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Abstract

We propose a generic framework for the analysis of Monte Carlo simulation schemes of backward SDEs.
The general results are used to re-visit the convergence of the algorithm suggested by Bouchard and Touzi
(2004) [6]. By keeping the higher order terms in the expansion of the Skorohod integrals resulting from
the Malliavin integration by parts in [6], we introduce a variant of the latter algorithm which allows for a
significant reduction of the numerical complexity. We prove the convergence of this improved Malliavin-
based algorithm, and derive a bound on the induced error. In particular, we show that the price to pay for
our simplification is to use a more accurate localizing function.
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1. Introduction

Let (Ω ,F , P) be a probability space on which we have defined the decoupled
forward–backward stochastic differential equation (BSDE henceforth)

X t = X0 +

∫ t

0
σ 0(Xs)ds +

∫ t

0
σ(Xs)dWs t ∈ [0, 1] (1.1)
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Yt = Φ(X1)+

∫ 1

t
f (s, Xs, Ys, Zs)ds −

∫ 1

t
ZsdWs t ∈ [0, 1], (1.2)

where W = {Wt , t ≥ 0} is a d-dimensional Brownian motion. The coefficients of the forward
equation (1.1) are the functions σ 0

: Rd
−→ Rd , σ : Rd

−→ Rd×d which satisfy the
classical assumptions to ensure existence and uniqueness of its solution and convergence of the
corresponding Euler discrete-time approximation. The backward equation (1.2) is defined by the
generator f : [0, 1]×Rd

×R×Rd
−→ R which is also assumed to satisfy the classical condition

for existence and uniqueness of its solution.
Discrete-time schemes based on the approximation of the Brownian motion have been

analyzed by Chevance [9], Coquet, Macquevicius and Mémin [10], Briand, Delyon and
Mémin [8], Antonelli and Kohatsu-Higa [1], Ma, Protter, San Martin and Torres [20], Bally and
Pagès [3]. In contrast with the above literature, we concentrate on approximations of solutions of
backward stochastic differential equations based on the Monte Carlo simulation of the underlying
Brownian motion, thus continuing the studies of Bouchard and Touzi [6], Zhang [23], Gobet,
Lemor and Warin [16] and Gobet and Labart [14]. See [5] for the case of jump–diffusions and [2]
for a related Malliavin Calculus approach for pricing and hedging American options.

As a first contribution, we propose a generic framework for the analysis of such
approximations. By isolating the one-step approximation operator of the algorithm, we provide
a transparent set of sufficient conditions for the convergence of the approximation. The main
tool is an expansion of the error as a Trotter product. This generic framework applies to
various numerical methods. For instance, the above methodology is applied by Crisan and
Manolarakis [11] to prove convergence of a probabilistic numerical algorithm where the
regressions are estimated by using the cubature method of Lyons and Victoir [19] to approximate
the distribution of (X,W ).

This methodology is applied in this paper to the Malliavin integration-by-parts-based
algorithm introduced in [6]. The algorithm exploits the representation of the regression function
ψ(x) := E[Y |X = x] = E[Y ε{x}(X)]/E[ε{x}(X)], where ε{x} denotes the Dirac mass at x , as

ψ(x) =
E
[
Y 1Rd

+
(X − x)Sh (φ(X − x))

]
E
[
1Rd
+
(X − x)Sh (φ(X − x))

]
for smooth, in the Malliavin sense, random variables X and Y valued respectively in Rd and Rk ,
for some integers d, k ≥ 1. Here Sh is an iterated Skorohod integral and φ is a certain smooth
function with φ(0) = 1 called localizing function.

The Malliavin integration-by-parts algorithm of [6] turns out to have high numerical
complexity. As we shall see in Section 3 the involved weights are actually iterated Skorohod
integrals (the length being equal to the dimension of the space where the forward diffusion lives
in), the definition of which involves the derivatives of the functions σ 0(x), σ (x). Hence, on the
one hand the computation of these weights will involve an exponentially increasing number of
terms with respect to the dimension of the problem. On the other hand, when the functions
σ 0(x), σ (x) are not known explicitly (e.g. when they are computed via a calibration procedure),
numerical methods need to be employed for the computations of the involved derivatives. Our
second goal is then to show that one can avoid these complexities by using alternative weights.
These new weights are easier to handle algebraically, involve significantly less number of terms
and yet preserve the asymptotic properties of the original algorithm (see Theorem 4.5 and the last
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section on numerical experiments). For example, for d = 5, our simplified algorithm requires
the calculation of 32 terms instead of 1024, hence we reduce the effort by more than 96%.

The proposed variation of the Malliavin integration-by-parts algorithm eliminates lower order
terms contained in the Malliavin weights by a judicious expansion. This leads to a drastic
reduction of the number of terms required in the case of nonconstant coefficients σ 0 and σ ,
for every weight. Moreover, these lower order terms that get ignored, are exactly the ones that
involve the derivatives of the coefficient functions. Hence we manage to avoid the numerical
complexities that may arise from the computation of these derivatives. The reduction in the
numerical complexity requires a change of scale in the localizing function φh(x) := φ(xh−α)
of [4,6], where h is the time step, in order to keep an equivalent rate of convergence. While
α = 1/2 in [6] is the optimal scale, we find in the present setting that α must be chosen strictly
larger than 1/2.

We discuss in the following the effect of the change of scale in the localizing function. In the

original algorithm the error was of order |π |−1−d/4p N−1/2p
+ |π |

1
2 for any p > 1. This implies

that one requires the number of paths N to be of order 1

|π |
p+ d

2p
to match the discretization error.

In the new version, the error is of order (see Theorem 4.5)

|π |−1−αd/2p N−1/2p
+ |π |

1
p

(
1
2+α

)
−1
+ |π |

1
2 .

Hence, for α > 1/2 the algorithm converges, whereas for α = (3p − 1)/2 and N =
1

|π |
p+ d

2p +
3d(p−1)

4p

one achieves the same error. However, the numerical results in the last section

show identical convergence rates for both algorithms where the same number of paths are used.
The paper is organised as follows. After collecting some preliminaries in Section 2, we

describe our one-step operator approach for the discretization of BSDEs in Section 2.1.
The original Malliavin integration-by-parts algorithm [6] is reviewed in Section 3. Section 4
introduces the modified algorithm which includes truncated weights and provides the
corresponding asymptotic results for the error analysis. In Section 5 we present the numerical
results. In particular, we give details of the implementation of the algorithm and compare the
method with the original method of [6]. The comparison is done on a nontrivial two dimensional
example and it shows that no precision is lost by the transition to the new weights.

2. Preliminaries

Let (Ω ,F ,P, {Ft }) be a complete filtered probability space on which we have defined a d-
dimensional Brownian motion {Wt , 0 ≤ t ≤ 1}. In the following we will assume that the filtration
{Ft } is the augmented Brownian filtration and that W and all the other processes appearing below
are defined on the finite time interval [0, 1]. Let Md be the space of d×d matrices equipped with

the norm |A| :=
(∑d

i, j=1 |ai j |
2
)1/2

for A = (ai j ) ∈ Md and let A∗ denote the transpose of

A ∈Md . In what follows, all Euclidean spaces are equipped with the usual Euclidean norm. The
inner product of two elements in Rd is denoted by x · y.

We will be using the following assumptions on the coefficients of system ((1.1)–(1.2)):

(H1a) The functions σ 0
: Rd
→ Rd , σ : Rd

→Md are Lipschitz continuous

|σ 0(x)− σ 0(y)| + |σ(x)− σ(y)| ≤ K |x − y|,

and σ is uniformly positive definite.
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(H1b) The functions σ 0, σ, σ−1
∈ C∞b , the space of infinite differentiable functions with

bounded derivatives of all orders.
(H2) The driver of the BSDE f : [0, 1] × Rd

× R × Rd
→ R and its terminal condition

Φ : Rd
−→ R are Lipschitz in the spatial variables and 1/2-Hölder continuous with

respect to t .

|Φ(x)− Φ(x ′)| + | f (t, x, y, z)− f (s, x ′, y′, z′)|

≤ K (|t − s|1/2 + |x − x ′| + |y − y′| + |z − z′|).

A solution to the backward equation (1.2) is an adapted pair of processes (Y, Z) taking values
in R× Rd with

E

[
sup

0≤t≤1
|Yt |

2
+

∫ 1

0
|Zs |

2ds

]
<∞.

Following for example, Theorem 2.1 of [13], such a solution exists when conditions (H1a) and
(H2) are satisfied. In what follows we will be primarily working with these two hypotheses. The
enhanced condition (H1b) will be required to justify the additional smoothness, in the Malliavin
sense, of the Euler approximation of the forward component (1.1) below.

2.1. Discretizing the BSDE

Let π = {0 = t0 < t1 < · · · < tn = 1} be a partition of the time interval along which we
discretize the system ((1.1)–(1.2)). Denote by

1i := ti − ti−1, 1Wi := Wti −Wti−1 , and |π | := max
1≤i≤n

1i

the time step, the increment of the Brownian motion, and the partition mesh, respectively. We also
write1W l

i+1, l = 1, . . . , d for the entries of the random vector1Wi+1 for any i = 0, . . . , n−1.
Let Xπ be the Euler approximation of X , the forward component (1.1). That is, Xπ is defined
recursively as:

Xπ0 = X0 and Xπti := Xπti−1
+ σ 0

(
Xπti−1

)
1i + σ

(
Xπti−1

)
1Wi , 0 ≤ i ≤ n − 1.

