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OPTIMAL INVESTMENT UNDER RELATIVE PERFORMANCE CONCERNS

GILLES-EDOUARD ESPINOSA AND NIZAR TOUZI

Centre de Mathématiques Appliquées, Ecole Polytechnique Paris

We consider the problem of optimal investment when agents take into account their
relative performance by comparison to their peers. Given N interacting agents, we
consider the following optimization problem for agent i , 1 ≤ i ≤ N:

sup
π i ∈Ai

EUi
(
(1 − λi )Xπ i

T + λi
(
Xπ i

T − X̄i ,π
T

))
,

where Ui is the utility function of agent i , π i his portfolio, Xπ i
his wealth, X̄i ,π the

average wealth of his peers, and λi is the parameter of relative interest for agent i .
Together with some mild technical conditions, we assume that the portfolio of each
agent i is restricted in some subset Ai . We show existence and uniqueness of a Nash
equilibrium in the following situations:

- unconstrained agents,
- constrained agents with exponential utilities and Black–Scholes financial mar-

ket.

We also investigate the limit when the number of agents N goes to infinity. Finally,
when the constraints sets are vector spaces, we study the impact of the λi s on the risk
of the market.

KEY WORDS: portfolio optimization, relative concerns, Nash equilibrium, differential game,
backward stochastic differential equations.

1. INTRODUCTION

The seminal papers of Merton (1969, 1971) generated a huge literature extending the
optimal investment problem in various directions and using different techniques. We refer
to Pliska (1986), Cox and Huang (1989), or Karatzas, Lehoczky, and Shreve (1987) for the
complete market situation, to Cvitanic and Karatzas (1992) or Zariphopoulou (1994) for
constrained portfolios; to Constantinides and Magill (1976), Davis and Norman (1990),
Shreve and Soner (1994), Duffie and Sun (1990), or Akian, Menaldi, and Sulem (1995)
for transactions costs; to Constantinides (1983), Jouini, Koehl, and Touzi (1997, 1999),
Damon, Spatt, and Zhang (2001), or Ben Tahar, Soner, and Touzi (2008a, 2008b) for

The research is supported by the Chair Financial Risks of the Risk Foundation sponsored by Société
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taxes; and to He and Pearson (1991a,b), Karatzas, Lehoczky, Shreve, and Xu (1991),
Kramkov and Schachermayer (1999, 2003), or Kramkov and Sirbu (2006) for general
incomplete markets.

However, in all of these works, no interaction between agents is taken into account.
The most natural framework to model such interaction would be a general equilibrium
model where the behavior of the investors is coupled through the market equilibrium
conditions. But this typically leads to untractable calculations. Instead, we shall model
the interactions based on some simplified context of comparison of the performance to
that of the competitors or to some benchmark. A return of 5% during a crisis is not
equivalent to the same return during a financial bubble. Moreover, human beings tend
to compare themselves to their peers. In fact, economic and sociological studies have
emphasized the importance of relative concerns in human behaviors, see Veblen (1899)
for the sociological part, and Abel (1990), Gali (1994), Gomez, Priestley, and Zapatero
(2007), or DeMarzo, Kaniel, and Kremer (2008) for economic works, considering simple
models in discrete time frameworks.

In this paper, we study the optimal investment problem under relative performance con-
cerns, in a continuous-time framework. More precisely, there are N particular investors
that compare themselves to each other. Agents are heterogeneous (different utility func-
tions and different constraints sets) and instead of considering only his absolute wealth,
each agent takes into account a convex combination of his wealth (with weight 1 − λ,
λ ∈ [0, 1]) and the difference between his wealth and the average wealth of the other
investors (with weight λ). This creates interactions between agents and therefore leads to
a differential game with N players. We also consider that each agent’s portfolio must stay
in a set of constraints.

In the context of a complete market situation where all agents have access to the entire
financial market, we prove existence and uniqueness of a Nash equilibrium for general
utility functions. The optimal performances at equilibrium are explicit, and therefore
allow for many interesting qualitative results.

We next turn to the case where the agents have different access to the financial market,
i.e., their portfolio constraints sets are different. Our solution approach requires to
restrict the utility functions to the exponential framework. Then, assuming mainly that
the agents positions are constrained to lie in closed convex subsets, and that the drift
and volatility of the log prices are deterministic, we show the existence and uniqueness
of a Nash equilibrium, using the backward stochastic differential equation (BSDE)
techniques introduced by El Karoui and Rouge (2000) and further developed by Hu,
Imkeller, and Müller (2005). The Nash equilibrium optimal positions are more explicit
in the case of constraints defined by linear subspaces. In this setting, we analyze the limit
when the number of players N goes to infinity where the situation considerably simplifies
in the spirit of mean field games, see Lasry and Lions (2007). Notice that our problem
does not fit in the framework of Lasry and Lions (2007) for the two following reasons.
First, in Lasry and Lions (2007), the authors consider similar agents, which is not the
case in the present paper, as the utility functions, the parameters λi s, and the sets of
constraint can be specific. More importantly, in Lasry and Lions (2007), the sources of
randomness of two different agents are independent.

