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CONTROLLED DIFFUSION MEAN FIELD GAMES
WITH COMMON NOISE AND MCKEAN–VLASOV SECOND

ORDER BACKWARD SDEs∗

A. BARRASSO† AND N. TOUZI‡

Abstract. We consider a mean field game with common noise in which the diffusion coefficients
may be controlled. We prove existence of a weak relaxed solution under some continuity conditions
on the coefficients. We then show that, when there is no common noise, the solution of this mean
field game is characterized by a McKean–Vlasov type second order backward SDE.
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1. Introduction. In this paper, we consider a Mean Field Game (MFG) with
common noise in which the diffusion coefficients may be controlled. Mean field games
have been introduced by Lasry and Lions [25] and Huang, Malhamé, and Caines [19]
and generated a very extended literature. In the present paper, we address an exten-
sion which allows for diffusion control and the presence of common noise.

The problem is defined as a Nash equilibrium within a crowd of players who solve,
given a fixed random measure M , the individual maximization problem

(1.1) sup
α

E

[
ξ(Xα,M ) +

∫ T

0

fr(X
α,M , αr,M) dr

]
,

where Xα,M is the solution of the controlled non-Markovian SDE

(1.2) dXα,M
t = bt(X

α,M , αt,M) dt+ σ1
t (X

α,M , αt,M) dW 1
t + σ0

t (X
α,M , αt,M) dW 0

and α is the control process of a typical player. Here, Xα,M is the state process
of a typical player, with dynamics controlled by α, and governed by the individual
noise W 1 and the common noise W 0. The individual noise W 1 only impacts the
dynamics of one specific player, while the common noise W 0 impacts the dynamics of
all players.

The coefficients of the state equation depend on the random distribution M ,
which represents a distribution on the canonical space of the state process conditional
on the common noise W 0, and is intended to model the empirical distribution of the
states of the interacting crowd of players.

A solution of the MFG is then a random measure M such that the corresponding
optimal diffusion X∗,M induced by the problem (1.1) satisfies

(1.3) M = P ◦ (X∗,M |W 0)−1 a.s.,

where P ◦ (X∗,M |W 0)−1 denotes the conditional law of X∗,M given W 0.
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614 A. BARRASSO AND N. TOUZI

We prove the existence of a weak relaxed solution of this problem under some con-
tinuity conditions on the coefficients. By a weak solution we mean that we work with
a controlled martingale problem instead of a controlled SDE intended in the strong
sense, and that we find a weaker fixed point of type M = P ◦ (X∗,M |W 0,M)−1 a.s.
instead of (1.3), a notion introduced by Carmona, Delarue, and Lacker [7]. By relaxed
solution we mean that we allow relaxed controls, also called mixed strategies, which
is the standard framework in stochastic control theory in order to guarantee existence
of optimal controls; see [16], [27]. If the control process α takes values in a subset A of
a finite dimensional space, then relaxed controls q take values qt in the space M1

+(A)
of probability measures on A.

In the relaxed formulation, the state process Xq,M is controlled by the relaxed
control q, and the cost functional takes the relaxed form

E

[
ξ(Xq,M ) +

∫ T

0

∫
A

fr(X
q,M , a,M)qr(da) dr

]
.

The first main result of this paper is the existence of a weak relaxed solution of
the MFG in the context where the state dynamics exhibit both common noise and
controlled diffusion coefficients.

The second part of the paper specializes to the no common noise setting. In this
context, our second main result is a characterization of the solution of this MFG by
means of a McKean–Vlasov second order backward SDE of the form

Yt = ξ +

∫ T

t

Fr(X,Zr, σ̂
2
r ,m) dr

−
∫ T

t

Zr dXr + UT − Ut, t ∈ [0, T ], Pm-q.s.,(1.4)

whose precise meaning will be made explicit in section 5. Here, Pm-q.s. means P-a.s.
for all P ∈ Pm. This extends the previous results by Carmona and Delarue [5], [6]
characterizing the solution of a MFG by McKean–Vlasov backward SDEs in the
uncontrolled diffusion setting. We believe that the present paper is the first instance
of interest in such McKean–Vlasov second order backward SDEs.

Literature review. MFG have been introduced by the pioneering works of
Lasry and Lions [25] and Huang, Malhamé, and Caines [19]. Their works were the
first to consider the limit of a symmetric game of N players when N tends to infinity,
and to link it to a fixed point problem of McKean–Vlasov type, which in its most
simple form may be described as follows.

1. For any probability measure m on the space of continuous paths, find the
optimal control αm which minimizes the cost functional

(1.5) E

[
g(Xα

T ) +

∫ T

0

fr(X
α
r , αr,m) dr

]
,

where Xα is the controlled diffusion of dynamics

(1.6) dXα
t = αt dt+ dWt.

2. Find an equilibrium measure verifying m∗ = L
(
Xαm∗ )

.
The idea is that m∗ models the behavior of a population of individuals. Each one

of these individuals controls a diffusion of type (1.6), where W is a Brownian motion
“observed” only by this specific individual and optimizes the cost (1.5).
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CONTROLLED DIFFUSION MEAN FIELD GAMES 615

During the following decade, this topic generated a huge literature with results
based on PDE methods on the one hand (see, for instance, [25]), and on probabilis-
tic methods on the other hand, namely, through McKean–Vlasov forward-backward
SDEs; see [5] for an overview.

The extension of MFGs to the common noise situation (i.e., with an additional
noise W 0 in (1.6)) was addressed recently, motivated by a strong need from applica-
tions so as to introduce a source of randomness observed by all players. One may, for
example, refer to [6].

The first part of the present paper concerns the continuity of a recent sequence of
papers due to Carmona, Delarue, and Lacker. In particular, [23] proves existence of
a weak relaxed solution for an MFG with controlled diffusion coefficient but without
common noise under merely continuity assumptions on the coefficients, and [7] shows
existence of a weak solution of an MFG with common noise but without control in
the diffusion coefficient, under similar continuity assumptions on the coefficients. The
present paper fills the gap between these two works by extending this existence result
in the situation with common noise and allowing for diffusion control.

While MFGs with a control in the drift are connected to McKean–Vlasov back-
ward SDEs, one naturally expects that the control in the diffusion coefficient will, in
some way, link the MFG to the second order extension of backward SDEs. The latter
is a notion of a Sobolev type solution for path-dependent PDEs, introduced by Soner,
Touzi, and Zhang [31] as a representation of diffusion control problems (in contrast
with backward SDEs which are related to drift control). A first existence result was
obtained in [30], and such second order backward SDEs proved very useful in the study
of fully nonlinear second order PDEs, as an extension of the links between backward
SDEs and semilinear PDEs; see [12], [13]. We also refer the reader to [29] for a more
general existence result and to [26] for the extension to a random terminal time.

The paper is organized in two parts. Sections 2 and 3 concern mean field games
with common noise and controlled diffusion coefficient; sections 4, 5, and 6 develop
the links between MFGs and McKean–Vlasov second order backward SDEs.

Section 2 provides the precise formulation of our MFG; see in particular Defini-
tion 2.2. Section 3 is devoted to the proof of existence of a weak relaxed solution
(see Theorem 3.1) under Assumption 3.1. The proof is divided into three parts.
We start by showing some preliminary topological results in subsection 3.2. Then,
in subsection 3.3, we introduce, as in [7], the notion of discretized strong equilibria
(see Definition 3.2) and prove existence of such equilibria; see Proposition 3.2. Finally,
in subsection 3.4, we conclude the proof of existence of a weak relaxed solution of the
MFG by considering the limit of discretized strong equilibria.

In section 4, we introduce the notion of McKean–Vlasov 2BSDE (see Defini-
tion 4.2) and state the main result of the paper, which is that the solution of an MFG
with controlled diffusion coefficients provides a solution of such a McKean–Vlasov
2BSDE; see Theorem 4.1. This theorem relies strongly on the representation of relaxed
control problems with controlled diffusion coefficient through (classical) 2BSDEs, the
proof of which we postpone to section 5. See Proposition 5.2. Section 6 contains the
proof of Theorem 4.1.

2. Formulation of the mean field game.

2.1. Notation. A topological space E will always be considered as a measur-
able space equipped with its Borel σ-field, which will sometimes be denoted B(E).
We denote by M1

+(E) and M(E) the spaces of probability measures and of bounded

D
ow

nl
oa

de
d 

02
/0

3/
22

 to
 4

6.
24

2.
15

.4
7 

by
 A

le
xe

y 
A

lim
ov

 (
al

ex
ey

.a
lim

ov
@

gm
ai

l.c
om

) 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

616 A. BARRASSO AND N. TOUZI

signed measures on (E,B(E)), respectively. These spaces are naturally equipped with
the topology of weak convergence and the corresponding Borel σ-field.

Throughout this paper, we fix a maturity date T > 0, positive integers
d, p1, p0 ∈ N∗, and a compact Polish space A, and we denote by Ω := X ×Q×W ×
M1

+(X ) the canonical space, where X := C([0, T ],Rd) is the path space of the state
process; Q is the set of relaxed controls, i.e., of measures q on [0, T ] × A such that
q( · ×A) is equal to the Lebesgue measure. Each q ∈ Q may be identified with a mea-
surable function t 7→ qt from [0, T ] to M1

+(A) determined a.e. by q(dt, da) = qt(da) dt;
W := W1 ×W0, where Wi := C([0, T ],Rpi), i ∈ {1, 0}, denote the path space of the
individual noise and that of the common noise, respectively, and we denote by Wi the
Wiener measure on Wi.

Each of these spaces is equipped with its Borel σ field. We also denote by F :=
B(Ω) and (X,Q,W,M) the identity (or canonical) map on Ω, with W := (W 1,W 0).

On X (respectively, Q, W1, W0), the canonical process X (respectively, Q,

W 1, W 0) generates a natural filtration FX (respectively, FQ, FW 1

, FW 0

). We use
similar notation on product spaces.

M1
+(X ) is equipped with a filtration FM defined by FM

t := σ(M(F ) : F ∈ FX
t ).

We can similarly define a filtration FX,Q,W,M on Ω, which we denote by F.
Let P ∈ M1

+(Ω), Y be a random variable (r.v.) on (Ω,F) with values in a mea-
surable space (E, E), and G be a sub σ-field of F . We denote by P ◦ (Y | G)−1 the
random measure which, to some F ∈ E , maps P[Y ∈ F | G].

Moreover, if (PG
ω)ω∈Ω is a regular conditional probability distribution ofP given G,

we have P ◦ (Y | G)−1 : (F, ω) 7→ PG
ω(Y ∈ F ) P-a.s.

2.2. Controlled state process. The controlled state process is defined as
a weak solution of the following relaxed SDE, whose precise meaning will be made
clear in Definition 2.1(ii):

(2.1) Xt = X0 +

∫ t

0

∫
A

br(a,M)Qr(da) dr +

∫ t

0

∫
A

σr(a,M)NW (da, dr).

