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Abstract

We prove a weak version of the dynamic programming principle for standard
stochastic control problems and mixed control-stopping problems, which avoids the
technical difficulties related to the measurable selection argument. In the Markov case,
our result is tailor-made for the derivation of the dynamic programming equation in
the sense of viscosity solutions.
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1 Introduction

Consider the standard class of stochastic control problems in the Mayer form

V (t, x) := sup
ν∈U

E [f(Xν
T )|Xν

t = x] ,

where U is the controls set, Xν is the controlled process, f is some given function, 0 < T ≤ ∞
is a given time horizon, t ∈ [0, T ) is the time origin, and x ∈ Rd is some given initial condition.

This framework includes the general class of stochastic control problems under the so-called

Bolza formulation, the corresponding singular versions, and optimal stopping problems.
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A key-tool for the analysis of such problems is the so-called dynamic programming principle

(DPP), which relates the time−t value function V (t, .) to any later time−τ value V (τ, .) for

any stopping time τ ∈ [t, T ) a.s. A formal statement of the DPP is:

′′V (t, x) = v(t, x) := sup
ν∈U

E [V (τ,Xν
τ )|Xν

t = x] .′′ (1.1)

In particular, this result is routinely used in the case of controlled Markov jump-diffusions in

order to derive the corresponding dynamic programming equation in the sense of viscosity

solutions, see Lions [9, 10], Fleming and Soner [7], Touzi [14], for the case of controlled

diffusions, and Oksendal and Sulem [11] for the case of Markov jump-diffusions.

The statement (1.1) of the DPP is very intuitive and can be easily proved in the deter-

ministic framework, or in discrete-time with finite probability space. However, its proof is

in general not trivial, and requires on the first stage that V be measurable.

When the value function V is known to be continuous, the abstract measurability argu-

ments are not needed and the proof of the dynamic programming principle is significantly

simplified. See e.g. Fleming and Soner [7], or Kabanov [8] in the context of a special singular

control problem in finance. Our objective is to reduce the proof to this simple context in a

general situation where the value function has no a priori regularity.

The inequality ”V ≤ v” is the easy one but still requires that V be measurable. Our

weak formulation avoids this issue. Namely, under fairly general conditions on the controls

set and the controlled process, it follows from an easy application of the tower property of

conditional expectations that

V (t, x) ≤ sup
ν∈U

E [V ∗(τ,Xν
τ )|Xν

t = x] ,

where V ∗ is the upper semicontinuous envelope of the function V .

The proof of the converse inequality ”V ≥ v” in a general probability space turns out to

be difficult when the function V is not known a priori to satisfy some continuity condition.

See e.g. Bertsekas and Shreve [2], Borkar [3], and El Karoui [6].

Our weak version of the DPP avoids the non-trivial measurable selection argument needed

to prove the inequality V ≥ v in (1.1). Namely, in the context of a general control problem

presented in Section 2, we show in Section 3 that:

V (t, x) ≥ supν∈U E [ϕ(τ, Xν
τ )|Xt = x]

for every upper-semicontinuous minorant ϕ of V.

We also show that an easy consequence of this result is that

V (t, x) ≥ sup
ν∈U

E
[
V∗(τ

ν
n , Xν

τν
n
)|Xt = x

]
,

where τ ν
n := τ ∧ inf {s > t : |Xν

s − x| > n}, and V∗ is the lower semicontinuous envelope of

V .
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This result is weaker than the classical DPP (1.1). However, in the controlled Markov jump-

diffusions case, it turns out to be tailor-made for the derivation of the dynamic programming

equation in the sense of viscosity solutions. Section 5 reports this derivation in the context

of controlled jump diffusions.

Finally, Section 4 provides an extension of our argument in order to obtain a weak dynamic

programming principle for mixed control-stopping problems.

2 The stochastic control problem

Let (Ω,F , P ) be a probability space, T > 0 a finite time horizon, and F := {Ft, 0 ≤ t ≤ T}
a given filtration of F , satisfying the usual assumptions. For every t ≥ 0, we denote by

Ft = (F t
s)s≥0 the right-continuous filtration where, for every s ≥ 0, F t

s is the σ−algebra of

events in Fs that are independent of Ft. In particular, for s ≤ t, F t
s is the trivial degenerate

σ−algebra.

We denote by T the collection of all F−stopping times. For τ1, τ2 ∈ T with τ1 ≤ τ2 a.s.,

the subset T[τ1,τ2] is the collection of all τ ∈ T such that τ ∈ [τ1, τ2] a.s. When τ1 = 0, we

simply write Tτ2 . We use the notations T t
[τ1,τ2] and T t

τ2
to denote the corresponding sets of

stopping times that are independent of Ft.

For τ ∈ T and a subset A of a finite dimensional space, we denote by L0
τ (A) the collection

of all Fτ−measurable random variables with values in A. H0(A) is the collection of all

F−progressively measurable processes with values in A, and H0
rcll(A) is the subset of all

processes in H0(A) which are right-continuous with finite left limits.

In the following, we denote by Br(z) (resp. ∂Br(z)) the open ball (resp. its boundary) of

radius r > 0 and center z ∈ R`, ` ∈ N.

Througout this note, we fix an integer d ∈ N, and we introduce the sets:

S := [0, T ]× Rd and S0 :=
{
(τ, ξ) : τ ∈ TT and ξ ∈ L0

τ (Rd)
}

.

We also denote by USC(S) (resp. LSC(S)) the collection of all upper-semicontinuous (resp.

lower-semicontinuous) functions from S to R.

