm for a production rate q. Here π : R+×Ω×R+ → R
is an F−progressively measurable map. As usual we shall omit ω from the

notations. For fixed (t, ω), we assume that the function πt(·) := π(t, ·) is

strictly concave, C1 in q and satisfies

π′t(0+) > 0 and π′t(∞) < 0.

Let us denote by et(qt) the rate of carbon emissions generated by a produc-

tion rate q. Here, e.(.) : Ω × [0, T ] × R+ is an F−progressively measurable

map and C1 in q ∈ R+. Then the total quantity of carbon emissions induced

by a production policy {qt, t ∈ [0, T ]} is given by

EqT :=

∫ T

0
et(qt)dt. (2.1)

The aim of the carbon emission market is to incur this cost to the producer

so as to obtain an overall reduction of the carbon emissions.

From now on, we analyze the effect of the presence of the carbon emission

market within the cap-and-trade scheme.

In order to model the carbon emission market, we introduce an (unob-

servable) state variable Y defined by the dynamics:

dYt = µtdt+ γtdWt, (2.2)

where µ and γ are two bounded F−adapted processes and γ > 0.

We assume that there is one single period [0, T ] during which the carbon

emission market is in place. The case of multiple successive periods will be

analyzed later. At each time t ≥ 0, the random variable Yt indicates the

market view of the cumulated carbon emissions. At time T , YT ≥ κ (resp.

YT < κ) means that the cumulated total emission have (resp. not) exceeded

the cap κ, fixed by the trading scheme. Let α be the penalty per unit of

carbon emission. Then, the value of the carbon emission contract at time T

is:

ST := α1{YT≥κ}.

The carbon emission allowance can be viewed as a derivative security de-

fined by the above payoff. The carbon emission market allows for trading

this contract in continuous-time throughout the time period [0, T ]. Assum-

ing that the market is frictionless, it follows from the classical no-arbitrage
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valuation theory that the price of the carbon emission contract at each time

t is given by

St := EQ
t [ST ] = αQt [YT ≥ κ] , (2.3)

where Q is a probability measure equivalent to P, the so-called equivalent

martingale measure, EQ
t and Qt denote the conditional expectation and

probability given Ft. Given market prices of the carbon allowances, the

risk-neutral measure may be inferred from the market prices. Since the

market is frictionless, the value of the initial holdings in (free) allowances,

Emax, can be expressed equivalently in terms of their value in cash S0E
max.

In the present context, and in contrast with an otherwise standard taxa-

tion based regulation (Remark 2.1), production firms have a clear incentive

to reduce emissions as they have the possibility to sell their allowances on

the emission market. Hence, the financial market induces a mutualization

of carbon emissions. In particular, there is no incentive to merge for the

single objective of avoiding the carbon taxes. We will see however that large

producers can have a negative impact.

We now formulate the objective function of the firm in the presence of

the emission market. The primary activity of the firm is the production

modeled by the rate qt at time t. This generates a gain πt(qt). The resulting

carbon emissions are given by et(qt). Given that the price of the externality

is available on the market, the profit on the time interval [0, T ] is given by:∫ T

0
πt(qt)dt− ST

∫ T

0
et(qt)dt. (2.4)

In addition to the production activity, the company trades continuously on

the carbon emissions market. Let {θt, t ≥ 0} be an F−adapted process

which is S−integrable. For every t ≥ 0, θt indicates the number of contracts

of carbon emissions held by the company at time t. Under the self-financing

condition, the wealth accumulated by trading on the emission market is:

x+

∫ T

0
θtdSt, (2.5)

where x is the initial capital of the company, including the market value of

its free emission allowances contracts. By (2.4) and (2.5), together with an

integration by parts, the total wealth of the firm at time T is

Xθ
T +Bq

T (2.6)
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where

Xθ
T := x+

∫ T

0
θtdSt, Bq

T :=

∫ T

0
(πt(qt)− Stet(qt)) dt−

∫ T

0
Eqt dSt,

and

Eqt :=

∫ t

0
eu(qu)du, for all t ∈ [0, T ].

We assume that the firm is allowed to trade without any constraint. Then,

the objective of the manager is:

V (1) := sup
{
E
[
U
(
Xθ
T +Bq

T

)]
: θ ∈ A, q ∈ Q

}
, (2.7)

where A is the collection of all F−progressively measurable processes such

that the process X is bounded from below by a martingle, and Q is the

collection of all non-negative F−progressivey measurable processes.

Notice that the stochastic integrals with respect to S can be collected

together in the expression of Xθ
T +Bq

T . since A is a linear subspace, it follows

that the maximization with respect to q and θ are completely decoupled, this

problem is easily solved by optimizing successively with respect to q and θ.

