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Abstract

We consider a general formulation of the Principal-Agent problem with a lump-sum payment

on a finite horizon. Our approach is the following: we first find the contract that is optimal

among those for which the agent’s value process allows a dynamic programming representation

and for which the agent’s optimal effort is straightforward to find. We then show that, under

technical conditions, the optimization over the restricted family of contracts represents no loss

of generality. Moreover, the principal’s problem can then be analyzed by the standard tools of

control theory. Our proofs rely on the Backward Stochastic Differential Equations approach to

non-Markovian stochastic control, and more specifically, on the recent extensions to the second

order case.

Key words. Stochastic control of non-Markov systems, Hamilton-Jacobi-Bellman equations,

second order Backward SDEs, Principal-Agent problem, Contract Theory.

1 Introduction

Optimal contracting between two parties – Principal (“she”) and Agent (“he”), when Agent’s

effort cannot be contracted upon, is a classical moral hazard problem in microeconomics. It

has applications in many areas of economics and finance, for example in corporate governance

and portfolio management (see Bolton and Dewatripont (2005) for a book treatment, mostly

in discrete-time models). In this paper we develop a general approach to solving such problems

in continuous-time Brownian motion models, in the case in which Agent is paid only at the

terminal time.

∗Caltech, Humanities and Social Sciences, M/C 228-77, 1200 E. California Blvd. Pasadena, CA 91125, USA;

cvitanic@hss.caltech.edu. Research supported in part by NSF grant DMS 10-08219.
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The first, seminal paper on Principal-Agent problems in continuous-time is Holmström and

Milgrom (1987), henceforth HM (1987). They consider Principal and Agent with CARA utility

functions, in a model in which Agent’s effort influences the drift of the output process, but

not the volatility, and show that the optimal contract is linear. Their work was extended by

Schättler and Sung (1993, 1997), Sung (1995, 1997), Müller (1998, 2000), and Hellwig and

Schmidt (2002). The papers by Williams (2009) and Cvitanić, Wan and Zhang (2009) use

the stochastic maximum principle and Forward-Backward Stochastic Differential Equations

(FBSDEs) to characterize the optimal compensation for more general utility functions.

Our method provides a direct way to solving such problems, while at the same time allowing

also Agent to control the volatility of the output process, and not just the drift. 1 In many

important applications, such as, for example, delegated portfolio management, Agent, indeed,

controls the volatility of the output process. This application is studied for the first time

in a pre-cursor to this paper, Cvitanić, Possamäı and Touzi (2015), for the special case of

CARA utility functions, showing that the optimal contract depends not only on the output

value (in a linear way, because of CARA preferences), but also on the risk the output has

been exposed to, via its quadratic variation. The present paper includes all the above cases

as special cases, considering a multi-dimensional model with arbitrary utility functions and

Agent’s efforts affecting both the drift and the volatility of the output, that is, both the return

and the risk. 2 Our novel method is also used in Aı̈d, Possamäı and Touzi (2015) for a problem

of optimal electricity pricing, and has a potential to be applied to many other applications

involving Principal-Agent problems.

In recent years a different continuous-time model has emerged and has been very successful

in explaining contracting relationship in various settings - the infinite horizon problem in which

Principal may fire/retire Agent and the payments are paid continuously, rather than as a lump-

sum payment at the terminal time, as introduced in another seminal paper, Sannikov (2008).

We leave for a future paper the analysis of the Sannikov’s model using our approach.

The main approach taken in the literature is to characterize Agent’s value process (also

called continuation/promised utility) and his optimal actions given an arbitrary contract payoff,

and then to analyze the maximization problem of the principal over all possible payoffs. 3

This approach may be hard to apply, because it may be hard to solve Agent’s stochastic

control problem given an arbitrary payoff, possibly non-Markovian, and it may also be hard

for Principal to maximize over all such contracts. Furthermore, Agent’s optimal control may

depend on the given contract in a highly nonlinear manner, rendering Principal’s optimization

problem even harder. For these reasons, in its most general form the problem was approached

in the literature also by means of the calculus of variations, thus adapting the tools of the

stochastic version of the Pontryagin maximum principle; see Cvitanić and Zhang (2012). Our

approach is different, much more direct, and it works in great generality. We restrict the family

of admissible contracts to the contracts for which Agent’s value process allows a dynamic

1This still leads to moral hazard in models with multiple risk sources, that is, driven by a multi-dimensional

Brownian motion.
2See also recent papers by Mastrolia and Possamäı (2015), and Sung (2015)), which, though related to our

formulation, work in frameworks different from ours
3For a recent different approach, see Evans, Miller and Yang (2015). For each possible Agent’s control process,

they characterize contracts that are incentive compatible for it. However, their setup is less general than ours, and

it does not allow for volatility control, for example.
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programming representation. For such contracts, it is easy for Principal to identify what

the optimal policy for Agent is - it is the one that maximizes the corresponding Hamiltonian.

Moreover, the admissible family is such that Principal can apply standard methods of stochastic

control. Finally, we show that under relatively mild technical conditions, the supremum of

Principal’s expected utility over the restricted family is equal to the supremum over all feasible

contracts. We accomplish that by representing Agent’s value proccess by means of the so-called

second order BSDEs as introduced by Soner, Touzi and Zhang (2011), see also Cheridito, Soner,

Touzi and Victoir (2007), and using recent results of Possamäı, Tan and Zhou (2015), to bypass

the regularity conditions in Soner, Touzi and Zhang (2011).

One way to provide the intuition for our approach is the following. In a Markovian frame-

work, Agent’s value is, under technical conditions, determined via its first and second derivatives

with respect to the state variables. In a general non-Markovian framework, the role of these

derivatives is taken over by the (first-order) sensitivity of Agent’s value process to the output,

and its (second-order) sensitivity to its quadratic variation process. Thus, it is possible to

transform Principal’s problem into the problem of choosing optimally those sensitivities. If

Agent controls only the drift, only the first order sensitivity is relevant, and if he also con-

trols the volatility, the second one becomes relevant, too. In the former case, this insight was

used in a crucial way in Sannikov (2008). The insight implies that the appropriate state vari-

able for Principal’s problem (in Markovian models) is Agent’s value. This has been known in

discrete-time models already since Spear and Srivastava (1987). We arrive to it from a different

perspective, the one of considering contracts which are a priori defined via the first and second

order sensitivities.

The rest of the paper is structured as follows: We describe the model and the Principal-

Agent problem in Section 2. We introduce the restricted family of admissible contracts in

Section 3. In Section 4 we show, under technical conditions that the restriction is without loss

of generality. Section 5 presents some examples. We conclude in Section 6.

2 Principal-Agent problem

We first introduce our mathematical model.

2.1 The canonical space of continuous paths

Let T > 0 be a given terminal time, and Ω := C0([0, T ],Rd) the set of all continuous maps from

[0, T ] to Rd, for a given integer d > 0. The canonical process on Ω, representing the output

Agent is in charge of, is denoted by X, i.e.

Xt(x) = x(t) = xt for all x ∈ Ω, t ∈ [0, T ],

and the corresponding canonical filtration by F := {Ft, t ∈ [0, T ]}, where

Ft := σ(Xs, s ≤ t), t ∈ [0, T ].

We denote by P0 the Wiener measure on (Ω,FT ), and for any F−stopping time τ , by Pτ the

regular conditional probability distribution of P0 w.r.t. Fτ (see Stroock and Varadhan (1979)),

which is independent of x ∈ Ω by independence and stationarity of the Brownian increments.
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We say that a probability measure P on (Ω,FT ) is a semi-martingale measure if X is a semi-

martingale under P. Then, on the canonical space Ω, there is a F−progressively measurable

process (see e.g. Karandikar (1995)), denoted by 〈X〉 = (〈X〉t)0≤t≤T , which coincides with the

quadratic variation of X, P−a.s. for all semi-martingale measure P. We next introduce the

d× d non-negative symmetric matrix σ̂t such that

σ̂2
t := lim sup

ε↘0

〈X〉t − 〈X〉t−ε
ε

, t ∈ [0, T ].

A map Ψ : [0, T ]× Ω −→ E, taking values in any Polish space E will be called F−progressive

if Ψ(t, x) = Ψ(t, x·∧t), for all t ∈ [0, T ] and x ∈ Ω.