The set of control processes is a given subset U0 of H0(Rk), for some integer k ≥ 1, so that

the controlled state process defined as the mapping:

(τ, ξ; ν) ∈ S × U0 7−→ Xν
τ,ξ ∈ H0

rcll(Rd) for some S with S ⊂ S ⊂ S0

is well-defined and satisfies:(
θ,Xν

τ,ξ(θ)
)
∈ S for all (τ, ξ) ∈ S and θ ∈ T[τ,T ].

A suitable choice of the set S in the case of jump-diffusion processes driven by Brownian

motion is given in Section 5 below.
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Given a Borel function f : Rd −→ R and (t, x) ∈ S, we introduce the reward function

J : S× U −→ R:

J(t, x; ν) := E
[
f
(
Xν

t,x(T )
)]

(2.1)

which is well-defined for controls ν in

U :=
{

ν ∈ U0 : E
[
|f(Xν

t,x(T ))|
]

< ∞, ∀ (t, x) ∈ S
}

. (2.2)

We say that a control ν ∈ U is t-admissible if it is independent of Ft, and we denote by Ut

the collection of such processes. The stochastic control problem is defined by:

V (t, x) := sup
ν∈Ut

J(t, x; ν) for (t, x) ∈ S. (2.3)

Remark 2.1 The restriction to control processes independent on Ft in the definition of

V (t, ·) is natural and consistent with the case where t = 0, since F0 is assumed to be trivial,

and is actually commonly used, compare with e.g. [15]. It will be technically important

in the proof of the inequality (3.2) of Theorem 3.1. When the filtration is generated by a

process with independent increments, it is moreover not restrictive as we will show in the

context of SDEs driven by a Brownian motion and a compound Poisson process in Remark

5.2 below.

3 Dynamic programming for stochastic control prob-

lems

For the purpose of our weak dynamic programming principle, the following assumptions are

crucial.

Assumption A For all (t, x) ∈ S and ν ∈ Ut, the controlled state process satisfies:

A1 (Independence) The process Xν
t,x is independent of Ft.

A2 (Causality) For ν̃ ∈ Ut, τ ∈ T t
[t,T ] and A ∈ F t

τ , if ν = ν̃ on [t, τ ] and ν1A = ν̃1A on

(τ, T ], then Xν
t,x1A = X ν̃

t,x1A.

A3 (Stability under concatenation) For every ν̃ ∈ Ut, and θ ∈ T t
[t,T ]:

ν1[0,θ] + ν̃1(θ,T ] ∈ Ut .

A4 (Consistency with deterministic initial data) For all θ ∈ T t
[t,T ], we have:
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a. For P-a.e ω ∈ Ω, there exists ν̃ω ∈ Uθ(ω) such that

E
[
f
(
Xν

t,x(T )
)
|Fθ

]
(ω) ≤ J(θ(ω), Xν

t,x(θ)(ω); ν̃ω).

b. For t ≤ s ≤ T , θ ∈ T t
[t,s], ν̃ ∈ Us, and ν̄ := ν1[0,θ] + ν̃1(θ,T ], we have:

E
[
f
(
X ν̄

t,x(T )
)
|Fθ

]
(ω) = J(θ(ω), Xν

t,x(θ)(ω); ν̃) for P− a.e. ω ∈ Ω.

Remark 3.1 Assumption A2 above means that the process Xν
t,x is defined (caused) by the

control ν pathwise.

Remark 3.2 In Section 5 below, we show that Assumption A4-a holds with equality in

the jump-diffusion setting. Although we have no example of a control problem where the

equality does not hold, we keep Assumption A4-a under this form because the proof only

needs this requirement.

Remark 3.3 Assumption A3 above implies the following property of the controls set which

will be needed later:

A5 (Stability under bifurcation) For ν1, ν2 ∈ Ut, τ ∈ T t
[t,T ] and A ∈ F t

τ , we have:

ν̄ := ν11[0,τ ] + (ν11A + ν21Ac)1(τ,T ] ∈ Ut.

To see this, observe that τA := T1A + τ1Ac is a stopping time in T t
[t,T ], and ν̄ = ν11[0,τA] +

ν21(τA,T ] is the concatenation of ν1 and ν2 at the stopping time τA.

Iterating the above property, we see that for 0 ≤ t ≤ s ≤ T and τ ∈ T t
[t,T ], we have the

following extension: for a finite sequence (ν1, . . . , νn) of controls in Ut with νi = ν1 on [0, τ ],

and for a partion (Ai)1≤i≤n of Ω with Ai ∈ F t
τ for every i ≤ n:

ν̄ := ν11[0,τ ] + 1(τ,T ]

n∑
i=1

νi1Ai
∈ Ut.

Our main result is the following weak version of the dynamic programming principle which

uses the following notation:

V∗(t, x) := lim inf
(t′,x′)→(t,x)

V (t′, x′), V ∗(t, x) := lim sup
(t′,x′)→(t,x)

V (t′, x′), (t, x) ∈ S.

Theorem 3.1 Let Assumptions A hold true. Then for every (t, x) ∈ S, and for every family

of stopping times {θν , ν ∈ Ut} ⊂ T t
[t,T ], we have

V (t, x) ≤ sup
ν∈Ut

E
[
V ∗(θν , Xν

t,x(θ
ν))
]
. (3.1)

Assume further that J(.; ν) ∈ LSC(S) for every ν ∈ U0. Then, for any function ϕ : S −→ R:

ϕ ∈ USC(S) and V ≥ ϕ =⇒ V (t, x) ≥ sup
ν∈Uϕ

t

E
[
ϕ(θν , Xν

t,x(θ
ν))
]
, (3.2)

where Uϕ
t =

{
ν ∈ Ut : E

[
ϕ(θν , Xν

t,x(θ
ν))+

]
< ∞ or E

[
ϕ(θν , Xν

t,x(θ
ν))−

]
< ∞

}
.
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Before proceeding to the proof of this result, we report the following consequence.