The partial maximization with respect to q provides an optimal production

level q(1) defined by the first order condition:

∂πt
∂q

(q
(1)
t ) = St

∂et
∂q

(q
(1)
t ). (2.8)

Because of the assumptions on πt(.) and et(.), we deduce immediately that

q
(1)
t is less than the business-as-usual optimal production qbas of the firm

in the absence of any restriction on the emission, which is determined by

trhe first order condition (∂πt/∂q)(q
bas
t ) = 0. In other words, the emission

market leads to a reduction of the production, and therefore a reduction of

the carbon emissions.

We next turn to the optimal trading strategy by solving:

sup
θ

E
[
U

(
Xx,θ−Eq(1)

T +Bq(1)
)]

where Bq :=

∫ T

0
(πt(qt)− Stet(qt)) dt.

In the present context of a complete market, the solution is given by:

x+

∫ T

0

(
θ

(1)
t − E

q(1)

t

)
dSt +Bq(1) = (U ′)−1

(
y(1)dQ

dP

)
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where the Lagrange multiplier y(1) is defined by:

EQ
[
(U ′)−1

(
y(1)dQ

dP

)]
= x+ EQ

[
Bq(1)

]
.

Let us sum up the present context of a small firm:

• the trading activity of the company has no impact on its optimal

production policy,

• the firm’s optimal production q(1) is smaller than that of the business-

as-usual situation, so that the emission market is indeed a good tool

for the reduction of carbon emissions,

• the emission market assigns a price to the externality that the firm

manager can use in order to optimize his production scheme.

Remark 2.1. Let us examine the case where there is no possibility to trade

the carbon emission allowances. This is the standard taxation system where

α is the amount of tax to be paid at the end of period per unit of carbon

emission. Assuming again that the firm’s horizon coincides with this end of

period, its objective is:

V0 := sup
q.∈Q

E
[
U

(∫ T

0
πt(qt)dt− α

(
EqT − E

max
)+)]

where Emax is the free allowances of the market. Direct calculation leads to

the following characterization of the optimal production level:

∂πt
∂q

(
q

(0)
t

)
= α

∂et
∂q

(
q

(0)
t

)
EQ(0)

t

[
1R+

(
E
q
(0)
t
T − Emax

)]
(2.9)

where

dQ(0)

dP
=

U ′

(∫ T
0 πt(q

(0)
t )dt− α

(
E
q
(0)
t
T − Emax

)+
)

E

[
U ′

(∫ T
0 πt(q

(0)
t )dt− α

(
E
q
(0)
t
T − Emax

)+
)] . (2.10)

The natural interpretation of (2.9) and(2.10) is that the production firm

assigns an individual price to its emissions:

St := αEQ(0)

t

[
1R+

(
E
q
(0)
t
T − Emax

)]
, (2.11)
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i.e. the expected value of the amount of tax to be paid under the measure

Q(0) defined by her marginal utility as a density. The probability measure

Q(0) is the so-called risk-neutral measure in financial mathematics, or the

stochastic discount factor of the firm. Given this evaluation, the firm opti-

mizes her adjusted profit function, πt(q)− et(q)St;

∂πt
∂q

(q(0)) =
∂et
∂q

(q(0))St.

We continue by commenting on the optimal production policy defined

by (2.9)-(2.10):

• assuming that the firms know the nature of their utility functions,

the system of equations (2.9)-(2.10) is still a nontrivial nonlinear fixed

point problem.

• This problem would be considerably simplified if the manager were to

know the market price for carbon emissions (2.11). But of course, in

the present context, this is an individual subjective price which is not

quoted on any financial market.

• The present situation, based on a classical taxation policy, offers no

incentive to reduce emissions beyond Emax. Indeed, if the optimal

production in the absence of taxes produces carbon emissions below

the level Emax, then it is indeed the same as the business-as-usual

situation. So, the taxation does not contribute to reduce the carbon

emissions. As a consequence, the only way to benefit from having

carbon emissions below the level Emax is to merge with another firm

whose emissions are above its given free emissions allowances. Hence,

such a policy puts a clear incentive to mergers. 2

The emission market provides an evaluation of the externality of carbon

emissions by firms. Given this information there is no more need to know

precisely the utility function of the firm in order to solve the nonlinear system

(2.9)-(2.10). The quoted price of the externality is then very valuable for

the managers as it allows them to better optimize their production scheme.
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3 Large producer with one-period carbon emis-

sion market

In this section, we consider the case of a large carbon emitting production

firm. We shall see that this leads to different considerations as the trading

activity will have an impact on the production policy of the company.