Here X0 is an initial value with the given law µ0, N
W := (NW 1

, NW 0

) is a pair of
orthogonal martingale measures with intensity Qt dt (see, e.g., [15]),M : Ω → M1

+(X )
is a random probability measure on X , and

σ := (σ1∥σ0), (b, σi) : [0, T ]×X ×A×M1
+(X ) → Rd ×Md,pi

(R), i=0, 1,

are progressively measurable in the sense that for all t ⩽ T , their restriction to
[0, t]×X ×A×M1

+(X ) is B([0, t])⊗FX
t ⊗ B(A)⊗FM

t -measurable.
In order to introduce the precise meaning of (2.1), we fix an initial

law µ0 ∈ M1
+(R

d), denote p := p1 + p0, b := (b | 0p), σ := (σ | Ip), and introduce
the generator of the controlled pair (X,W ), defined for (t, x, a,m) ∈ [0, T ] × X ×
A×M1

+(X ) by

Aa,x,m
t ϕ := bt(x, a,m) ·Dϕ+

1

2
σ σ⊤

t (x, a,m) : D2ϕ for all ϕ∈C2
b (R

d ×Rp),

where “ : ” denotes the scalar product of matrices, and D, D2 denote the partial
gradient and Hessian with respect to the space variables.

Definition 2.1. (i) Π0 denotes the set of all measures π0 ∈ M1
+(W0 ×M1

+(X ))

such thatW 0 is a (π0,FW 0,M )-Brownian motion and such that π0◦(M◦X−1
0 )−1 = δµ0 .
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CONTROLLED DIFFUSION MEAN FIELD GAMES 617

(ii) For π0 ∈ Π0, a π0-admissible control is a probability measure P ∈ M1
+(Ω)

with marginal P ◦ (W 0,M)−1 = π0 satisfying that
(1) for all ϕ ∈ C2

b (R
d ×Rp), the following process is a (P,F)-martingale:

ϕ(Xt,Wt)−
∫ t

0

∫
A

Aa,X,M
r ϕ(Xr,Wr)Qr(da) dr, t ∈ [0, T ];

(2) M is P-independent of W 1;

(3) for all t ∈ [0, T ], FQ
t is P-independent of FW

T conditionally on FW
t , i.e.,

(2.2) P[At ∩AT | FW
t ] = P[At | FW

t ]P[AT | FW
t ] for all (At, AT ) ∈ FQ

t ×FW
T .

We denote by P(π0) the set of π0-admissible controls, and we introduce the set of
admissible controls P(Π0).

The controlled dynamics P(π0) are defined as a further relaxation of those con-
sidered in [7] by introduction of the martingale measure NW in order to handle the
additional control of the diffusion coefficient in this paper. This relaxation follows
the classical approach of [15] so as to have better compactness results, which will be
crucial for our subsequent search of the fixed point defining the MFG equilibrium.

The restriction (2.2) is a slight weakening of the compatibility condition of [7].
Loosely speaking, it expresses that the control randomization underlying our approxi-
mation is external to the information of the representative agent consisting of the noise
processW , in the sense that it is conditionally independent of future information given
the current one. The main difference with the compatibility condition of [7] is that
this restriction allows for the possible dependence on some W -independent event of
the future of M . For this reason, we shall refer to (2.2) as a causality condition.

2.3. The mean field game. Let f : [0, T ] × X × A × M1
+(X ) → R be a pro-

gressively measurable map, let ξ : X → R be a Borel map, and define the functional

(2.3) J(P) := EP

[
ξ +

∫ T

0

∫
A

fr(a,M)Qr(da) dr

]
, P ∈ M1

+(Ω).

A solution of the MFG is defined by the following two steps.
1. Given the joint law π0 ∈ Π0 of the pair (W 0,M), the individual optimization

problem consists of the maximization of the functional J over all weak solutions
P ∈ P(π0) of (2.1) in the sense of Definition 2.1(ii). The corresponding set of optimal
solutions

P∗(π0) := Argmax
P∈P(π0)

J(P), for all π0 ∈ Π0,

defines a correspondence P∗ from Π0 to P(Π0).
2. A strong solution of the MFG is an optimal probability P∗ ∈ P∗(π0) such that

M = P∗ ◦ (X | FW 0

)−1 a.s., i.e., under P∗, M is the conditional law of the state
process X given the common noise W 0.

For a technical reason explained below, we need to consider the following weaker
notion.

Definition 2.2 (see [7]). A weak relaxed solution of the MFG is a probability
P ∈ M1

+(Ω) such that the following properties hold :
• individual optimality: P ∈ P∗(π0) for some π0 ∈ Π0;

• weak equilibrium: M = P ◦ (X | FM,W 0

)−1 P-a.s.
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618 A. BARRASSO AND N. TOUZI

Observe that the weak equilibrium condition in the last definition is indeed weaker
than the strong equilibrium requirement M = P ◦ (X | FW 0

)−1 a.s., which is thus
named strong solution of the MFG by Carmona and Delarue [6]. The reason for
introducing this weak notion of solution in [7] is recalled in Remark 3.2 in what
follows.

We also remark that if P is a weak equilibrium, then P ◦ (X0 | FM,W 0

)−1 =
M ◦ X−1

0 = µ0 a.s., where µ0 is deterministic, hence P ◦ X−1
0 = µ0, so that µ0 is

indeed an initial law.

3. Weak relaxed Nash equilibrium.

3.1. Assumptions and main results. The following assumption will be needed
to prove the existence of weak relaxed solutions of the MFG.

Assumption 3.1. (i) The coefficients b, σ, f are bounded and continuous in
(x, a,m) for all t, and ξ is bounded continuous;

(ii) for every probability measure Q on Q × W × M1
+(X ) under which

W is a Brownian motion, there exists a unique P ∈ M1
+(Ω) with marginal

P ◦ (Q,W,M)−1 = Q and satisfying condition (1) of Definition 2.1(ii).

Assumption 3.1(ii) is an existence and uniqueness condition for the SDE (2.1).
It is verified, for instance, when b, σ are bounded and locally Lipschitz in x, uniformly
in (t, a,m). This can be seen by considering the strong solution of the controlled SDE,
which is then driven by martingale measures; see [15] for basic results concerning such
SDEs.

We may now state the main result of this section.

Theorem 3.1. Under Assumption 3.1, there exists at least one weak relaxed solu-
tion of the MFG in the sense of Definition 2.2.

The proof of this theorem will mainly rely on the Kakutani–Fan–Glicksberg fixed
point theorem. The appendix of the present paper provides an introduction to set
valued functions (or correspondences) which will be used extensively in this paper;
we refer the reader to [1, Chapter 17].

Remark 3.1. The proof of Theorem 3.1 may be adapted (and simplified) to a con-
text without common noise. In this context, one would imposeM to be a deterministic
parameter m ∈ M1

+(X ). The canonical space would then be the space X ×Q×W1,
and the set of admissible controls would be the subset of P ∈ M1

+(X × Q × W1)
satisfying conditions (1) and (3) in Definition 2.2, with W replaced by W 1, and M
by m.

A solution of the MFG with no common noise would be an admissible con-
trol P maximizing the cost functional J at fixed m and satisfying the equilibrium
P ◦X−1 = m.

3.2. Preliminary topological results. The aim of this subsection is to prove
the following topological results.

Proposition 3.1. (i) Π0 is a closed convex subset of M1
+(W0 × M1

+(X )) and,
consequently, of M(W0 ×M1

+(X ));

(ii) P is a continuous correspondence with nonempty compact convex values;

(iii) P∗ is an upper hemicontinuous correspondence with nonempty compact con-
vex values; moreover, P∗(Π0) is closed.
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Remark 3.2. Recall that a strong solution of the MFG is a probability measure
P∗ ∈ P∗(π∗), for some π∗ ∈ Π0 such that M = P∗ ◦ (X | FW 0

)−1 P∗ a.s., or,
equivalently,

(3.1) π∗ ∈ Φ ◦ P∗(π∗), where Φ(P) := W0 ◦
(
W 0,P ◦

(
X

∣∣ FW 0)−1)−1
.

If the map Φ were continuous, then we would conclude from Proposition 3.1 that
such a fixed point exists by the Kakutani fixed point theorem; see Theorem A.3.
Unfortunately, the conditional expectation operator is not continuous in general. For
this reason, the proof strategy used in [7] consists of introducing a discretization of the
common noise W 0, so as to reduce the fixed point problem to the context of a finite
σ-field, where the conditional expectation is indeed continuous. The weak solution of
the MFG is then obtained as a limiting point of the solutions of the MFG problems
with finite approximation of the common noise. See section 3.3 in what follows.

Proof of Proposition 3.1(i). We start by remarking that the property π0 ◦
(M ◦X−1

0 )−1 = δµ0
is stable under convex combinations. Then, by the Lévy charac-

terization,W 0 is an FW 0,M -Brownian motion if and only ifW 0 andW 0
t (W

0
t )

⊤−tIdp0

are martingales. Since the set of solutions of a martingale problem is convex (see
Corollary 11.10 in [20]), we immediately deduce that Π0 is convex.

We now show that Π0 is closed. The property π0 ◦ (M ◦ X−1
0 )−1 = δµ0

is also
stable under convergence since {δµ0

} is closed and m 7→ m ◦ X−1
0 is continuous.

Assume that a sequence (π0
n)n∈N of elements of Π0 converges weakly to some π0.

By the Lévy criterion, we have, for all s ⩽ t ∈ [0, T ] and all bounded continuous

FW 0,M
s -measurable ϕs,

(3.2)
Eπ0

n [(W 0
t −W 0

s )ϕs] = 0,

Eπ0
n [(W 0

t (W
0
t )

⊤ −W 0
s (W

0
s )

⊤ − (t− s)Idm)ϕs] = 0.

Since (W 0
t − W 0

s )ϕs and (W 0
t (W

0
t )

⊤ − W 0
s (W

0
s )

⊤ − (t − s)Idm)ϕs are continuous
uniformly integrable r.v.’s under (π0

n)n, we may send n to infinity in (3.2) and obtain

that W 0 is a (π0,FW 0,M )-Brownian motion (see [3, Theorem 3.5]).

Proof of Proposition 3.1(iii). We now show that (iii) is a consequence of (ii), whose
proof is postponed. Since f , ξ are bounded continuous, the map J introduced in (2.3)
is continuous on M1

+(Ω). As a result, since P is continuous with nonempty compact
values, it follows directly by Theorem A.1 that P∗ is upper hemicontinuous and takes
nonempty compact values.