Corollary 3.1 Let the conditions of Theorem 3.1 hold, and assume V∗ > −∞. For (t, x) ∈
S, let {θν , ν ∈ Ut} ⊂ T t

[t,T ] be a family of stopping times such that Xν
t,x1[t,θν ] is L∞−bounded

for all ν ∈ Ut. Then,

sup
ν∈Ut

E
[
V∗(θ

ν , Xν
t,x(θ

ν))
]
≤ V (t, x) ≤ sup

ν∈Ut

E
[
V ∗(θν , Xν

t,x(θ
ν))
]
. (3.3)

Proof The right-hand side inequality is already provided in Theorem 3.1. Fix r > 0. It

follows from standard arguments, see e.g. Lemma 3.5 in [12], that we can find a sequence of

continuous functions (ϕn)n such that ϕn ≤ V∗ ≤ V for all n ≥ 1 and such that ϕn converges

pointwise to V∗ on [0, T ] × Br(0). Set φN := minn≥N ϕn for N ≥ 1 and observe that the

sequence (φN)N is non-decreasing and converges pointwise to V∗ on [0, T ]×Br(0). Applying

(3.2) of Theorem 3.1 and using the monotone convergence Theorem, we then obtain:

V (t, x) ≥ lim
N→∞

E
[
φN(θν , Xν

t,x(θ
ν))
]

= E
[
V∗(θ

ν , Xν
t,x(θ

ν))
]
.

2

Remark 3.4 Notice that the value function V (t, x) is defined by means of Ut as the set

of controls. Because of this, the lower semicontinuity of J(., ν) required in the second part

of Theorem 3.1 does not imply that V is lower semicontinuous. See however Remark 5.3

below.

Proof of Theorem 3.1 1. Let ν ∈ Ut be arbitrary and set θ := θν . The first assertion

is a direct consequence of Assumption A4-a. Indeed, it implies that, for P-almost all ω ∈ Ω,

there exists ν̃ω ∈ Uθ(ω) such that

E
[
f
(
Xν

t,x(T )
)
|Fθ

]
(ω) ≤ J(θ(ω), Xν

t,x(θ)(ω); ν̃ω) .

Since, by definition, J(θ(ω), Xν
t,x(θ)(ω); ν̃ω) ≤ V ∗(θ(ω), Xν

t,x(θ)(ω)), it follows from the tower

property of conditional expectations that

E
[
f
(
Xν

t,x(T )
)]

= E
[
E
[
f
(
Xν

t,x(T )
)
|Fθ

]]
≤ E

[
V ∗ (θ, Xν

t,x(θ)
)]

.

2. Let ε > 0 be given. Then there is a family (ν(s,y),ε)(s,y)∈S ⊂ U0 such that:

ν(s,y),ε ∈ Us and J(s, y; ν(s,y),ε) ≥ V (s, y)− ε, for every (s, y) ∈ S. (3.4)

By the lower-semicontinuity of (t′, x′) 7→ J(t′, x′; ν(s,y),ε), for fixed (s, y) ∈ S, together with

the upper-semicontinuity of ϕ, we may find a family (r(s,y))(s,y)∈S of positive scalars so that,

for any (s, y) ∈ S,

ϕ(s, y)− ϕ(t′, x′) ≥ −ε and J(s, y; ν(s,y),ε)− J(t′, x′; ν(s,y),ε) ≤ ε for (t′, x′) ∈ B(s, y; r(s,y)),

(3.5)

6



where, for r > 0 and (s, y) ∈ S,

B(s, y; r) := {(t′, x′) ∈ S : t′ ∈ (s− r, s), |x′ − y| < r} .

Clearly, {B(s, y; r) : (s, y) ∈ S, 0 < r ≤ r(s,y)} forms an open covering of [0, T ) × Rd. It

then follows from the Lindelöf covering Theorem, see e.g. [13] Theorem 6.3 Chap. VIII, that

we can find a countable sequence (ti, xi, ri)i≥1 of elements of S×R, with 0 < ri ≤ r(ti,xi) for

all i ≥ 1, such that S ⊂ {T} × Rd ∪ (∪i≥1B(ti, xi; ri)). Set A0 := {T} × Rd, C−1 := ∅, and

define the sequence

Ai+1 := B(ti+1, xi+1; ri+1) \ Ci where Ci := Ci−1 ∪ Ai, i ≥ 0.

With this construction, it follows from (3.4), (3.5), together with the fact that V ≥ ϕ, that

the countable family (Ai)i≥0 satisfies

(θ,Xν
t,x(θ)) ∈ ∪i≥0Ai P−a.s., Ai∩Aj = ∅ for i 6= j ∈ N, and J(·; νi,ε) ≥ ϕ−3ε on Ai for i ≥ 1,

(3.6)

where νi,ε := ν(ti,xi),ε for i ≥ 1.

3. We now prove (3.2). We fix ν ∈ Ut and θ ∈ T t
[t,T ]. Set An := ∪0≤i≤nAi, n ≥ 1. Given

ν ∈ Ut, we define

νε,n
s := 1[t,θ](s)νs + 1(θ,T ](s)

(
νs1(An)c(θ,Xν

t,x(θ)) +
n∑

i=1

1Ai
(θ,Xν

t,x(θ))ν
i,ε
s

)
, for s ∈ [t, T ].

Notice that {(θ,Xν
t,x(θ)) ∈ Ai} ∈ F t

θ as a consequence of the independence Assumption A1.