We finally investigate the impact of the interaction coefficient λ. Under some additional
assumptions, which are satisfied in many examples, we show that the local volatility of
the wealth of each agent is nondecreasing with respect to λ. In other words, the more
investors are concerned about each other (λ large), the more risky is the (equilibrium)
portfolio of each investor. However, in general, this can fail to hold. But in the limit,
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N goes to infinity, the same phenomenon holds for the average portfolio of the market,
without any additional assumption. Roughly speaking, this means that the global risk of
the market increases with λ, although it can fail for the portfolio of some specific agent.

This paper is organized as follows. Section 2 introduces the problem. In Section 3, we
solve the complete market situation, for general utility functions. In Section 4, we deal
with the general case with exponential utility functions and portfolios that are constrained
to remain inside closed convex sets. In Section 5, we restrict the sets of constraints to
linear spaces that allow us in particular to derive some interesting economic implications.

REMARK 1.1. This paper is the submitted version from the content of the PhD thesis
of the first author Espinosa (2010). The delayed date of submission is due to our wish to
provide more relevant examples. Based on the content of Espinosa (2010), Frei and dos
Reis developed an interesting article, Frei and dos Reis (2011), during their Post-Doc at
Ecole Polytechnique. Their article, in particular, highlights the difficulty in the existence
and uniqueness of the quadratic multidimensional backward SDE of the present paper,
and establishes the existence of a sequentially delayed Nash equilibrium in the general
case. Frei and dos Reis (2011) also provide some extensions of our results, and some
shorter proofs. But they crucially make use of many results of this paper.

Notations. H2(Rm) denotes the space of all predictable processes ϕ, with values in
Rm, and satisfying E

∫ T
0 |ϕt|2dt < ∞. The corresponding localized space is denoted by

H2
loc(Rm). When there is no risk of confusion, we simply write H2 and H2

loc.

2. PROBLEM FORMULATION

Let W be a d-dimensional Brownian motion on the complete probability space (�,F, P),
and denote by F = {Ft, t ≥ 0} the corresponding completed canonical filtration. We
assume that F is generated by W. Let T > 0 be the investment horizon so that t ∈ [0, T].
Given two F-predictable processes θ taking values in Rd and σ taking values in Rd×d ,
satisfying:

σ symmetric, uniformly definite positive,
∫ T

0
|σt|2dt < +∞ a.s.,(2.1)

and θ is bounded, dt ⊗ dP−a.e,(2.2)

we consider a market with a nonrisky asset with interest rate r = 0 and a d-dimensional
risky asset S = (S1, . . . , Sd ) given by the following dynamics:

d St = diag(St)σt(θtdt + dWt),(2.3)

where for x ∈ Rd , diag(x) is the diagonal matrix with i th diagonal term equal to xi .
A portfolio is an F-predictable process {πt, t ∈ [0, T]} taking values in Rd . Here, π

j
t is

the amount invested in the j th risky asset at time t. Under the self-financing condition,
the associated wealth process Xπ

t is defined by

Xπ
t = X0 +

∫ t

0
πr · diag(Sr )−1d Sr , t ∈ [0, T].

Given an integer N ≥ 2, we consider N portfolio managers whose preferences are char-
acterized by a utility function Ui : R → R, for each i = 1, . . . , N. We assume that Ui is
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C1, increasing, strictly concave and satisfies Inada conditions:

U ′
i (−∞) = +∞, U ′

i (+∞) = 0.(2.4)

In addition, we assume that each investor is concerned about the average performance of
his peers. Given the portfolio strategies π i , i = 1, . . . , N, of the managers, we introduce
the average performance viewed by agent i as

X̄i ,(π j ) j 
=i := 1
N − 1

∑
j 
=i

Xπ j
.(2.5)

The portfolio optimization problem of the i th agent is then defined by

Vi
0

(
(π j ) j 
=i

)
:= Vi

0 := sup
π i ∈Ai

E
[
Ui
(
(1 − λi )Xπ i

T + λi
(
Xπ i

T − X̄i ,(π j ) j 
=i

T

))]
(2.6)

= sup
π i ∈Ai

E
[
Ui
(
Xπ i

T − λi X̄i ,(π j ) j 
=i

T

)]
, 1 ≤ i ≤ N,

where λi ∈ [0, 1] measures the sensitivity of agent i to the performance of his peers, and
the set of admissible portfolios Ai will be defined later. Roughly speaking, we impose
integrability conditions as well as the constraints π i take values in Ai , a given closed
convex subset of Rd .

Our main interest is to find a Nash equilibrium in the context where each agent is
“small” in the sense that his actions do not impact the market prices S.

DEFINITION 2.1. A Nash equilibrium for the N portfolio managers is an N-tuple
(π̂1, . . . , π̂ N) ∈ A1 × . . .AN such that, for every i = 1, . . . , N, given (π̂ j ) j 
=i , the portfolio
strategy π̂ i is a solution of the portfolio optimization problem Vi

0 ((π̂ j ) j 
=i ).
If in addition, for each i = 1, . . . , N, π̂ i is a deterministic and continuous function of

t ∈ [0, T], we say that (π̂1, . . . , π̂ N) is a deterministic Nash equilibrium.