Under conditions (H1a) and (H2), the following standard estimate holds true:

max
0≤i≤n−1

E
[
|X ti − Xπti |

2
]
≤ C(1+ |X0|

2)|π |, (2.1)

for some constant C , see e.g. [17], Theorem 10.2.2. In order to define a discrete-approximation of
the process Y , we introduce a family of operators {Ri , i = 0, . . . , n− 1} which we subsequently
call the regression operators. In the following we will use the notation Eti ,x [·] for E[·|Xπti = x]
and CLip(Rd) to denote the set of Lipschitz continuous functions g : Rd

→ R. For 0 ≤ i < n
and g ∈ CLip(Rd), Ri g is defined implicitly by:

Ri g(x) := Eti ,x

[
g
(

Xπti+1

)]
+1i+1 f

(
ti , x, Ri g(x), (1i+1)

−1

×Eti ,x

[
g
(

Xπti+1

)
1Wi+1

])
. (2.2)

Please cite this article in press as: D. Crisan, et al., On the Monte Carlo simulation of BSDEs: An improvement on the
Malliavin weights, Stochastic Processes and their Applications (2010), doi:10.1016/j.spa.2010.03.015



ARTICLE  IN  PRESS
D. Crisan et al. / Stochastic Processes and their Applications ( ) – 5

Moreover, let {Ri, j , 0 ≤ i ≤ j < n} be the composition operators

Ri, j :=

{
Ri . . . R j for 0 ≤ i ≤ j < n
1 for i > j,

(2.3)

where 1 denotes the identity operator. Let us observe that Ri g can be defined in the same
manner for a larger class of functions, for example for every function g : Rd

→ R with
polynomial growth. However, we are only concerned with the definition of the operators Ri
on the set CLip(Rd). Indeed, by Proposition 2 of [16] or the proof of Theorem 6.1 of [23] for any
g ∈ CLip(Rd) we have that

max
0≤i≤n−1

sup
x,y∈Rd

x 6=y

∣∣Ri,n−1g(x)− Ri,n−1g(y)
∣∣

|x − y|
<∞, (2.4)

i.e., the composition of the family of operators {Ri , i = 0, . . . , n − 1} applied to a Lipschitz
function, produces a sequence of uniformly (in i) Lipschitz functions. Moreover, for any p > 1
and for sufficiently small |π | (such that |π | < 1/K ), the following Lipschitz-type property of
the operators Ri is crucially used in [6], although not outlined in a clear statement:

|Ri g1 − Ri g2| (x) ≤
1+ C1i+1

1− K1i+1
‖g1 − g2‖Lp(Px

ti ,ti+1
) , (2.5)

where C is a constant depending on d, p, and K , the Lipschitz constant of f , and

‖ f ‖Lp(Px
ti ,t j

) :=

(
E[| f (Xπt j

)|p|Xπti = x]
)1/p

.

For completeness, we report in Appendix the proof of (2.5). By direct iteration of (2.5), we see
that

∣∣R0,i g − R0,i h
∣∣ (x) ≤ i+1∏

j=1

1+ C1 j

1− K1 j
‖g − h‖Lp(Px

t0,ti+1
) , for all 0 ≤ i < n. (2.6)

Let (Y π , Zπ ) be the pair of processes defined recursively as: (Y πtn , Zπtn ) = (Φ(Xπtn ), 0) and for
0 ≤ i < n we have

Y πti := Ri,n−1Φ
(
Xπti
)
, Zπti = (1i+1)

−1 Eti ,Xπti

[
Y πti+1

1Wi+1

]
, 0 ≤ i < n.

Then (Y π , Zπ ) are a discrete-time approximation of the solution (Y, Z) of the BSDE. The
following estimate of the corresponding approximation error may be found in [6] or, in a slightly
different formulation, in [23] for the path dependent case:

lim sup
|π |→0

1
|π |

E

[
sup

0≤i≤n
|Yti − Y πti |

2
+

∑
0≤i<n

|Z ti − Zπti |
21i

]
<∞.

2.2. Approximating the regression operator

The conditional expectations involved in (2.2) are not computable in most cases. Hence, the
next step is to replace the expectation operator Eti ,x [·] by a simulation-based approximating
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operator Êti ,x [·] that is explicitly computable. The simulation could rely on a Monte Carlo
method as is the case in [6,15], or on an evaluation on a tree as in [11]. Given such an operator
Êti ,x [·] we define the corresponding family of operators {R̂i , i = 0, . . . , n − 1},

R̂i g(x) = Êti ,x

[
g(Xπti+1

)
]
+1i+1 f

(
ti , x, R̂i g(x),1

−1
i+1Êti ,x

[
g(Xπti+1

)1Wi+1

])
, (2.7)

and we also define the family of iterations of these operators R̂i, j , i, j = 0, . . . , n exactly as in
(2.3). Next let Ŷ π be the process defined recursively as: Y πtn = Φ(Xπtn ) and

Ŷ πti = R̂i,n−1Φ
(
Xπti
)
, for 0 ≤ i < n.

It is shown in [6], that the global error between the processes Y π , Ŷ π is controlled by the sum of
the local regression errors. Observe that, from the Lipschitz property of f :

∣∣∣Ri g(x)− R̂i g(x)
∣∣∣ ≤ K

1− K1i+1

d∑
l=0

∣∣∣(Eti ,x − Êti ,x

) [
g
(

Xπti+1

)
1W l

i+1

]∣∣∣ , (2.8)

using the convention that1W 0
i+1 = 1. We then fix the time to t0 and analyze the error |Y πt0 − Ŷ πt0 |

by means of a Trotter product expansion. Namely we add and subtract n terms of the form
R0,i R̂i+1,n−1Φ(Xπt0) each of which being a combination of n− i empirical backward projections
and i exact ones:

|Y πt0 − Ŷ πt0 | ≤
n−1∑
i=0

∣∣∣R0,i−1 R̂i,n−1Φ(Xπt0)− R0,i R̂i+1,n−1Φ(Xπt0)
∣∣∣

≤

n−1∑
i=0

i−1∏
j=0

1+ C1 j+1

1− K1 j+1

∥∥∥(Ri − R̂i )R̂i+1,n−1Φ(Xπti )
∥∥∥

p
,

by (2.6). Using (2.8), this provides:

|Y πt0 − Ŷ πt0 | ≤ A(π)
K (d + 1)
1− K |π |

max
0≤l≤d

∥∥∥(Eti ,Xπti
− Êti ,Xπti

) [
R̂i,n−1Φ(Xπti+1

)1W l
i+1

]∥∥∥
p
,

where

A(π) =
n−1∑
i=0

i−1∏
j=0

1+ C1 j+1

1− K1 j+1
≤ |π |−1eC+K .

The above arguments are of course valid for any ti , i = 0, . . . , n − 1. Hence we have:

Proposition 2.1. Under the assumptions (H1a) and (H2) for every p > 1 and i < n:

|Y πti − Ŷ πti | ≤ C |π |−1 max
0≤l≤d

0≤i≤n−1

∥∥∥(Eti ,Xπti
− Êti ,Xπti

) [
R̂i,n−1Φ

(
Xπti+1

)
1W l

i+1

]∥∥∥
p
,

where π is a partition of [0, 1] with mesh size |π | < 1
K and C is a constant independent of the

choice of partition.
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3. Simulating the BSDE by the Malliavin calculus approach

The purpose of this section is to review the Malliavin calculus-based simulation method
suggested in [6] so as to introduce the necessary notation and some results which will be needed
in the subsequent section.

Throughout this section the stronger condition (H1b) is assumed to hold. Also, the partition
is assumed to be equidistant so that 1i = |π | for all 1 ≤ i ≤ n. The definition of the simulation-
based approximation Ê of E requires the following notation:

We denote by Jk the subset of Nk with elements (multi-indices) I = (i1, . . . , ik) that satisfy
1 ≤ i1 < · · · < ik ≤ d , and we set J0 := ∅. Given two elements I ∈ Jk, J ∈ Jq we define their
concatenation I ∗ J := (r1, . . . , rl) with k ∨ q ≤ l ≤ d ∧ (k+ q), ri ∈ I ∪ J for every i ≤ l, and
1 ≤ r1 < · · · < rl ≤ d. For J ∈ Jk, k ≤ d we write J c for its complementary set, i.e. the unique
disjoint set from J with J ∗ J c

= {1, 2, . . . , d}. Finally, given a multi-index I with length k we
shall write−I for the multi index of length k−1 obtained from I by deleting the left most entry.

Given a matrix valued process h with columns denoted by hi , a random variable F , and a
multi-index I = (i1, . . . , ik), we denote by

Sh
i [F] :=

∫
∞

0
F(hi

t )
∗dWt , Sh

I [F] := Sh
i1
◦ · · · ◦ Sh

ik
[F],

where the integrals are understood in the Skorohod sense. We extend the definition to I = ∅ by
setting Sh

∅
[F] = F . Let φ be a bounded and continuous real valued function with φ(0) = 1.