Then, it follows from the stability under concatenation Assumption A3 and Remark 3.3 that

νε,n ∈ Ut. Then, using Assumptions A4-b, A2, and (3.6), we deduce that:

E
[
f
(
Xνε,n

t,x (T )
)
|Fθ

]
1An

(
θ,Xν

t,x(θ)
)

= V
(
T,Xνε,n

t,x (T )
)
1A0

(
θ, Xν

t,x(θ)
)

+
n∑

i=1

J(θ,Xν
t,x(θ); ν

i,ε)1Ai

(
θ,Xν

t,x(θ)
)

≥
n∑

i=0

(
ϕ(θ, Xν

t,x(θ))− 3ε
)
1Ai

(
θ, Xν

t,x(θ)
)

=
(
ϕ(θ, Xν

t,x(θ))− 3ε
)
1An

(
θ, Xν

t,x(θ)
)
,

which, by definition of V and the tower property of conditional expectations, implies

V (t, x) ≥ J(t, x; νε,n)

= E
[
E
[
f
(
Xνε,n

t,x (T )
)
|Fθ

]]
≥ E

[(
ϕ
(
θ, Xν

t,x(θ)
)
− 3ε

)
1An

(
θ, Xν

t,x(θ)
)]

+ E
[
f
(
Xν

t,x(T )
)
1(An)c

(
θ, Xν

t,x(θ)
)]

.
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Since f
(
Xν

t,x(T )
)
∈ L1, it follows from the dominated convergence theorem that:

V (t, x) ≥ −3ε + lim inf
n→∞

E
[
ϕ(θ,Xν

t,x(θ))1An

(
θ,Xν

t,x(θ)
)]

= −3ε + lim
n→∞

E
[
ϕ(θ, Xν

t,x(θ))
+1An

(
θ,Xν

t,x(θ)
)]

− lim
n→∞

E
[
ϕ(θ, Xν

t,x(θ))
−1An

(
θ,Xν

t,x(θ)
)]

= −3ε + E
[
ϕ(θ,Xν

t,x(θ))
]
,

where the last equality follows from the left-hand side of (3.6) and from the monotone conver-

gence theorem, due to the fact that either E
[
ϕ(θ,Xν

t,x(θ))
+
]

< ∞ or E
[
ϕ(θ,Xν

t,x(θ))
−] < ∞.

The proof of (3.2) is completed by the arbitrariness of ν ∈ Ut and ε > 0. 2

Remark 3.5 (Lower-semicontinuity condition I) It is clear from the above proof that it

suffices to prove the lower-semicontinuity of (t, x) 7→ J(t, x; ν) for ν in a subset Ũ0 of U0 such

that supν∈Ũt
J(t, x; ν) = V (t, x). Here Ũt is the subset of Ũ0 whose elements are independent

of Ft. In most applications, this allows to reduce to the case where the controls are essentially

bounded or satisfy a strong integrability condition.

Remark 3.6 (Lower-semicontinuity condition II) In the above proof, the lower-semicontinuity

assumption is only used to construct the balls Bi on which J(ti, xi; ν
i,ε) − J(·; νi,ε) ≤ ε.

Clearly, it can be alleviated, and it suffices that the lower-semicontinuity holds in time from

the left, i.e.

lim inf
(t′,x′)→(ti,xi), t′≤ti

J(t′, x′; νi,ε) ≥ J(ti, xi; ν
i,ε).

Remark 3.7 (The Bolza and Lagrange formulations) Consider the stochastic control prob-

lem under the so-called Lagrange formulation:

V (t, x) := sup
ν∈Ut

E
[∫ T

t

Y ν
t,x,1(s)g

(
s, Xν

t,x(s), νs

)
ds + Y ν

t,x,1(T )f
(
Xν

t,x(T )
)]

,

where

dY ν
t,x,y(s) = −Y ν

t,x,y(s)k
(
s, Xν

t,x(s), νs

)
ds , Y ν

t,x,y(t) = y > 0 .

Then, it is well known that this problem can be converted into the Mayer formulation (2.3)

by augmenting the state process to (X,Y, Z), where

dZν
t,x,y,z(s) = Y ν

t,x,y(s)g
(
s, Xν

t,x(s), νs

)
ds , Zν

t,x,y,z(t) = z ∈ R ,

and considering the value function

V̄ (t, x, y, z) := sup
ν∈Ut

E
[
Zν

t,x,y,z(T ) + Y ν
t,x,y(T )f

(
Xν

t,x(T )
)]

= yV (t, x) + z .
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In particular, V (t, x) = V̄ (t, x, 1, 0). The first assertion of Theorem 3.1 implies

V (t, x) ≤ sup
ν∈Ut

E
[
Y ν

t,x,1(θ
ν)V (θν , Xν

t,x(θ
ν)) +

∫ θν

t

Y ν
t,x,1(s)g

(
s, Xν

t,x(s), νs

)
ds

]
. (3.7)

Given a upper-semicontinuous minorant ϕ of V , the function ϕ̄ defined by ϕ̄(t, x, y, z) :=

yϕ(t, x)+z is an upper-semicontinuous minorant of V̄ . From the second assertion of Theorem

3.1, we see that for a family {θν , ν ∈ Ut} ⊂ T t
[t,T ],

V (t, x) ≥ sup
ν∈U ϕ̄

t

E
[
ϕ̄
(
θν , Xν

t,x(θ
ν), Y ν

t,x,1(θ
ν), Zν

t,x,1,0(θ
ν)
)]

= sup
ν∈U ϕ̄

t

E
[
Y ν

t,x,1(θ
ν)ϕ(θν , Xν

t,x(θ
ν)) +

∫ θν

t

Y ν
t,x,1(s)g

(
s, Xν

t,x(s), νs

)
ds

]
. (3.8)

Remark 3.8 (Infinite Horizon) Infinite horizon problems can be handled similarly. Follow-

ing the notations of the previous Remark 3.7, we introduce the infinite horizon stochastic

control problem:

V ∞(t, x) := sup
ν∈Ut

E
[∫ ∞

t

Y ν
t,x,1(s)g

(
s, Xν

t,x(s), νs

)
ds

]
.