We model this situation by assuming that the state variable Y is affected

by the production policy of the firm:

dY q
t = (µt + βet(qt)) dt+ γtdWt (3.1)

where β > 0 is a given impact coefficient. The price process S of the carbon

emission allowances is, as in the previous section, given by the no-arbitrage

valuation principle:

Sqt = αQq
t

[
Y q
T ≥ κ

]
, (3.2)

and is also affected by the production policy q. The equivalent martingale

measure Qq is characterized by its Radon-Nykodim density which can be

represented as a Doléans-Dade exponential martingale generated by some

risk premium process λ. In general, the risk premium process λ may depend

on the path of the control process q. For technical reasons, we shall restrict

our anaysis to those risk-neutral probability measures with risk premium

process depending on the current value of the control process:

dQq

dP

∣∣∣∣
FT

= exp

(
−
∫ T

0
λt(qt)dWt −

1

2

∫ T

0
λt(qt)

2dt

)
(3.3)

where λ : R+ × Ω× R+ −→ R is an F−progressively measurable map. The

dynamics of the price process S are given by

dSqt
Sqt

= σqt (dWt + λt(qt)dt) , t < T, (3.4)

where the volatility function σqt is progressively measurable and depends on

the control process {qs, 0 ≤ s ≤ T}. As in the previous section, the wealth

process of the company is given by:

Xx,θ
T := x+

∫ T

0
θtdS

q
t and Bq

T :=

∫ T

0
πt(qt)dt− SqT

∫ T

0
et(qt)dt
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3.1 Large Carbon emission with no impact on risk premia

In this subsection, we restrict our attention to the case of large emitting

firm with no impact on the risk premia, i.e.

λt(q) is independent of q for any t ≥ 0. (3.5)

The objective of the large emitting firm is:

V
(2)

0 := sup
q·∈Q, θ∈A

E
[
U
(
Xx,θ
T +Bq

T

)]
.

Proposition 3.1. Assume (3.5), and that the market is complete with

unique risk-neutral measure Q. Then, the optimal production policy is inde-

pendent of the utility function of the producer U , and obtained by solving:

sup
q·∈Q

EQ [Bq
T

]
. (3.6)

Moreover, if q(2) is an optimal production scheme, then the optimal invest-

ment strategy θ(2) is characterized by

Xx,θ(2)

T +Bq(2)

T = (U ′)−1

(
y(2)dQ

dP

)
, x+EQ

[
Bq(2)

T

]
= EQ

[
(U ′)−1

(
y(2)dQ

dP

)]
.

(3.7)

Proof. We first fix some production strategy q. Since the market is com-

plete, the partial maximization with respect to θ can be performed by the

classical duality method:

Xx,θq

T +Bq
T = (U ′)−1

(
yq
dQ
dP

)
, (3.8)

where the Lagrange multiplier yq is defined by

EQ
[
(U ′)−1

(
yq
dQ
dP

)]
= x+ EQ [Bq

T

]
. (3.9)

This reduces the problem to:

sup
q.≥0

E
[
U ◦ (U ′)−1

(
yq
dQ
dP

)]
. (3.10)
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Notice that U ◦ (U ′)−1 is decreasing and the density dQ
dP > 0. Then (3.10)

reduces to

inf {yq : q· ≥ 0} .

Since (U ′)−1 is also decreasing, (3.9) converts the problem into

sup
{
EQ [Bq

T

]
: q· ∈ Q

}
.

Finally, given the optimal strategy q(2), the optimal investment policy is

characterized by (3.8). 2

In order to push further the characterization of the optimal production

policy q(2), we specialize the discussion to the Markov case by assuming

that πt(q) = π(t, q), et(q) = e(t, q), and λt(q) = λ(t) for some deterministic

functions π, e : R+ × R+ −→ R in C0,1(R+ × R+), λ : R+ × R+ −→ R in

C0(R+), and

dY q
t = (µ(t, Y q

t ) + βe(t, qt)) dt+ γ(t, Y q
t )dWt,

for some continuous deterministic functions µ, γ : R+ × R −→ R.

The state variable E is now defined by the dynamics

dEqt = e(t, qt)dt (3.11)

which records the cumulated carbon emissions of the company. The dynamic

version of the producer planning problem (3.6) is given by:

V (2)(t, e, y) := sup
q·∈Q

EQ
t,e,y

[∫ T

t
π(t, qt)dt− αEqT1{Y q

T>0}

]
. (3.12)

Then, V (2) is a viscsity solution of the dynamic programming equation:

0 =
∂V (2)

∂t
+ (µ− λγ)V (2)

y +
1

2
γ2V (2)

yy

+ max
q≥0

{
π(t, q) + e(t, q)V (2)

e + βe(t, q)V (2)
y

}
, (3.13)

together with the terminal condition

V (2)(T, e, y) = −αe1{y>0}. (3.14)
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For the moment assume that the value function V (2) is smooth. Then, the

optimal strategy is given by

∂π

∂q

(
t, q(2)

)
= −∂e

∂q

(
t, q(2)

)(
V (2)
e + βV (2)

y

)
(t, e, y).

By the definition of the value function V (2) in (3.12), we expect that

− V (2)
e (t, Et, Yt) = St. (3.15)

Then

∂π

∂q

(
t, q

(2)
t

)
=

∂e

∂q

(
t, q

(2)
t

)(
St − V (2)

y (t, Eq
(2)

t , Y q(2)

t )
)

(3.16)

Also, it is clear that V (2) is non-increasing in y. Then, comparing the

previous expression with (2.8), it follows from the assumption on π and e

that:

q(2) < q(1).