We denote by ∂iφ the partial derivative with respect to xi and ∂Iφ := ∂ik · · · ∂i1φ when
I = (i1, . . . , ik). We will say that φ is a smooth localizing function if

∂Iφ(x) ∈ C0
b(R

d), I ∈ Jk, k ≤ d, and
∑

I∈∪d
k=1 Jk

∫
Rd
|x |m∂Iφ(x)

2dx <∞,

where ∂∅φ := φ. By L0, we denote the collection of all smooth localizing functions. The latter
integrability condition was needed in [6] for technical reasons.

Under condition (H1b), Xπ is infinitely many times differentiable in the Malliavin sense, and
the derivative is given by

Dt Xπti = σ(X
π
ti−1
)1(ti−1,ti ](t)+

(
Id +

d∑
j=0

∇σ j (Xπti−1
)1W j

i

)
Dt Xπti−1

.

Then, it follows that the matrix-valued processes {hi , i = 0, . . . , n − 1} defined as

hi (t) :=
1
|π |
σ−1(Xπti−1

)1[ti−1,ti )(t)−
1
|π |
σ−1(Xπti )

×

(
Id +

d∑
j=0

∇σ j (Xπti )1W j
i+1

)
1[ti ,ti+1)(t), i ≤ n,

satisfy the identities∫ 1

0
Dt Xπti hi (t)dt = Id and

∫ 1

0
Dt Xπti+1

hi (t)dt = 0. (3.1)
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For I ∈ ∪d
k=0 Jk , φ ∈ L0, and l ≤ d, the iterated Skorohod integrals

Shi
I

[
1W l

i+1φ(X
π
ti − x)

]
=

∑
J⊆I

(−1)|J |∂Jφ(X
π
ti − x)Shi

J c [1W l
i+1], (3.2)

are well defined, and belong to D1,2, the space of Malliavin differentiable random variables. The
latter equality follows from the first part of (3.1).

The following representation is reported from [4,6].

Theorem 3.1. For 0 ≤ l ≤ d and ρ : Rd
→ R with F := ρ(Xπti+1

)1W l
i+1 ∈ L2(P):

E
[
F |Xπti = x

]
=

E
[
QF
[hi , φ

F
](x)

]
E
[
Q1[hi , φ1](x)

] for all φ1, φF
∈ L0,

where 1W 0
i+1 ≡ 1, and for φ ∈ L0,

QF
[hi , φ](x) := Hx (X

π
ti )ρ(X

π
ti+1
)Shi
(1,...,d)[1W l

i+1φ(X
π
ti − x)], and

Hx (y) :=
d∏

i=1

1xi≤yi ,

Q1
[hi , φ](x) := Hx (X

π
ti )S

hi
(1,...,d)[φ(X

π
ti − x)].

We note that q1
i (x) = E[Q1

[hi , φ
1
](x)] is the density of Xπti . The above representation paves

the way for a Monte Carlo approach to approximate the regression function E[F |Xπti = x]
by using a ratio of empirical means. Since empirical means are asymptotically distributed as
Gaussian random variables, the potential integrability problems are avoided by making use of
the a priori bounds derived in Lemma 3.3, [6] and the corresponding truncation operators:

Ψi (X
π
ti ) ≤ Y πti ≤ Ψ i (X

π
ti ), T Ψ

i (y) := Ψ i (X
π
ti ) ∧ y ∨Ψ i (X

π
ti )

ζ
i−1
(Xπti−1

) ≤ Ei−1[Y
π
ti 1W l

i ] ≤ ζ i−1(X
π
ti−1
),

T ζi (y) := ζ i
(Xπti ) ∧ y ∨ ζ i (X

π
ti ), i ≤ n, l ≤ d.

(3.3)

We now have all ingredients for the backward algorithm suggested in [6]. Let us denote
by (Ω0,F 0,P0, {F 0

t }) the original filtered probability space and {(Ω i ,F i ,Pi , {F i
t })}

n
i=1 be n

independent copies of it. In each of these spaces, we let {Xπ
j
, j ∈ Ni }, Ni = {Ni+1, . . . , N (i+

1)} be N copies of the Euler approximation of the forward diffusion. Therefore we consider nN
copies of the Euler approximation of the forward diffusion, N copies at every point tk on the
grid. By abuse of notation, we denote by

(Ω ,F ,P) =
(
⊗

n
i=0 Ω i ,⊗n

i=0 F i ,⊗n
i=0 Pi

)
(3.4)

the product probability space on which all processes are lifted. On this space, integration with
respect to marginal measures Pi ,Pi

⊗ Pk , is denoted by Ei ,Ei,k , etc.
For a Lipschitz function g : Rd

→ R and an integer 0 ≤ l ≤ d, following Theorem 3.1 we
introduce the approximation Êti ,x [g(X

π
ti+1
)1W l

i+1] defined by:

Êti ,x

[
g(Xπti+1

)1W l
i+1

]
= T ζi

(
Q̂F
[hi , φ

F
](x)

Q̂1[hi , φ1](x)

)
,
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where φ1, φF are possibly different localizing functions in L0, and

Q̂F
[hi , φ

F
](x) =

1
N

∑
k∈Ni+1

Hx (X
π (k)

ti )g(Xπ
(k)

ti+1
)Sh(k)i

[
φF

(
Xπ

(k)

ti − x
)
1W l(k)

i+1

]
(3.5)

Q̂1
[hi , φ

1
](x) =

1
N

∑
k∈Ni+1

Hx (X
π (k)

ti )Sh(k)i

[
φ1
(

Xπ
(k)

ti − x
)]
. (3.6)

Here, 1W 0(k)
i+1 ≡ 1 and, for 1 ≤ l ≤ d , 1W l(k)

i+1 is the k-th copy in bundle Ni+1, of the l-th

component of the Brownian motion. Similarly Xπ
(k)

ti , h(k)i stand for the evaluation of the Euler

scheme and the random variable hi using this copy. At time t0, Ê is just the truncation of the
empirical mean

Ê0,x

[
g
(

Xπt11W1
l
)]
= T ζ0

(
1
N

∑
k∈N1

g
(

Xπ
(k)

t1

)
1W l(k)

1

)
.

The bounds in the values of Y π are used in the definition of the operators R̂i , i < n:

R̂i g(x) = T Ψ
i

(
R̂0

i g(x)
)
, i = 0, 1, . . . , n − 1, (3.7)

R̂0
i g(x) = Êti ,x

[
g(Xπti+1

)
]
+ |π | f

(
ti , x, R̂0

i g(x), |π |−1Êti ,x

[
g(Xπti+1

)1Wi+1

])
.

Remark 3.2. By the structure of the above simulations, a careful inspection of the algorithm
shows that Theorem 3.1 needs to be applied to random functions of the form %(x, ξ) where ξ is
independent of Fπ . This is due to the fact that at each step ti of the grid, the algorithm makes use
of the N copies of the bundle Ni which are independent of those used in the other steps. Notice
that the conclusions of Theorem 3.1 remain valid in this context.

In the remaining part of this section, we review the main steps of the proof of the error estimate
|Y πt0 − Ŷ πt0 | which will be needed for the proof of our main result in the subsequent section. The
keypoint of the proof is the following estimate on the regression error, proved in [6]:

Proposition 3.3. Let i < n, and l ≤ d be fixed, and consider the random variable F :=
%(Xπti+1

, ω)1W l
i+1, where %(·, ω) is a random function with ω ∈ Ω i+2

× · · · × Ωn .
For φF , φ1

∈ L0, let q F
i (x) := E[QF

[hi , φ
F
](x)], where QF

[hi , φ
F
](x) is defined as

in Theorem 3.1, and set

rπi (x) := q F
i (x)/q

1
i (x) and r̂πi (x) := T ζi

(
Q̂F

i [hi , φ](x)

Q̂1
i [hi , ψ](x)

)
.

Then, for any p > 1, we have the error estimate:∥∥rπi (X
π
ti )− r̂πi (X

π
ti )
∥∥

p
≤ N−1/2p

(
0(F, φF , φ1)

)1/p
,

where

0(F, φF , φ1) := 2
∫
Rd
γ (x)

(
‖QF
[hi , φ](x)‖L2(P̄)

+ (|r̄(x)| + γ (x))‖Q1
[hi , ψ](x)‖L2(P̄)

)
dx,
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γ (x) := sup
|π |

max
0≤i≤n

|Ψ i (x)−Ψ i (x)| ∨ |ζ i (x)− ζ i
(x)|, r̄(x) := sup

|π |

max
0≤i≤n

rπi (x).

For the sake of completeness, we include the proof of Proposition 3.3 in the Appendix. In
particular, the factorisation (3.4) of the probability space (Ω̄ , F̄ , P̄) clarifies some points in the
corresponding proof of [6].

The above result provides a control on the error of the simulation of the conditional
expectation. The error is controlled by means of the parameter N , which is the number of
simulated paths used at time ti for the Monte Carlo method. However, there is a further negative
influence of the partition mesh |π | hidden in the functional Γ because the norms of the involved
random variables explode as the partition mesh shrinks to zero. In order to control this effect, a
further dependence on the partition mesh is included in the localizing functions:

Lemma 3.4 ([6]). For φ ∈ L0, set φ1/2(x) := φ(|π |−1/2x) and let F be defined as in
Proposition 3.3. Assume further that F ∈ L2+ε for some ε > 0. Then, for any function
µ : Rd

→ R with polynomial growth, we have:

lim sup
|π |→0

|π |d/4 max
1≤i≤n

∫
Rd
µ(x)

∥∥∥QF
[hi , φ1/2](x)

∥∥∥
L2(P̄)

dx <∞.