Further, we show that it takes convex values. Let π0 ∈ Π0, P1,P2 be ele-
ments of P⋆(π0), i.e., maximizers of EP[J ] within P(π0), and let α ∈ [0, 1]. Since

P takes convex values, we have αP1 + (1 − α)P2 ∈ P(π0), and since EP1

[J ] =

EP2

[J ] = maxP∈P(π0) E
P[J ], it follows that EαP1+(1−α)P2

[J ] = maxP∈P(π0). Hence
αP1 + (1− α)P2 also is a maximizer of EP[J ] within P(π0), and, therefore, belongs
to P∗(π0).

It remains to prove that P∗(Π0) is closed. Since P∗ is upper hemicontinuous and
compact valued, it has a closed graph; see Proposition A.1(1). Now let Pn → P with
Pn ∈ P∗(Π0) for all n. By construction of P∗, we have, for all n, Pn ∈ P∗(Pn ◦
(M,W 0)−1), and by continuity of marginals, it follows that Pn ◦ (M,W 0)−1 tends to
P◦(M,W 0)−1, which belongs to Π0 by the closedness property established in (i) of the
present proof. So by the closed graph property, P ∈ P∗(P ◦ (M,W 0)−1) ⊂ P∗(Π0),
completing the proof.
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620 A. BARRASSO AND N. TOUZI

The rest of this section is dedicated to the proof of Proposition 3.1(ii). We start
with an immediate consequence of Proposition 3.1(i).

Corollary 3.1. Let Π := {π := W1 ⊗ π0 : π0 ∈ Π0}. Then
(i) Π is a closed convex subset of M1

+(W ×M1
+(X ));

(ii) the map T : π0 ∈ Π0 7→ π := W1 ⊗ π0 ∈ Π is a homeomorphism;
(iii) if K0 is a compact (respectively, convex) subset of Π0, then K := T(K0) is

a compact (respectively, convex) subset of Π.

We next consider a further extension of the probability measures π ∈ Π:

Qc(π) :=
{
Q∈M1

+

(
Q×W ×M1

+(X )
)
: Q ◦ (W,M)−1=π andQ satisfies (2.2)

}
,

where the subscript “c” stands for the causality condition (2.2).

Lemma 3.1. (i) The set Qc(Π) is closed convex.
(ii) Let K0 be a compact (respectively, convex) subset of Π0, and set K := T(K0);

then Qc(K) is a compact (respectively, convex) subset of Qc(Π).
(iii) The correspondence Qc : π ∈ Π 7→ Qc(π) is continuous.

Proof. Throughout this proof, we denote Q :=
{
Q ∈ M1

+

(
Q × W × M1

+(X )
)
:

Q ◦ (W,M)−1 ∈ Π and Q satisfies (2.2)
}
= Qc(Π).

(i) Since Π is itself convex and closed by Corollary 3.1, the first item above is
stable by convergence or convex combinations. By Theorem 3.11 in [24], since W has
independent increments (with respect to its own filtration), the second item above
holds if and only if for all t ⩽ s, Wt −Ws is Q-independent of FQ,W

s . This condition
is also stable under convergence or convex combinations, so Q is closed and convex.

(ii) The closeness and convexity of Qc(K) follow from the same arguments as
above. Its tightness (hence, relative compactness) follows from the compactness of Q
and the tightness of {Q ◦ (W,M)−1 : Q ∈ Qc(K)} = K.

(iii) We decompose Qc as the composition of two continuous correspondences
Γ1, Γ2 which we now introduce. Denote K′ := {Q ◦ (Q,W )−1 : Q∈Q}, i.e., the set
of laws in M1

+(Q×W) for which W is an FQ,W -Brownian motion. With arguments
similar to what we have seen for Π0 or Π, it is easy to see that K′ is closed convex
and is even compact thanks to the compactness of Q.

We define the correspondence Γ1, which to any π ∈ Π, maps the subset {π} ×K′

of Π×K′. We also define Γ2, which to any (π, π′) in Π×K′, maps the set

{Q ∈ Q : Q ◦ (Q,W )−1 = π′, Q ◦ (W,M)−1 = π}.

It is clear that Qc = Γ2 ◦ Γ1.
The set Γ1 is the product of the continuous function π → π and of the correspon-

dence π → K′, which is compact valued and constant and hence continuous; apply
Proposition 3.1(iii), for instance. So Γ1 is continuous as the product of continuous
compact valued correspondences; see Theorem 17.28 in [1].

The set Γ2 is the restriction on Π×K′ of the inverse ψ−1 of the mapping ψ : Q →
(Q ◦ (Q,W )−1,Q ◦ (W,M)−1). Adapting Theorem 3 in [11], for example, we see that
ψ is an open mapping. Then, by Theorem 17.7 in [1], ψ−1 (or its restriction Γ2) is
lower hemicontinuous. It is immediate that Γ2 has a closed graph; however, its range
is not compact, so we cannot conclude immediately that it is upper hemicontinuous.

Let us fix some compact subset K0 of Π0 and ΓK0

2 the restriction of Γ2 on K0. Then

ΓK0

2 is still low hemicontinuous with closed graph but this time has compact range and
hence is upper hemicontinuous by the closed graph theorem; see Proposition 3.1(ii).
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Therefore, it is continuous. Γ2 is compact valued and hence can also be seen as
a function with values in the metric space of compact subsets ofM1

+(Q×W×M1
+(X )),

equipped with the Hausdorff metric. By Proposition 3.1(iii), Γ2 is continuous on
a certain set as a correspondence if and only if it is continuous as a function for
the Hausdorff metric. What we have seen is that Γ2 is in fact continuous on every
compact subset of Π × K′, and in a metric space, a function which is continuous
on every compact set is continuous everywhere. So Γ2 is continuous everywhere,
and hence Qc is continuous as the composition of continuous correspondences; see
Proposition A.1(4). The proof is complete.

Finally, we lift the set Qc(Π) by the map

Q ∈ Qc(Π) → Ψ(Q) := P ∈ P(Π0) if and only if P ◦ (Q,W,M)−1 = Q,

where the existence and uniqueness of P is guaranteed by Assumption 3.1.

Lemma 3.2. (i) P(Π0) is a closed convex subset of M1
+(Ω), and P(K0) is compact

(respectively, convex) for all compact (respectively, convex) subset K0 of Π0.
(ii) Ψ is a homeomorphism from Qc(Π) to P(Π0).

Proof. (i) By definition, P ∈ M1
+(Ω) belongs to P(Π0) if and only if

(a) P ◦ (Q,W,M)−1 belongs to Qc(Π);
(b) for all ϕ ∈ C2

b (R
d ×Rp),

ϕ(Xt,Wt)−
∫ t

0

∫
A

Aa,X,M
r ϕ(Xr,Wr)Qr(da) dr, t ∈ [0, T ],

is a (P,F)-martingale.
Since Qc(Π) is convex and closed by Lemma 3.1, it is clear that the set of P

verifying condition (a) above is convex and closed. Then, since the set of solutions of
a martingale problem is convex (see Corollary 11.10 in [20]), and since the coefficients
b, σ are bounded and continuous in (x, a,m) for fixed t, the set of probability measures
verifying the above condition (b) is also closed convex. This shows that P(Π0) is closed
convex.

Further, we prove the second part of (i). We fix some compact convex sub-
set K0 of Π0. It is immediate by construction that P(K0) remains closed convex,
so we are left to prove that it is relatively compact. By boundedness of b, σ, the
set {P ◦X−1 : P ∈ P(K0)} is tight (see Theorem 1.4.6 in [32], for instance), and by
the compactness of Q and the tightness of W1 ⊗ K0 we see that {P ◦ (Q,W,M)−1:
P ∈ P(K0)} is tight. So P(K0) is tight and, therefore, relatively compact, which
concludes the proof.

(ii) It is clear that Ψ is a bijection, and that its reciprocal Ψ−1 (defined by
Ψ−1(P) = P ◦ (Q,W,M)−1) is continuous.

Let Pn → P in Qc(Π); then we also have Pn ◦ (M,W 0)−1 → P ◦ (M,W 0)−1, so
the measures (Pn ◦ (M,W 0)−1)n and P ◦ (M,W 0)−1 belong to some compact subset
K0 of Π0 and the measures (Pn)n and P belong to Qc(K), where K := W1 ⊗K0. So
it is enough to show that Ψ is continuous on Qc(K) for any compact subset K0 of Π0.

We fix K0 and K := W1 ⊗ K0. By construction, the restriction of Ψ induces
a bijection ΨK0 from Qc(K) onto P(K0) which are both compact; see Lemma 3.1 and
part (i) of the present lemma. Ψ−1

K0 is the marginal mapping P → P ◦ (Q,W,M)−1

restricted on P(K0) and hence is continuous. So Ψ−1
K0 is a continuous bijection between

compact sets and hence a homeomorphism. Ψ−1
K0 is, therefore, continuous, meaning

that Ψ is continuous on Qc(K), and the proof is complete.
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622 A. BARRASSO AND N. TOUZI

We can now conclude the proof of Proposition 3.1.

Proof of Proposition 3.1(ii). The set P may now be written as the composition
Ψ◦Qc◦T, where T, Qc, and Ψ are introduced, respectively, in Corollary 3.1 and Lem-
mas 3.1 and 3.2. So thanks to these three results, P is a continuous correspondence
as the composition of two continuous functions and a continuous correspondence; see
Proposition A.1(4).

For every π0 ∈ Π0, P(π0) is compact convex by Lemma 3.2(i). Finally, P takes
nonempty values thanks to Assumption 3.1(1).

3.3. Discretized strong equilibria. This section follows the proof strategy
of [7] as mentioned earlier in Remark 3.2. The main novelty in what follows is our
reformulation of the problem given in (3.1). Under this perspective, all our analysis is
made on the spaceM1

+(Ω). We believe that this point of view simplifies some technical
issues and is the key ingredient for allowing the control in the diffusion coefficient.

Definition 3.1. For each n ⩾ 1, let tni := i2−nT for i = 0, . . . , 2n. For every n,
we fix a partition cn := {Cn

1 , . . . , C
n
n} of Rp0 into n Borel sets of strictly positive

Lebesgue measure, such that for all n, cn+1 is a refinement of cn, and B(Rp0) =

σ
(⋃

n cn
)
. For a given n, and I = (i1, . . . , i2n) ∈ {1, . . . , n}2n , k ⩽ 2n, we define Sn,k

I

as the set of paths with increments up to time k in Cn
i1
, . . . , Cn

ik
, i.e.,

Sn,k
I := {ω0 ∈ W0 : ω0

tnj
− ω0

tnj−1
∈ Cn

ij for all j = 1, . . . , k}.

We also denote Sn
I := Sn,2n

I . The Sn
I ’s, I ∈ {1, . . . , n}2n , form a finite partition

of W0, where each Sn
I has a strictly positive W0-measure.

For all n we denote Fn,W 0

:= σ(Sn
I : I ∈ {1, . . . , n}2n), and for all t ∈ [0, T ] we

denote Fn,W 0

t := σ(Sn,j
I : I ∈ {1, . . . , n}2n , j ⩽ knt ), where k

n
t is the largest integer

such that tnkn
t
⩽ t.