In other words, the impact of the production firm on the prices of carbon

emission allowances increases the cost of the externality for the firm. This

immediately affects the profit function of the firm and leads to a decrease of

the level of optimal production. Hence, the presence of the emission market

is playing a positive role in terms of reducing the carbon emissions.

The following result shows that under certain assumptions, the above

formal calculation is valid in our model.

Theorem 3.1. Suppose that µt is continuous and deterministic, γ is con-

stant, λ(q) = λ0, and e(q) = e1q + e0 where λ0, e1 and e0 are non–negative

constants. Assume that π is C0,1([0, T ]× R+), strictly concave in q and

∂π

∂q
(t, 0+) > 0 and

∂π

∂q
(t,∞) < 0.

Then V
(2)
e exists and (3.15) holds true. In addition, if problem (3.13)–(3.14)

has a bounded solution in C1,1,2([0, T )×R+×R), then there exists an optimal

production strategy satisfying (3.16).
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Proof. Since V is concave in e, it has left and right partial derivatives

with respect to e everywhere, and the partial gradient Ve exists almost ev-

erywhere. Under our conditions, the additional differentiabiity property

together with the remaining characterizations of the theorem follow from

Proposition B.1 and Lemma B.1.

For the last assertion of the Theorem, notice that by Lemma (A.1), V

is the unique bounded viscosity solution of (3.13)–(3.14). Therefore, by the

assumption of the Theorem, V ∈ C1,1,2([0, T ) × R+ × R) and one can use

the dynamic programming principle to deduce q(2) obtained from (3.16) is

an optimal strategy. 2

3.2 Large Carbon emission Impacting the Risk-Neutral Mea-

sure

We now consider the general case where the risk premium process is im-

pacted by the emissions of the production firm:

dQq

dP

∣∣∣∣
FT

= exp

(
−
∫ T

0
λ(qt)dWt −

1

2

∫ T

0
λ(qt)

2dt

)
.

The partial maximization with respect to θ, as in the proof of Proposition

3.1, is still valid in this context, and reduces the production firm’s problem

to

sup
q·∈Q

E
[
U ◦ (U ′)−1

(
yq

dQq

dP

)]
(3.17)

where yq is defined by

EQq

[
(U ′)−1

(
yq

dQq

dP

)]
= x+ EQq [

Bq
T

]
. (3.18)

We also assume that the preferences of the production firm are defined by

an exponential utility function

U(x) := −e−ηx, x ∈ R.

Then U ◦ (U ′)−1(y) = −y/η, and (3.17) reduces to

inf
q.≥0

E
[
yq

dQq

dP

]
= inf

q.≥0
yq. (3.19)
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Finally, the budget constraint (3.18) is in the present case:

x+ EQq [
Bq
T

]
=
−1

η
EQq

[
ln

(
yq

η

dQq

dP

)]
=
−1

η

{
ln

(
yq

η

)
+ EQq

[
ln

(
dQq

dP

)]}
,

so that the optimization problem (3.19) is equivalent to:

sup
q·∈Q

EQq

[
Bq
T +

1

η
ln

(
dQq

dP

)]
= sup

q·∈Q
EQq

[∫ T

0

(
π +

λ2

2η

)
(t, qt)dt− SqT

∫ T

0
et(qt)dt

]
. (3.20)

Notice the difference between the above optimization problem, which deter-

mines the optimal production policy of the production firm, and the problem

(3.6). In the present situation where the risk premium process is impacted

by the carbon emissions of the firm, the firm’s optimization criterion is

penalized by the entropy of the risk-neutral measure with respect to the

statistical measure.

The firm’s optimal production problem (3.20) is a standard stochastic

control problem. We continue our discussion by considering the Markov

case, and introducing the dynamic version of (3.20):

V (3)(t, e, y) := sup
q·∈Q

EQq

(t,e,y)

[∫ T

t

(
π +

λ2

2η

)
(t, qt)dt− EqTα1{Y q

T≥0}

]
, (3.21)

where the controlled state dynamics is given by:

dY q
t = (µ(t, Y q

t ) + βe(t, qt)− γ(t, Y q
t )λ(t, qt)) dt+ γ(t, Y q

t )dW q
t ,

dEqt = e(t, qt)dt,

W q is a Brownian motion under Qq, and µ and γ are C1,2 functions in (t, y),

and µ, e and λ are C1,2 functions in (t, q).