Our main results are the following:

MAIN THEOREM 2.2. Assume that for each i = 1, . . . , N, Ui (x) = −e− x
ηi for some

constant ηi > 0, the portfolio constraints sets Ai are closed convex,
∏N

i=1 λi < 1, and that
there exists a Nash equilibrium (π̃1, . . . , π̃ N). Then, there exists a solution to the N-
dimensional quadratic BSDE (4.20) below, and (π̃1, . . . , π̃ N) can be expressed in terms of
this solution.

Unfortunately, the well-posedness of BSDE (4.20) below is an open problem in the
present literature, thus preventing Main Theorem 2.2 from providing a characterization
of Nash equilibria. We refer in particular to Frei and dos Reis (2011) who further explored
this question following a previous version of this paper based on Espinosa (2010). In
particular, Frei and dos Reis (2011) highlight some examples of nonexistence by allowing
the agents to have some final reward.

In the context of deterministic coefficients, we obtain a complete characterization.

MAIN THEOREM 2.3. Assume that θ and σ are deterministic and continuous functions
of t ∈ [0, T], and that for each i = 1, . . . , N, Ui (x) = −e− x

ηi for some constant ηi > 0, the
portfolio constraints sets Ai are closed convex, and

∏N
i=1 λi < 1. Then, there exists a unique

deterministic Nash equilibrium.
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We also observe that the unique Nash equilibrium of Main Theorem 2.3 can be
computed explicitly in various interesting situations that will be described throughout
the paper.

In order to simplify notations, from now on, we will write

Xi
t := Xπ i

t and X̄i
t := X̄i ,(π j ) j 
=i

t , t ∈ [0, T].

In Section 3, we shall consider the complete market situation in which the portfolios will
be free of constraints (in other words, Ai = Rd for each i ). This will be solved for general
utility functions. In the next sections, we will derive results for more general types of
constraints, but we will focus on the case of exponential utility functions: Ui (x) = −e− x

ηi .
We will first consider the general case in Section 4, and then in Section 5, we will focus
on the case of linear constraints, where the Ai s are (vector) subspaces of Rd .

3. THE COMPLETE MARKET SITUATION

In this section, we consider the case where there are no constraints on the portfolios:

Ai = Rd , for all i = 1, . . . , N.

In the present situation, the density of the unique equivalent martingale measure is

dQ

dP
= e− ∫ T

0 θ (u)·dWu− 1
2

∫ T
0 |θ (u)|2du .(3.1)

We shall denote by EQ the expectation under Q.
In contrast with the general results in the subsequent sections, the complete market

situation can be solved for general utility functions. In this case, the set of admissible
strategies A = Ai is the set of predictable processes π such that

σπ ∈ H2
loc(Rd ), Xπ is aQ-martingale,

and Uj
(− 2k

(
Xπ

T

)+)
, Uj

(− 2k
(
Xπ

T

)−) ∈ L1(P) for all j ≤ N and k ∈ N.
(3.2)

To simplify the notations and presentation in this introductory example, we also assume
that all agents have the same relative performance coefficient λ:

λi = λ ∈ [0, 1), for all i = 1, . . . , N,(3.3)

see, however, Remark 3.4. Nevertheless, we allow the investors to have different utility
functions Ui and different initial endowments xi ∈ R. We denote

x̄i := 1
N − 1

∑
j 
=i

x j , i = 1, . . . , N.

3.1. Single-Agent Optimization

We first check that the single-agent optimization problem is well-posed under the
following additional conditions:

for all y > 0, E

∣∣∣∣Ui ◦ Ii

(
y

dQ

dP

)∣∣∣∣ < ∞, EQ

∣∣∣∣Ii

(
y

dQ

dP

)∣∣∣∣ < ∞, and(3.4)

Uj

(
−2kIi

(
y

dQ

dP

)+)
, Uj

(
−2kIi

(
y

dQ

dP

)−)
∈ L1(P) for all j ≤ N and k ∈ N.
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LEMMA 3.1. Under condition (3.4), we have Ui (Xi
T − λX̄i

T) ∈ L1(P) for all
(π1, . . . , π N) ∈ A1 × · · · × AN and i = 1, . . . , N.

Proof. Using the convex dual of −Ui (−x), we have for any y > 0:

Ui
(
Xi

T − λX̄i
T

) ≤
∣∣∣∣Ui ◦ Ii

(
y

dQ

dP

)∣∣∣∣+ y
dQ

dP

(∣∣Xi
T − λX̄i

T

∣∣+ ∣∣∣∣Ii

(
y

dQ

dP

)∣∣∣∣
)

.