2.2 Controlled state equation

A control process (Agent’s effort/action) ν = (α, β) is an F−adapted process with values in

A × B for some subsets A and B of finite dimensional spaces. The controlled process takes

values in Rd, and is defined by means of the controlled coefficients:

λ : R+ × Ω×A −→ Rn, bounded, with λ(·, α) F− progressive for any α ∈ A,
σ : R+ × Ω×B −→Md,n(R), bounded, with σ(·, β) F− progressive for any β ∈ B,

for a given integer n, and where Md,n(R) denotes the set of d × n matrices with real entries.

For all control process ν, and all (t, x) ∈ [0, T ]× Ω, the controlled state equation is defined by

the stochastic differential equation driven by an n−dimensional Brownian motion W ,

Xt,x,ν
s = x(t) +

∫ s

t

σr(X
t,x,ν , βr)

[
λr(X

t,x,ν , αr)dr + dWr

]
, s ∈ [t, T ], (2.1)

and such that Xt,x,ν
s = x(s), s ∈ [0, t].

A weak solution of (2.1) is a probability measure P on (Ω,FT ) such that P[X·∧t = x·∧t] = 1,

and

X· −
∫ ·
t

σr(X,βr)λr(X,αr)dr, and X·X
>
· −

∫ ·
t

(σrσ
>
r )(X,βr)dr,

are (P,F)−martingales on [t, T ].

For such a weak solution P, there is an n−dimensional P−Brownian motion W P, as well as

F−adapted, and A×B−valued processes (αP, βP) such that4

Xs = xt +

∫ s

t

σr(X,β
P
r )
[
λr(X,α

P
r)dr + dW P

r

]
, s ∈ [t, T ], P− a.s. (2.2)

In particular, we have

σ̂2
t = (σtσ

>
t )(X,βP

t ), dt⊗ dP− a.s.

4Brownian motion W P is defined on a possibly enlarged space, if σ̂ is not invertible P−a.s. We refer to Possamäı,

D., Tan, X., Zhou, C. (2015) for the precise statements.
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The next definition involves an additional map

c : R+ × Ω×A×B −→ R+, measurable, with c(·, u) F− progressive for all u ∈ A×B,

which represents Agent’s cost of effort.

Throughout the paper we fix a real number p > 1.

Definition 2.1. A control process ν is said to be admissible if SDE (2.1) has a weak solution,

and for any such weak solution P we have

EP

[∫ T

0

sup
a∈A
|cs(X, a, βP

s )|pds

]
< ∞. (2.3)

We denote by U(t, x) the collection of all admissible controls, P(t, x) the collection of all cor-

responding weak solutions of (2.1), and Pt := ∪x∈ΩP(t, x).

Notice that we do not restrict the controls to those for which weak uniqueness holds. More-

over, by Girsanov theorem, two weak solutions of (2.1) associated with (α, β) and (α′, β) are

equivalent. However, different diffusion coefficients induce mutually singular weak solutions of

the corresponding stochastic differential equations.

For later use, we introduce an alternative representation of sets P(t, x). We first denote for all

(t, x) ∈ [0, T ]× Ω:

Σt(x, b) := σtσ
>
t (x, b), b ∈ B, and Bt(x,Σ) :=

{
b ∈ B : σtσ

>
t (x, b) = Σ

}
, Σ ∈ S+

d .

For an F−progressively measurable process β with values in B, consider then the SDE driven

by a d−dimensional Brownian motion W

Xt,x,β
s = xt +

∫ s

t

Σ1/2
r (X,βr)dWr, s ∈ [t, T ], (2.4)

with Xt,x,β
s = xs for all s ∈ [0, t]. A weak solution of (2.4) is a probability measure P on (Ω,FT )

such that P[X·∧t = x·∧t] = 1, and

X· and X·X
>
· −

∫ ·
t

Σr(X,βr)dr,

are (P,F)−martingales on [t, T ]. Then, there is an F−adapted process β̄P and some d−dimen-

sional P−Brownian motion W P such that

Xs = xt +

∫ s

t

Σ1/2
r (X, β̄P

r )dW P
r , s ∈ [t, T ], P− a.s. (2.5)

Definition 2.2. A volatility control process β is said to be admissible if the SDE (2.4) has a

weak solution, and for all such solution P, we have

EP

[∫ T

0

sup
a∈A
|cs(X, a, βP

s )|pds

]
< ∞.

We denote by B(t, x) the collection of all volatility control processes, P(t, x) the collection of

all corresponding weak solutions of (2.4), and Pt := ∪x∈ΩP(t, x).
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We emphasize that sets P(t, x) are equivalent to sets P(t, x), in the sense that P(t, x) consists

of probability measures which are equivalent to corresponding probability measures in P(t, x),

and vice versa. Indeed, for (α, β) ∈ U(t, x) we claim that β ∈ B(t, x). To see this, denote by

Pα,β any of the associated weak solutions to (2.1). Then, there always is a d×n rotation matrix

R such that, for any (s, x, b) ∈ [0, T ]× Ω×B,

σs(x, b) = Σ1/2
s (x, b)Rs(x, b). (2.6)

Since d ≤ n, and in addition Σ may be degenerate, notice that there may be many (and even

infinitely many) choices of R, and in this case we may choose any measurable one. We next

define Pβ by

dPβ

dPα,β
:= E

(
−
∫ T

t

λs(X,α
Pα,β
s ) · dW Pα,β

s

)
.

By Girsanov theorem, X is then a (Pβ ,F)−martingale, which ensures that β ∈ B(t, x). In

particular, the polar sets of P0 and P0 are the same. Conversely, let us fix β ∈ B(t, x) and

denote by A the set of A−valued and F−progressively measurable processes. Then, we claim

that for any α ∈ A, we have (α, β) ∈ U(t, x). Indeed, let us denote by Pβ any weak solution to

(2.4) and define

dPα,β

dPβ
:= E

(∫ T

t

Rs(X, β̄
Pβ
s )λs(X,αs) · dW Pβ

s

)
.

Then, by Girsanov Theorem, we have

Xs =

∫ s

t

Σ1/2
r (X, β̄Pβ

r )Rr(X, β̄
Pβ
r )λr(X,αr)dr +

∫ s

t

Σ1/2
r (X, β̄Pβ

r )dW
Pβ

r

=

∫ s

t

σr(X, β̄
Pβ
r )λr(X,αr)dr +

∫ s

t

Σ1/2
r (X, β̄Pβ

r )dW
Pβ

r ,

where W
Pβ

is a d−dimensional (Pα,β ,F)−Brownian motion. Hence, (α, β) ∈ U(t, x). Moreover,

setting

W Pβ
· = R·(X, β̄

Pβ
· )W Pα,β

· +

∫ ·
t

Rs(X, β̄
Pβ
s )λs(X,αs)ds,

defines a Brownian motion under Pα,β . Since Pβ and Pα,β are equivalent, we have

Σ(X,βPα,β ) = Σ(X, β̄Pβ ), dt⊗ Pβ − a.e. (or dt⊗ Pα,β − a.e.),

that is βPα,β
s and β̄Pβ

s both belong to Bs(X, σ̂
2
s(X)), dt⊗Pβ−a.e. We can summarize everything

by the following equality

P(t, x) =
⋃
α∈A

{
E
(∫ T

t

Rs(X, β̄
P
s )λs(X,αs) · dW P

s

)
· P : P ∈ P(t, x), R satisfying (2.6)

}
. (2.7)

2.3 Agent’s problem

Let us fix (t, x,P) ∈ [0, T ]×Ω×P(t, x), together with the associated control νP := (αP, βP). The

canonical process X is called the output process, and the control νP is called Agent’s effort or
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action. Agent is in charge of controlling the (distribution of the) output process by choosing the

effort process νP in the state equation (2.1), while subject to cost of effort at rate c(X,αP, βP).

Furthermore, Agent has a fixed reservation utility R ∈ R, i.e., he will not accept to work for

Principal unless the contract is such that his expected utility is above R.

Agent is hired at time t and receives the compensation ξ from Principal at time T . Principal

does not observe Agent’s effort, only the output process. Consequently, the compensation ξ,

which takes values in R, can only be contingent on X, that is ξ is FT−measurable.