By classical arguments, we then see that V (3) solves the dynamic pro-

gramming equation:

0 =
∂V (3)

∂t
+ µV (3)

y +
1

2
γ2V (3)

yy (3.22)

+ max
q∈R+

{
π(t, q) +

1

2η
λ(t, q)2 + e(t, q)(V (3)

e + βV (3)
y )− γλ(t, q)V (3)

y

}
14



together with the terminal condition

V (3)(T, e, y) = −αe1{y>0}. (3.23)

In terms of the value function V (3), the optimal production policy is obtained

as the maximizer in the above equation. Under the technical Assumption

(A.2) below, an interior maximum occurs, and if V (3) is regular enough,

then the first order condition is:

∂π

∂q
(q(3)) +

1

η
(λ
∂λ

∂q
)(q(3)) +

∂e

∂q
(q(3))(V (3)

e + βV (3)
y )− γ ∂λ

∂q
(q(3))V (3)

y = 0,

(3.24)

where the dependence with respect to (t, e, y) has been omitted for simplicity.

As before, we expect that the value function (3.21) is regular enough and

that the price of the carbon emissions allowance contract, as observed on

the emission market, is given by:

St = −V (3)
e (t, Et, Yt). (3.25)

Then, it follows that the optimal production policy of the firm is defined by:

∂π

∂q
(t, q(3)) =

∂e

∂q
(t, q(3))

(
St − βV (3)

y (t, Yt, Et)
)

+
∂λ

∂q
(t, q(3))

(
γV (3)

y (t, Yt, Et)−
1

η
λ(t, q(3))

)
. (3.26)

The latter expression is the main formula for our financial interpretation and

our subsequent numerical experiments. In contrast with the previous case

where the risk-premium process was not impacted by the carbon emissions

of the large firm, we can not conclude from the above formula that q(3) is

smaller than q(1); recall that the optimal production policy in the absence

of a financial market defined by

∂π

∂q
(t, q(1)) =

∂e

∂q
(t, q(1))St.

This is due to the fact that the difference term

−∂e
∂q

(t, q(3))βV (3)
y (t, Yt, Et) +

∂λ

∂q
(t, q(3))

(
γV (3)

y (t, Yt, Et)−
1

η
λ(t, q(3))

)
has no known sign, and there is no economic argument supporting that

it should have some specific sign. The economic intuition hidden in this

15



term is that the large producer may take advantage of his impact on the

emission market by manipulating the prices so as to achieve a profit from its

trading activity which compensates a higher production activity inducing

larger carbon emissions. In the present situation, we see that the emission

market has a negative effect on the carbon emissions: the large firm may

optimally choose to increase its carbon emissions thus increasing its profit

by means of its ability to manipulate the financial market.

The next result shows that for some choice of the coefficients, (3.25)

holds true and we have the relation (3.26).

Theorem 3.2. Suppose that µt is continuous and deterministic, γ is con-

stant, e(q) = e1q + e0 and λ(q) = λ1q + λ0, and π̃t(q) := πt(q) + λ(q)2

2η is

deterministic and strictly concave in q with

π̃′t(0) > 0 and π̃′t(−∞) < 0.

Then V
(3)
e exists and (3.25) holds true. In addition, if problem (3.22)–(3.23)

has a solution in C1,1,2([0, T ) × R+ × R), then there exists an optimal pro-

duction strategy satisfying (3.26).

Proof. The proof follows the same line of argument as the proof of Theorem

3.1. 2

4 Multiperiod model with banking

The analysis of the previous sections are restricted to the case where the

carbon allowances market is organized over one single period. In this section,

we discuss how to extend our results to a multiperiod model with banking.

We then assume that there are n maturities for the carbon allowances market

T1 < . . . < Tn

instead of a single one. According to the banking rule, the carbon emission

allowance can serve for the next periods if not used for the current one.

Then, the allowance can be viewed as a derivative security with payoff:

STn := α
(
1{Y q

T1
≥κ} + 1{Y q

T1
<κ}1{Y q

T2
≥κ} + . . .+ 1{Y q

Ti
<κ, i<n}1{Y q

Tn
≥κ}

)
.

16



Following the same argument as in the previous section, the no-arbitrage

market price at each time t ≤ Tn is given by

St := EQ
t [STn ] for all t ≤ Tn, (4.1)

where Q is the risk-neutral measure. Now it is clear that all the analysis of

the previous sections apply by just replacing the price formula (2.3) by the

above market price (4.1).

5 Numerical results

5.1 A linear-quadratic example

The main goal of the numerical results is to understand the behavior of the

optimal strategy

∂π

∂q
(t, q(3)) =

∂e

∂q
(t, q(3))

(
St − βV (3)

y (t, Yt, Et)
)

+
∂λ

∂q
(t, q(3))

(
γV (3)

y (t, Yt, Et)−
1

η
λ(t, q(3))

)
(5.1)

and more precisely find an example where q(3) > q(1).

We consider the Dynamic Programming Equation

Vt + µVy +
1

2
γ2Vyy + max

q≥0
θ(q, Ve, Vy) = 0 (5.2)

where θ is defined by

θ(q, Ve, Vy) = π(t, q) +
1

2η
λ(t, q)2 + e(t, q)(V (3)

e + βV (3)
y )− γλ(t, q)V (3)

y ,

and with the terminal boundary condition

V (T, e, y) = −αe1{y≥0}.