Then, it is immediately seen that V ∞ satisfies the weak dynamic programming principle

(3.7)-(3.8).

4 Dynamic programming for mixed control-stopping

problems

In this section, we provide a direct extension of the dynamics programming principle of

Theorem 3.1 to the larger class of mixed control and stopping problems.

In the context of the previous section, we consider a Borel function f : Rd −→ R, and we

assume |f | ≤ f̄ for some continuous function f̄ . For (t, x) ∈ S the reward J̄ : S×Ū×T[t,T ] −→
R:

J̄(t, x; ν, τ) := E
[
f
(
Xν

t,x(τ)
)]

, (4.1)

which is well-defined for every control ν in

Ū :=
{

ν ∈ U0 : E
[

sup
t≤s≤T

f̄(Xν
t,x(s))

]
< ∞ ∀ (t, x) ∈ S

}
.

The mixed control-stopping problem is defined by:

V̄ (t, x) := sup
(ν,τ)∈Ūt×T t

[t,T ]

J̄(t, x; ν, τ) , (4.2)
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where Ūt is the subset of elements of Ū that are independent of Ft.

The key ingredient for the proof of (4.6) is the following property of the set of stopping

times TT :

For all θ, τ1 ∈ T t
T and τ2 ∈ T t

[θ,T ], we have τ11{τ1<θ} + τ21{τ1≥θ} ∈ T t
T . (4.3)

In order to extend the result of Theorem 3.1, we shall assume that the following version of

A4 holds:

Assumption A4’ For all (t, x) ∈ S, (ν, τ) ∈ Ūt × T t
[t,T ] and θ ∈ T t

[t,T ], we have:

a. For P-a.e ω ∈ Ω, there exists (ν̃ω, τ̃ω) ∈ Ūθ(ω) × T θ(ω)
[θ(ω),T ] such that

1{τ≥θ}(ω)E
[
f
(
Xν

t,x(τ)
)
|Fθ

]
(ω) ≤ 1{τ≥θ}(ω)J

(
θ(ω), Xν

t,x(θ)(ω); ν̃ω, τ̃ω

)
b. For t ≤ s ≤ T , θ ∈ T t

[t,s], (ν̃, τ̃) ∈ Ūs × T s
[s,T ], τ̄ := τ1{τ<θ} + τ̃1{τ≥θ}, and ν̄ :=

ν1[0,θ] + ν̃1(θ,T ], we have for P−a.e. ω ∈ Ω:

1{τ≥θ}(ω)E
[
f
(
X ν̄

t,x(τ̄)
)
|Fθ

]
(ω) = 1{τ≥θ}(ω)J(θ(ω), Xν

t,x(θ)(ω); ν̃, τ̃).

Theorem 4.1 Let Assumptions A1, A2, A3 and A4’ hold true. Then for every (t, x) ∈ S,

and for all family of stopping times {θν , ν ∈ Ūt} ⊂ T t
[t,T ]:

V̄ (t, x) ≤ sup
(ν,τ)∈Ūt×T t

[t,T ]

E
[
1{τ<θν}f(Xν

t,x(τ)) + 1{τ≥θν}V̄
∗(θν , Xν

t,x(θ
ν))
]
. (4.4)

Assume further that the map (t, x) 7−→ J̄(t, x; ν, τ) satisfies the following lower-semicontinuity

property

lim inf
t′↑t,x′→x

J̄(t′, x′; ν, τ) ≥ J̄(t, x; ν, τ) for every (t, x) ∈ S and (ν, τ) ∈ Ū × T . (4.5)

Then, for any function ϕ ∈ USC(S) with V̄ ≥ ϕ:

V̄ (t, x) ≥ sup
(ν,τ)∈Ūϕ

t ×T t
[t,T ]

E
[
1{τ<θν}f(Xν

t,x(τ)) + 1{τ≥θν}ϕ(θν , Xν
t,x(θ

ν))
]
, (4.6)

where Ūϕ
t =

{
ν ∈ Ūt : E

[
ϕ(θν , Xν

t,x(θ
ν))+

]
< ∞ or E

[
ϕ(θν , Xν

t,x(θ
ν))−

]
< ∞

}
.

For simplicity, we only provide the proof of Theorem 4.1 for optimal stopping problems,

i.e. in the case where Ū is reduced to a singleton. The dynamic programming principle for

mixed control-stopping problems is easily proved by combining the arguments below with

those of the proof of Theorem 3.1.
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Proof (for optimal stopping problems) We omit the control ν from all notations, thus

simply writing Xt,x(·) and J̄(t, x; τ). Inequality (4.4) follows immediately from the tower

property together with Assumptions A4’-a, recall that J̄ ≤ V̄ ∗.