Random variable ξ is called a contract, and we write ξ ∈ Ct if the following integrability

condition is satisfied:

sup
P∈Pt

EP[|ξ|p] < +∞. (2.8)

We now introduce Agent’s objective function:

JA(t, x,P, ξ) := EP
[
Kν

P

t,T (X)ξ −
∫ T

t

Kν
P

t,s(X)cs
(
X, νPs

)
ds
]
, P ∈ P(t, x), ξ ∈ Ct, (2.9)

where

Kνt,s(X) := exp
(
−
∫ s

t

kr(X, νr)dr
)
, s ∈ [t, T ],

is a discount factor defined by means of a bounded measurable function

k : R+ × Ω×A×B −→ R, with k(·, u) F− progressive for all u ∈ A×B.

Notice that JA is well-defined for all (t, x) ∈ [0, T ] × Ω, ξ ∈ Ct and P ∈ P(t, x). This is a

consequence of the boundedness of k, the non-negativity of c, as well as the conditions (2.8)

and (2.3).

Remark 2.3. If Agent is risk-averse with utility function UA, then we replace ξ with ξ′ = UA(ξ)

in JA, and we replace ξ by U−1
A (ξ′) in Principal’s problem below. All the results remain valid.

Remark 2.4. Our approach can also accommodate an objective function for the agent of the

form

EP

[
exp

(
−sgn(UA)

∫ T

t

Kν
P

t,s(X)cs
(
X, νPs

)
ds

)
Kν

P

t,T (X)UA(ξ)

]
,

for a utility function UA having constant sign. In particular, our framework includes exponential

utilities, after appropriately modifying the assumptions.

Agent’s goal is to choose optimally the effort, given the compensation contract ξ promised by

Principal:

V A(t, x, ξ) := sup
P∈P(t,x)

JA(t, x,P, ξ). (2.10)

An admissible control P? ∈ P(t, x) will be called optimal if

V A(t, x, ξ) = JA(t, x,P?, ξ).
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We denote by P?(t, x, ξ) the collection of all such optimal controls P?.

In the literature, the value function V A is called sometimes continuation utility or promised

utility, and it turns out to play a crucial role as the state variable of Principal’s optimization

problem; see Sannikov (2008) for its use in continuous-time models and further references.

2.4 Principal’s problem

We now state Principal’s optimization problem.

At maturity T , Principal receives the final value of the output XT and pays the compensation

ξ promised to Agent. We will restrict the contracts that can be offered by Principal to those

that admit an optimal solution to Agent’s problem, i.e., we allow only the contracts ξ for which

P?(t, x, ξ) 6= ∅. Recall also that Agent’s participation is conditioned on having his value above

reservation utility R. Thus, Principal is restricted to choose a contract from the set

Ξ(t, x) :=
{
ξ ∈ Ct, P?(t, x, ξ) 6= ∅, V A(t, x, ξ) ≥ R

}
. (2.11)

As a final ingredient, we need to fix Agent’s optimal strategy in the case in which set P?(t, x, ξ)
contains more than one solutions. Following the standard convention, we assume that Agent,

when indifferent between such solutions, implements the one that is the best for Principal.

In view of this, Principal’s problem is given by

V P (t, x) := sup
ξ∈Ξ(t,x)

JP (t, x, ξ), (2.12)

where

JP (t, x, ξ) := sup
P?∈P?(t,x,ξ)

EP?
[
KPt,T (X)U

(
`(XT )− ξ

)]
,

where function U : R −→ R is a given non-decreasing and concave utility function, ` : Rd −→ R
is a liquidation function, and

KPt,s(X) := exp
(
−
∫ s

t

kPr (X)dr
)
, s ∈ [t, T ],

is a discount factor, defined by means of a bounded measurable function

kP : R+ × Ω −→ R,

such that kP is F−progressive.

Remark 2.5. Agent’s and Principal’s problems are non-standard stochastic control problems.

First, ξ is allowed to be of non-Markovian nature. Second, Principal’s optimization is over ξ,

and is a priori not a control problem that may be approached by dynamic programming. The

objective of this paper is to develop an approach that naturally reduces both problems to those

that can be solved by dynamic programming.

3 Family of restricted contracts

In this section we identify a restricted family of contract payoffs for which the standard stochas-

tic control methods can be applied.

8



3.1 Agent’s dynamic programming equation

In view of the definition of Agent’s problem in (2.10), it is natural to introduce the Hamiltonian

functional, for all (t, x) ∈ [0, T )× Ω and (y, z, γ) ∈ R× Rd × Sd(R):

Ht(x, y, z, γ) := sup
u∈A×B

ht(x, y, z, γ, u), (3.1)

ht(x, y, z, γ, u) := −ct(x, u)− kt(x, u)y + σt(x, β)λt(x, α)·z +
1

2
(σtσ

>
t )(x, β) : γ, (3.2)

for u := (α, β).

Remark 3.1. (i) Mapping H plays an important role in the theory of stochastic control of

Markov diffusions, see e.g. Fleming and Soner (1993). Indeed, suppose that

• the coefficients λt, σt, ct, kt depend on x only through the current value x(t),

• the contract ξ depends on x only through the final value x(T ), i.e. ξ(x) = g(x(T )) for

some function g : Rd −→ R.

Then, under fairly general conditions, the value function of Agent’s problem is given by

V A(t, x(t), ξ) = v(t, x(t)),

where the function v : [0, T ] × Rd −→ R can be characterized as the unique viscosity solution

(with appropriate growth at infinity) of the dynamic programming partial differential equation

(called Hamilton-Jacobi-Bellman (HJB) equation)

−∂tv(t, x)−H(t, x, v(t, x), Dv(t, x), D2v(t, x)) = 0, (t, x) ∈ [0, T )×Rd, v(T, x) = g(x), x ∈ Rd.

A recently developed theory of path-dependent partial differential equations extends the approach

to the non-Markovian case; see Ekren, Touzi and Zhang (2014).

We note the obvious, but crucial fact that Agent’s value process Vt at the terminal time is

equal to the contract payoff,

ξ = VT .

This provides the motivation for our approach: to find as general a representation of VT as

possible using dynamic programming, and consider payoffs ξ = VT .

Such a representation is the main result of this section that we work on next, and it follows

the line of the standard verification arguments in stochastic control theory. Fix some (t, x) ∈
[0, T ]× Ω. Let

Z : [t, T ]× Ω −→ Rd and Γ : [t, T ]× Ω −→ Sd(R)

be F−predictable processes with

EP
[(∫ T

t

[
ZsZ

>
s : σ̂2

s + |Γs : σ̂2
s |
]
ds
) p

2

]
< +∞, for all P ∈ P(t, x),

We denote by V(t, x) the collection of all such process pairs (Z,Γ).
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Given an initial condition Yt ∈ R, define a F−progressively measurable process Y Z,Γ, P−a.s.,

for all P ∈ P(t, x) by

Y Z,Γs := Yt −
∫ s

t

Hr

(
X,Y Z,Γr , Zr,Γr

)
dr +

∫ s

t

Zr · dXr +
1

2

∫ s

t

Γr :d〈X〉r, s ∈ [t, T ]. (3.3)

Notice that Y Z,Γ is well-defined as a consequence of the Lipschitz property of H in y, due to k

being bounded. We want to see under which conditions Agent’s value process is equal to Y Z,Γ

for some (Z,Γ) ∈ V(t, x).

The next result follows the line of the classical verification argument in stochastic control theory,

and requires the following condition.

Assumption 3.2. For any t ∈ [0, T ], functional H has at least one measurable maximizer

u? = (α?, β?) : [t, T ) × Ω × R × Rd × Sd(R) −→ A × B, i.e. H(.) = h
(
., u?(.)

)
. Moreover, for

all (t, x) ∈ [0, T ]× Ω and for any (Z,Γ) ∈ V(t, x), the control process

ν?,Z,Γs (·) := u?s
(
·, Y Z,Γs (·), Zs(·),Γs(·)

)
, s ∈ [t, T ],

is admissible, that is ν?,Z,Γ ∈ U(t, x).

We are now in a position to define a subset of contracts for which Agent’s value function

coincides with the above process Y Z,Γ, and for which it is straightforward to identify actions

that are incentive compatible, that is, optimal for Agent.

Proposition 3.3. For (t, x) ∈ [0, T ]× Ω, Yt ∈ R and (Z,Γ) ∈ V(t, x), we have:

(i) Yt ≥ V A
(
t, x, Y Z,ΓT

)
.