Here, we consider a simple case where

π(q) = q(1− q), e(q) = λ(q) = q, β = 1, and α = 1.

Note that this example satisfies the assumption of Theorem 3.2. So, Ve =

−St and therefore one can compare q(1), q(2) and q(3). It follows that

θ(q, Ve, Vy) = −
(

1− 1

2η

)
q2 + (1 + Ve + (1− γ)Vy) q.

17



We next assume that η > 1
2 so that the function θ is strictly concave in the

q variable. Then, it follows from the first order condition that the optimal

production policy is given by:

q(3) =
1

2ρ
(1 + Ve + (1− γ)Vy)

with ρ =
(

1− 1
2η

)
, and

max
q≥0

θ(q, Ve, Vy) =
1

4ρ
(1 + Ve + (1− γ)Vy)

2 .

Then, the Dynamic Programming Equation (5.2) reduces to:

Vt + µVy +
1

2
γ2Vyy +

1

4ρ
(1 + Ve + (1− γ)Vy)

2 = 0. (5.3)

Note that, in order to to compare with q(1), optimal strategy (5.1) could be

written as:

π′
(
q(3)
)

= e′
(
q(3)
)
St − τ(e, y),

where the correction term τ(e, y) is defined by

τ(e, y) =
2η(1− γ)

2η − 1
Vy +

1

2η − 1
(1 + Ve).

The main objective of our numerical implementation is to exhibit examples

of parameters which induce τ(e, y) < 0, or equivalently in terms of the

optimal strategy q(3) > q(1).

5.2 Numerical scheme

The first step is to set a computational bounded domain [0, Le]× [−Ly, Ly]
for the (e, y) space domain and discretize the computational domain by

the grid {(ei, yj)}i,j . Since we deal with non-linear advection and diffusion

phenomena, it is natural to consider Neumann boundary conditions.

Let ∆t be the time step and t(k) = k∆t, for k = 0, · · · , n := b T∆tc. We

set the discrete terminal data V t(n)

ij = −ei1{yj≥0}.

The main difficulty in solving the equation (5.3) is the semi-linear terms.

In order to overcome this difficulty, we used a time-splitting discretization

which divides our scheme into two steps:

18



• Step 1: we use an implicit finite-differences scheme to solve the diffu-

sion part of the model. This means that on a time step [t(n), t(n+1)],

we solve

Vt +
1

2
γ2Vyy = 0. (5.4)

• Step 2: we solve the coupling between the advection part with the

non-linear effects

Vt + µVy +
1

4ρ
(1 + Ve + (1− γ)Vy)

2 = 0. (5.5)

In this important part, we used a relaxation scheme introduced by C.

Besse [1]. The scheme is constructed as follow: We rewrite (5.5) as

the system of two equations:

Vt + µVy +
1

4ρ
(1 + Ve + (1− γ)Vy)ϕ = 0, (5.6)

ϕ = 1 + Ve + (1− γ)Vy (5.7)

which are solved using a leap-frog scheme in time.

Compared to the Crank-Nicholson scheme, which is also based on a time-

centering method, this scheme allows us to avoid a costly numerical treat-

ment of the nonlinearity and to preserve the flexibility of spatial discretiza-

tion choice.

5.3 Results

For parameters µ = 0.1, γ = 0.65, η = 5 and the final time is T = 10 we

produced the following results.
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Figure 1: Terminal boudary condition V (3)(T = 10, e, y)

Figure 2: The solution of the dynamic programming equation V 3(e, y) at

time t = 0.2
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Figure 3: The difference term τ(e, y) at time t = 0.2

The blue region shows the couples (e, y) for which we have q(3) > q(2)

and therefore within this region the large producer optimally increases her

production.

A Uniqueness and verification

Let

V (t, e, y) = sup
q·∈Q

Et,e,y
[∫ T

t
π̃(s, qs)ds− αEq,eT 1{Y q,y

T ≥κ}

]
, (A.1)

where

dY q
t =

(
µ(t, Y q

t ) + βe(t, qt) + γ(t, Yt)λ(t, qt)
)
dt+ γ(t, Y q

t )dWt,

dEqt = et(q)dt

with π, e : R+ × R+ −→ R in C0,1(R+ × R+), λ : R+ × R+ −→ R are in

C0(R+), µ, γ : R+ × R −→ R are continuous in t and Lipschitz in y, and

γ ≥ 0.

Notice that V = V (2) or V (3) when π̃ := π or π + λ2

2η , respectively. Also

for simplicity, the dependency of martingale measure with respect to q in
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the definition of V (2) or V (3) is absorbed in the dynamic of Y q
t . Therefore

in the current Appendix the reference expectation E is with respect to the

measure P under which the dynamic of Y q
t is as in the above.