We next prove (4.6). Arguying as in Step 2 of the proof of Theorem 3.1, we first observe

that, for every ε > 0, we can find a countable family Āi ⊂ (ti − ri, ti] × Ai ⊂ S, together

with a sequence of stopping times τ i,ε in T ti
[ti,T ], i ≥ 1, satisfying Ā0 = {T} × Rd and

∪i≥0Āi = S, Āi ∩ Āj = ∅ for i 6= j ∈ N, and J̄(·; τ i,ε) ≥ ϕ− 3ε on Āi for i ≥ 1 .(4.7)

Set Ān := ∪i≤nĀi, n ≥ 1. Given two stopping times θ, τ ∈ T t
[t,T ], it follows from (4.3) (and

Assumption A1 in the general mixed control case) that

τn,ε := τ1{τ<θ} + 1{τ≥θ}

(
T1(Ān)c (θ,Xt,x(θ)) +

n∑
i=1

τ i,ε1Āi
(θ,Xt,x(θ))

)

is a stopping time in T t
[t,T ]. We then deduce from the tower property together with Assump-

tions A4’-b and (4.7) that

V̄ (t, x) ≥ J̄(t, x; τn,ε)

≥ E
[
f
(
Xν

t,x(τ)
)
1{τ<θ} + 1{τ≥θ} (ϕ(θ, Xt,x(θ))− 3ε)1Ān(θ,Xt,x(θ))

]
+E

[
1{τ≥θ}f(Xt,x(T ))1(Ān)c(θ, Xt,x(θ))

]
.

By sending n →∞ and arguing as in the end of the proof of Theorem 3.1, we deduce that

V̄ (t, x) ≥ E
[
f (Xt,x(τ))1{τ<θ} + 1{τ≥θ}ϕ(θ, Xt,x(θ))

]
− 3ε,

and the result follows from the arbitrariness of ε > 0 and τ ∈ T[t,T ]. 2

5 Application to controlled Markov jump-diffusions

In this section, we show how the weak DPP of Theorem 3.1 allows to derive the correponding

dynamic programming equation in the sense of viscosity solutions. We refer to Crandal, Ishii

and Lions [5] and Fleming and Soner [7] for a presentation of the general theory of viscosity

solutions.

For simplicity, we specialize the discussion to the context of controlled Markov jump-

diffusions driven by a Brownian motion and a compound Poisson process. The same tech-

nology can be adapted to optimal stopping and impulse control or mixed problems, see e.g.

[4].
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5.1 Problem formulation and verification of Assumption A

We shall work on the product space Ω := ΩW × ΩN where ΩW is the set of continuous

functions from [0, T ] into Rd, and ΩN is the set of integer-valued measures on [0, T ] × E

with E := Rm for some m ≥ 1. For ω = (ω1, ω2) ∈ Ω, we set W (ω) = ω1 and N(ω) = ω2

and define FW = (FW
t )t≤T (resp. FN = (FN

t )t≤T ) as the smallest right-continuous filtration

on ΩW (resp. ΩN) such that W (resp. N) is optional. We let PW be the Wiener measure

on (ΩW ,FW
T ) and PN be the measure on (ΩN ,FN

T ) under which N is a compound Poisson

measure with intensity Ñ(de, dt) = λ(de)dt, for some finite measure λ on E, endowed with

its Borel tribe E . We then define the probability measure P := PW ⊗ PN on (Ω,FW
T ⊗FN

T ).

With this construction, W and N are independent under P. Without loss of generality, we

can assume that the natural right-continuous filtration F = (Ft)t≤T induced by (W, N) is

complete. In the following, we shall slightly abuse notations and sometimes write Nt(·) for

N(·, (0, t]) for simplicity.

We let U be a closed subset of Rk, k ≥ 1, and µ : S× U −→ Rd and σ : S× U −→ Md

be two Lipschitz continuous functions, and β : S × U × E −→ Rd a measurable function,

Lipschitz-continuous with linear growth in (t, x, u) uniformly in e ∈ E. Here Md denotes

the set of d-dimensional square matrices.

By U0, we denote the collection of all square integrable predictable processes with values

U . For every ν ∈ U0, the stochastic differential equation:

dX(r) = µ (r, X(r), νr) dr + σ (r, X(r), νr) dWr +

∫
E

β(r, X(r−), νr, e)N(de, dr), t ≤ r ≤ T,

(5.1)

has a unique strong solution Xν
τ,ξ satisfying Xν

τ,ξ(τ) = ξ, for any initial condition (τ, ξ) ∈
S := {(τ, ξ) ∈ S0 : E [|ξ|2] < ∞}, satisfying

E
[

sup
τ≤r≤T

|Xν
τ,ξ(r)|2

]
< C(1 + E

[
|ξ|2
]
), (5.2)

for some constant C which may depend on ν.

Remark 5.1 Clearly, less restrictive conditions could be imposed on β and N . We delib-

erately restrict here to this simple case, in order to avoid standard technicalities related to

the definition of viscosity solutions for integro-differential operators, see e.g. [1] and the

references therein.

From the independence of the increments of the Brownian motion and the compound

Poisson measure, it follows that, for 0 ≤ t ≤ s, the σ−algebra F t
s is generated by {Wr −

Wt, Nr − Nt : t ≤ r ≤ s}. The following remark shows that in the present case, it is not

necessary to restrict the control processes ν to Ut in the definition of the value function

V (t, x).
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Remark 5.2 Let Ṽ be defined by

Ṽ (t, x) := sup
ν∈U

E
[
f(Xν

t,x(T ))
]
.

The difference between Ṽ (t, ·) and V (t, ·) comes from the fact that all controls in U are

considered in the former, while we restrict to controls independent of Ft in the latter. We

claim that

Ṽ = V ,

so that both problems are indeed equivalent. Clearly, Ṽ ≥ V . To see that the converse

holds true, fix (t, x) ∈ [0, T ) × Rd and ν ∈ U . Then, ν can be written as a measurable

function of the canonical process ν((ωs)0≤s≤t, (ωs−ωt)t≤s≤T ), where, for fixed (ωs)0≤s≤t, the

map ν(ωs)0≤s≤t
: (ωs − ωt)t≤s≤T 7→ ν((ωs)0≤s≤t, (ωs − ωt)t≤s≤T ) can be viewed as a control

independent on Ft. Using the independence of the increments of the Brownian motion and

the compound Poisson process, and Fubini’s Lemma, it thus follows that

J(t, x; ν) =

∫
E
[
f(X

ν(ωs)0≤s≤t

t,x (T ))
]
dP((ωs)0≤s≤t) ≤

∫
V (t, x)dP((ωs)0≤s≤t)

where the latter equals V (t, x). By arbitrariness of ν ∈ U , this implies that Ṽ (t, x) ≤ V (t, x).