(ii) Assuming further that Assumption 3.2 holds true, we have Yt = VA
(
t, x, Y Z,ΓT

)
. More-

over, given a contract payoff ξ = Y Z,ΓT , any weak solution P?,Y,Z of the SDE (2.1) with control

ν?,Z,Γ is optimal for Agent’s problem, i.e. Pν?,Z,Γ ∈ P?
(
t, x, Y Z,ΓT

)
.

Proof. (i) Fix an arbitrary P ∈ P(t, x), and denote the corresponding control process νP :=

(αP, βP). Then, it follows from a direct application of Itô’s formula that

EP
[
Kν

P

t,TY
Z,Γ
T

]
= Yt + EP

[∫ T

t

Kν
P

t,s(X)
(
− ks(X, νPs )Y Z,Γs −Hs(X,Y

Z,Γ
s , Zs,Γs)

+Zs · σs(X,βP
s )λ(X,αP

s) +
1

2
σ̂2
s :Γs

)
ds

]
,

where we have used the fact that (Z,Γ) ∈ V(t, x), together with the fact that the stochastic

integral
∫ ·
t
KνP

t,s(X)Zs · σ̂2
sdW

P
s defines a martingale, by the boundedness of k and σ.

By the definition of Hamiltonian H in (3.1), we may re-write the last equation as

EP
[
Kν

P

t,TY
Z,Γ
T

]
= Yt + EP

[ ∫ T

t

Kν
P

t,s(X)
(
cs(X, ν

P)−Hs

(
X,Y Z,Γs , Zs,Γs

)
+ hs(X,Y

Z,Γ
s , Zs,Γs, ν

P
s )
)
ds
]

≤ Yt + EP

[∫ T

t

Kν
P

t,s(X)cs(X,α
P
s , β

P
s )ds

]
,
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and the result follows by arbitrariness of P ∈ P(t, x).

(ii) Denote ν? := ν?,Z,Γ for simplicity. Under Assumption 3.2, the exact same calculations

as in (i) imply, for any weak solution Pν? ,

EPν
?
[
Kν

Pν
?

,t,x
t,T Y Z,ΓT

]
= Yt + EPν

?

[∫ T

t

Kν
Pν
?

t,s (X)cs(X,α
Pν
?

s , βP
s )ds

]
.

Together with (i), this shows that Yt = VA
(
t, x, Y Z,ΓT

)
, and Pν? ∈ P?

(
t, x, Y Z,ΓT

)
.

3.2 Restricted Principal’s problem

Recall the process u?t (x, y, z, γ) = (α?, β?)t(x, y, z, γ) introduced in Assumption 3.2. In this

section, we denote

λ?t (x, y, z, γ) := λt
(
x, α?t (x, y, z, γ)

)
, σ?t (x, y, z, γ) := σt

(
x, β?t (x, y, z, γ)

)
. (3.4)

Notice that Assumption 3.2 says that for all (t, x) ∈ [0, T ]× Ω and for all (Z,Γ) ∈ V(t, x), the

stochastic differential equation, driven by a n−dimensional Brownian motion W

Xt,x,u?

s = x(t) +

∫ s

t

σ?r (Xt,x,u? , Y Z,Γr , Zr,Γr)
[
λ?r(X

t,x,u? , Y Z,Γr , Zr,Γr)dr + dWr

]
, s ∈ [t, T ],

Xt,x,u?

s = x(s), s ∈ [0, t], (3.5)

has at least one weak solution P?,Z,Γ. The following result on Principal’s value process V P

when the contract payoff is ξ = Y Z,ΓT is a direct consequence of Proposition 3.3.

Proposition 3.4. For all (t, x) ∈ [0, T ] × Ω, we have V P (t, x) ≥ supYt≥R V (t, x, Yt), where,

for Yt ∈ R:

V (t, x, Yt) := sup
(Z,Γ)∈V(t,x)

sup
P̂Z,Γ∈P?(t,x,Y Z,ΓT )

EP?,Z,Γ[KPt,TU(`(XT )− Y Z,ΓT

)]
. (3.6)

In the ensuing sections, we identify conditions under which the lower bound V (t, x, y), rep-

resenting Principal’s value when the contracts are restricted to the FT−measurable random

variables Y Z,ΓT with given initial condition Yt, is, in fact equal to the unrestricted Principal’s

value V P (t, x). In the remainder of this section, we recall how V (t, x, y) can be computed, in

principle.

An advantage of our approach is that V is the value function of a standard stochastic control

problem with control processes (Z,Γ) ∈ V(t, x), and controlled state process (X,Y Z,Γ), the

controlled dynamics of X given (in weak formulation) by (3.5), and those of Y Z,Γ given by

(3.3):

dY Z,Γs =
(
Zs · σ?sλ?s +

1

2
Γs :σ?s (σ?s )> −Hs

)
(X,Y Z,Γs , Zs,Γs)ds+ Zs · σ?s (X,Y Z,Γs , Zs,Γs)dW

P
s .

(3.7)

In view of the controlled dynamics (3.5)-(3.7), the relevant optimization term for the dynamic

programming equation corresponding to the control problem V is defined for (t, x, y) ∈ [0, T ]×
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Rd × R by:

G(t, x, y, p,M)

:= sup
(z,γ)∈R×Sd(R)

{
(σ?t λ

?
t )(x, y, z, γ) · px +

(
z · (σ?t λ?t ) +

1

2
γ :σ?t (σ?t )> −Ht

)
(x, y, z, γ)py

+
1

2
(σ?t (σ?t )>)(x, y, z, γ) :

(
Mxx + zz>Myy

)
+ (σ?t (σ?t )>)(x, y, z, γ)z ·Mxy

}
,

where M =:

(
Mxx Mxy

M>xy Myy

)
∈ Sd+1(R), Mxx ∈ Sd(R), Myy ∈ R, Mxy ∈ Md,1(R) and p =:(

px
py

)
∈ Rd × R.

The next well-known theorem recalls how to compute V in the Markovian case, i.e. when the

model coefficients are not path-dependent. A similar statement can be formulated in the path

dependent case, by using the notion of viscosity solutions of path-dependent PDE’s introduced

in Ekren, Keller, Touzi & Zhang (2014), and further developed in Ekren, Touzi and Zhang

(2014a) and (2014b), Ren, Touzi and Zhang (2014a) and (2014b). However, one then faces the

problem of the controls (z, γ) possibly being unbounded, which typically leads to G being non-

Lipschitz in variables (Dv,D2v), unless additional conditions on the coefficients are imposed.

Theorem 3.5. Let ϕt(x, .) = ϕt(xt, .) for ϕ = k, kP , λ?, σ?, H, and let Assumption 3.2 hold.

Assume further that the map G : [0, T )×Rd×Rd+1× Sd+1(R) −→ R is upper semicontinuous.

Then, V (t, x, y) is a viscosity solution of the dynamic programming equation:{
(∂tv − kP v)(t, x, y) +G

(
t, x, v(t, x, y), Dv(t, x, y), D2v(t, x, y)

)
= 0, (t, x, y) ∈ [0, T )× Rd × R,

v(T, x, y) = U(`(x)− y), (x, y) ∈ Rd × R.

In general, we see that Principal’s problem involves both x and y as state variables. We consider

below conditions under which the number of state variables can be reduced.

4 Comparison with the unrestricted case

In this section we find conditions under which equality holds in Proposition 3.4, i.e. the value

function of the restricted Principal’s problem of Section 3.2 coincides with Principal’s value

function with unrestricted contracts. We start with the case in which the volatility coefficient

is not controlled.

4.1 Fixed volatility of the output

We consider here the case in which Agent is only allowed to control the drift of the output

process:

B = {βo} for some fixed βo ∈ U(t, x). (4.1)

Let Pβo be any weak solution of the corresponding SDE (2.4). The main tool for our results

below is the use of Backward Stochastic Differential Equations, BSDE’s. This requires intro-
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ducing filtration FPβ
o

+ , defined as the Pβ◦−completion of the right-limit of F,5 under which the

predictable martingale representation property holds true.