Throughout the Appendix, we suppose

(i) π̃, e, and λ are in C0,1([0, T ]× R+),

(ii) e is convex and, λ and e are increasing in q, (A.2)

(iii) π̃ is strictly concave in q ,
∂π̃

∂q
(t, 0+) > 0 and

∂π̃

∂q
(t,∞) < 0.

The following Lemma is needed for the proof of Theorems 3.2 and 3.1.

Lemma A.1. There exists some q such that:

V (t, e, y) = sup
q·∈Q

Et,e,y
[∫ T

t
π̃(t, qt)dt− EqTα1{Y q

T≥0}

]
, (A.3)

where Q is the collection of all q· ∈ Q with 0 ≤ q ≤ q.

Proof. By (A.2)(i), we can introduce q such that π̃(q) < 0 and π̃ is decreas-

ing in q ∈ [q,∞). Therefore, if q̃ := q ∧ q, then E q̃,e ≤ Eq,e and π̃(q̃) ≥ π̃(q).

On the other hand, by Theorem 1.1 in [7], Y q̃,y
T ≤ Y q,y

T a.s.. Therefore,

J(q̃) ≥ J(q) a.s.,

where J(q) :=
∫ T
t π̃(t, qt)dt− EqTα1{Y q

T≥0}. 2

The next result states that V can be characterized by the PDE Therefore,

V solves the dynamic programming equation:

0 =
∂V

∂t
+ µVy +

1

2
γ2Vyy (A.4)

+ max
0≤q≤q

{π̃(t, q) + e(t, q)(Ve + βVy)− γλ(t, q)Vy}

together with the terminal condition

V (T, e, y) = −αe1{y>0}. (A.5)

Theorem A.1. Let (A.2) hold true. Then V is the unique bounded viscosity

solution of (A.4)-(A.5) on [0, T ]× R+ × R.
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Proof. Notice that one can write (A.4) as

0 =
∂V

∂t
+H(t, y, Vy, Ve, Vyy)

where

H(t, y, v1, v2, v11) := µ(t, y)v1 +
1

2
γ2(t, y)v11

+ max
q≥q≥0

{π̃(t, q) + e(t, q)(v2 + βv1)− γ(t, y)λ(t, q)v1} .

By continuity of H, one can apply Theorem 7.4 in [10] to obtain that V

satisfies (A.4) in viscosity sense on [0, T )× R+ × R.

On the other hand, for any q ∈ Q, 1{Y t,(q,y)
T ≥κ} and E

t,(q,e)
T converges to

1{y≥κ} and e a.s. as t→ T , respectively. Therefore, by Lebesgue dominated

convergence Theorem

lim
t→T

V (t, e, y) = −αe1{y≥κ} = V (T, e, y).

Consequently, we can deduce that V is the bounded viscosity solution of the

boundary value problem (A.4)–(A.5).

The uniqueness follows from the comparison principle for viscosity solutions

in [10]. 2

B Existence of optimal production policy

We first show that the existence of an optimal production policyallows to

relate the value function V to the market price of carbon allowance St.

Lemma B.1. Let the assumption (A.2) hold true. If there exists an optimal

control q∗ for any (t, e, y) then ∂V
∂e (t, e, y) = −αE[1{Y t,y,q∗

T ≥κ}].

Remark B.1. Lemma B.1 is crucial for the comparison between q(3) and

q(2) or q(1). Notice that St = αEt[1{Y q∗
T ≥κ}

] is market price which is observ-

able and
(
π + λ2

2η

)
is concave in q. Therefore, one can replace Ve by −St in

(3.24) and examine the sign of Vy to establish comparison.

Proof. Notice that by the concavity of V in e, ∂V∂e exists almost everywhere.

Suppose that e > e′. Then, by direct calculations one can write

V (t, e, y)− V (t, e′, y) + (e− e′)αE
[
1{Y t,y,q∗

T ≥κ}

]
≤ 0,
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where q∗ is an optimal strategy for V (t, e, y). This implys that

V (t, e, y)− V (t, e′, y)

e− e′
+ E

[
1{Y t,y,q∗

T ≥κ}

]
≤ 0.

By passing to the limite as e′ → e,

Ve(t, e, y) ≤ −E
[
1{Y t,y,q∗

T ≥κ}

]
.

For the other side inequality use e′ > e. 2

We next provide a sufficient condition for the existence of an optimal

production policy.

Proposition B.1. Let µ be deterministic, γ be constant and

e(t, q) := e1q + e0 and λ(t, q) := λ1q + λ0, q ≥ 0, (B.1)

where e0, λ0, e1, λ1 are nonnegative constants. Then the control problem

(A.1) has an optimal control q∗ in Q.

In particular, in this setting we have Ve(t, E
q∗

t , Y
q∗

t ) = −St.