Finally, for all n, we introduce the mapping X̂n : X → X such that for all k < 2n

and t ∈ [tnk , t
n
k+1[ , X̂

n
t = (2n/T )(t− tnk )Xtnk

+ (2n/T )(tnk+1 − t)Xtnk−1
.

The following facts may be found in subsection 2.4.2 and the proof of Lemma 3.6
(second step) in [7].

Remark 3.3. (i) FW 0

t = σ
(⋃

n F
n,W 0

t

)
for all t ∈ [0, T ];

(ii) (Fn,W 0

t )t⩾0 is a subfiltration of FW 0

;

(iii) for all n, X̂n is continuous, and X̂n → X as n→ ∞ uniformly on the compact
sets of X .

Definition 3.2. A discretized strong Nash equilibrium of order n is a probability
measure P ∈ P∗(Π0) such that

(3.3) M = P ◦ (X̂n | Fn,W 0

)−1 P-a.s.

Proposition 3.2. For every n, there exists a discretized strong Nash equilibrium
of order n.

We will prove this first existence result by applying the Kakutani fixed point
theorem, thanks to the regularity of the correspondence P∗. However, such a fixed
point theorem holds in a compact convex set, and our set Π0 is not compact, so we
now construct a smaller (and compact) set, in which this theorem can be applied.
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Definition 3.3. If P ∈ M1
+(X ) is such that X is a P-semimartingale, we denote

by AP and MP the bounded variation and the martingale components of X under P.
KX denotes the closure of the space of elements of M1

+(X ) under which X is
a semimartingale for which |Ai,P|, i ⩽ d, and Tr(⟨MP⟩) are absolutely continuous
with derivatives bounded by C dt ⊗ dP a.e., where C is a fixed constant bounding b
and σ σ⊤ for the sup norm.

Lemma 3.3. The set KX is a compact subset of M1
+(X ).

Proof. It is well known that any family of laws of continuous diffusions with
bounded coefficients is tight (see, for instance, [32, Theorem 1.4.6]), so KX is the
closure of a tight set and hence of a relatively compact set by Prokhorov’s theorem.
The proof is complete.

For all n ∈ N \ {0}, we also set KX
n := {P ◦ (X̂n)−1 : P ∈ KX}. By the tightness

of KX we may introduce an increasing sequence of compact subsets (K∞
k )k∈N∗ of X

such that

P[X ∈ K∞
k ] ⩾ 1− 1

k
for all k > 0 and P ∈ KX .

Finally, we denote

Kn
k := X̂n(K∞

k ) and Kk :=
⋃

n∈N∪{∞}

Kn
k for all k, n ∈ N.

Lemma 3.4. For all k, n, Kn
k , and Kk are compact, and KX

n is tight.

Proof. Compactness of Kn
k follows from the continuity of X̂n which, therefore,

maps compact sets onto compact sets.
We next prove that KX

n is tight. Let Q = P ◦ (X̂n)−1 ∈ KX
n for some P ∈ KX .

Then, for all k, we have Q[Kn
k ] = P[X̂n ∈ Kn

k ] ⩾ P[X ∈ K∞
k ] ⩾ 1− 1/k. Since this

holds for any Q ∈ KX
n , the announced tightness is shown.

It remains to prove that Kk is compact. For a fixed sequence (xn)n⩾0 in Kk,

either there exists some (i1, . . . , iN ) ∈ N
N

such that (xn)n⩾0 remains in the compact

set
⋃

j⩽N K
ij
k , in which case this sequence admits a converging subsequence, or we

can assume (up to an extraction which we omit) that there exists a strictly increasing
sequence (pn)n such that for all n, xn ∈ Kpn

k .

Now, for all n, we may consider some yn ∈ K∞
k such that xn = X̂n(yn), and

since K∞
k is compact, we may assume (again up to the extraction of a subsequence)

that yn converges to some y in K∞
k . We now conclude the proof by showing that xn

also tends to y, and hence any such sequence of Kk admits a converging subsequence
in Kk. Indeed, we have

|xn − y| = |X̂pn(yn)− y| ⩽ |X̂pn(yn)− yn|+ |yn − y|.

The second term on the right tends to zero, and since pn is strictly increasing, X̂pn

tends uniformly to X on compact sets and, in particular, onK∞
k (see Remark 3.3(iii)),

so |X̂pn(yn)− yn| tends to zero, and the proof is complete.

We now introduce the set in which we will find the discretized equilibrium:

(3.4) Π0
c :=

{
π0 ∈ Π0 : π0(Kk) ⩾ 1− 1

k
for all k > 0

}
.

Lemma 3.5. For all n, Π0
c is a compact convex set.
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Proof. We fix n. It is immediate by construction that Π0
c is tight and hence

relatively compact. Moreover, Π0 is convex (see Proposition 3.1(i) and (3.4)) and is
stable by convex combination, so Π0

c is also convex.
Let us now show that Π0

c is closed. Since Π0 is closed (see Proposition 3.1(i)), it is
enough to show that (3.4) is stable under convergence. We fix a converging sequence
πj → π, where πj ∈ Π0

c for all j.
By the Skorokhod representation theorem (see, for instance, [3, Theorem 6.7]),

there exists a probability space (Ω̃, F̃ , P̃) on which there exist random measures M j

of law πj ◦M−1 and M lim of law π ◦M−1, and a P̃-null set N such that for all ω
in N c, M j(ω) → M lim(ω) weakly. Since the sets Kk are closed, a consequence of
the Portmanteau theorem (see [3, Theorem 2.1], for instance), is that for all k and
ω ∈ N c,

(3.5) M lim(ω)(Kk) ⩾ lim sup
j

M j(ω)(Kk).

Now by taking the expectation in (3.5) and applying the reversed Fatou’s lemma,
we get that, for all k,

(3.6) EP̃[M lim(Kk)] ⩾ EP̃[lim sup
j

M j(Kk)] ⩾ lim sup
j

EP̃[M j(Kk)],

and hence Eπ[M(Kk)] ⩾ lim supj E
πj [M(Kk)] ⩾ 1 − 1/k. So (3.4) holds under π,

and the proof is complete.

We may now prove the main result of this subsection.

Proof of Proposition 3.2. We first note that M = P ◦ (X̂n | Fn,W 0

)−1, P-a.s. is
equivalent to having

P◦(W 0,M)−1 = P◦
(
W 0,P◦(X̂n | Fn,W 0

)−1
)−1

= W0◦
(
W 0,P◦(X̂n

∣∣ Fn,W 0

)−1
)−1

.

We introduce on P(Π0) the mapping

Φn : P → W0 ◦
(
W 0,P ◦ (X̂n | Fn,W 0

)−1
)−1

and show that it is continuous on this set.
We fix a converging sequence Pk → P in P(Π0). By Theorem 4.11 in [21], in order

to show that

W0 ◦
(
W 0,Pk(X̂n | Fn,W 0

)−1
)−1 → W0 ◦

(
W 0,Pk(X̂n

∣∣ Fn,W 0

)−1
)−1

,

it is enough to show that, for all bounded continuous ϕ,

W0 ◦
(
W 0,Ek[ϕ(X̂n) | Fn,W 0

]
)−1 → W0 ◦

(
W 0,E[ϕ(X̂n) | Fn,W 0

]
)−1

.

Since Ek[ϕ(X̂n) | Fn,W 0

] =
∑

I

(
Ek[ϕ(X̂n)1Sn

I
(W 0)]/W0[Sn

I ]
)
1Sn

I
(W 0), for all k,

we are reduced to proving, for all ϕ ∈ Cb(X ), ψ ∈ Cb(R), and ζ ∈ Cb(W0), that

EW0

[
ψ

(∑
I

Ek[ϕ(X̂n)1Sn
I
(W 0)]

W0[Sn
I ]

1Sn
I
(W 0)

)
ζ(W 0)

]

→
k
EW0

[
ψ

(∑
I

E[ϕ(X̂n)1Sn
I
(W 0)]

W0[Sn
I ]

1Sn
I
(W 0)

)
ζ(W 0)

]
.(3.7)
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Since P and the Pk all have the same first marginal W0, the convergence of Pk to P
is a stable convergence in the sense that, for all bounded continuous f and bounded
Borel g, we have that Ek[f(X)g(W 0)] tends to E[f(X)g(W 0)]; see Lemma 2.1 in [24],

for instance. In particular, by continuity of ϕ and X̂n, we have for all I,

Ek[ϕ(X̂n)1Sn
I
(W 0)]1Sn

I
(W 0) → E[ϕ(X̂n)1Sn

I
(W 0)]1Sn

I
(W 0) W0-a.s.,

and by the dominated convergence theorem, (3.7) holds for any ϕ, ψ, ζ, implying the
desired continuity of the mapping Φn.

We now show that Φn takes values in Π0
c , as introduced in (3.4). Let P ∈ P(Π0)

and Q := Φn(P) = W0 ◦
(
W 0,P ◦ (X̂n | Fn,W 0

)−1
)−1

. It is immediate that W 0 is an

FW 0

-Brownian motion under Q; however, in order to fit the definition of Π0
c which

is included in Π0, we need to show that W 0 is an FM,W 0

-Brownian motion. Since
M is Q-a.s. equal to the FW 0

-measurable random measure P ◦ (X̂n | Fn,W 0

)−1,

in order to show that W 0 is indeed an FM,W 0

-Brownian motion, it is enough to
show that P ◦ (X̂n | Fn,W 0

)−1 is FW 0

-adapted in the sense that, for any F ∈ FX
t ,

P ◦ (X̂n | Fn,W 0

)−1(F ) is FW 0

t -measurable.

We fix some k < 2n, t ∈ [tk, tk+1[, and F ∈ FX
t . By construction of X̂n, we have

(3.8) {X̂n ∈ F} ∈ FX
tk
.

Now by the definition of P(Π0) (see Definition 2.1) W 0 is under P and F-Brownian
motion, so for all t, FX

t is conditionally independent of FW 0

T given FW 0

t , and, in
particular, combining (3.8) and Theorem 3.11 in [24] we have

(3.9) P ◦
(
X̂n ∈ F

∣∣ FW 0

T

)−1
= P ◦

(
X̂n ∈ F

∣∣ FW 0

tk

)−1
a.s.

We have

P ◦
(
X̂n

∣∣ Fn,W 0)−1
[F ] := P

[
X̂n ∈ F

∣∣ Fn,W 0

T

]
= E

[
P
[
X̂n ∈ F

∣∣ FW 0

T

] ∣∣∣ Fn,W 0

T

]
= E

[
P
[
X̂n ∈ F

∣∣ FW 0

tk

] ∣∣∣ Fn,W 0

T

]
= E

[
P
[
X̂n ∈ F

∣∣ FW 0

tk

] ∣∣∣ Fn,W 0

tk

]
= P

[
X̂n ∈ F

∣∣ Fn,W 0

tk

]
= P

[
X̂n ∈ F

∣∣ Fn,W 0

t

]
,(3.10)

where the third equality holds by (3.9) and the fourth by the independence

of the increments of W 0 and the construction of Fn,W 0

. So we indeed
see that P ◦ (X̂n | Fn,W 0

)−1(F ) is FW 0

t -measurable, and, therefore, W 0 is under Q

an FM,W 0

-Brownian motion so that Q ∈ Π0.