In the present setting, all probability measures P ∈ P(t, x) are equivalent to Pβo . Consequently,

equation (3.3) only needs to be considered under Pβ0

, and reduces to

Y Zs := Y Z,0s = Yt −
∫ s

t

F 0
r

(
X,Y Z,Γr , Zr

)
dr +

∫ s

t

Zr · dXr, s ∈ [t, T ], Pβ
o

− a.s., (4.2)

where the dependence on the process Γ gets simplified, and

F 0
t (x, y, z) := sup

α∈A

{
− ct(x, α, b)− kt(x, α, b)y + σt

(
x, βot (x)

)
λt(x, α)·z

}
. (4.3)

Theorem 4.1. Let Assumption 3.2 hold. Under assumption (4.1), assuming in addition that

(Pβo ,FPβ
o

+ ) satisfies the predictable martingale representation property and the Blumenthal zero-

one law, we have

V P (t, x) = sup
y≥R

V (t, x, y), for all (t, x) ∈ [0, T ]× Ω.

Proof. For all ξ ∈ Ξ(t, x), we observe that condition (2.8) guarantees that ξ ∈ Lp(Pβ0

). To

prove that the stated equality holds, it is sufficient to show that all such ξ can be represented

in terms of a controlled diffusion Y Z,0. We know that F is uniformly Lipschitz-continuous in

(y, z) because k, σ and λ are bounded, hence, by definition of admissible contracts, we have

EPβ
o

[∫ T

0

|F 0
t (X, 0, 0)|p

]
< ∞,

Then, the standard theory (see for instance Possamäı, D., Tan, X., Zhou, C. (2015), henceforth

PTZ (2015)) guarantees that the BSDE

Yt = ξ +

∫ T

t

F 0
r (X,Yr, Zr)dr −

∫ T

t

Zr · σr(X,βor )dW Pβ
o

r ,

is well-posed, because we also have that Pβo satisfies the predictable martingale representation

property. Moreover, we then have automatically (Z, 0) ∈ V(t, x). This implies that ξ can indeed

be represented by a process Y which is of the form (4.2).

Remark 4.2. Let us comment on the additional assumptions of Theorem 4.1. We assume

that the Blumenthal 0-1 law holds only to simplify the proof in this section, and we provide

the proof for the general case in the next section, without this assumption. The predictable

martingale representation property holds if, for instance, σt(x, β
o
t (x))(σt(x, β

o
t (x)))> is always

invertible and if the solutions to the SDE (2.1) are strong solutions instead of weak solutions.

For example, it holds if both σ and λ have linear growth in x (with respect to the uniform

topology on the space of continuous functions) and are Lipschitz continuous in x, uniformly in

t and α, which is the case in the typical applications.

5For a semimartingale probability measure P, we denote by Ft+ := ∩s>tFs its right-continuous limit, and by FP
t+

the corresponding completion under P. The completed right-continuous filtration is denoted by FP
+.
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4.2 The general case

The purpose of this section is to extend Theorem 4.1 to the case in which Agent controls both

the drift and the volatility of the output process X. Similarly to the previous section, the

critical tool is the theory of Backward SDEs, but the control of volatility requires to invoke the

recent extension of Backward SDE’s to the second order case. This needs additional notation,

as follows. Let M denote the collection of all probability measures on (Ω,FT ). The universal

filtration FU =
(
FUt
)

0≤t≤T is defined by

FUt :=
⋂

P∈M
FP
t , t ∈ [0, T ],

and we denote by FU+, the corresponding right-continuous limit. Moreover, for a subset P ⊂M,

we introduce the set of P−polar sets NP :=
{
N ⊂ Ω : N ⊂ A for some A ∈ FT with

supP∈P P(A) = 0
}

, and we introduce the P−completion of F

FP :=
(
FPt
)
t∈[0,T ]

, with FPt := FUt ∨ σ
(
NP

)
, t ∈ [0, T ],

together with the corresponding right-continuous limit FP+.

Finally, for technical reasons, we work under the classical ZFC set-theoretic axioms, as well as

the continuum hypothesis6.

4.2.1 2BSDE characterization of Agent’s problem

We now provide a representation of Agent’s value function by means of the so-called second

order BSDEs, or 2BSDEs as introduced by Soner, Touzi and Zhang (2011), (see also Cheridito,

Soner, Touzi and Victoir (2007)). Furthermore, we use crucially recent results of Possamäı, Tan

and Zhou (2015), PTZ (2015) to bypass the regularity conditions in Soner, Touzi and Zhang

(2011).

We first re-write mapping H in (3.1) as:

Ht(x, y, z, γ) = sup
β∈B

{
Ft
(
x, y, z,Σt(x, β)

)
+

1

2
Σt(x, β) :γ

}
,

Ft(x, y, z,Σ) := sup
(α,β)∈A×Bt(x,Σ)

{
− ct(x, α, β)− kt(x, α, β)y + σt(x, β)λt(x, α)·z

}
.

We reformulate Assumption 3.2 in this setting:

Assumption 4.3. Functional F has at least one measurable maximizer u? = (α?, β?) : [0, T )×
Ω×R×Rd×S+

d −→ A×B, i.e. F (·, y, z,Σ) = −c(·, α?, β?)−k(·, α?, β?)y+σ(·, β?)λ(·, α?) · z.

Moreover, for all (t, x) ∈ [0, T ] × Ω, and for all admissible controls β ∈ U(t, x), the control

process

ν?,Y,Z,βs := (α?s , β
∗
s )
(
Ys, Zs,Σs(βs)

)
, s ∈ [t, T ],

is admissible, that is ν?,Y,Z,β ∈ U(t, x).

6Actually, we do not need the continuum hypothesis, per se. Indeed, we want to be able to use the main result

of Nutz (2012), which only requires axioms ensuring the existence of medial limits in the sense of Mokobodzki. We

make this choice here for ease of presentation.
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We also need the following condition.

Assumption 4.4. For any (t, x, β) ∈ [0, T ]×Ω×B, the matrix (σtσ
>
t )(x, β) is invertible, with

a bounded inverse.

The following lemma shows that sets P(t, x) satisfy natural properties.

Lemma 4.5. The family {P(t, x), (t, x) ∈ [0, T ] × Ω} is saturated, and satisfies the dynamic

programming requirements of Assumption 2.1 in PTZ (2015).

Proof. Consider some P ∈ P(t, x) and some P′ under which X is a martingale, and which

is equivalent to P. Then, the quadratic variation of X under P′ is the same as its quadratic

variation under P, that is
∫ ·
t
(σsσ

>
s )(X,βs)ds. By definition, P′ is therefore a weak solution to

(2.4) and belongs to P(t, x).

The dynamic programming requirements of Assumption 2.1 in PTZ (2015) follow from the

more general results given in El Karoui and Tan (2013a) and (2013b).

Given an admissible contract ξ, we consider the following saturated 2BSDE (in the sense of

Section 5 of PTZ (2015)):

Yt = ξ +

∫ T

t

Fs(X,Ys, Zs, σ̂
2
s)ds−

∫ T

t

Zs · dXs +

∫ T

t

dKs, (4.4)

where Y is FP0
+ −progressively measurable process, Z is an FP0−predictable process, with appro-

priate integrability conditions, and K is an FP0−optional non-decreasing process with K0 = 0,

and satisfying the minimality condition

Kt = essinfP

P′∈P0(t,P,F+)
EP
′ [
KT

∣∣FP+
t

]
, 0 ≤ t ≤ T, P− a.s. for all P ∈ P0. (4.5)

Notice that, in contrast with the 2BSDE definition in Soner, Touzi and Zhang (2011) and PTZ

(2015), we are using here an aggregated non-decreasing process K. This is possible because of

the general aggregation result of stochastic integrals in Nutz (2012).

Since k, σ, λ are bounded, and σσ> is invertible with a bounded inverse, it follows from

the definition of admissible controls that F satisfies the integrability and Lipschitz continuity

assumptions required in PTZ (2015), that is for some κ ∈ [1, p) and for any (s, x, y, y′, z, z′, a) ∈
[0, T ]× Ω× R2 × R2d × S+

d

|Fs(x, y, z, a)− Fs(x, y′, z′, a)| ≤ C
(
|y − y′|+ |a1/2(z − z′)|

)
,

sup
P∈P0

EP

essupP

0≤t≤T

(
EP

[∫ T

0

|Fs(X, 0, 0, σ̂2
s)|κ

∣∣∣∣∣Ft+
]) p

κ

 < +∞.

Then, in view of Lemma 4.5, the well-posedness of the saturated 2BSDE (4.4) is a direct

consequence of Theorems 4.1 and 5.1 in PTZ (2015).