Proof. If e1 = λ1 = 0, the result is trivial. Therefore we suppose that at

least one of them is non–zero. Notice that when µ and γ are deterministic,

one can write

Y q
t := Y 0

t +

∫ t

0
(βe(qs) + γλ(qs)) dt with Y 0

t := y +

∫ t

0
(µsds+ γWs).

By Girsanov theorem, we notice that, for every q ∈ Q, the random variable

Y q
T has a Gaussian distribution under the equivalent probability measure
dQ
dP := E

(
− (βe(qt) + γλqt + µt)γ

−1dWt

)
. Here E is the Doleans-Dade expo-

nential. Then, the distribution of Y q
T is absolutely continuous with respect

to the Lebesgue measure on [0, T ] for all q ∈ Q.

In other words, the distribution of Y q
T has no atoms, and the cumulative

distribution function of the random variable Y q
T is continuous.

Let (qn)n≥1 be a maximizing sequence of V0, i.e.

qn ∈ Q for all n ≥ 1 and J(qn) −→ V0.
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Step 1. Since the processes qn are uniformly bounded, we deduce from

weak convergence and Mazur’s lemma that, after possibly passing to a sub-

sequence, there exists a convex combination q̂n of (qj , j ≥ n) such that:

q̂n :=
∑
j≥n

λnj q
j −→ q∗ in L1(Ω× [0, T ]) and m⊗ P− a.s. (B.2)

where m is the Lebesgue measure on [0, T ]. Here λnj ≥ 0 and
∑

j≥n λ
n
j = 1.

Clearly q∗ ∈ Q. Since Y q is linear in q, this implies that

Ŷ n
T :=

∑
j≥n

λnj Y
qj

T −→ Y q∗

T , a.s. (B.3)

Step 2. By direct estimation and use of Hölder inequality, Y qn

T is tight

under P and therefore under any equivalent probability measure P̂ with

density in L2(P). Hence after passing to a subsequence, it should converge

in distribution to a FT random variable Y ∗T which must be equal to Y q∗

T ;

Y qn

T −→ Y q∗

T in distribution under P̂.

Since the convergence in distribution is equivalent to convergence of the cor-

responding cumulative density functions at all points of continuity, because

the probability distribution of Y q
T is absolutely continuous with respect to

Lebesgue measure, it follows that for any positive random variable Z with

E[Z] = 1 and E[Z2] <∞,

E
[
Z1{Y qn

T ≥κ}

]
= P̂

[
Y qn

T ≥ κ
]

−→ P̂
[
Y q∗

T ≥ κ
]

= E
[
Z1{Y q∗

T ≥κ}

]
. (B.4)

Step 3. Notice that because e and λ are affine, One can write:∫ T

0
e(qs)ds = δ

(
Y qj

T − Y
0
T − c

)
,

where δ := (βe1 + γλ1)−1 and c := βe0 + γλ0. By the concavity condition

(A.2), we see that:

∑
j≥n

λnj J
(
qj
)
≤ E

∫ T

0
π̃(t, q̂nt )dt− α

∑
j≥n

λnj 1{Y qj

T ≥κ}

∫ T

0
e(qjs)ds

 ,
= E

∫ T

0
π̃(t, q̂nt )dt− α

∑
j≥n

λnj δ
(
Y qj

T − Y
0
T − c

)
1
{Y qj

T ≥κ}


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Observe that Y qj

T − Y 0
T − c =

(
Y qj

T − κ
)+

+ Z+ − Z− on {Y qj

T ≥ κ} where

Z± := (Y 0
T + c− κ)± + 1.∑

j≥n
λnj J

(
qj
)
≤ E

[ ∫ T

0
π̃(t, q̂nt )dt− α

∑
j≥n

λnj δ
(
Y qj

T − κ
)+ ]

+αδ
∑
j≥n

λnj E
[
Z+1

{Y qj

T ≥κ}

]
− αδ

∑
j≥n

λnj E
[
Z−1

{Y qj

T ≥κ}

]
.

By the convexity of the function y 7−→ y+

∑
j≥n

λnj J
(
qj
)
≤ E

[ ∫ T

0
π̃(t, q̂nt )dt− αδ

(
Y q̂n

T − κ
)+ ]

+αδ
∑
j≥n

λnj E
[
Z+1

{Y qj

T ≥κ}

]

−αδ
∑
j≥n

λnj E
[
Z−1

{Y qj

T ≥κ}

]
,

Finally, by applying Step 2 successively to Z := Z+ and Z−, one can

write

V (t, e, y) = lim
n→∞

∑
j≥n

λnj J
(
qj
)
≤ E

[∫ T

0
π̃(t, q∗)dt− αY q∗

T 1{Y q∗
T ≥κ}

]
by dominated convergence. Since q∗ ∈ Q, we deduce that J(q∗) = V0. 2

Remark B.2. Proposition (B.1) is also valid if we replace Condition (B.1)

by λ(q) = a + be(q) and π̃(t, e−1(q)) is convex on q. The modification is

straightforward.
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