We conclude by showing that Q verifies (3.4). For a fixed integer k, we have

EQ
[
M [Kk]

]
= EQ

[
P ◦ (X̂n

∣∣ Fn,W 0

)−1[Kk]
]
= EP

[
P
[
X̂n ∈ Kk

∣∣ Fn,W 0]]
= P[X̂n ∈ Kk] ⩾ P[X̂n ∈ Kn

k ] ⩾ P[X ∈ K∞
k ] ⩾ 1− 1

k
,(3.11)

where the last inequality holds since P ∈ P(Π0), hence P ◦ X−1 ∈ KX , and by
construction of the sets Kk, K

n
k , and Kk.
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626 A. BARRASSO AND N. TOUZI

We may now conclude with a version of Kakutani’s theorem. We consider the
restriction of P∗ on Π0

c , namely, P∗ : Π0
c ↠ P(Π0

c), which defines an upper hemi-
continuous correspondence taking nonempty compact convex values (see Proposi-
tion 3.1(iii)).

We recall that Φn : P(Π0
c) → Π0

c is a continuous mapping, and that Π0
c is a con-

vex compact subset of a locally convex topological space (see Lemma 3.5), so by
Theorem A.3 and Lemma A.1, there exists, in Π0

c , a fixed point π∗
n ∈ Φn ◦ P∗(π∗

n).

We conclude this proof by showing that if we make set P∗
n the element of P∗(π∗

n)
such that π∗

n = Φ(P∗
n), then P∗

n is a discretized strong Nash equilibrium of order n;
see Definition 3.2.

The probability measure P∗
n belongs to P(Π0) and P∗(Π0). Moreover, it verifies

P∗
n◦(W 0,M)−1=π∗

n=W0◦
(
W 0,P∗

n(X̂
n | Fn,W 0

)−1
)−1

, henceM=P∗
n(X |Fn,W 0

)−1

P∗
n-a.s., meaning that (3.3) holds, and P∗

n is a discretized strong Nash equilibrium of
order n.

3.4. Existence of a weak Nash equilibrium. We conclude this section by
proving Theorem 3.1, i.e., we will verify the existence of a weak Nash equilibrium.

Proof of Theorem 3.1. For every n ∈ N, we consider P∗
n a discretized strong

Nash equilibrium of order n whose existence is ensured by Proposition 3.2. Every P∗
n

belongs to P(Π0
c), which is compact since Π0

c is (see Lemmas 3.2(i) and 3.5). So we
may consider an accumulation point P∗ ∈ P(Π0

c) of the sequence (P
∗
n)n. We will now

show that P∗ is a weak solution of the MFG in the sense of Definition 2.2.

We first remark that, since every P∗
n belongs to P∗(Π0) which is closed (see

Proposition 3.1(iii)), it follows that P∗ also belongs to P∗(Π0), which means that P∗

satisfies the individual optimality condition of Definition 2.2. We are left to show that
P∗ satisfies the weak equilibrium condition of Definition 2.2. In what follows, (P∗

n)n
denote the subsequence converging to P∗.

We need to show that M = P∗ ◦ (X | FM,W 0

)−1, P∗-a.s. This means that, for

all F ∈ FX , M(F ) = P∗[X ∈ F | FM,W 0

] P∗-a.s. By approximation it is enough

to show that M(ϕ) = P∗[ϕ(X) | FM,W 0

], P∗-a.s. for any bounded continuous ϕ,
and by the functional monotone class theorem (see [10, Chap. I, Theorem 19]), it is
enough to show that, for any N , t1, . . . , tN , ϕ1, . . . , ϕN ∈ Cb(Rd), ψ ∈ Cb(M1

+(X )),

and F ∈ FW 0

, we have

(3.12) EP∗
[
Mψ(M)1F (W

0)
∏
i⩽N

ϕi(Xti)

]
= EP∗

[
ψ(M)1F (W

0)
∏
i⩽N

ϕi(Xti)

]
.

For every n, M = P∗
n[X̂

n | Fn,W 0

]. In particular, M is a.s. equal to an Fn,W 0

-mea-

surable random measure, and M = P∗
n(X̂

n | Fn,W 0 ∨ FM )−1 P∗
n-a.s., implying that

for all n ⩾ 0 and F ∈ Fn,W 0

,

(3.13) EP∗
n

[
Mψ(M)1F (W

0)
∏
i⩽N

ϕi(Xti)

]
= EP∗

n

[
ψ(M)1F (W

0)
∏
i⩽N

ϕi(X̂
n
ti)

]
.

Since Fn,W 0

is increasing in n, for fixed F ∈ Fn,W 0

, it follows that (3.13) also holds
under P∗

k for all k ⩾ n. By the stable convergence of P∗
k to P∗, the left-hand side

of (3.13) tends to that of (3.12). So in order to show that (3.12) holds for this specific
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CONTROLLED DIFFUSION MEAN FIELD GAMES 627

F ∈ Fn,W 0

, we will show that

(3.14) EP∗
k

[
ψ(M)1F (W

0)
∏
i⩽N

ϕi(X̂
k
ti)

]
→
k
EP∗

[
ψ(M)1F (W

0)
∏
i⩽N

ϕi(Xti)

]
.

We fix ε > 0. Since (P∗
k)k is tight, we may fix a compact subset Kε of X such that

P∗
k(X \Kε) ⩽ ε for all k, and such that X̂k converges uniformly to X on Kε. Even-

tually, X and all the X̂n are uniformly bounded by some constant C > 0 on this Kε,
and all the ϕi are uniformly continuous on the closed ball B(0, C). In particular, there
exists k0 such that for all k ⩾ k0, and ω ∈ Kε,

(3.15)

∣∣∣∣∏
i⩽N

ϕi(X̂
k
ti(ω))−

∏
i⩽N

ϕi(ω(ti))

∣∣∣∣ ⩽ ε.

This implies∣∣∣∣EP∗
k

[
ψ(M)1F (W

0)
∏
i⩽N

ϕi(X̂
k
ti)

]
−EP∗

[
ψ(M)1F (W

0)
∏
i⩽N

ϕi(Xti)

]∣∣∣∣
⩽

∣∣∣∣EP∗
k

[
ψ(M)1F (W

0)
∏
i⩽N

ϕi(X̂
k
ti)

]
−EP∗

k

[
ψ(M)1F (W

0)
∏
i⩽N

ϕi(Xti)

]∣∣∣∣
+

∣∣∣∣EP∗
k

[
ψ(M)1F (W

0)
∏
i⩽N

ϕi(Xti)

]
−EP∗

[
ψ(M)1F (W

0)
∏
i⩽N

ϕi(Xti)

]∣∣∣∣.(3.16)

It is immediate that the second term tends to zero, and for the first one we have, for
all k ⩾ k0, ∣∣∣∣EP∗

k

[
ψ(M)1F (W

0)
∏
i⩽N

ϕi(X̂
k
ti)

]
−EP∗

k

[
ψ(M)1F (W

0)
∏
i⩽N

ϕi(Xti)

]∣∣∣∣
⩽ ∥ψ∥∞EP∗

k

[∣∣∣∣∏
i⩽N

ϕi(X̂
k
ti)−

∏
i⩽N

ϕi(Xti)

∣∣∣∣]

⩽ ∥ψ∥∞EP∗
k

[
1Kε

∣∣∣∣∏
i⩽N

ϕi(X̂
k
ti)−

∏
i⩽N

ϕi(Xti)

∣∣∣∣]

+ ∥ψ∥∞EP∗
k

[
1X\Kε

∣∣∣∣∏
i⩽N

ϕi(X̂
k
ti)−

∏
i⩽N

ϕi(Xti)

∣∣∣∣]
⩽ 2Nε ∥ψ∥∞

∏
i⩽N

∥ϕi∥∞ + ε ∥ψ∥∞.(3.17)

Since we may choose ε as small as we want, we see that (3.14) holds and, there-

fore, (3.13) holds, for any F ∈ Fn,W 0

. Since this is true for any n, relation (3.12)

holds for any F ∈
⋃

n Fn,W 0

.

Notice that
⋃

n Fn,W 0

is stable by finite intersection and hence forms a π-system;

see Definition 4.9 in [1]. The sets of F ∈ FW 0

verifying (3.12) form a monotone
class (also called a λ-system; see Definition 4.9 in [1] again), so by the monotone
class theorem (or Dynkin’s lemma; see 4.11 in [1]), we see that (3.12) holds for all

F ∈ σ
(⋃

n Fn,W 0)
, which is equal to FW 0

(see Remark 3.3(i)), completing the proof.
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628 A. BARRASSO AND N. TOUZI

4. McKean–Vlasov second order backward SDEs. From now on, we spe-
cialize the discussion to the no common noise context, i.e., p0 = 0 and W = W 1.
Consequently the distribution of X is now deterministic since it is no longer condi-
tioned on the common noise. We shall work on the smaller canonical space Ω = X ×Q
by appropriate projection of W.

This section contains the second main results of the paper. Our objective is to
provide a characterization of the solution of the MFG in the no common noise context
by means of a McKean–Vlasov second order backward SDE (2BSDE). This requires
a nondegeneracy condition obtained by separating the control of the drift and that of
the diffusion coefficient. We therefore introduce two control sets A and B in which
the drift control process and the diffusion control process take values, respectively.

We denote by QA the set of relaxed controls, i.e., of measures q on [0, T ]×A such
that q(· ×A) is equal to the Lebesgue measure. Each q ∈ QA may be identified with
a measurable function t → qt from [0, T ] to M1

+(A) determined a.e. by q(dt, da) =
qt(da) dt.

We define similarly the set of relaxed controlsQB by replacing the space A with B,
and we denote Q := QA ×QB with corresponding canonical process Q := (QA, QB).

As in the previous section, we equip these spaces with their natural filtrations.
We also introduce the right-continuous filtration FX,+ defined for all t ∈ [0, T ] by

FX,+
t :=

⋂
n⩾0 FX

t+1/n.

We denote by SM the set of all P ∈ M1
+(X ) such that X is a P-semimartinga-

le with absolutely continuous bracket process. According to Karandikar [22], there
exists an FX -progressively measurable process, denoted by ⟨X⟩, which coincides with
the quadratic variation of X P-a.s. for every P ∈ SM. We may then introduce the
process σ̂2 defined by

σ̂2
t := lim sup

ε↘0

⟨X⟩t − ⟨X⟩t−ε

ε
, t ∈ [0, T ].