With this additional estimate, we obtain the following:

Theorem 3.5 ([6]). Assume that (H1b) and (H2) hold true. Then, the following error estimate
holds

|Y πt0 − Ŷ πt0 | ≤ C |π |−1−d/4p N−1/2p,

for a constant C independent of the partition and N.

Proof of Theorem 3.5. An easy induction argument shows that the random variable Vi (x) :=
R̂i,n−1g(x) is of the form %(x, ω) for ω ∈ Ω i+2

× · · · × Ωn , for some appropriate random
function %. By Proposition 3.3, this provides∥∥∥(E− Ê

) [
Vi
(
Xπti
)
1W l

i+1

]∥∥∥
p
≤ N−1/2p0

(
Vi
(
Xπti
)
1W l

i+1, φ
F
1/2, φ

1
1/2

)1/p

for 0 ≤ l ≤ d.

Observing that the functions r(x) and γ (x) have linear growth, see [6], it follows from
Lemma 3.4 that

max
0≤i≤n

∥∥∥(E− Ê
) [

Vi
(
Xπti
)
1W l

i+1

]∥∥∥
p
≤ C N−1/2p

|π |−d/4p,

and the required result follows from Proposition 2.1. �

4. An improvement on the Malliavin weights

4.1. The reduced scheme

The Malliavin calculus algorithm provides an efficient method for the numerical solution of a
BSDE. However, a serious drawback of this method is that it can become quite heavy from the
implementation viewpoint when the dimension is high. Our aim in this section is to present a
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variation of the algorithm of [6] that reduces the computational effort. We will show that one can
consider the matrix process

h̄i (t) =
1
|π |

(
σ−1(Xπti−1

)1[ti−1,ti )(t)− σ
−1(Xπti )1[ti ,ti+1)(t)

)
,

in place of hi and Sh̄i in place of Shi , and form a backward induction scheme based on these new
weights.

Of course when σ 0 and σ are constant, there is no difference between h and h̄. Let us try
to appreciate the gain from the proposed truncation when σ 0 and/or σ are not constant. The
truncation involves the following two terms:

σ−1(Xπti )∇σ
0(Xπti )1[ti ,ti+1) and

1
|π |
σ−1(Xπti )

d∑
j=1

∇σ j (Xπti )1W j
i+11[ti ,ti+1)

(to simplify the discussion we treat the sum as being a single term). Under this assumption,
hi has four terms whilst h̄i has only two terms. It follows that the iterated Skorohod integral
Shi [1W l

i+1φ(X
π
ti − x)] has 4d terms whilst Sh̄i [1W l

i+1φ(X
π
ti − x)] has 2d terms. Therefore the

new algorithm requires 1/2d of the original terms to be implemented per Malliavin weight (recall
that there are d + 1 expectations to be computed per discretization step). Moreover by truncating
the hi ’s, we avoid the computation of the derivatives of σ, σ 0, hence we expect the new algorithm
to be more stable than the original.

However, this reduction in the implementation complexity does not get equivalently reflected
on the time performance of the algorithm. This is due to the fact that every backward empirical
projection is of complexity O(N logd−1 N ), N being the number of copies of the forward Euler
scheme generated at each step and d the dimension of the state space. On the other hand, one can
implement the algorithm in a way such that the complexity of the computation of the weights
is merely O(N ). Hence as N increases, the time spent in the computation of the weights will
be dominated by other tasks. We will explain how this works in Section 5 where we include a
numerical example.

Remark 4.1. The truncation of the h process does not affect the denominators in the
representation of Theorem 3.1. Indeed, a repetitive application of Lemma 3.2.1 of [22] shows
that

q1
i (x) = E

[
Hx (X

π
ti )Ei

[
Shi [φ(Xπti − x)]

]]
= E

[
Hx (X

π
ti )S

h̄i [φ(Xπti − x)]
]
. (4.1)

In other words, the truncation induces no loss of precision in the denominator. Given this, our
effort will focus on the truncation of the numerator.

We need to re-define the regression function according to the new “truncated” weights. For a
localizing function φ ∈ L0 we denote by

φα(x) := φ
(
x |π |−α

)
, α ≥ 1/2, x ∈ Rd . (4.2)

Obviously φα ∈ L0. The parameter α is chosen according to the asymptotic result of
Proposition 4.3 below.
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Next, for F = %(Xπti+1
)1W l

i+1, 0 ≤ i < n, 0 ≤ l ≤ d, and φ,ψ ∈ L0, we introduce the
alternative regression approximation operator:

Ēti ,x

[
%(Xπti+1

)1W l
i+1

]
= T ζi

(
q̄ F (x)/q̄1(x)

)
where

q̄ F (x) := E
[

QF
[h̄i , φα](x)

]
, q̄1(x) := E

[
Q1
[h̄i , ψα](x)

]
and the corresponding one-step ahead approximation of the BSDE:

R̄i g(x) = T Ψ
i

(
R̄0

i g(x)
)
,

R̄0
i g(x) = Ēti ,x

[
g
(

Xπti+1

)]
+ |π | f

(
ti , x, R̄0

i g(x), |π |−1Ēti ,x

[
g
(

Xπti+1

)
1Wi+1

])
,

(4.3)

for i = n− 1, . . . , 0 and any function g in a suitable class. The iteration of the above family will
give us the values

Ȳ πti := R̄i · · · R̄n−1Φ(Xπti ), 0 ≤ i < n.

Finally we introduce the family of operators {ˆ̄Ri }
n
i=1 corresponding to the Monte Carlo

simulation-based estimation of the family {R̄i }
n
i=1, i.e. the analogue of (3.7), with h̄i (t)

substituted to hi (t) for every step i :

ˆ̄Eti ,x

[
g(Xπti+1

)1W l
i+1

]
= T ζi

(
Q̂F
[h̄i , φ

F
α ](x)

Q̂1[h̄i , φ1
α](x)

)
,

where φ1, φF are possibly different localizing functions in L0, Q̂F
i are defined in (3.5), and

ˆ̄Ri g(x) = T Ψ
i

(
ˆ̄R

0

i g(x)

)
, i = 0, 1, . . . , n − 1, (4.4)

ˆ̄R
0

i g(x) = ˆ̄Eti ,x

[
g(Xπti+1

)
]
+ |π | f

(
ti , x, ˆ̄R

0

i g(x), |π |−1 ˆ̄Eti ,x

[
g(Xπti+1

)1Wi+1

])
.

The main result of this section provides a rate of convergence of the simplified scheme:

ˆ̄Y
π

tn := Φ(X tn ) and, for 0 ≤ i < n, ˆ̄Y
π

ti :=
ˆ̄Ri,n−1Φ(X ti ),

where {ˆ̄Ri,n−1Φ}0≤i≤n−1 is defined as in (2.3).

Remark 4.2. As in the previous section, it is an easy induction argument to show that for

any i = 0, 1, . . . , n − 1, the iteration of the family {ˆ̄Ri }
n
i=1 produces random functions that

may be written as ˆ̄Ri . . .
ˆ̄RnΦ(x, χ) where χ is a functional of the copies of the Euler scheme

{Xπ
(k)
, k = i + 1, . . . , n}.
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4.2. The weight truncation error

The first step in order to analyze the rate of convergence of the algorithm defined by the

backward sequence {ˆ̄Ri , i ≤ n} is to estimate the error Ei − Ēi for i ≤ n − 1, when applied to
random functions of the form described in Remark 4.2 above.

Proposition 4.3. Let F := %(Xπti+1
, ω) for some function %(·, ω) with ω ∈ Ω i+2

× · · · × Ωn .

(i) Assume that %(·, ω) is uniformly Lipschitz, then for i < n and p > 1:

lim sup
|π |→0

|π |
−

1
p

(
α+ 1

2

)
max

0≤l≤d

∥∥∥∥(E− Ē
)

ti ,Xπti
[F1W l

i+1]

∥∥∥∥
p
<∞.

(ii) Assume that F ∈ Lq , q > 1, then for i < n and p > 1:

lim sup
|π |→0

|π |
−
α
p max

0≤l≤d

∥∥∥∥(E− Ē
)

ti ,Xπti
[F1W l

i+1]

∥∥∥∥
p
<∞.

The rest of this subsection is dedicated to the proof of Proposition 4.3. We first observe that∫
Dt Xπti h̄i (t)dt = Id , and therefore the expansion (3.2) holds for h̄i as well:

Sh̄i
I [1W l

i+1ϕ(X
π
ti − x)] =

∑
J⊆I

(−1)|J |∂Jϕ(X
π
ti − x)Sh̄i

J c [1W l
i+1], (4.5)

for every 0 ≤ l ≤ d . We then concentrate on the errors Shi

I (1W l
i+1)− Sh̄i

I (1W l
i+1).

Lemma 4.4. For I ∈ Jm , 1 ≤ l ≤ d, and p > 1, we have:∥∥∥Shi
I [1] − Sh̄i

I [1]
∥∥∥

p
≤ C |π |(1−m)/2 and∥∥∥Shi

I [1W l
i+1] − Sh̄i

I [1W l
i+1]

∥∥∥
p
≤ C |π |1−m/2,

where C is a constant independent of the partition.