Remark 5.3 By the previous remark, it follows that the value function V inherits the

lower semicontinuity of the performance criterion required in the second part of Theorem

3.1, compare with Remark 3.4. This simplification is specific to the simple stochastic control

problem considered in this section, and may not hold in other control problems, see e.g. [4].

Consequently, we shall deliberately ignore the lower semicontinuity of V in the subsequent

analysis in order to show how to derive the dynamic programming equation in a general

setting.

Let f : Rd −→ R be a lower semicontinuous function with linear growth, and define the

performance criterion J by (2.1). Then, it follows that U = U0 and, from (5.2) and the

almost sure continuity of (t, x) 7→ Xν
t,x(T ), that J(., ν) is lower semicontinuous, as required

in the second part of Theorem 3.1.

The value function V is defined by (2.3). Various types of conditions can be formulated in

order to guarantee that V is locally bounded. For instance, if f is bounded from above, this

condition is trivially satisfied. Alternatively, one may restrict the set U to be bounded, so

that the linear growth of f implies corresponding bounds for V . We do not want to impose

such a constraint because we would like to highlight the fact that our methodology applies

to general singular control problems. We then leave this issue as a condition which is to be

checked by specific arguments to the case in hand.
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Proposition 5.1 In the above controlled diffusion context, assume further that V is locally

bounded. Then, the value function V satisfies the weak dynamic programming principle

(3.1)-(3.2).

Proof Conditions A1, A2 and A3 from Assumption A are obviously satisfied in the present

context. It remains to check that A4 holds true. For ω ∈ Ω and r ≥ 0, we denote ωr
· := ω.∧r

and Tr(ω)(·) := ω·∨r − ωr so that ω· = ωr
· + Tr(ω)(·). Fix (t, x) ∈ S, ν ∈ Ut, θ ∈ T t

[t,T ], and

observe that, by the flow property,

E
[
f
(
Xν

t,x(T )
)
|Fθ

]
(ω) =

∫
f
(
X

ν(ωθ(ω)+Tθ(ω)(ω))

θ(ω),Xν
t,x(θ)(ω) (T )(Tθ(ω)(ω))

)
dP(Tθ(ω)(ω))

=

∫
f
(
X

ν(ωθ(ω)+Tθ(ω)(ω̃))

θ(ω),Xν
t,x(θ)(ω) (T )(Tθ(ω)(ω̃))

)
dP(ω̃)

= J(θ(ω), Xν
t,x(θ)(ω); ν̃ω)

where, ν̃ω(ω̃) := ν(ωθ(ω) +Tθ(ω)(ω̃)) is an element of Uθ(ω). This already proves A4-a. As for

A4-b, note that if ν̄ := ν1[0,θ]+ ν̃1(θ,T ] with ν̃ ∈ Us and θ ∈ T t
[t,s], then the same computations

imply

E
[
f
(
X ν̄

t,x(T )
)
|Fθ

]
(ω) =

∫
f
(
X

ν̃(ωθ(ω)+Tθ(ω)(ω̃))

θ(ω),Xν
t,x(θ)(ω) (T )(Tθ(ω)(ω̃))

)
dP(ω̃),

where we used the flow property together with the fact that Xν
t,x = X ν̄

t,x on [t, θ] and that

the dynamics of X ν̄
t,x depends only on ν̃ after θ. Now observe that ν̃ is independent of Fs

and therefore on ωθ(ω) since θ ≤ s P− a.s. It follows that

E
[
f
(
X ν̄

t,x(T )
)
|Fθ

]
(ω) =

∫
f
(
X

ν̃(Ts(ω̃))
θ(ω),Xν

t,x(θ)(ω)(T )(Tθ(ω)(ω̃))
)

dP(ω̃)

= J(θ(ω), Xν
t,x(θ)(ω); ν̃) .

2

Remark 5.4 It can be similarly proved that A4’ holds true, in the context of mixed control-

stopping problems.

5.2 PDE derivation

We can now show how our weak formulation of the dynamic programming principle allows to

characterize the value function as a discontinuous viscosity solution of a suitable Hamilton-

Jacobi-Bellman equation.

Let C0 denote the set of continuous maps on [0, T ] × Rd endowed with the topology of

uniform convergence on compact sets. To (t, x, p, A, ϕ) ∈ [0, T ] × Rd × Rd × Md × C0, we

associate the Hamiltonian of the control problem:

H(t, x, p, A, ϕ) := inf
u∈U

Hu(t, x, p, A, ϕ),
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where, for u ∈ U ,

Hu(t, x, p, A, ϕ) := −〈µ(t, x, u), p〉 − 1

2
Tr [(σσ′)(t, x, u)A]

−
∫

E

(ϕ(t, x + β(t, x, u, e))− ϕ(t, x)) λ(de),

and σ′ is the transpose of the matrix σ.

Notice that the operator H is upper-semicontinuous, as an infimum over a family of contin-

uous maps (note that β is locally bounded uniformly with respect to its last argument and

that λ is finite, by assumption). However, since the set U may be unbounded, it may fail to

be continuous. We therefore introduce the corresponding lower-semicontinuous envelope:

H∗(z) := lim inf
z′→z

H(z′) for z = (t, x, p, A, ϕ) ∈ S× Rd ×Md × C0.