This process is progressively measurable and takes values in the set S+d of d × d
nonnegative symmetric matrices.

We now fix P ⊂ SM. For all P ∈ P and t ∈ [0, T ] we denote by FX,+,P
t the

σ-field FX,+
t augmented with P-null sets, and we denote by FX,+,P the filtration

given by

FX,+,P
t :=

⋂
P∈P

FX,+,P
t , t ∈ [0, T ].

We say that a property holds P-quasi surely (abbreviated P-q.s.) if it holds P-a.s.
for all P ∈ P. We also denote by S2(P) the collection of all càdlàg FX,+,P -adapted
processes S with

∥S∥2S2(P) := sup
P∈P

EP
[
sup
t⩽T

S2
t

]
<∞.

Finally, we denote by H2(P) the collection of all FX,+,P -progressively measurable
processes H with

∥H∥2H2(P) := sup
P∈P

EP

[∫ T

0

H⊤
t d⟨X⟩tHt

]
= sup

P∈P
EP

[∫ T

0

H⊤
t σ̂

2
tHt dt

]
<∞.
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4.1. Controlled state process. For a fixed m ∈ M1
+(X ), the controlled state

is defined by the relaxed SDE

Xt = X0 +

∫ t

0

∫
A×B

(σrλr)(X,m, a, b)Qr(da, db) dr

+

∫
B

σr(X,m, b)N
B(db, dr),(4.1)

where NB is a martingale measure with intensity QB
t dt, and

λ : [0, T ]×X ×M1
+(X )×A→ Rd,

σ : [0, T ]×X ×M1
+(X )×B → Mp,d(R)

are progressively measurable maps (in the sense detailed in subsection 2.2). The
generator of our controlled martingale problem is defined for ϕ ∈ C2

b (R
d), (a, b) ∈

A×B, and (t, x, y) ∈ [0, T ]×X ×Rd by

Aa,b,m
t,x ϕ(y) := (σtλt)(x,m, a, b) ·Dϕ(y) +

1

2
σtσ

⊤
t (x,m, b) : D

2ϕ(y).

Definition 4.1. Fix some q0 ∈ A×B, and denote by Q0 the measure defined by
Q0

t = δq0 , t ∈ [0, T ]. For (s, x) ∈ [0, T ]×X and m ∈ M1
+(X ),

(i) let Pm

s,x be the subset of all P ∈ M1
+(Ω) such that

P[(X∧s, Q∧s) = (x∧s, Q
0
∧s)] = 1,

and let

ϕ(Xt)−
∫ t

s

∫
A×B

Aa,b,m
r,X ϕ(Xr)Qr(da, db) dr, t ∈ [s, T ],

be a (P,F)-martingale for all ϕ ∈ C2
b (R

d);

(ii) let Mm

s,x be the subset of all P ∈ M1
+(Ω) such that

P[(X∧s, Q∧s) = (x∧s, Q
0
∧s] = 1,

and let

ϕ(Xt)−
1

2

∫ t

s

∫
B

σtσ
⊤
t (x,m, b) : D

2ϕ(Xr)Q
B
r (db) dr, t ∈ [s, T ],

be a (P,F)-martingale for all ϕ ∈ C2
b (R

d).

For any s, x, m, we set Pm
s,x := {P ◦ X−1 : P ∈ Pm

s,x} and Mm
s,x := {P ◦ X−1:

P ∈ Mm

s,x}.
Finally, we set Mm

:= Mm

0,0, P
m

:= Pm

0,0, Mm := Mm
0,0, and Pm := Pm

0,0.

4.2. Solving a McKean–Vlasov 2BSDE. As in the previous sections, let
ξ : X → R be an r.v., let f : [0, T ] × X × M1

+(X ) × A × B → R a progressively
measurable process, and denote the dynamic version of the value function of the
individual optimization problem for all (t, x,m) ∈ [0, T ]×X ×M1

+(X ) by

V m
t (x) := sup

P∈Pm
t,x

EP

[
ξ +

∫ T

t

∫
A×B

fr(m, a, b)Qr(da, db) dr

]
.
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630 A. BARRASSO AND N. TOUZI

The backward SDE characterization of the solution of the MFG requires introducing
the following nonlinearity:

(4.2)

Ft(x, z,Σ,m) := sup
q∈Qt(x,Σ,m)

Ht(x, z,m, q),

H·( · , z, · , q) :=
∫
A×B

(f + z ·σλ) dq

for all (t, x, z,Σ,m) ∈ [0, T ]×X ×Rd × S+d ×M1
+(X ), where

(4.3) Qt(x,Σ,m) :=

{
q ∈ M+

1 (A)⊗M+
1 (B) :

∫
B

σtσ
⊤
t (x,m, b) q

B(db) = Σ

}
.

The following condition is a restatement of Assumption 3.1 in the present context,
with a sufficient condition for the well-posedness of the controlled SDE.

Assumption 4.1. The following assertions hold:
(1) the functions ξ, f , λ, σ are bounded;
(2) the functions ξ and ft, λt, σt for all t are continuous;
(3) the functions λ, σ are locally Lipschitz continuous in x uniformly in (t, a) at

fixed m.

We are now ready for our main characterization of a solution of the MFG from
Theorem 3.1 in terms of the McKean–Vlasov second order backward SDE.

Definition 4.2. We say that (m,Y, Z) ∈ M1
+(X )×S2(Pm)×H2(Pm) solves the

McKean–Vlasov 2BSDE
(4.4)

Yt = ξ +

∫ T

t

Fr(X,Zr, σ̂
2
r ,m) dr −

∫ T

t

Zr dXr + UT − Ut, t ∈ [0, T ], Pm-q.s.

if the following conditions are met :
(1) the process U := Y· − Y0 +

∫ ·
0
Fr(Zr, σ̂

2
r ,m) dr −

∫ ·
0
Zr dXr is a P-cádlág

supermartingale, orthogonal to X for every P ∈ Pm;
(2) m ∈ Pm and U is an m-martingale.

Notice that (4.4) differs from the notion introduced in [30] and further developed
in [29], [26] by the fact that both the nonlinearity and the set of probability measures
depend on the law of X, denoted m. We emphasize that m should not be understood
as the law of X under arbitrary P ∈ Pm. Instead, m denotes the “optimal” measure
in Pm, i.e., the one under which U is a martingale. In other words, the law m
which parametrizes the 2BSDE coincides with the optimal law for X within the set
of measures under which the 2BSDE holds.

We now state the main result of this second part of the paper, whose proof is
postponed to section 6.

Theorem 4.1. Let Assumption 4.1 be met. Then, there exists a solution m of
the MFG with coefficients σλ, σ, f, ξ, which induces a solution (m,Y, Z) of the
McKean–Vlasov 2BSDE (4.4).

Moreover, Y = V m means that Yt(x) = V m
t (x) for all (t, x) ∈ [0, T ]×X .

This result provides a connection between the MFG problem and the corres-
ponding second order backward SDE. It would be interesting to analyze directly the
well-posedness of such SDEs so as to induce a solution of the MFG equilibrium,
we leave this question for future research.

D
ow

nl
oa

de
d 

02
/0

3/
22

 to
 4

6.
24

2.
15

.4
7 

by
 A

le
xe

y 
A

lim
ov

 (
al

ex
ey

.a
lim

ov
@

gm
ai

l.c
om

) 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONTROLLED DIFFUSION MEAN FIELD GAMES 631

5. 2BSDE representation of relaxed controlled problems. The aim of this
section is to introduce the tools needed for the proof of Theorem 4.1. We keep working
with the spaces introduced at the beginning of the previous section. However, since
marginal distribution m is fixed throughout, we shall drop the dependence on this
parameter throughout this section.

5.1. Controlled state process, optimization problem, and value func-
tion. The controlled state process is defined by the relaxed SDE (4.1), and the
dynamic version of the value function of this control problem is defined by setting,
for any (s, x) ∈ [0, T ]×X ,

(5.1)

Vs(x) := sup
P∈Ps,x

Js(P),

Js(P) := EP

[
ξ +

∫ T

s

∫
A×B

fr(X, a, b)Qr(da, db) dr

]
,

where ξ, f are jointly measurable, with f progressively measurable in (t, x), and
the spaces of probability measures Ps,x, P, Ms,x, M, Ps,x, P are defined as in
Definition 4.1, with dependence on m dropped throughout.

Proposition 5.1. Under Assumption 4.1, the set-valued map (s, x) → Ps,x is
a compact valued continuous correspondence, V is continuous on [0, T ] × X , and the
existence holds for problem (5.1).

Proof. The compactness of Ps,x is a consequence of Proposition 3.1(ii). Notice
that the correspondence Γ: (s, x) ∈ [0, T ] × X → {(s, x)} ×M1

+(Q) is continuous as
the product of the continuous mapping (s, x) → (s, x) and of the constant compact
valued (hence continuous) correspondence (s, x) → M1

+(Q); see [1, Theorem 17.28].
Since λ, σ are locally Lipschitz in x uniformly in (t, a, b), for any Q ∈ M1

+(Q),

there exists a unique weak solution of the corresponding SDE, i.e., a unique P ∈ Ps,x

such that P ◦Q−1 = Q.
We denote by ϕ(s, x,Q) this unique P. It is clear that (s, x) → Ps,x is equal

to ϕ ◦ Γ, so by continuity of the composition of continuous correspondences (see
Proposition A.1(4)), we are left to show that ϕ is continuous.

We fix a converging sequence (sn, xn,Qn) → (s, x,Q) in [0, T ] × X ×M1
+(Q).

Since (xn)n converges, it is included in a compact subset C of X . For all n,
ϕ(sn, xn,Qn)◦X−1 is the law of a process which coincides with xn ∈ C on [0, sn] and
which is a semimartingale with bounded (uniformly in n) characteristics on [sn, T ].
Hence, adapting the proof of Proposition 6.2 in [2], we see that (ϕ(sn, xn,Qn)◦X−1)n
is tight. Since A, B are compact sets, it follows that (ϕ(sn, xn,Qn))n is also tight.
We now show that ϕ(s, x,Q) is its only possible limiting point, and the proof of the
first assertion will be complete. Assume (along some subsequence) that ϕ(sn, xn,Qn)
tends to some P ∈ M1

+(Ω). Clearly, P◦Q−1 = Q. Since ϕ(s, x,Q) is unique P ∈ Ps,x

such that P ◦ Q−1 = Q, in order to show that P = ϕ(s, x,Q) and to conclude, it is
enough to show that P ∈ Ps,x. This is shown exactly as in Proposition 6.3 of [2].
This shows the continuity of (s, x) → Ps,x.