Proof. The linearity of the Skorohod integral implies that Shi
j = Sh̄i

j + Shi−h̄i
j and hence,

Shi
(ii ,i2,...,im )

[·] can be written as a sum of 2m terms of the form

Sν1
i1
◦ · · · ◦ Sνm

im
[·], (4.6)

where vectors νi are either columns of h̄i or of hi − h̄i . Hence we may focus on iterated integrals
of the form (4.6) to prove our claim.

Given a real vector v ∈ Rm and a multi-index β := (β1, . . . , βm) with nonnegative integer
entries, we denote by vβ := vβ1

1 . . . v
βm
m . We also write |β| :=

∑m
i=1 βi . Consider the collection

of matrix valued processes

Vi =

{
v(t)|v j (t) = h j

i (t)− h̄ j
i (t) or h̄ j

i (t), j = 1, . . . , d
}
,

i.e., it is the collection of all matrix valued processes with columns either equal to the
corresponding column of hi (t)− h̄i (t) or h̄i (t).

Elementary properties of the Skorohod integral imply that the iterated Skorohod integrals that
we are considering here may be written as sums of products of Brownian increments. In fact
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we claim that if k is a positive integer and β, γ are multi-indices then, for any m ∈ Z+ and
I = (i1, . . . , im) ∈ Jm we have that,

SνI [1] =
1
|π |m

∑
(k,β,γ ):

m−q(I )/2≤k+ |β|+|γ |2 ≤
3m−q(I )

2

θ I
k,β,γ

(
Xπti−1

, Xπti

)
|π |k (1Wi )

β (1Wi+1)
γ (4.7)

and, for l > 0,

SνI [1W l
i+1] =

1
|π |m

∑
(k,β,γ ):

m− q(I )
2 +

1
2≤k+ |β|+|γ |2 ≤

3m−q(I )+1
2

θ I
k,β,γ

(
Xπti−1

, Xπti

)

× |π |k (1Wi )
β (1Wi+1)

γ (4.8)

where q(I ) := #{ j ∈ I |v j is a column from h̄i } and (x, y)→ θ
(i1,...,im )
k,α,β (x, y) ∈ C∞b (R

d
× Rd)

(some of which may be identically equal to zero).
Assume for the moment that (4.7) and (4.8) hold true. Then, for any ν ∈ Vi \ {h̄i } we have

that, ∥∥∥Shi
I [1] − Sh̄i

I [1]
∥∥∥

p
≤

∑
ν∈Vi\{h̄i }

‖SνI [1]‖p.

According to (4.7),∥∥SνI [1]
∥∥

p ≤ C |π |−q(I )/2
≤ C |π |(1−m)/2

since ν 6= h̄i means that q(I ) ≤ m − 1. Similarly, (4.8) is used to prove the second claimed
estimate.

It remains to show (4.7) and (4.8). The proof is with induction on m. First observe that

Shi−h̄i
j [F] =

1
|π |

{
F

(
d∑

s=0

σ−1(ti )∇σ
s(ti )1W s

i+1

) j

·1Wi+1

−

∫ ti+1

ti

(
d∑

s=0

σ−1(ti )∇σ
s(ti )1W s

i+1

) j

· Ds Fds

+

∫ ti+1

ti
F Ds

(
d∑

s=0

σ−1(ti )∇σ
s(ti )1W s

i+1

) j

ds

}
(4.9)

and

Sh̄i
j [F] =

1
|π |

{
F
(
σ−1(ti−1)

) j
·1Wi − F

(
σ−1(ti )

) j
·1Wi+1

−

∫ ti

ti−1

(σ−1(ti−1))
j
· Ds Fds −

∫ ti+1

ti
(σ−1(ti1))

j
· Ds Fds

}
. (4.10)

By substituting F = 1 or 1W l
i+1, l = 1, . . . , d it is easy to verify (4.7) and (4.8) for m = 1. Let

us assume that our claim is true for m and focus on proving (4.7) for m + 1. Given the induction
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hypothesis, a multi-index I ∈ Jm+1 and a matrix valued process ν ∈ Vi , we have

SνI [1] =
1
|π |m

Sν
i1

×

 ∑
(k,β,γ ):

m−q(−I )/2≤k+ |β|+|γ |2 ≤
3m−q(−I )

2

θ−I
k,α,β

(
Xπti−1

, Xπti

)
|π |k (1Wi )

β (1Wi+1)
γ

 .
Assume that νi1 = h̄i1

i . The application of the operator Sνi1 [·] to a random variable of the form

F = θ−I
kF ,βF ,γF

(
Xπti−1

, Xπti

)
|π |k (1Wi )

βF (1Wi+1)
γF , (4.11)

where (kF , βF , γF ) is such that m − q(−I )/2 ≤ kF +
|βF |+|γF |

2 ≤
3m−q(−I )

2 , generates four

terms according to (4.7). If we write λ0 = kF +
|βF |+|γF |

2 then,

F1 := F
(
σ−1(ti−1)

) j
·1Wi , F2 := F

(
σ−1(ti )

) j
·1Wi+1

are terms with

kF j +
|βF j | + |γF j |

2
= λ0 +

1
2
, j = 1, 2. (4.12)

As for the last two terms generated by the application of Sh̄i
i1
[·] on F observe that, according to

the chain rule for Malliavin differentiation, we have for j = 1, . . . , d

D j
s F = ∇yθ

−I
k,β,γ

(
Xπti−1

, Xπti

)
· σ(ti−1)

j
|π |k(1Wi )

β(1Wi+1)
γ 1[ti−1,ti )(s)

+ |π |kθ−I
k,β,γ

(
Xπti−1

, Xπti

)
(1Wi+1)

γ β j (1Wi )
(β1,...,β j−1,...,βd )1[ti−1,ti )(s)

+ |π |kθ−I
k,β,γ

(
Xπti−1

, Xπti

)
(1Wi )

βγ j (1Wi+1)
(γ1,...,γ j−1,...,γd )1[ti ,ti+1)(s). (4.13)

Substituting (4.13) in the last two terms of (4.7) we obtain two terms with

kF +
|βF | + |γF |

2
= λ0 + 1. (4.14)

The linearity of the Skorohod integral, (4.12) and (4.14) prove the induction hypothesis when
νi1 = h̄i1 . The case νi1 = hi1 − h̄i1 is treated with identical arguments. The proof, by induction,
for (4.8) is of course completely analogous. �

We now turn to the

Proof of Proposition 4.3. Throughout this proof, all expectations are in fact conditional on
ω ∈ Ω i+2, . . . ,Ωn , and we omit the dependence of % on this independent source of randomness.
All calculations are then similar to the case where % is a Lipschitz deterministic function. Let

F := %(Xπti+1
)1W l

i+1, νi (x) := q̄ F (x)/q̄1(x) and

S J (G) :=
(

Shi
J − Sh̄i

J

)
[1W l

i+1G].
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Using the preliminary bounds (3.3), we have∥∥∥∥(E− Ē
)

ti ,Xπti
[F]

∥∥∥∥p

p
≤ E

[∣∣νi (X
π
ti )− rπi (X

π
ti )
∣∣p
∧ γ (Xπti )

p]
≤ E

[∣∣νi (X
π
ti )− rπi (X

π
ti )
∣∣ γ (Xπti )p−1

]
= E

[(∣∣∣∣q F
− q̄ F

q1

∣∣∣∣ γ) (Xπti )p−1
]

=

∫
Rd

∣∣∣E [Hx (X
π
ti )%(X

π
ti+1
)S
(
φα(X

π
ti − x)

)]∣∣∣ γ (x)p−1dx

since q1 is just the density of Xπti . Denoting J :=
⋃

k<d Jk , and using the representation (3.2),
this provides∥∥∥∥(E− Ē

)
ti ,Xπti
[F]

∥∥∥∥p

p

≤

∑
J∈J

∫
Rd

∣∣∣E [Hx (X
π
ti )%(X

π
ti+1
)∂Jφα(X

π
ti − x)S J c (1)

]∣∣∣ γ (x)p−1 dx

=

∑
J∈J

∫
Rd

∣∣∣E [Hx (X
π
ti )
(
%(Xπti+1

)− %(Xπti )
)
∂Jφα(X

π
ti − x)S J c (1)

]∣∣∣ γ (x)p−1 dx

where the last equality follows from the fact that E[S J c (1)|Fti ] = 0,∀J c
∈ J , which can be

seen by arguing as in (4.1) and using Lemma 3.2.1 of [22].
Our next step is to perform an ω-by-ω change of variables for the Riemann integral by

setting u = (Xπti − x)/|π |α . Observe that the definition of the localizing function φα yields
∂Jφα(x) = |π |−α|J |∂Jφ(|π |

−αx). Hence we have that∥∥∥∥(E− Ē
)

ti ,Xπti
[F]

∥∥∥∥p

p
≤

∑
J∈J
|π |α(d−|J |)

∫
Rd
+

∣∣∣∣E[(%(Xπti+1
)− %(Xπti )

)
×S J c (1)γ (Xπti − |π |

αu)p−1
]∣∣∣∣ |∂Jφ(u)| du.