The right-hand side is integrable under P by the admissibility conditions (3.2) and the
integrability assumptions (3.4). Then, Ui (Xi

T − λX̄i
T)+ is integrable. On the other hand,

by the increase of Ui , we have Ui (x − y) ≥ Ui (−x− − y+) ≥ −|Ui (−2x−)| − |Ui (−2y+)|.
Then, it follows from the concavity of Ui that

Ui
(
Xi

T − λX̄i
T

) ≥ (1 − λ)Ui
(
Xi

T

)+ λ

N − 1

∑
j 
=i

Ui
(
Xi

T − X j
T

)

≥ (1 − λ)Ui
(− 2

(
Xi

T

)−)− λ

N − 1

∑
j 
=i

{∣∣Ui
(− 2

(
Xi

T

)−)∣∣+ ∣∣Ui
(− 2

(
X j

T

)+)∣∣}

≥ −∣∣Ui
(− 2

(
Xi

T

)−)∣∣− λ

N − 1

∑
j 
=i

∣∣Ui
(− 2

(
X j

T

)+)∣∣.
Hence, Ui (Xi

T − λX̄i
T) ∈ L1(P) by our definition of Ai . �

We now characterize the optimal portfolio and wealth of each agent, given the strategies
of his peers. In other words, we try to find the best response of agent i to the strategies
of his peers. As in the classical case of optimal investment in complete market, we will
use the convex dual of −Ui (−x). Since Ui is strictly concave and C1, we can define
Ii := (U ′

i )
−1, which is a bijection from R∗

+ onto R because of (2.4). The main result of
this section requires the following integrability conditions:

LEMMA 3.2. For any i = 1, . . . , N, let the strategies π j ∈ A for j 
= i be given. Then,
under (3.4), there exists a unique optimal portfolio for the optimization problem (2.6) of
agent i with optimal final wealth:

Xi∗
T = Ii

(
yi dQ

dP

)
+ λX̄i

T, where yi is defined by EQ Ii

(
yi dQ

dP

)
= xi − λx̄i .(3.5)

Proof. Since the market is complete, and under conditions (3.2) and (3.4), there exist
portfolio strategies π∗

i such that Xi∗
T = Xπ∗

i
T is a Q-martingale. We only verify that π∗

i ∈ Ai

for all i , the rest of the proof is omitted as it follows the classical martingale approach in
the simple complete market framework. Writing Ii := Ii (yi dQ

dP
), we compute that

Uj (0) ≥ Uj
(− 2k(Xi∗

T

)±) ≥ Uj
(− 2kI±

i − 2k(X̄i
T

)±)
≥ 1

N − 1

∑
	 
=i

Uj
(− 2kI±

i − 2k(X	
T

)±)

≥ −1
N − 1

∑
	 
=i

{∣∣Uj
(− 2k+1 I±

i

)∣∣+ ∣∣Uj
(
2k+1(X	

T

)±)∣∣}.
Then, the required integrability follows from (3.4) and the definition (3.2) of the sets

of admissible portfolios Ai , i = 1, . . . , N. �
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3.2. Partial Nash Equilibrium

The second step is to search for a Nash equilibrium between the N agents. Let XN :=
(Xi∗

T )1≤i≤N be the vector of terminal wealth of the investors associated to (π1, . . . , π N).
From Lemma 3.2, (π1, . . . , π N) is a Nash equilibrium if and only if we have

ANXN = JN,

where AN =

⎛
⎜⎜⎜⎝

1 − λ

N − 1
�

− λ

N − 1
1

⎞
⎟⎟⎟⎠ ∈ MN(R); JN =

(
Ii

(
yi dQ

dP

))
1≤i≤N

.

Under the condition λ 
= 1 in (3.3), it follows that AN is invertible and we can compute
explicitly that

A−1
N =

⎛
⎜⎜⎜⎜⎝

1 + λ2

(1 − λ)(N + λ − 1)
λ

(1 − λ)(N + λ − 1)
�

λ

(1 − λ)(N + λ − 1)
1 + λ2

(1 − λ)(N + λ − 1)

⎞
⎟⎟⎟⎟⎠ ,

thus providing the existence of a unique Nash equilibrium:

THEOREM 3.3. There exists a unique Nash equilibrium, and the equilibrium terminal
wealth for each i = 1, . . . , N is given by

X̂i
T =

(
1 + λ2

(1 − λ)(N + λ − 1)

)
Ii

(
yi dQ

dP

)
+ λ

(1 − λ)(N + λ − 1)

∑
j 
=i

I j

(
y j dQ

dP

)
.

REMARK 3.4. In the case of specific λi s, the previous arguments can be adapted. In
the expression of AN, λi appears on the i th line instead of λ, AN is invertible if and only
if
∏N

i=1 λi < 1 (for more details, see the proof of Lemma 4.6 below), and then its inverse
is given by

(
A−1

N

)
i i = 1 +

λN
i
∑

k
=i
λN

k
1+λN

k

1 −∑k
=i
λN

k (1+λN
i )

1+λN
k

, and
(

A−1
N

)
i j =

λN
i

1+λN
j

1 −∑k
=i
λN

k (1+λN
i )

1+λN
k

for i 
= j ,

where we denoted λN
i := λi/(N − 1). The equilibrium performances are given by

X̂i
T =

N∑
j=1

(
A−1

N

)
i j I j

(
y j dQ

dP

)
, i = 1, . . . , N.

REMARK 3.5. In the case λ = 1, it turns out that there exist either an infinity of Nash
equilibria or no Nash equilibrium. Indeed, in this case, AN is of rank N − 1. Therefore,
if JN belongs to the image of AN, then there is an affine space of dimension 1 of Nash
equilibria, while if JN is not in the image of AN, then there is no Nash equilibrium.