It remains to show that V is continuous. We remark that for all (s, x), we have
Vs(x) = supP∈Ps,x

J0(P) −
∫ s

0
fr(x, q0) dr. Since ξ, f are bounded and ξ and ft for

all t are continuous, J0 is continuous. Since (s, x) → Ps,x is continuous and compact
valued, the above supremum is in fact the maximum, and the Berge maximum theorem
(see Theorem A.1) states that (s, x) → maxP∈Ps,x

J0(P) is continuous. Finally, the
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632 A. BARRASSO AND N. TOUZI

dominated convergence theorem permits us to show that (s, x) →
∫ s

0
fr(x, q0) dr is

continuous, and hence V is continuous.

5.2. 2BSDE solved by the value function. We recall F , H, and Q were
introduced in (4.2), (4.3); we will again drop the parameter m.

Lemma 5.1. (i) F is jointly measurable and uniformly Lipschitz in z;

(ii) there exists a measurable mapping q̂ : [0, T ]×X×Rd×S+d → M+
1 (A)⊗M+

1 (B)
such that, for all (t, x, z,Σ) ∈ [0, T ]×X ×Rd × S+d ,

q̂t(x, z,Σ) ∈ Qt(x,Σ) and Ft(x, z,Σ) = Ht

(
x, z, q̂t(x, z,Σ)

)
.

Proof. (i) The joint measurability of f follows from (ii), which will be proved
below, together with the measurability of f, λ, σ (hence of H), and that of q̂. Further,
observe that Ht(x, · , q) is an affine mapping with slope

∫
A×B

σr(x, b)λr(x, a) q(da, db).
In particular, Ft(x, · ,Σ) is convex as the supremum of affine mappings. Denoting by
∂Ft(x, · ,Σ) its subgradient, since Qt(x,Σ) is compact and q → Ht(x, z, q) is contin-
uous for all z, we have (see [17, section D, Theorem 4.4.2]), for all z,

∂Ft(x, · ,Σ)(z) ⊂ co

({∫
A×B

σr(x, b)λr(x, a) q(da, db) : q ∈ Qt(x,Σ)

})
,

where co denotes the convex hull. In particular, ∂Ft(x, · ,Σ)(z) is included in the
centered closed ball of radius ∥σλ∥∞. This implies that the semidirectional derivatives
of Ft(x, · ,Σ) exist at all z and are bounded by ∥σλ∥∞ and, therefore, that this
mapping is ∥σλ∥∞-Lipschitz.

(ii) Our aim is to show the existence of a measurable selector for the correspon-
dence (t, x, z,Σ) → argmaxq∈Qt(x,Σ)Ht(x, z, q). Theorems 18.19 and 18.10 in [1] state
that if H is continuous in q for fixed (t, x, z) and measurable in (t, x, z) for fixed q,
and if Q is a measurable correspondence with compact values, then such a measurable
selector indeed exists.

By the boundedness and continuity of ft, λt, σt for all t, it is immediate that H
verifies the conditions mentioned above. It is also clear that Qt(x,Σ) is a compact
subset ofM+

1 (A)⊗M+
1 (B) for all t, x, Σ. So we are left to show thatQ is a measurable

correspondence.

Finally, since Qt(x,Σ) = {q ∈ M+
1 (A) ⊗ M+

1 (B) : h(t, x,Σ, q) = 0} with
M+

1 (A) ⊗ M+
1 (B) compact and h : (t, x,Σ, q) →

∫
B
σσ⊤

t (x, b) q
B(db) − Σ, which is

measurable in (t, x,Σ) at fixed q and continuous in q at fixed (t, x,Σ), then by Corol-
lary 18.8 in [1], Q is indeed measurable, and the proof is complete.

Further, we recall the definition of a solution for the 2BSDE:

(5.2) Yt = ξ +

∫ T

t

Fr(Zr, σ̂
2
r) dr −

∫ T

t

Zr dXr + UT − Ut, P-q.s.

(see, for instance, [26, Definition 3.9] in which the terminal time may be random).
We introduce the additional notation

(5.3) Pt,P := {P′ ∈ P : P′ coincides with P on FX,+
t }.
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Definition 5.1. A pair of processes (Y,Z) ∈ S2(P)×H2(P) is a solution of the
2BSDE (5.2) if the process

Ut := Yt − Y0 +

∫ t

0

Fr(Zr, σ̂
2
r) dr −

∫ t

0

Zr dXr, t ∈ [0, T ],

is a P-càdlàg supermartingale orthogonal to X for all P ∈ P, and if it satisfies the
minimality condition

Ut = ess inf
P′∈Pt,P

PEP′
[UT | FX,+,P

t ], t ∈ [0, T ], P-a.s.

Remark 5.1. We recall that under the continuum hypothesis, the stochastic inte-

gral
∫ T

t
Zr dXr may be defined for all ω independently of the choice of the probability

in P (see [28]).

The aim of this subsection is to show the following representation result for the
value function.

Theorem 5.1. Under Assumption 4.1, V ∈ S2(P), and there exists Z ∈ H2(P)
such that (V,Z) solves the 2BSDE (5.2).

To prove this result, we follow the same argument as in [31] by introducing

(5.4) Ŷt(x) := sup
P∈Mt,x

EP[Y t,x,P
t ] for all (t, x) ∈ [0, T ]×X ,

where (Y t,x,P, Zt,x,P) is a unique solution of the following (well-posed) BSDE on the
space (X ,FX ,FX,+,P):

(5.5) Y t,x,P
s = ξ +

∫ T

s

Fr(Z
t,x,P
r , σ̂2

r) dr − Zt,x,P
r dXr − dM t,x,P

r , s ∈ [t, T ],

for some martingale M t,x,P, with ⟨X,M t,x,P⟩ = 0, P-a.s.

Proposition 5.2. We have V = Ŷ.

Proof. Denote

fQr :=

∫
A×B

fr(a, b)Qr(da, db),

bQr :=

∫
A×B

σr(b)λr(a)Qr(da, db),

and fix (t, x) ∈ [0, T ]×X .

1. We first prove that Vt(x) ⩽ Ŷt(x). For an arbitrary P ∈ Pt,x, by Theorem 2.7
in [27] there exists an FX -progressively measurable process q such that the feedback
control P ◦ (X, q(X))−1 belongs to Pt,x and

EP

[
ξ +

∫ T

t

fQr dr

]
= EP

[
ξ +

∫ T

t

fq(X)
r dr

]
.
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634 A. BARRASSO AND N. TOUZI

We now work on the filtered space (X ,FX ,FX,+). Even though P is defined on
the larger space (Ω,F), we will often write P instead of P ◦X−1 when there can be
no confusion. By Theorem IV-2 in [15], on a bigger space there exists a martingale
measure NB with intensity qB(X)t dt such that

dXs = bq(X)
s ds+

∫
B

σs(X, b)N
B(db, ds).

Notice that the process

Ls := −
∫ s

t

(∫
A

λr(X, a) q
A
r (X)(da)

)∫
B

NB(db, dr), s ∈ [t, T ],

is a continuous martingale with bounded quadratic variation. Now we may introduce
the probability measure G(P) by

dG(P)

dP
= E(L) := eL−⟨L⟩/2.

Since

⟨X,L⟩ = −
〈∫ ·

t

∫
B

σr(b)N
B(db, dr), L

〉
=

∫ ·

t

bq(X)
r dr,

it follows from the Girsanov theorem that X is a G(P)-martingale with unchanged
quadratic variation

⟨X⟩ =
∫ ·

t

∫
B

σσ⊤
r (X, b) q(X)Br (db) dr, G(P)-a.s.

Hence G(P) ∈ Mt,x.
Considering on (X ,FX ,FX,+, G(P)) the BSDE

(5.6) Y
t,x,G(P)

s = ξ +

∫ T

s

(
fq(X)
r + Z

t,x,G(P)

r bq(X)
r

)
dr − Z

t,x,G(P)

r dXr − dM
t,x,G(P)

r ,

for s ∈ [t, T ], we will now show that we have

(5.7) EP

[
ξ +

∫ T

t

fQr dr

]
= EG(P)[Y

t,x,G(P)

t ] ⩽ EG(P)[Y
t,x,G(P)
t ],

and this implies that Vt(x) ⩽ Ŷt(x). In order to show that the equality in (5.7) holds,

we consider under P the solution (Ỹ , Z̃, M̃) of the BSDE

Ỹs = ξ +

∫ T

s

fq(X)
r dr − Z̃r dXr + Z̃rb

q(X)
r dr − dM̃r, s ∈ [t, T ].

SinceX−
∫ ·
t
b
q(X)
r dr is aP-martingale, it follows that Ỹ+

∫ ·
t
f
q(X)
r dr is also aP-martin-

gale, and hence by the Girsanov theorem, Ỹ+
∫ ·
t
f
q(X)
r dr−⟨Ỹ , L⟩ is aG(P)-martingale.

Since X is a G(P)-martingale, we obtain by standard decomposition that

Ỹs = ξ +

∫ T

s

fq(X)
r dr −

∫ T

s

d⟨Ỹ , L⟩r −
∫ T

s

Z ′
r dXr + (M ′

T −M ′
s), s ∈ [t, T ],
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for some process Z ′ and some martingale M ′ orthogonal to X. Hence ⟨Ỹ , L⟩ =∫ ·
t
Z ′
r d⟨X,L⟩ = −

∫ ·
t
Z ′
rb

q(X)
r dr, and, therefore,

Ỹs = ξ +

∫ T

s

(fq(X)
r + Z ′

rb
q(X)
r ) dr −

∫ T

s

Z ′
r dXr + (M ′

T −M ′
s), s ∈ [t, T ],

which implies that Ỹ = Y
t,x,G(P)

G(P)-a.s. by the uniqueness of the solution of
a BSDE. In particular,

EP

[
ξ +

∫ T

t

fQr dr

]
= EP

[
ξ +

∫ T

t

fq(X)
r dr

]
= EP[Ỹt]

= EG(P)[Ỹt] = EG(P)[Y
t,x,G(P)

t ].

By the comparison theorem for BSDEs (see Theorem 2.2 in [14], for instance) and the

definition of F and σ̂2 we have EG(P)[Y
t,x,G(P)

t ] ⩽ EG(P)[Y
t,x,G(P)
t ], and, therefore,

the inequality in (5.7) holds.

2. Further, we prove the converse inequality Vt(x) ⩾ Ŷt(x). Recall that the
maximizer q̂ was introduced in Lemma 5.1, and denote q̂r := q̂r(X,Z

t,x,P
r , σ̂2

r). Then,
for all P ∈ Mt,x, we have

Y t,x,P
s = ξ +

∫ T

s

Hr(X,Z
t,x,P
r , q̂r) dr

− Zt,x,P
r dXr + dM t,x,P

r , s ∈ [t, T ], P-a.s.(5.8)

Proceeding as in the first part of this proof, we consider the change of measure
dQ/dP := E(L̂), where L̂ := −

∫ ·
t

∫
A×B

λr(X, a)q̂
A
r (da) dNB(db, dr). Since ⟨X, L̂⟩ =

−
∫ ·
t
bq̂r dr P-a.s., it follows from (5.8) that ⟨Y t,x,P, L̂⟩ = −

∫ ·
t
Zt,x,P
r bq̂r dr, and we

conclude from the Girsanov theorem that Y t,x,P is a Q-martingale. Finally, let
Ĝ(P) := Q ◦ (X, q̂)−1. By construction, Ĝ(P) belongs to Pt,x, and we have

EĜ(P)

[
ξ +

∫ T

t

fQr dr

]
= EQ

[
ξ +

∫ T

t

f q̂r dr

]
= EQ[Y t,x,P

t ] = EP[Y t,x,P
t ].