The Lipschitz assumption on %, the obvious estimate ‖Xπti+1
− Xπti ‖k ≤ C |π |1/2 for any k ≥ 1

and Hölder’s inequality give us∥∥∥(E− Ēti ,Xπti

)
[F]

∥∥∥p

p
≤ C

∑
J∈J
|π |α(d−|J |)‖%(Xπti+1

)− %(Xπti )‖p‖S J c (1)‖q1

×

∫
Rd
+

‖γ (Xπti − |π |
αu)p−1

‖q2 |∂Jφ(u)|du

for some q1, q2 > 1. It is clear from Lemma 4.4, that the term

‖S J c (1)‖q1 ≡

∥∥∥(Shi
J c − Sh̄i

J c

) [
1W l

i+1

]∥∥∥
q1

has a negative impact on the error estimate above. Moreover, according to the results of this
lemma, this impact is worse when l = 0. So let us fix this value for l to obtain∥∥∥(E− Ēti ,Xπti

)
[F]

∥∥∥p

p
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≤ C
∑
J∈J
|π |

1+
(
α− 1

2

)
(d−|J |)

∫
Rd
+

‖γ (Xπti − |π |
αu)p−1

‖q2 |∂Jφ(u)|du. (4.15)

Eq. (4.15) should explain why we need to choose α > 1/2, as for α = 1/2 we obtain a local
error merely of order |π | which will cancel under summation (one has 1/|π | local errors to sum
up).

Finally, since the function γ (·) is of polynomial growth we have, with r an integer, that∫
Rd
+

E
[
γ (Xπti − |π |

αu)q2(p−1)
]1/q2
|∂Jφ(u)|du

≤ C
∫
Rd
+

E

(1+
r∑

k=0

(r

k

)
|Xπti |

k
| |π |α u|r−k

)q2(p−1)
1/q2

|∂Jφ(u)|du,

and since |∂Jφ(u)| integrates against polynomials, by the assumptions on the localizing function,
we have shown the first assertion of the theorem. The second part of the proposition follows from
(4.15) without using the extra |π |1/2 coming from the Lp estimate of ‖%(Xπti+1

)−%(Xπti )‖p. �

4.3. The main result

We have already seen at the end of the proof of Proposition 4.3 that we need to consider an
α > 1/2 in the normalization of the localizing function and this will have a negative impact,
relative to the results of the previous section, on the integrated variance that controls the error of
the simulation-based estimation of the family {R̄i }

n−1
i=0 . In particular using the assumptions and

the notation of Lemma 3.4, we may show with identical arguments that for a function µ(·) of
polynomial growth and a random variable F defined as in 4.3:

lim sup
|π |→0

|π |αd/2 max
1≤i≤n

∫
Rd
µ(x)‖QF

[h̄i , φα](x)‖2dx <∞. (4.16)

The following main result provides an upper bound on the rate of convergence for the global
error, which says roughly that in order to guarantee an accuracy of order n−1/2, one needs to

simulate N = n3p+ (3p−1)d
2 copies of the Euler scheme at every time step.

Theorem 4.5. Let π be a partition of [0, 1] with K |π | < 1, φ ∈ L0, and define φα ∈ L0 as

in (4.2). Consider the three families of operators {Ri }
n−1
i=0 , {R̄i }

n−1
i=0 , {

ˆ̄Ri }
n−1
i=0 defined with φα as

the localizing function, on the partition π . Then, for any p > 1 and α ≥ (3p − 1)/2, we have

max
0≤i≤n−1

‖Y πti −
ˆ̄Y
π

ti ‖p ≤ C

(
|π |

1
p

(
1
2+α

)
−1
+ |π |−1−αd/2p N−1/2p

)
for a constant C independent of the partition.

Proof. We will estimate |Y πt0 −
ˆ̄Y
π

t0 | and remark that the estimate for i > 0 follows identical
arguments. Once again, we use a Trotter product expansion for the error:

|Y πt0 −
ˆ̄Y
π

t0 | = |R0 . . . Rn−1Φ(x)− ˆ̄R0 . . .
ˆ̄Rn−1Φ(x)|

≤

n−1∑
i=0

|R0,i
ˆ̄Ri+1,n−1Φ(x)− R0,i−1

ˆ̄Ri,n−1Φ(x)|
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≤

n−1∑
i=0

(
1+ C |π |

1− K |π |

)i−1 ∥∥∥(Ri −
ˆ̄Ri )
ˆ̄Ri+1,n−1Φ(Xπti )

∥∥∥
p
,

where we have used (2.6) with p > 1. For every i we clearly have∥∥∥(Ri −
ˆ̄Ri )
ˆ̄Ri+1,n−1Φ(Xπti )

∥∥∥
p

≤

∥∥∥(Ri − R̄i )
ˆ̄Ri+1,n−1Φ(Xπti )

∥∥∥
p
+

∥∥∥(R̄i −
ˆ̄Ri )
ˆ̄Ri+1,n−1Φ(Xπti )

∥∥∥
p
. (4.17)

To estimate the second term above, we may appeal to Proposition 3.3. The proof of the latter
comes through in this case to give us,∥∥∥(R̄i −

ˆ̄Ri )
ˆ̄Ri+1,n−1Φ(Xπti )

∥∥∥
p

≤

(
2

N 1/2

∫
Rd
γ (x)

[
‖QF
[h̄i , φ](x)‖p + (|r(x)| + γ (x))‖Q

1
[h̄i , ψ](x)‖p

]
dx

)1/p

.

Plugging the estimate (4.16) in the above we get∥∥∥(R̄i −
ˆ̄Ri )
ˆ̄Ri+1,n−1Φ(Xπti )

∥∥∥
p
≤

C

|π |αd/2p N 1/2p
. (4.18)

As for the first term in (4.17) we have∥∥∥(Ri − R̄i )
ˆ̄Ri+1,n−1Φ(Xπti )

∥∥∥
p

≤
C

1− K |π |
max

0≤l≤d

∥∥∥∥(E− Ē
)

ti ,Xπti
[
ˆ̄Ri+1,n−1Φ(Xπti+1

)1W l
i+1]

∥∥∥∥
p

≤
C

1− K |π |

(
max

0≤l≤d

∥∥∥∥(E− Ē
)

ti ,Xπti
[Ri+1,n−1Φ(Xπti+1

)1W l
i+1]

∥∥∥∥
p

+ max
0≤l≤d

∥∥∥∥(E− Ē
)

ti ,Xπti
[(Ri+1,n−1 −

ˆ̄Ri+1,n−1)Φ(Xπti+1
)1W l

i+1]

∥∥∥∥
p

)
.

We know from (2.4) that the functions Ri+1,n−1Φ are Lipschitz uniformly in i . On the other hand,

at this stage nothing can be said about the Lipschitz regularity of (Ri+1,n−1 −
ˆ̄Ri+1,n−1)Φ(·).

Hence, we apply the first assertion of Proposition 4.3 to the first term above, while the second
assertion is applied to the other one, to obtain∥∥∥(Ri − R̄i )

ˆ̄Ri+1,n−1Φ(Xπti )
∥∥∥

p

≤ C

(
|π |

α+1/2
p + |π |

α
p

∥∥∥( ˆ̄Ri+1,n−1 − Ri+1,n−1)Φ(Xπti+1
)

∥∥∥1/p

p

)
. (4.19)

We would now like to eliminate the 1/p-root above. To this end, observe that for any x > 0 and
p > 1, it holds that x1/p

≤ x + 1. Hence∥∥∥( ˆ̄Ri+1,n−1 − Ri+1,n−1)Φ(Xπti+1
)

∥∥∥1/p

p

≤ |π |
1

2p−
1
2

∥∥∥( ˆ̄Ri+1,n−1 − Ri+1,n−1)Φ(Xπti+1
)

∥∥∥
p
+ |π |1/2p. (4.20)
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Putting together (4.18)–(4.20) we have that

εi :=

∥∥∥(Ri −
ˆ̄Ri )
ˆ̄Ri+1,n−1Φ(Xπti )

∥∥∥
p

≤ C

(
|π |

α+1/2
p +

1

|π |αd/2p N 1/2p
+ |π |

α
p+

1
2p−

1
2

∥∥∥( ˆ̄Ri+1,n−1 − Ri+1,n−1)Φ(Xπti+1
)

∥∥∥
p

)
,

which provides, by performing a Trotter product expansion to the last term,

εi ≤ C

(
|π |

α+1/2
p +

1

|π |αd/2p N 1/2p
+ |π |

α
p+

1
2p−

1
2

n−1∑
j=i+1

ε j

)
,

and the required estimate follows from the discrete version of Gronwall’s inequality. �

Remark 4.6. Recently, Malliavin and Thalmaier [21] introduced an integration by parts formula
to replace the one stated in Theorem 3.1 which is more advantageous when simulating high
dimensional probability density functions. In particular, the Malliavin and Thalmaier integration
by parts formula induces the following representation for Fπi := ρ(X

π
ti+1
)1W l

i+1

E
[
Fπ |Xπti = x

]
=

q Fπ
i (x)

q1
i (x)

, (4.21)

where

q Fπ
i (x) = E

[
d∑

j=1

Λi
d

(
Xπti − x

)
Hi (X

π
ti , Fπ )

]
,

q Fπ
i (x) = E

[
d∑

j=1

∂ jΛd
(
Xπti − x

)
Hi (X

π
ti , 1)

]

and Λd = {Λi
d}

d
i=1 : R

d
→ Rd is the Riesz kernel

Λd (y) =


1
a2

y

|y|2
if d = 2

1
ad (d − 2)

y

|y|d
if d ≥ 3

, |y|2 =
d∑

i=1

y2
i .