In particular, in the exponential utility context (further developed below), we directly
compute that JN = ANx + η

∫ T
0 θ (t) · (θ (t)dt + dWt), where x is the vector of initial data
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xi and η is the vector of risk tolerances ηi of each agent. Therefore, JN belongs to the
image of AN if and only if η belongs to it.

3.3. The Exponential Utility Case

In order to push further the analysis of the complete market situation, we now consider
the exponential utility case:

Ui (x) = −e− x
ηi , x ∈ R,(3.6)

where ηi > 0 is the risk tolerance parameter for agent i , i.e., the inverse of his absolute
risk aversion coefficient. We denote the average risk tolerance by

η̄N := 1
N

N∑
j=1

η j .(3.7)

In the present context, Ii (y) = −ηi ln(ηi y), so that the equilibrium wealth process is

X̂i
T = xi − ηi

1 − λ

[(
1 − λN

N + λ − 1

)
+ λN

N + λ − 1
η̄N

ηi

](
ln

dQ

dP
− EQ ln

dQ

dP

)
.

We denote by π̂ i ,N,λ the corresponding equilibrium portfolio strategy of agent i , where
we emphasize its dependence on the parameters N and λ.

In order to have explicit formulas, we assume that the risk premium θ is a (deterministic)
continuous function of t. Then, it is well known that the classical portfolio optimization
problem with no interaction between managers leads to the optimal portfolios

π̂0,i
t := ηiσ

−1
t θ (t), t ∈ [0, T].

PROPOSITION 3.6. In the above setting, the equilibrium portfolio for agent i is given by

π̂ i ,N,λ
t = ki ,N

λ π̂0,i
t , where ki ,N

λ := 1
1 − λ

[(
1 − λN

N + λ − 1

)
+ λN

N + λ − 1
η̄N

ηi

]
.

REMARK 3.7. Assume further that η̄N −→ η > 0 as N → ∞. Then, ki ,N
λ −→ 1 +

λ
1−λ

η

ηi
. In particular, if all agents have the same risk aversion coefficient ηi = η > 0, then

π̂ i ,N,λ = π̂λ := 1
1 − λ

π̂0
t . for all i .

REMARK 3.8. In the case of similar agents, i.e., for any i = 1, . . . , N, ηi = η and λi = λ,
we can find the equilibrium portfolio very easily. Indeed, by symmetry considerations,
all the Xi s must be equal, Xi = X̄i , and the optimization problem reduces to

sup
π

−Ee− 1−λ
η

Xi
T .

This is the classical case with η replaced by η

1−λ
so that the optimal portfolio is given by

π̂t = ησ−1
t θ (t)/(1 − λ), in agreement with our results.

In the general case of the following sections, we will not always be able to conclude
anything on the behavior of every agent; therefore, we introduce the following definition:
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DEFINITION 3.9. The market index and the corresponding market portfolio are defined
by

X̄t := 1
N

N∑
i=1

Xi
t and π̄ t := 1

N

N∑
i=1

π i
t , t ∈ [0, T].

We recall the definition of the Sharpe ratio SR and introduce the variance risk ratio
VRR:

SR = expected excess return
volatility

, VRR := expected excess return
variance

.(3.8)

For practical purposes, the VRR is a better criterion for the two following reasons:

� VRR is robust to the investment duration, while SR is not: for a time period L and
a scalar k > 0, we have SR(kL) = k SR(L), while VRR(kL) = VRR(L).

� VRR accounts for the illiquidity risk related to the size of the position, while SR
does not: for a portfolio X and a scalar k > 0, we have SR(kX) = SR(X) and
VRR(kX) = VRR(X)/k.

We have the following results for the impact of λ:

PROPOSITION 3.10.

(i) For any linear form ϕ, |ϕ(π̂ i ,N,λ
t )| is increasing w.r.t. λ.

(ii) The dynamics of the market index and the corresponding market portfolio are given
by

d X̄t = η̄N

1 − λ
θ (t) · [θ (t)dt + dWt] and π̄ t = η̄N

1 − λ
σ−1

t θ (t).

In particular, for any linear form ϕ, |ϕ(π̄ t)| is increasing w.r.t. λ.

Proof. (ii) is immediate, so we only prove (i). By Proposition 3.6, π̂ i ,N,λ = ki ,N
λ π̂

0,i
t ,

and we directly compute that

∂ki ,N
λ

∂λ
= 1

(1 − λ)2(N + λ − 1)2

[
N + λ − 1 + N

(
λ + (N − 1)(1 − λ)

) ( η̄N

ηi
− 1
)]

.

By definition of η̄N in (3.7) and the fact that η j ≥ 0 for all j , we have η̄N
ηi

− 1 ≥ 1−N
N .

Therefore,

(1 − λ)2(N + λ − 1)2 ∂kλ

∂λ
≥ N(N + λ − 1) − λ(N − 1) − (N − 1)2(1 − λ)

≥ (N − 1)(1 − λ) + λ(N2 − N + 1) > 0.