We use 2BSDE’s (4.4) because of the following representation result.
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Proposition 4.6. Let Assumptions 4.3 and 4.4 hold. Then, we have

V A(t, x, ξ) = sup
P∈P(t,x)

EP [Yt] .

Moreover, ξ ∈ Ξ(t, x) if and only if there is an F−adapted process β? with values in B, such

that ν? :=
(
a?· (X,Y·, Z·,Σ·(X,β

?
· )), β

?
·
)
∈ U(t, x), and

KT = 0, Pβ
?

− a.s.

for any associated weak solution Pβ? of (2.4).

Proof. By Theorem 4.2 of PTZ (2015), we know that we can write the solution of the 2BSDE

(4.4) as a supremum of solutions of BSDEs, that is

Yt = essupP

P′∈P0(t,P,F+)

YP
′

t , P− a.s. for all P ∈ P0,

where for any P ∈ P0 and any s ∈ [0, T ],

YP
s = ξ +

∫ T

s

Fs(X,Yr,Zr, σ̂2
r)dr −

∫ T

s

ZP
r · dXr −

∫ T

s

dMP
r , P− a.s.

with a càdlàg (FP
+,P)−martingale MP orthogonal to W P.

For any P ∈ P0, let B(σ̂2,P) denote the collection of all control processes β with β ∈ Bt(X, σ̂2
t ),

dt⊗P−a.e. For all (P, α) ∈ P0×A, and β ∈ B(X, σ̂2,P), we next introduce the backward SDE

YP,α,β
s = ξ +

∫ T

s

(
−cr(X,αr, βr)− kr(X,αr, βr)YP,α,β

r + σr(X,βr)λr(X,αr)·ZP,α,β
r

)
dr

−
∫ T

s

ZP,α,β
r · dXr −

∫ T

s

dMP,α,β
r , P− a.s.

Let Pα,β be the probability measure, equivalent to P, defined by

dPα,β

dP
:= E

(∫ T

t

Rs(X,βs)λs(X,αs) · dW P
s

)
.

Then, the solution of the last linear backward SDE is given by:

YP,α,β
t = EPα,β

[
K(α,β)
t,T (X)ξ −

∫ T

t

K(α,β)
t,s (X)cs

(
X,α1s, βs

)
ds

∣∣∣∣∣F+
t

]
, P− a.s.

By Assumption 4.3, from El Karoui, Peng & Quenez (1997) it follows that the processes YP,α,β

induce then following stochastic control representation for YP (see also Lemma A.3 in PTZ

(2015)):

YP
t = essupP

(α,β)∈A×B(σ̂2,P)

YP,α,β
t , P− a.s., for any P ∈ P0.

This implies that

YP
t = essupP

(α,β)∈A×B(σ̂2,P)

EPα,β
[
K(α,β)
t,T (X)ξ −

∫ T

t

K(α,β)
t,s (X)cs

(
X,αs, βs

)
ds

∣∣∣∣∣F+
t

]
,
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and therefore for any P ∈ P0, we have P− a.s.

Yt = essupP

(P′ ,α,β)∈P0(t,P,F+)×A×B(σ̂2,P′ )
EP
′α,β

[
K(α,β)
t,T (X)ξ −

∫ T

t

K(α,β)
t,s (X)cs

(
X,αs, βs

)
ds

∣∣∣∣∣F+
t

]

= essupP

P′∈P0(t,P,F+)

EP
′
[
Kν

P′

t,T (X)ξ −
∫ T

t

Kν
P′

t,s (X)cs
(
X,αP′

s , β
P′
s

)
ds

∣∣∣∣∣F+
t

]
,

where we have used the connection between P0 and P0 recalled at the end of Section 2.1. The

desired result follows by classical arguments similar to the ones used in the proofs of Lemma

3.5 and Theorem 5.2 of PTZ (2015).

By the above equalities, together with Assumption 4.3, it is clear that a probability measure

P ∈ P(t, x) is in P?(t, x, ξ) if and only if

ν?· = (a?· , β
?
· )(X,Y·, Z·,Σ

?
· ),

where Σ? is such that for any associated weak solution Pβ? to (2.4), we have

KPβ
?

T = 0, Pβ? − a.s.

4.3 The main result

Theorem 4.7. Let Assumptions 3.2, 4.3, and 4.4 hold true. Then

V P (t, x) = sup
y≥R

V (t, x, y) for all (t, x) ∈ [0, T ]× Ω.

Proof. The inequality V P (t, x) ≤ supy≥R V (t, x, y) was already stated in Proposition 3.4.

To prove the converse inequality we consider an arbitrary ξ ∈ Ξ(t, x) and we intend to prove

that Principal’s objective function JP (t, x, ξ) can be approximated by JP (t, x, ξε), where ξε =

Y Z
ε,Γε

T for some (Zε,Γε) ∈ V(t, x).

Step 1: Let (Y,Z,K) be the solution of the 2BSDE (4.4)

Yt = ξ +

∫ T

t

F (s,X·, Ys, Zs, σ̂
2
s)ds−

∫ T

t

Zs · dXs +

∫ T

t

dKs,

where we recall again that the aggregated process K exists as a consequence of the aggregation

result of Nutz (2012); see Remark 4.1 in PTZ (2015). By Proposition 4.6, we know that for

every P? ∈ P(t, x, ξ), we have

KT = 0, P? − a.s.

For all ε > 0, define the absolutely continuous approximation of K:

Kε
t :=

1

ε

∫ t

(t−ε)∧0

Ksds, t ∈ [0, T ].
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Clearly, Kε is FP0−predictable, non-decreasing P0−q.s. and

Kε
T = 0, P? − a.s. for all P? ∈ P(t, x, ξ). (4.6)

We next define for any t ∈ [0, T ] the process

Y εt := Y0 −
∫ t

0

Fs(X,Y
ε
s , Zs, σ̂

2
s)ds+

∫ t

0

Zs · dXs −
∫ t

0

dKε
s , (4.7)

and verify that (Y ε, Z,Kε) solves the 2BSDE (4.4) with terminal condition ξε := Y εT and

generator F . This requires to check that Kε satisfies the required minimality condition, which

is obvious by (4.6).

Step 2: For (t, x, y, z) ∈ [0, T ] × Ω × R × Rd, notice that the map γ 7−→ Ht(x, y, z, γ) −
Ft(x, y, z, σ̂

2
t (x))− 1

2 σ̂
2
t (x) : γ is valued in R+, convex, continuous on the interior of its domain,

attains the value 0 by Assumption 3.2, and is coercive by the boundedness of λ, σ, k. Then,

this map is surjective on R+. Let K̇ε denote the density of the absolutely continuous process

Kε with respect to the Lebesgue measure. Applying a classical measurable selection argument,

we may deduce the existence of an F−predictable process Γε such that

K̇ε
s = Hs(X, Ȳ

ε
s , Z̄s, Γ̄

ε
s)− Fs(X, Ȳ εs , Z̄s, σ̂2

s)− 1

2
σ̂2
s : Γ̄εs.

Substituting in (4.7), it follows that the following representation of Y εt holds:

Y εt = Y0 −
∫ t

0

Hs(X,Y
ε
s , Zs,Γ

ε
s)ds+

∫ t

0

Zs · dXs +
1

2

∫ t

0

Γεs :d〈X〉s.

Step 3: The contract ξε := Y εT takes the required form (3.3), for which we know how to solve

Agent’s problem, i.e. V A(t, x, ξε) = Yt, by Proposition 3.3. Moreover, it follows from (4.6)

that

ξ = ξε, P? − a.s.

Consequently, for any P? ∈ P?(t, x, ξ), we have

EP?[KPt,TU(`(XT )− ξε)
]

= EP?[KPt,TU(`(XT )− ξ)
]
,

which implies that JP (t, x, ξ) = JP (t, x, ξε).

5 Special cases and examples

5.1 Coefficients independent of X

In Theorem 3.5 we saw that Principal’s problem involves both x and y as state variables.

We now identify conditions under which Principal’s problem can be somewhat simplified, for

example by reducing the number of state variables. We first provide conditions under which

Agent’s participation constraint is tight.

We assume that

σ, λ, c, k, and kP are independent of x. (5.1)
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In this case, the Hamiltonian H introduced in (3.1) is also independent of x, and we re-write

the dynamics of the controlled process Y Z,Γ as:

Y Z,Γs := Yt −
∫ s

t

Hr

(
Y Z,Γr , Zr,Γr

)
dr +

∫ s

t

Zr · dXr +
1

2

∫ s

t

Γr :d〈X〉r, s ∈ [t, T ].