Here ad is the area of the unit sphere in Rd and Hi (Xπti , Fπ ) and Hi (Xπti , 1) are random variables
that can be expressed as single Skorohod integrals instead of the previous multiple Skorohod
integrals (see [21,18] for details and [2] for general conditions under which the representation
holds true). Unfortunately, due to the singularity at zero of the Riesz kernel Λd , the variance of the
estimator is infinite. In turn, this implies that no rates of convergence are available should we use
a Monte Carlo approximation based on the representation (4.21). Finding a suitable way to deal
with the instability of the approximations of Riesz integrals remains a hard problem (see [12]
for another application of Riesz integral in a different context). A subsequent modification is
required to make the formula applicable. Recently Kohatsu-Higa and Yasuda [18] propose the
following approximation to the Malliavin–Thalmaier formula, where the (unbounded) Riesz
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kernel is replaced by the bounded modification

Λh
d (y) =


1
a2

y

|y|2h
if d = 2

1
ad (d − 2)

y

|y|dh
if d ≥ 3

, |y|h =
√
|y|2 + h.

The variance of the truncated Riesz integral is bounded, hence one can approximate it via Monte
Carlo with explicit rates. However, even though the L1-norm of the bias introduced in this manner
is controllable in terms of the truncation parameter p, the L p-norm of the error is infinite for
p > 1 rendering the method unusable in the BSDE context.

5. Numerical results

In this section we compare numerically the original version of Malliavin integration-by-parts
algorithm [6] with the new version on a nonlinear model for which the computation of the
Malliavin weights is nontrivial. The implementation of the algorithm has benefited greatly from
many fruitful comments by Bruno Bouchard and Xavier Warin. In particular we have benefited
from access to the work of [7], where Bouchard and Warin perform a comparison analysis of
existing methods for the numerical approximation to BSDEs (quantization/Malliavin calculus
method/regression on function bases method).

For our purposes we choose a model so that it has an explicit solution to enable us to quantify
the convergence error. In particular, we assume that the forward component satisfies the following
two-dimensional equation:

dX i
t = µi X i

t dt +
√

1+ (X i
t )

2 dW i
t , i = 1, 2, (5.1)

and that the backward component satisfies the equation

Yt =

2∑
i=1

arctan
(

X i
1

)
+

∫ 1

t
f (s, Xs, Ys, Zs)ds −

∫ 1

t
ZsdWs t ∈ [0, 1], (5.2)

where the driver f : [0, 1] × R2
× R× R2

→ R is given by

f (s, x1, x2, y, z1, z2) = er(1−s)
2∑

i=1

(1− µi )xi z
2
i − r y. (5.3)

An immediate application of Itô’s formula gives us the explicit solution of (5.2): The process Y
is given by

Yt = e−r(1−t)
(

arctan
(

X1
t

)
+ arctan

(
X2

t

))
, t ∈ [0, 1],

and the process Z is given by

Z i
t = e−r(1−t) 1√

1+ (X i
t )

2
, i = 1, 2, t ∈ [0, 1]. (5.4)

We note that the driver (5.2) is only locally Lipschitz continuous. However, in view of (5.4), we
know that the process Z is in fact bounded. Hence, we can consider the driver
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f̄ (s, x1, x2, y, z1, z2) = er(1−s)
2∑

i=1

(1− µi )xi

zi ∧
2√

1+ x2
i

2

− r y

in place of f , as the BSDE with driver f̄ and the one with driver f have the same solution a.s.
The reduction in the required terms for the Malliavin weights reduces the computational time

of the step where the Skorohod integrals are computed. However, the operation that dominates
the time performance of the algorithm is the handling of the Heaviside function, which is an
operation of complexity O(N logd−1 N ) per step, in dimension d and not of O(d N 2). The latter
reduction in complexity is achieved by appealing to advanced sorting algorithms in d dimensions.
A very detailed discussion on how one should handle the presence of the Heaviside function (with
an explicit algorithm) can be found in [7], which we follow exactly.

On the other hand, all other involved operations can be reduced to complexity O(N ) in the
case where one is using a separable localizing function, for example φ(x) = e−x . To explain
this, observe that, given that we have dealt with the Heaviside function by means of a sorting
algorithm, the weights are implemented by means of the formulae (3.2) (resp. (4.5)). To estimate
Yti , we need to MC estimate the integrals Shi [φ(Xπti − x)1W l

i+1] for l = 0, 1, 2 and some
localizing function φ(·) (and similarly for the new algorithm with h̄i in place of hi ). Observe
now, that according to (3.2) (resp. (4.5)), at time ti the weight (e.g. Shi [·]) in dimension 2 will
read as (for k ∈ Ni+1)

Sh(k)i

[
φF

(
Xπ

(k)

ti − x
)
1W l(k)

i+1

]
= φF

(
Xπ

(k)

ti − x
)

S
h(k)i
1,2

[
1W l(k)

i+1

]
− ∂x1φ

F
(

Xπ
(k)

ti − x
)

S
h(k)i
2

[
1W l(k)

i+1

]
− ∂x2φ

F
(

Xπ
(k)

ti − x
)

S
h(k)i
1

[
1W l(k)

i+1

]
+ ∂2

x1 x2
φF

(
Xπ

(k)

ti − x
)
1W l(k)

i+1. (5.5)

Eq. (5.5) will be called with argument x ranging among the Xπ
(l)

ti , l ∈ Ni . To avoid calling the
exponential function O(N logd−1 N ) times, observe that1 for k ∈ Ni+1, l ∈ Ni

exp
(
−(Xπ

(k)

ti − Xπ
(l)

ti )
)
= exp

(
−(Xπ

(k)

ti − Xπ
(l=1)

ti )
)

exp
(
−(Xπ

(l=1)

ti − Xπ
(l)

ti )
)
.

Hence, to estimate Yti , we take the following steps:

1. Compute and store the weights:

S
h(k)i
1,2

[
1W j (k)

i+1

]
, S

h(k)i
1

[
1W j (k)

i+1

]
S

h(k)i
2

[
1W j (k)

i+1

]
, k ∈ Ni+1, j = 0, 1, 2.

2. Compute and store the two localizing function vectors:

exp
(
−(Xπ

(k)

ti − Xπ
(l=1)

ti )
)
, exp

(
−(Xπ

(l=1)

ti − Xπ
(l)

ti )
)
, k ∈ Ni+1, l ∈ Ni .

3. Compute the sums involved in the definition (3.5) and (3.6), by means of the sorting algorithm
of [7]. When required, call (5.5) using the stored vectors of steps 1, 2.

The above procedure will then be dominated by step 3, and hence the overall method is of
complexity O(N logd−1 N ).

1 This was mentioned to us by Bruno Bouchard.

Please cite this article in press as: D. Crisan, et al., On the Monte Carlo simulation of BSDEs: An improvement on the
Malliavin weights, Stochastic Processes and their Applications (2010), doi:10.1016/j.spa.2010.03.015



ARTICLE  IN  PRESS
22 D. Crisan et al. / Stochastic Processes and their Applications ( ) –

Table 1
n = 20 steps.

N 8000 10 000 12 000 14 000

MIP 0.081 (0.008) 0.068 (0.006) 0.0521 (0.006) 0.041 (0.008)
MIPnew 0.073 (0.01) 0.071 (0.006) 0.046 (0.006) 0.038 (0.008)

Table 2
n = 30 steps.

N 12 000 16 000 20 000 24 000

MIP 0.12 (0.011) 0.091 (0.008) 0.06 (0.005) 0.035 (0.005)
MIPnew 0.124 (0.014) 0.07 (0.006) 0.068 (0.003) 0.04 (0.004)

We test our algorithm with parameters

T µ1 µ2 r X1
0 X2

0
0.5 0.06 0.08 0.03 3 4

For the new weights, we use for α the value 1. Also, we choose to work with φ(x) = e−x

for localizing function. To summarize the results we call the implementation of the original
algorithm of [6] MIP (Malliavin Integration-by-Parts), whereas the implementation with the new
weights is called MIPnew. We run every algorithm 10 times and report on the absolute value of
the error and (in parenthesis) the standard deviation in Table 1, when the number of steps n = 20
and in Table 2 when n = 30.

We see from the results that no accuracy has been lost by the transition from the old to the
new weights. We also see the two opposite forces at work here. Namely, on the one hand, with
more points in the partition, one achieves a finer discretization of the backward SDE, but that has
a negative effect on the MC simulation of the involved expectations, as predicted by Lemma 3.4
and Theorem 3.5. For example, one needs 12 000 paths, when 30 discretization points are used
(see the second column of Table 2) to achieve similar accuracy with 20 points on the partition and
8000 paths (see the first column of Table 1). Moreover, though we expected from Theorem 4.5,
that the new weights would require a greater number of paths to achieve a similar accuracy
with the original algorithm, in practice, at least for this example, we see that the two algorithms
perform similarly with the same N . This is most likely due to the presence of well behaved
coefficients in the forward backward system.
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Appendix

Proof of (2.5) and (2.6). Let us fix a value for i . Starting from the definition of Ri we have that

Ri g1(x)− Ri g2(x) = Eti ,x
[
(g1 − g2)(X ti+1)

]
+1i+1

{
f

(
ti , x, Ri g1(x),

1
1i+1

Eti ,x
[
g1(X ti+1)1Wi+1

])

− f

(
ti , x, Ri g2(x),

1
1i+1

Eti ,x
[
g2(X ti+1)1Wi+1

])}
.