�
In words, Proposition 3.10 states that the more investors are concerned about each

other, the more risk they will undertake. In each investment direction, the global position
of agents, described by |ϕ(π̄ t)|, will increase with λ and in the limit λ → 1, we even have
a limit of infinite positions |ϕ(π̄ t)| → ∞ a.s. Furthermore, the drift and volatility of the
market index are both increasing w.r.t. λ. The corresponding Sharpe ratio is SR = |θ (t)|,
independent of λ, while the variance risk ratio is VRR = 1−λ

η̄N
, a decreasing function of λ.

This is a perverse aspect of the present financial markets that may provide an explanation
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of the emergence of financial bubbles, when managers use the Sharpe ratio as a reliable
indicator.

3.4. General Equilibrium

In the previous sections, the price process S was given exogeneously. We now analyze
the effect of the relative performance coefficient λ when the price process S is determined
at the equilibrium.

For each fixed price process S, defined as in Section 2, there exists a unique Nash
equilibrium in the sense of Definition 2.1. Similar to Karatzas and Shreve (1998), our
objective is to search for a market equilibrium price S that is consistent with market
equilibrium conditions:

N∑
i=1

π
i , j
t = K j Sj

t for all j = 1, . . . , d and t ∈ [0, T],(3.9)

N∑
i=1

xi =
d∑

j=1

K j Sj
0 ,(3.10)

where K j is a constant such that K j Sj
t is the market capitalization of the j th firm.

Equation (3.9) says that the total amount invested in the stocks of the j th firm is equal
to the market capitalization of this firm. Equation (3.10) says that the initial endowment
of the investors equals the initial market capitalizations. With 1 := (1, . . . , 1)T ∈ Rd , we
observe that (3.9) and (3.10) imply that

N∑
i=1

Xi
t =

N∑
i=1

(
xi +

∫ t

0
π i

u · diag(Su)−1d Su

)

=
N∑

i=1

xi +
d∑

j=1

∫ t

0
K j d Sj

u

=
N∑

i=1

xi +
d∑

j=1

K j (Sj
t − Sj

0

) =
d∑

j=1

K j Sj
t =

N∑
i=1

π i
t · 1,

i.e., the total amount invested in the nonrisky asset is zero at any time t ∈ [0, T].

DEFINITION 3.11. We say that a process S is an equilibrium market if there exists a
Nash equilibrium π̂ = (π̂1, . . . , π̂ N) associated with the price dynamics S, in the sense
of Definition 2.1, such that S and π̂ satisfy (3.9) and (3.10).

In order to simplify notations, we set K j = kj N and k := (k1, . . . , kd ).

PROPOSITION 3.12. Let θ be a deterministic and continuous function of t ∈ [0, T]. Then,
there exists an equilibrium market whose risk premium is θ . Moreover, in this equilibrium
market, the market index is given by

X̄t = x̄ + η̄N

1 − λ

∫ t

0
θ (u) · (θ (u) du + dWu), t ∈ [0, T].
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Proof. By Proposition 3.10 (ii), it follows that

St = η̄N

1 − λ
diag(k)σ (t)−1θ (t).

Notice that the previous equation does not define σ uniquely for d > 1.
Conversely, let θ be some given continuous function. Then, we can choose a diagonal

matrix σt = σ (t, St), with diagonal elements

σ i i (t, St) = η̄N

(1 − λ)ki Si
t
θ i (t).

Notice that σ satisfies the conditions for S to be a strong solution of (2.3). Then, it follows
from Proposition 3.6 that:

d X̄t = 1
N

N∑
i=1

d Xi
t = 1

N

N∑
i=1

π̂ i
t · diag(St)−1d St = η̄N

1 − λ
θ (t) · (θ (t)dt + dWt).

�
We next analyze the impact of λ on the drift and the volatility of the market index.

Despite the multiplicity of market equilibria, they all lead to similar conclusions. Let
us, for example, assume that the risk premium is independent of λ. Then, the drift of
the market index is η|θ (t)|2/(1 − λ) and the volatility is η|θ (t)|/(1 − λ); thus, both are
increasing w.r.t. λ and with the same order. We may interpret this equilibrium as a
financial bubble, where the return and the volatility are both increased by the agents’
interactions. An alternative interpretation for a fund manager is that for the same given
return, the agents’ interaction coefficient increases the volatility of the optimal portfolio.

Notice that in the present setting, the variance risk ratio VRR = (1 − λ)/η is decreasing
in λ and tends to zero as λ → 1. This indicates that according to this criterion, the agents’
interactions lead to market inefficiency.

4. GENERAL CONSTRAINTS WITH EXPONENTIAL UTILITY

In the rest of this paper, we consider a general case with constrained portfolios. We
assume

Ai is a closed convex set of Rd , for all i = 1, . . . , N.(4.1)

We denote by Pi
t the orthogonal projection on σt Ai , which is well defined by (4.1). For

x ∈ Rd , we denote dist(x, σt Ai ) := |x − Pi
t x| the Euclidean distance from x to the closed

convex subset σt Ai .