By the arbitrariness of P ∈ Mt,x, and the fact that Ĝ(P) belongs to Pt,x, this implies

that Vt(x) ⩾ Ŷt(x).

Proof of Theorem 5.1. By Proposition 5.2, we have V = Ŷ. Moreover, (t, x)→Vt(x)

is continuous by Proposition 5.1, so t→ Ŷt(X∧t) is a continuous process. The present
theorem now follows from Theorem 4.6 in [30] or section 4.4 of [29], where we do not

have to consider the path regularization of t → Ŷt(X∧t), as we have shown that it is
continuous in the present setup.

6. Proof of Theorem 4.1. We will make use of Theorem 3.1 in a setup with no
common noise. In particular, as explained in Remark 3.1, we have p0 = 0, W = W 1,
and M is deterministic.

By Theorem 3.1 and Remark 3.1, there exist m ∈ M1
+(X ) and P̂∗ ∈ M1

+(X ×
Q×W), which maximizes EP[ξ+

∫ T

0
fQr dr] within all elements P ∈ M1

+(X ×Q×W)

satisfying Definition 2.1(1), with m replacing M , and such that P̂∗ ◦X−1 = m.
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Let P∗ := P̂∗ ◦ (X,Q)−1. We have m = P∗ ◦X−1 and P∗ ∈ Pm
. In particular

m ∈ Pm, as required in Definition 4.2.

We remark that ξ, f do not depend on W . For any Q ∈ Pm
, there exists

Q̂ ∈ M1
+(X × Q ×W) satisfying Definition 2.1(1) and such that Q := Q̂ ◦ (X,Q)−1,

and hence such that

EQ

[
ξ+

∫ T

0

fQr dr

]
= EQ̂

[
ξ+

∫ T

0

fQr dr

]
⩽ EP̂∗

[
ξ+

∫ T

0

fQr dr

]
= EP∗

[
ξ+

∫ T

0

fQr dr

]
.

This shows that m = P∗ ◦X−1 and

(6.1) V m
0 (0) = EP∗

[
ξ +

∫ T

0

fQr dr

]
= sup

P∈Pm
EP

[
ξ +

∫ T

0

fQr dr

]
,

meaning thatm is a solution of the MFG on the restricted canonical space Ω = X×Q.

We set Yt = V m
t (X∧t), t ∈ [0, T ]. By Theorem 5.1, Y ∈ S2(Pm), and there exists

a process Z ∈ H2(Pm) such that the process U defined by

(6.2) U := Y· − Y0 +

∫ ·

0

Fr(Zr, σ̂
2
r ,m) dr −

∫ ·

0

Zr dXr

is a càdlàg P-supermartingale orthogonal to X for all P ∈ Pm. Consider the
Doob–Meyer decomposition of the m-supermartingale U = M − K into an m-mar-
tingale M orthogonal to X, and an m-a.s. nondecreasing process K. We define q,
NB , L, and G(P∗) as in the proof of Proposition 5.2. Since M is orthogonal to X,
it follows that NB can be taken orthogonal to M (see Proposition III-9 in [15]),
so L is orthogonal to M . By the Girsanov theorem, M is also a G(P∗)-martingale.
Now it follows from (6.2) that (Y, Z) solves the BSDE

Yt = ξ+

∫ T

t

Fr(Zr, σ̂
2
r ,m) dr + dKr − Zr dXr − dMr, t∈ [0, T ], G(P∗)-a.s.

with orthogonal martingale M . Since K is G(P∗)-a.s. nondecreasing and positive,

by the standard comparison result of BSDEs we have Y0 ⩾ EG(P∗)[Y
G(P∗)
0 ], where

(Y P∗
, ZP∗

) is defined as in (5.5) by

Y P∗

t = ξ +

∫ T

t

Fr(Z
P∗

r , σ̂2
r ,m) dr − ZP∗

r dXr − dMP∗

r , t ∈ [0, T ], P∗-a.s.

Moreover, the requirement that U is an m-martingale is equivalent to K ≡ 0,

G(P∗)-a.s. which in turn is equivalent to Y0 = EG(P∗)[Y
G(P∗)
0 ], which we prove. Since

m satisfies (6.1), it follows from (5.7) and Proposition 5.2 that

(6.3) Y0 = V m
0 (0) = EP∗

[
ξ +

∫ T

0

fQr dr

]
⩽ EG(P∗)[Y

G(P∗)
0 ],

and the required result follows from the fact that

Y0 = V m
0 (0) = max

P∈Pm
EP

[
ξ +

∫ T

0

fQr dr

]
= sup

P∈Mm

EP[Y P
0 ] ⩾ EG(P∗)[Y

G(P∗)
0 ].
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Appendix A. Basic results concerning correspondences.

Definition A.1. Let E, F be two Hausdorff topological spaces. A mapping T
from E into the subsets of F is called a correspondence from E into F, which we
summarize with the notation T : E ↠ F .

T is called upper hemicontinuous if, for every x ∈ E and any neighborhood U
of T (x), there is a neighborhood V of x such that z ∈ V implies T (z) ⊂ U .

T is lower hemicontinuous if, for every x ∈ E and any open set U that meets T (x),
there is a neighborhood V of x such that z ∈ V implies T (z) ∩ U ̸= ∅.

We say that T is continuous if it is both upper hemicontinuous and low hemicon-
tinuous. Finally, T is said to have a closed graph if its graph Gr(T ) := {(x, y) : x ∈ E,
y ∈ T (x)} is a closed subset of E × F .

We collect in the following proposition some classical results which can be found
in [1, Theorems 17.10, 17.11, 17.15, 17.23; Lemma 17.8].

Proposition A.1. (1) If T is an upper hemicontinuous correspondence with
compact values, then it has a closed graph;

(2) conversely, if T has a closed graph and F is compact, then T is upper hemi-
continuous;

(3) if F is a metric space and T is compact valued, then T may be seen as a func-
tion from E to Comp(F ), the set of nonempty compact sets of F, which may be
equipped with a metric called the Hausdorff metric such that T is continuous as a cor-
respondence if and only if it is continuous as a function for that metric;

(4) the composition of upper hemicontinuous (respectively, low hemicontinuous,
continuous) correspondences is upper hemicontinuous (respectively, low hemicontinu-
ous, continuous);

(5) the image of a compact set under a compact valued upper hemicontinuous
correspondence is compact.

We now recall the Berge maximum theorem (see [1, Theorem 17.31]).

Theorem A.1. Let T : E ↠ F be a continuous nonempty compact valued corre-
spondence between topological spaces. Let J : F → R be a continuous function. Then
the correspondence T ∗ : E ↠ F defined, for all x ∈ E, by T ∗(x) := argmaxy∈T (x) J(y),
is upper hemicontinuous and nonempty compact valued.

Moreover, the mapping m : E → R given for all x ∈ E by m(x) :=maxy∈T (x) J(y)
is continuous.

In [18], Horvath extended the ε-approximate selection theorem obtained by Cel-
lina in [9]. Although it was stated in a framework of generalized convex structures
[18, Theorem 6], the lines after its proof imply the following.

Assumption A.1. E is a subset of a locally convex topological vector space such
that there exists a distance dE metrizing the induced topology of E and such that all
open balls are convex and that any neighborhood {y ∈ E : dE(y, C) < r} of a convex
set C is convex.

Theorem A.2. Let (K, dK) be a compact metric space, and let (E, dE) verify
Assumption A.1. We denote by d the distance dK + dE on K × E.

Let T be an upper hemicontinuous correspondence taking nonempty compact con-
vex values from K to E. Then, for any ε > 0, there exists a continuous function
fε : K → E such that, for all x ∈ K,

d((x, fε(x)),Gr(T )) := inf{d((x, fε(x)), (y, z)) : y ∈ E, z ∈ T (y)} < ε.
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The following theorem is a generalization of Kakutani’s theorem adapted from
Proposition 7.4 in [8] which itself adapts a result of Cellina; see [9, Theorem 1].

Theorem A.3. Let (K, d) be a compact convex subset of a locally convex topolog-
ical vector space (E, dE) verifying Assumption A.1, let T be an upper hemicontinuous
correspondence taking nonempty compact convex values from K to E, and let ϕ be
a continuous function from E to K.

Then there exists some x ∈ K such that x ∈ ϕ ◦ T (x).
Proof. Let Gr(T ) := {(x, y) ∈ K × E : y ∈ T (x)}. By Theorem A.2, for every

n ∈ N, there exists a continuous fn : K → E such that, for all x ∈ K,

inf{d((x, fn(x)),Gr(T )} < 1

n
.

Since ϕ ◦ fn : K → K is continuous, by Schauder’s fixed point theorem there exists
some xn ∈ K such that xn = ϕ(fn(xn)). By Proposition A.1(1), (5), since T is
upper hemicontinuous and compact valued, it follows that T (K) :=

⋃
x∈K T (x)

is compact and Gr(T ) is closed. Thus Gr(T ) ⊂ K × T (K) is compact. Since
d((xn, fn(xn)),Gr(T )) → 0 and Gr(T ) is compact, there exists a subsequence xnk

and a point (x, y) ∈ Gr(T ) such that (xnk
, fnk

(xnk
)) → (x, y). Now by continuity

of ϕ we have
x = limxnk

= limϕ(fnk
(xnk

)) = ϕ(y),

with y ∈ T (x), so the proof is complete.

Lemma A.1. Let S be a Polish space and E be a convex subset of M1
+(S) equipped

with the topology of weak convergence. Then there exists on E a distance dE such that
(E, dE) verifies Assumption A.1.

In particular, Theorem A.3 applies for such a choice of space E.

Proof. It is immediate that in a normed space the distance induced by the norm
satisfies Assumption A.1. This implies that if we consider a convex subset E of
a normed space (F, ∥ · ∥) and equip E with the distance dE defined by dE(x, y) :=
∥x− y∥, then (E, dE) verifies Assumption A.1.

We now recall that M1
+(S) is a convex subset of the vector space M(S) which

can be equipped with the Kantorovic–Rubinshtein norm (see [4, section 8.3] for an
introduction) and that onM1

+(S) this norm induces the topology of weak convergence;
see [4, Theorem 8.3.2]. This concludes the proof.
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