By classical comparison result of stochastic differential equation, this implies that the flow Y Z,Γs

is increasing in terms of the corresponding initial condition Yt. Thus, optimally, Principal will

provide Agent with the minimum reservation utility R he requires. In other words, we have

the following simplification of Principal’s problem, as a direct consequence of Theorem 4.7.

Proposition 5.1. Let Assumptions 3.2, 4.3, and 4.4 hold true. Then, assuming (5.1), we

have:

V P (t, x) = V (t, x,R) for all (t, x) ∈ [0, T ]× Ω.

We now consider cases in which the number of state variables is reduced.

Example 5.2 (Exponential utility).

(i) Let U(y) := −e−ηy, and assume k ≡ 0. Then, under the conditions of Proposition 5.1,

it follows that

V P (t, x) = eηRV (t, x, 0) for all (t, x) ∈ [0, T ]× Ω.

Consequently, the HJB equation of Theorem 3.5, corresponding to V , may be reduced to a two-

dimensional problem on [0, T ]× Rd, by applying the change of variables v(t, x, y) = eηyf(t, x).

(ii) Assume in addition that, for some h ∈ Rd, the liquidation function is linear, `(x) = h ·x
is linear. Then, it follows that

V P (t, x) = e−η(h·x−R)V (t, 0, 0) for all (t, x) ∈ [0, T ]× Ω.

Consequently, the HJB equation of Theorem 3.5 corresponding to V can be reduced to an ODE

on [0, T ] by applying the change of variables v(t, x, y) = e−η(h·x−R)f(t).

Example 5.3 (Risk-neutral Principal). Let U(x) := x, and assume k ≡ 0. Then, under the

conditions of Proposition 5.1, it follows that

V P (t, x) = −R+ V (t, x, 0) for all (t, x) ∈ [0, T ]× Ω.

Consequently, the HJB equation of Theorem 3.5 corresponding to V can be reduced to [0, T ]×Rd
by applying the change of variables v(t, x, y) = −y + f(t, x).

5.2 Drift control with quadratic cost: Cvitanić, Wan and Zhang

(2009)

We now consider the only tractable case from Cvitanić, Wan and Zhang (2009), from now on

CWZ (2009).

Suppose ξ = UA(CT ) where UA is Agent’s utility function, and CT is the contract payment.

Then, we need to replace ξ by U−1
A (ξ), where the inverse function is assumed to exist. Assume

that d = n = 1 and, for some constants c > 0, σ > 0,

σ(x, β) ≡ σ, λ = λ(α) = α, k = kP ≡ 0, `(x) = x, c(t, α) = −1

2
cα2.
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That is, the volatility is uncontrolled (as in Section 4.1) and the output is of the form

dXt = σαtdt+ σdWα
t ,

and Agent and Principal are respectively maximizing

EP

[
UA(CT )− c

2

∫ T

0

α2
tdt

]
and EP [UP (XT − CT )] ,

denoting Principal utility UP instead of U . In particular, and this is important for tractability,

the cost of drift effort α is quadratic.

We recover the following result from CWZ (2009), using our approach, and under a different

set of technical conditions.

Proposition 5.4. Assume that Principal’s value function v(t, x, y) is the solution of its corre-

sponding HJB equation, in which the supremum over (z, γ) is attained at the solution (z∗, γ∗)

to the first order conditions, and that v is in class C2,3,3 on its domain, including at t = T .

Then, we have, for some constant L,

vy(t,Xt, Yt) = −1

c
v(t,Xt, Yt)− L.

In particular, the optimal contract CT satisfies the following equation, almost surely,

Ũ ′P (XT − CT )

U ′A(CT )
=

1

c
UP (XT − CT ) + L. (5.2)

Moreover, if this equation has a unique solution CT = C(XT ), if the Backward SDE under the

Wiener measure P0

Pt = eUA(C(XT ))/c −
∫ T

t

1

c
PsZsdXs, t ∈ [0, T ],

has a unique solution (P,Z), and if Agent’s value function is the solution of its corresponding

HJB equation in which the supremum over α is attained at the solution α∗ to the first order

condition, then the contract C(XT ) is optimal.

Thus, the optimal contract CT is a function of the terminal value XT only. This can be

considered as a moral hazard modification of the Borch rule valid in the first best case: the

ratio of Principal’s and Agent’s marginal utilities is constant under first best risk-sharing, but

here, it is a linear function of the Principal’s utility.

Proof. Agent’s Hamiltonian is maximized by α∗(z) = 1
cσz. The HJB equation for Principal’s

value function v = vP of Theorem 3.5 becomes then, with U = UP ,∂tv + sup
z∈R

{
1

c
σ2zvx +

1

2c
σ2z2vy +

1

2
σ2
(
vxx + z2vyy

)
+ σ2zvxy

}
= 0,

v(T, x, y) = UP (x− U−1
A (y)).

Optimizing over z gives

z∗ = −vx + cvxy
vy + cvyy

.
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We have that v(t,Xt, Yt) is a martingale under the optimal measure P , satisfying

dvt = σ(vx + z∗vy)dWt.

Thus, the volatility of v is σ times

vx + z∗vy =
c(vxvyy − vyvxy)

vy + cvyy
.

We also have, by Ito’s rule,

dvy =

(
∂tvy +

1

c
σ2z∗vxy +

1

2c
σ2(z∗)2vyy +

1

2
σ2
(
vxxy + (z∗)2vyyy

)
+ σ2z∗vxyy

)
dt

+ σ(vxy + z∗vyy)dWt,

vy(T, x, y) = −
U ′P (x− U−1

A (y))

U ′A(U−1
A (y))

.

Thus, the volatility of vy is σ times

vxy + z∗vyy =
vxyvy − vyyvx
vy + cvyy

,

that is, equal to the minus volatility of v divided by c. For the first statement, it only remains

to prove that the drift of vy(t,Xt, Yt) is zero. This drift is equal to

∂tvy − σ2 vx/c+ vxy
vy/c+ vyy

(vxy/c+ vxyy) +
1

2
σ2 (vx/c+ vxy)2

(vy/c+ vyy)2
(vyy/c+ vyyy) +

1

2
σ2vxxy.

However, note that the HJB equation can be written as

∂tv =
σ2

2

(
(vx/c+ vxy)2

vy/c+ vyy
− vxx

)
,

and that differentiating it with respect to y gives

∂tvy =
σ2

2

(
2(vx/c+ vxy)(vxy/c+ vxyy)(vy/c+ vyy)− (vx/c+ vxy)2(vyy/c+ vyyy)

(vy/c+ vyy)2
− vxxy

)
.

Using this, it is readily seen that the above expression for the drift is equal to zero.

Next, denoting by W 0 the Brownian motion for which dX = σdW 0, from (3.3) we have

dY = − 1

2c
σ2(Z∗)2dt+ σZ∗dW 0

and thus, by Ito’s rule

deY/c =
1

c
eY/cσZ∗dW 0

Suppose now the offered contract CT = C(XT ) is the one determined by equation (5.2). Agent’s

optimal effort is α̂ = σV Ax /c, where Agent’s value function V A satisfies

∂tV
A +

1

2c
σ2(V Ax )2 +

1

2
σ2V Axx = 0.
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Using Ito’s rule, this implies that the P0−martingale processes eV
A(t,Xt)/c and eY (t)/c satisfy the

same stochastic differential equation. Moreover, they are equal almost surely at t = T because

V A(T,XT ) = YT = UA(C(XT )), hence, by the uniqueness of the solution of the Backward

SDE, they are equal for all t, and, furthermore, V Ax (t,Xt) = Z∗(t). This implies that Agent’s

effort α̂ induced by C(XT ) is the same as the effort α∗ optimal for Principal, and both Agent

and Principal get their optimal expected utilities.

We now present a completely solvable example of the above model from CWZ (2009), solved

here using our approach.

Example 5.5. Risk-neutral principal and logarithmic agent; CWZ (2009). In addition

to the above assumptions, suppose, for notational simplicity, that c = 1. Assume also that

Principal is risk-neutral while Agent is risk averse with

UP (CT ) = XT − CT , UA(CT ) = logCT .