REMARK 4.1. Recall that for a closed convex set A in a Euclidean space, the orthogonal
projection on A, denoted by P, is well defined, is a contraction, and satisfies for any
x, y ∈ Rd :

|P(x) − P(y)|2 ≤ (x − y) · (P(x) − P(y)) ≤ |x − y|2.
Moreover, P(x) is the only point satisfying (x − P(x)) · (a − P(x)) ≤ 0 for all a ∈ A.

For technical reasons, we restrict our analysis to exponential utility functions (3.6).

DEFINITION 4.2. The set of admissible strategies Ai is the collection of all predictable
processes π with values in Ai , dt ⊗ dP−a.e., such that σπ ∈ H2

loc(Rd ) and such that
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the family

{e±(Xπ
τ −Xπ

ν ); ν, τ stopping times on [0, T] with ν ≤ τ a.s.}(4.2)

is uniformly bounded in Lp(P) for all p > 0.

In comparison with the admissibility conditions of Section 3, the previous definition
requires the uniform boundedness condition of the above family, which is needed in order
to prove a dynamic programming principle similar to Lim and Quenez (2009).

REMARK 4.3. The set of admissible strategies introduced in Definition 4.2 is strictly
smaller than the corresponding set in the one-agent framework of Hu, Imkeller, and
Müller (2005). This deficiency was further overcome by Frei and dos Reis (2011) who
used the results of the present paper (which are contained in Espinosa 2010).

4.1. A Formal Argument

In this section, we provide a formal argument that helps to understand the construction
of Nash equilibrium of the subsequent section. For fixed i = 1, . . . , N, we rewrite (2.6)
as

Vi
0 := sup

π i ∈Ai

E
[
Ui
(
Xπ i

T − ξ̃ i )], where ξ̃ i := λi X̄i
T =: λi x̄i + ξ̃ i

0.(4.3)

Then, following El Karoui and Rouge (2000) or Hu, Imkeller, and Müller (2005), we
expect that the value function Vi

0 and the corresponding optimal solution be given by

Vi
0 = −e−(xi −λi x̄i −Ỹi

0 )/ηi , σtπ̂
i
t = Pi

t (ζ̃ i
t + ηiθt) for all t ∈ [0, T],

and (Ỹi , ζ̃ i ) is the solution of the quadratic BSDE:

Ỹi
t = ξ̃ i

0 +
∫ T

t

(
−ζ̃ i

u · θu − ηi

2
|θu |2 + f̃ i

u

(
ζ̃ i

u + ηiθu
))

du −
∫ T

t
ζ̃ i

u · dWu, t ≤ T,(4.4)

where the generator f̃ i is given by

f̃ i
t(z

i ) := 1
2ηi

dist(zi , σt Ai )2, zi ∈ Rd .(4.5)

This suggests that one can search for a Nash equilibrium by solving the BSDEs (4.4) for
all i = 1, . . . , N. However, this raises the following difficulties:

- the final data ξ̃ i
0 do not have to be bounded as it is defined in (4.3) through the

performance of the other portfolio managers;
- the situation is even worse because the final data ξ̃ i

0 induce a coupling of the
BSDEs (4.4) for i = 1, . . . , N. To express this coupling in a more transparent way,
we substitute the expressions of ξ̃ i

0 and rewrite (4.4) for t = 0 into:

Ỹi
0 = ηiξ +

∫ T

0
f̃ i

u(ζ i
u) du −

∫ T

0

⎛
⎝ζ i

u − λN
i

∑
j 
=i

P j
u

(
ζ j

u

)⎞⎠ · dBu,
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where B := W + ∫ .

0 θr dr is the Brownian motion under the equivalent martingale mea-
sure

λN
i := λi

N − 1
, ζ i

t := ζ̃ i
t + ηiθt, t ∈ [0, T],(4.6)

and the final data are expressed in terms of the unbounded r.v.

ξ :=
∫ T

0
θu · dBu − 1

2

∫ T

0
|θu |2du.(4.7)

Then, Ỹ0 = Y0, where (Y, ζ ) is defined by the BSDE

Y i
t = ηiξ +

∫ T

t
f̃ i

u

(
ζ i

u

)
du −

∫ T

t

⎛
⎝ζ i

u − λN
i

∑
j 
=i

P j
u

(
ζ j

u

)⎞⎠ · dBu .(4.8)

In order to sketch (4.8) into the BSDEs framework, we further introduce the mapping
ϕt : RNd −→ RNd defined by the components:

ϕi
t (ζ 1, . . . , ζ N) := ζ i − λN

i

∑
j 
=i

P j
t (ζ j ) for all ζ 1, . . . , ζ N ∈ Rd .(4.9)

It turns out that the mapping ϕt is invertible under fairly general conditions. We shall
prove this result in Lemma 4.6 for general convex constraints and in Lemma 5.1 in the
case of linear constraints. We denote ψt := ϕ−1

t and ψ i
t (z) the i th block component of

size d of ϕ−1
t (z). Then, one can rewrite (4.8) as

Y i
t = ηiξ +

∫ T

t
f i
u (Zu) du −

∫ T

t
Z i

u · dBu,(4.10)

where the generator f i is now given by

f i
t (z) := f̃ i

t

(
ψ i

t (z)
)

for all z = (z1, . . . , zN) ∈ RNd .(4.11)

A Nash equilibrium should then satisfy for each i :

π̂ i
t = σ−1

t Pi
t

(
ψ i

t (Zt)
)
, i = 1, . . . , N.(4.12)

4.2. Auxiliary Results

Our first objective is to verify that the map ϕ introduced in (4.9) is invertible. The
crucial condition for the rest of this section is∏

1≤i≤N

λi < 1.(4.13)

Recall the notation λN
i from (4.6).