By the K -Lipschitz property of f , we can find deterministic functions ν(x) : Rd
→ R, ζ(x) :

Rd
→ Rd , uniformly bounded by K , such that

1i+1

(
f

(
ti , x, Ri g1(x),

1
1i+1

Eti ,x
[
g1(X ti+1)1Wi+1

])

− f

(
ti , x, Ri g2(x),

1
1i+1

Eti ,x
[
g2(X ti+1)1Wi+1

]))
= 1i+1ν(x) (Ri g1(x)− Ri g2(x))+ ζ(x) · Eti ,x

[
(g1 − g2)(X ti+1)1Wi+1

]
,

and we have that

(1−1i+1ν(x))(Ri g1(x)− Ri g2(x))

= Eti ,x
[
(g1 − g2)(X ti+1)

]
+ ζ(x) · Eti ,x

[(
g1(X ti+1)− g2(X ti+1)

)
1Wi+1

]
. (A.1)

From (A.1) we deduce that

(1−1i+1 K )|(Ri g1(x)− Ri g2(x))| ≤
∣∣Eti ,x

[
(g1 − g2)(X ti+1) (1+ ζ(x) ·1Wi+1)

]∣∣
≤ ‖g1 − g2‖Lp(Px

ti ,ti+1
)E
[
|1+ ζ(x) ·1Wi+1|

q] 1
q

≤ ‖g1 − g2‖Lp(Px
ti ,ti+1

)E
[
(1+ ζ(x) ·1Wi+1)

2k
] 1

2k
,

where p, q are conjugate and k an integer with k > q/2. Since ζ(x) is deterministic and bounded
by the Lipschitz constant of f, K , we have that

E
[
(1+ ζ(x) ·1Wi+1)

2k
]
=

2k∑
j=0

(
2k

j

)
E
[
(ζ(x) ·1Wi+1)

j
]

=

2k∑
j=0

(
2k

j

)
E
[
(ζ(x) ·1Wi+1)

2 j
]

≤ 1+ C1i+1,

which completes the proof of (2.5).
As for the second claim let us fix an integer value k = 0, . . . , n − 2. We apply (2.5) to

|Rk Rk+1g1 − Rk Rk+1g2|(x) and to |Rk+1g1(x)− Rk+1g2(x)| to get

|Rk Rk+1g1(x)− Rk Rk+1g2(x)| ≤
1+ C1k+1

1− K1k+1
‖Rk+1g1 − Rk+1g2‖Lp

(
Px

tk ,tk+1

) ,
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and

|Rk+1g1(x)− Rk+1g2(x)| ≤
1+ C1k+2

1− K1k+2
‖g1 − g2‖Lp

(
Px

tk+1,tk+2

) .
Then

|Rk Rk+1g1(x)− Rk Rk+1g2(x)|

≤

(
1+ C1k+1

1− K1k+1

)(
1+ C1k+2

1− K1k+2

)
‖g1 − g2‖Lp

(
Px

tk ,tk+2

) ,
by the semigroup property. The generalization to an arbitrary number of iterations is now
straightforward. �

Proof of Proposition 3.3. Set

r̃i (x) :=
Q̂F

i [hi , φ](x)

Q̂1
i [hi , ψ](x)

so that r̂i (x) = T ζi (r̃i (x)) .

Using the bounds on ri (see the definition of γ (x) in Proposition 3.3), we have

E0,i+1 [(ri (X
π
ti )− r̂i (X

π
ti ))

p]
≤ E0,i+1 [

|r̃i (X
π
ti )− ri (X

π
ti )|

p
∧ γ (Xπti )

p]
= E0,i+1

[∣∣∣∣∣εF (Xπti )− ri (Xπti )ε
1(Xπti )

Q̂1(Xπti )

∣∣∣∣∣
p

∧ γ (Xπti )
p

]
, (A.2)

where

εF (x) := Q̂F
[hi , φ](x)− q F

i (x), and ε1(x) := Q̂1
[hi , ψ](x)− q1

i (x).

We will be using later the fact that

Ei+1
|εF (x)| ≤ ‖εF (x)‖L2(Pi+1) ≤

1

N 1/2 VF (x)
1/2,

where VF (x) = Var[QF
[hi , φ](x)]. Notice that the last inequality holds in the marginal measure

Pi+1. A similar result is true for ε1.
Next, for x ∈ Rd let us consider the event

M(x) =

{
ω : |Q̂1(x, ω)− q1

i (x)| ≤
1
2

q1
i (x)

}
.

Using this set we may split the expectation above

E0,i+1

[∣∣∣∣∣εF (Xπti )− ri (Xπti )ε
1(Xπti )

Q̂1(Xπti )

∣∣∣∣∣
p

∧ γ (Xπti )
p

]

≤ E0,i+1

[
2

∣∣∣∣∣εF (Xπti )− ri (Xπti )ε
1(Xπti )

q1
i (X

π
ti )

∣∣∣∣∣ γ (Xπti )p−11M(Xπti )

]
+E0,i+1

[
γ (Xπti )

p 1Mc(Xπti )

]
,

where we have used the inequality a p
∧ bp

≤ abp−1. For the first term on the right hand side we
compute

2
∫
Rd

Ei+1
[
|εF (x)− ri (x)ε

1(x)|γ (x)
]

dx

Please cite this article in press as: D. Crisan, et al., On the Monte Carlo simulation of BSDEs: An improvement on the
Malliavin weights, Stochastic Processes and their Applications (2010), doi:10.1016/j.spa.2010.03.015



ARTICLE  IN  PRESS
D. Crisan et al. / Stochastic Processes and their Applications ( ) – 25

≤ 2
∫
Rd
(‖εF (x)‖L2(Pi+1) + |ri (x)|‖ε

1(x)‖L2(Pi+1))γ (x)
p−1dx

=
2

N 1/2

∫
Rd
(VF (x)

1/2
+ |ri (x)|V1(x)

1/2)γ (x)p−1dx

≤
2

N 1/2

∫
Rd
(‖QF

‖L2(P0) + |ri (x)|‖Q
1
‖L2(P0))γ (x)

p−1dx .

As for the second term we estimate it by means of the Chebychev inequality

E0,i+1
[
γ (Xπti )

p 1Mc(Xπti )

]
= E0Ei+1

[
γ (Xπti )

p 1Mc(Xπti )

]
= E0

[
γ (Xπti )

pPi+1
[Mc(Xπti )]

]
≤ E0

[
γ (Xπti )

p 1

q1
i (X

π
ti )

Ei+1
[2|Q̂1(Xπti )− q1

i (X
π
ti )|]

]

= Ei+1
[∫
Rd

2|Q̂1(x)− q1
i (x)|γ (x)

p dx

]
≤

1

N 1/2

∫
Rd
γ (x)pVQ1(x)1/2dx .

We now have an estimate of the error with respect to the measure dP0
× dPi+1. The result now

follows from an application of Fubini’s theorem. �
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[10] F. Coquet, V. Mackevicius, J. Mémin, Stability in d of martingales and backward equations under discretization of
filtration, Stochastic Processes and their Applications 75 (1998) 235–248.

[11] D. Crisan, K. Manolarakis, Numerical solution for a BSDE using the cubature method, Preprint, 2007. Available
at: http://www2.imperial.ac.uk/dcrisan/.

[12] D. Crisan, J. Xiong, Approximate Mckean–Vlasov representations for a class of SPDEs, Stochastics 82 (2010)
1744–2508.

[13] N. El Karoui, S. Peng, M. Quenez, Backward stochastic differential equations in finance, Mathematical Finance 7
(1) (1997) 1–71.

Please cite this article in press as: D. Crisan, et al., On the Monte Carlo simulation of BSDEs: An improvement on the
Malliavin weights, Stochastic Processes and their Applications (2010), doi:10.1016/j.spa.2010.03.015

http://www2.imperial.ac.uk/dcrisan/


ARTICLE  IN  PRESS
26 D. Crisan et al. / Stochastic Processes and their Applications ( ) –

[14] E. Gobet, C. Labart, Error expansion for the discretization of backward stochastic differential equations, Stochastic
Processes and their Applications 117 (7) (2007) 803–829.

[15] E. Gobet, J.P Lemor, X. Warin, A regression based Monte Carlo method to solve backward stochastic differential
equations, Annals of Applied Probability 15 (3) (2005) 2172–2202.

[16] E. Gobet, J.-P. Lemor, X. Warin, Rate of convergence of an empirical regression method for solving generalized
backward stochastic differential equations, Bernoulli 12 (5) (2006) 889–916.

[17] P. Kloeden, E. Platen, Numerical Solutions of Stochastic Differential Equations, Springer, 1999.
[18] A. Kohatsu-Higa, K. Yasuda, Estimating multidimensional density functions for random variables in Wiener space,
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