We also assume that the model for X is, with σ > 0 being a positive constant,

dXt = σαtXtdt+ σXtdW
α
t .

Thus, Xt > 0 for all t. We will show that the optimal contract payoff CT satisfies

CT =
1

2
XT + const.

This can be seen directly from (5.2), or as follows. Similarly as in the proof above (replacing σ

with σx), the HJB equation of Theorem 3.5 is

∂tv =
σ2x2

2

(
(vx + vxy)2

vy + vyy
− vxx

)
, v(T, x, y) = x− ey.

It is straightforward to verify that the solution is given by

v(t, x, y) = x− ey +
1

4
e−yx2

(
eσ

2(T−t) − 1
)
.

We have, denoting E(t) := eσ
2(T−t) − 1,

vx = 1 +
1

2
E(t)e−yx, vxy = −vx − 1, vy = −ey − 1

4
E(t)e−yx2, vyy = −ey +

1

4
E(t)e−yx2,

and therefore

z∗ =
1

2
e−y, α∗ =

1

2
σe−y.

Hence, from (3.3),

dY = −1

8
σ2e−2Y dt+

1

2
e−Y dX,

and

d(eY ) =
1

2
dX.

Since eYT = CT , we get CT = 1
2XT + const.
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5.3 Volatility control with no cost; Cadenillas, Cvitanić and Zapatero

(2007)

We now apply our method to the main model of interest in Cadenillas, Cvitanić and Zapatero

(2007), CCZ (2007). That paper considered the risk-sharing problem between Agent and

Principal, when choosing the first best choice of volatility βt, with no moral hazard, with

general utility functions. In that case, it is possible to apply convex duality methods to solve

the problem. Those methods do not work for the general setup of the current paper, which is

the first paper that provides a method for Principal-Agent problems with volatility choice that

enables us to solve both the special, first best case of CCZ (2007), and the second best, moral

hazard case 7.

Suppose again that ξ = UA(CT ) where UA is Agent’s utility function, and CT is the contract

payment. Assume also for some constants c > 0, σ > 0 that the output is of the form, for a

one-dimensional Brownian motion W ,8 and a fixed constant λ,

dXt = λβtdt+ βtdWt.

We assume that Agent is maximizing E[UA(CT )] and Principal is maximizing E[UP (XT −CT )].

In particular, there is zero cost of volatility effort β. This is a standard model for portfolio

management, in which case β has the interpretation of the vector of positions in risky assets.

Since there is no cost of effort, first best is attained - Principal can offer a constant payoff C

such that UA(C) = R, and Agent will be indifferent with respect to which action β to apply.

Nevertheless, we look for a possibly different contract, which would provide Agent with strict

incentives. We recover the following result from CCZ (2007) using our approach, and under a

different set of technical conditions.

Proposition 5.6. Given constants κ and λ, consider the following ODE

U ′P (x− F (x))

U ′A(F (x))
= κF ′(x), (5.3)

and boundary condition F (0) = λ, with a solution (if exists) denoted F (x) = F (x;κ, λ). Con-

sider the set S of (κ, λ) such that a solution F exists, and if Agent is offered the contract

CT = F (XT ), his value function V (t, x) = V (t, x;κ, λ) solves the corresponding HJB equation,

in which the supremum over β is attained at the solution β∗ to the first order conditions, and V

is a C2,3 function on its domain, including at t = T . With WT denoting a normally distributed

random variable with mean zero and variance T , suppose there exists m0 such that

E
[
UP

(
(U ′P )−1

(
m0 exp{−1

2
λ2T + λWT }

))]
,

is equal to Principal’s expected utility in the first best risk-sharing, for the given Agent’s expected

utility R. Assume also that there exists (κ0, λ0) ∈ S such that κ0 = m0/Vx(0, X0;κ0, λ0), and

that Agent’s optimal expected utility under the contract CT = F (XT ;κ0, λ0) is equal to his

reservation utility R. Then, under that contract, Agent will choose actions that will result in

Principal attaining her corresponding first best expected utility.

7The special case of moral hazard with CARA utility functions and linear output dynamics is solved using the

method of this paper in Cvitanić, Possamäı and Touzi (2015).
8The n−dimensional case with n > 1 is similar.
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Note that the action process β chosen by Agent is not necessarily the same as the action process

Principal would dictate as the first best when paying Agent with cash. However, the expected

utilities are the same as the first best. We also mention that CCZ (2007) present a number of

examples for which the assumptions of the proposition are satisfied, and in which, indeed, (5.3)

provides the optimal contract.

Proof. Suppose the offered contract is of the form CT = F (XT ) for some function F for

which Agent’s value function V (t, x) satisfies Vxx < 0 and the corresponding HJB equation,

given by

∂tV + sup
β

{
λβVx +

1

2
β2Vxx

}
= 0.

We get that Agent’s optimal action is β∗ = −λ Vx
Vxx

and the HJB equation becomes

∂tV −
1

2
λ2 V

2
x

Vxx
= 0, V (T, x) = UA(F (x)).

On the other hand, using Ito’s rule, we get

dVx =

(
∂tVx − λ2Vx +

1

2
λ2 V

2
x

V 2
xx

Vxxx

)
dt− λVxdW.

Differentiating the HJB equation for V with respect to x, we see that the drift term is zero,

and we have

dVx = −λVxdW, Vx(T, x) = U ′A(F (x))F ′(x).

The solution Vx(t,Xt) to the SDE is a martingale given by

Vx(t,Xt) = Vx(0, X0)Mt,

where

Mt := e−
1
2λ

2t+λWt .

From the boundary condition we get

U ′A(F (XT ))F ′(XT ) = Vx(0, X0)MT .

On the other hand, it is known from CCZ (2007) that the first best utility for Principal is

attained if

U ′P (XT − CT ) = m0MT , (5.4)

where m0 is chosen so that Agent’s participation constraint is satisfied. If we choose F that

satisfies the ODE (5.3), with κ0 satisfying κ0 = m0/Vx(0.X0;κ0, λ0), then (5.4) is satisfied and

we are done.

We now present a way to arrive at condition (5.4) using our approach. For a given (z, γ), Agent

maximizes λβz + 1
2γβ

2, thus the optimal β is, assuming γ < 0,

β∗(z, γ) = −λz
γ
.
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The HJB equation of Theorem 3.5 becomes then, with U = UP , and w = z/γ,∂tv + sup
z,w∈R2

{
−λ2wvx +

1

2
λ2w2

(
vxx + z2vyy

)
+ λ2zw2vxy

}
= 0,

v(T, x, y) = UP (x− U−1
A (y)).

First order conditions are

z∗ = −vxy
vyy

, w∗ =
vx

vxx −
v2
xy

vyy

.

The HJB equation becomes 
∂tv −

1

2
λ2 v2

x

vxx −
v2
xy

vyy

= 0,

v(T, x, y) = UP (x− U−1
A (y)).

We also have, by Ito’s rule,

dvx =

∂tvx − λ2 vxvxx

vxx −
v2
xy

vyy

+
1

2
λ2 v2

x(
vxx −

v2
xy

v2
yy

)2

[
vxxx +

v2
xy

v2
yy

vxyy − 2
vxy
vyy

vxxy

] dt− λvxdW,

vx(T, x, y) = U ′P (x− U−1
A (y)).

Differentiating the HJB equation for v with respect to x, we see that the drift term is zero, and

we have

dvx = −λvxdW,

with the solution

vx(t,Xt, Yt) = m0e
− 1

2λ
2t+λWt .

From the boundary condition we get that the optimal contract payoff satisfies

U ′P (XT − CT ) = m0MT .

6 Conclusions

We consider a very general Principal Agent problem, with a lump-sum payment at the end

of the contracting period. While we develop a simple to use approach, our proofs rely on

deep results from the recent theory of Backward Stochastic Differential equations of the second

order. The method consists of considering only the contracts that allow a dynamic programming

representation of the agent’s value function, for which it is straightforward to identify the agent’s

incentive compatible effort, and then showing that this leads to no loss of generality. While

our method encompasses all the existing continuous-time Brownian motion models with only

the final lump-sum payment, it remains to be extended to the model with possibly continuous

payments. While that might involve technical difficulties, the road map we suggest is clear -

identify the generic dynamic programming representation of the agent’s value process, express

the contract payments in terms of the value process, and optimize the principal’s objective over

such payments.
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