Corollary 5.1 Assume that V is locally bounded. Then:

(i) V ∗ is a viscosity subsolution of

−∂tV
∗ + H∗(., DV ∗, D2V ∗, V ∗) ≤ 0 on [0, T )× Rd.

(ii) V∗ is a viscosity supersolution of

−∂tV∗ + H(., DV∗, D
2V∗, V∗) ≥ 0 on [0, T )× Rd.

Proof 1. We start with the supersolution property. Assume to the contrary that there

is (t0, x0) ∈ [0, T )× Rd together with a smooth function ϕ : [0, T )× Rd −→ R satisfying

0 = (V∗ − ϕ)(t0, x0) < (V∗ − ϕ)(t, x) for all (t, x) ∈ [0, T )× Rd, (t, x) 6= (t0, x0),

such that (
−∂tϕ + H(., Dϕ, D2ϕ, ϕ)

)
(t0, x0) < 0. (5.3)

For ε > 0, let φ be defined by

φ(t, x) := ϕ(t, x)− ε(|t− t0|2 + |x− x0|4),

and note that φ converges uniformly on compact sets to ϕ as ε → 0. Since H is upper-

semicontinuous and (φ, ∂tφ,Dφ, D2φ)(t0, x0) = (ϕ, ∂tϕ, Dϕ,D2ϕ)(t0, x0), we can choose ε >

0 small enough so that there exist u ∈ U and r > 0, with t0 + r < T , satisfying(
−∂tφ + Hu(., Dφ, D2φ, φ)

)
(t, x) < 0 for all (t, x) ∈ Br(t0, x0). (5.4)

Let (tn, xn)n be a sequence in Br(t0, x0) such that (tn, xn, V (tn, xn)) → (t0, x0, V∗(t0, x0)),

and let Xn
· := Xu

tn,xn
(·) denote the solution of (5.1) with constant control ν = u and initial

condition Xn
tn = xn, and consider the stopping time

θn := inf {s ≥ tn : (s, Xn
s ) /∈ Br(t0, x0)} .
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Note that θn < T since t0 + r < T . Applying Itô’s formula to φ(·, Xn), and using (5.4) and

(5.2), we see that

φ(tn, xn) = E
[
φ(θn, X

n
θn

)−
∫ θn

tn

[
∂tφ−Hu(., Dφ, D2φ, φ)

]
(s, Xn

s )ds

]
≤ E

[
φ(θn, X

n
θn

)
]
.

Now observe that ϕ ≥ φ + η on ([0, T ]× Rd) \ Br(t0, x0) for some η > 0. Hence, the above

inequality implies that φ(tn, xn) ≤ E
[
ϕ(θn, X

n
θn

)
]
− η. Since (φ − V )(tn, xn) → 0, we can

then find n large enough so that

V (tn, xn) ≤ E
[
ϕ(θn, X

n
θn

)
]
− η/2 for sufficiently large n ≥ 1.

On the other hand, it follows from (3.2) that:

V (tn, xn) ≥ sup
ν∈Utn

E
[
ϕ(θn, X

ν
tn,xn

(θn))
]

≥ E
[
ϕ(θn, X

n
θn

)
]
,

which is the required contradiction.

2. We now prove the subsolution property. Assume to the contrary that there is (t0, x0) ∈
[0, T )× Rd together with a smooth function ϕ : [0, T )× Rd −→ R satisfying

0 = (V ∗ − ϕ)(t0, x0) > (V ∗ − ϕ)(t, x) for all (t, x) ∈ [0, T )× Rd, (t, x) 6= (t0, x0),

such that (
−∂tϕ + H∗(., Dϕ, D2ϕ, ϕ)

)
(t0, x0) > 0. (5.5)

For ε > 0, let φ be defined by

φ(t, x) := ϕ(t, x) + ε(|t− t0|2 + |x− x0|4),

and note that φ converges uniformly on compact sets to ϕ as ε → 0. By the lower-

semicontinuity of H∗, we can then find ε, r > 0 such that t0 + r < T and(
−∂tφ + Hu(., Dφ, D2φ, φ)

)
(t, x) > 0 for every u ∈ U and (t, x) ∈ Br(t0, x0). (5.6)

Since (t0, x0) is a strict maximizer of the difference V ∗ − φ, it follows that

sup
([0,T ]×Rd)\Br(t0,x0)

(V ∗ − φ) ≤ −2η for some η > 0 . (5.7)

Let (tn, xn)n be a sequence in Br(t0, x0) such that (tn, xn, V (tn, xn)) → (t0, x0, V
∗(t0, x0)).

For an arbitrary control νn ∈ Utn , let Xn := Xνn

tn,xn
denote the solution of (5.1) with initial

condition Xn
tn = xn, and set

θn := inf {s ≥ tn : (s, Xn
s ) /∈ Br(t0, x0)} .
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Notice that θn < T as a consequence of the fact that t0 + r < T . We may assume without

loss of generality that

|(V − φ)(tn, xn)| ≤ η for all n ≥ 1. (5.8)

Applying Itô’s formula to φ(·, Xn) and using (5.6) leads to

φ(tn, xn) = E
[
φ(θn, X

n
θn

)−
∫ θn

tn

[
∂tφ−Hνn

(., Dφ, D2φ, φ)
]
(s, Xn

s )ds

]
≥ E

[
φ(θn, X

n
θn

)
]
.

In view of (5.7), the above inequality implies that φ(tn, xn) ≥ E
[
V ∗(θn, X

n
θn

)
]

+ 2η, which

implies by (5.8) that:

V (tn, xn) ≥ E
[
V ∗(θn, X

n
θn

)
]
+ η for n ≥ 1.

Since νn ∈ Utn is arbitrary, this contradicts (3.1) for n ≥ 1 fixed. 2
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