LEMMA 4.4. Under (4.1) and (4.13), for any t ∈ [0, T], the map I + λN
j P j

t is a bijection
on Rd and its inverse is a contraction, for all j = 1, . . . , N.

Proof. Let t ∈ [0, T] be fixed, for ease of notation, we omit all t subscripts. Since σt Aj is
a closed convex set, from Remark 4.3, (x − y) · (P j (x) − P j (y)) ≥ |P j (x) − P j (y)|2 ≥ 0,
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for any x, y ∈ Rd . Notice that I + λN
j P j is a bijection if and only if, for all y ∈ Rd , the

map

fy(x) := y − λN
j P j (x)(4.14)

has a unique fixed point. Since P j is a contraction, we compute, for any x, x′ in Rd :

| fy(x) − fy(x′)| = λN
j |P j (x) − P j (x′)| ≤ λN

j |x − x′| = λ j

N − 1
|x − x′|.

Case 1: If N ≥ 3 or λ j < 1, then fy is a strict contraction of Rd . We prove now that the
inverse of I + λN

j P j is a contraction. Indeed, if x 
= y, we have

∣∣x − y + λN
j (P j (x) − P j (y))

∣∣2 = |x − y|2 + (λN
j

)2 |P j (x) − P j (y)|2(4.15)

+ 2λN
j (x − y) · (P j (x) − P j (y))

≥ |x − y|2 > 0,

where we used the fact that (x − y) · (P j (x) − P j (y)) ≥ 0, see Remark 4.15.
Case 2: If N = 2 and λ j = 1, fy fails to be a strict contraction. However, (4.15) still

holds and implies that I + P j is one-to-one. Using Lemma 4.5 below, we get the bijection
property of I + P j and the contraction property of the inverse function follows from
(4.15). �

LEMMA 4.5. Let A be a closed convex set of Rd . Then (I + PA)(Rd ) = Rd .

Proof. Let B := 2A = {y ∈ Rd ; ∃x ∈ A, y = 2x}, and let us prove that

PA

(
y − 1

2
PB(y)

)
= 1

2
PB(y) for all y ∈ Rd .(4.16)

This implies that y = (I + PA)(y − 1
2 PB(y)) ∈ (I + PA)(Rd ) for all y ∈ Rd , which gives

the required result.
To prove (4.16), define x := 1

2 PB(y) and z := y − 2x. By Remark 4.3, PB(y) is the only
point in B satisfying (y − PB(y)) · (b − PB(y)) ≤ 0 for all b ∈ B. In other words, we have
for any b ∈ B, z · (b − 2x) ≤ 0, or by definition of B, for any a ∈ A, z · (2a − 2x) ≤ 0;
hence,

(x + z − x) · (a − x) ≤ 0 for all a ∈ A,

which means that x = PA(x + z) and therefore (I + PA)(x + z) = x + z + x = y. �
Recall the definition of ϕ in (4.9).

LEMMA 4.6. Under (4.1) and (4.13), we have for t ∈ [0, T]:

(i) ϕt is a bijection of RNd, and we write ψt := ϕ−1
t .

(ii) ψt is Lipschitz continuous with a constant depending only on N and the λi s.

Proof. For ease of notation, we omit all t subscripts. For arbitrary z = (z1, . . . , zN) in
RNd , we want to find a solution ζ ∈ RNd to the following system:

ϕi (ζ ) = ζ i − λN
i

∑
j 
=i

P j (ζ j ) = zi , 1 ≤ i ≤ N.(4.17)
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Subtracting λ j times equation i from λi times equation j in (4.17), we see that

λi
(
I + λN

j P j ) (ζ j ) = λ j
(
I + λN

i Pi ) (ζ i ) + λi z j − λ j zi , i , j = 1, . . . , N.(4.18)

1. From Lemma 4.4, we know that I + λN
j P j is a bijection; thus, from (4.18), we

compute

∑
j 
=i

P j (ζ j ) =
∑
j 
=i

P j ◦ (
¯
I + λN

j P j )−1
(

λ j

λi

(
I + λN

i Pi )(ζ i ) + z j − λ j

λi
zi
)

,

so that from (4.17)

(4.19)

ζ i = zi + λN
i

∑
j 
=i

P j ◦(I + λN
j P j )−1

(
λ j

λi

(
I + λN

i Pi )(ζ i ) + z j − λ j

λi
zi
)

=: gi ,z(ζ i ).

2. We next show that under Condition (4.13), gi ,z has a unique fixed point. We have

∣∣(I + λN
j P j ) (x) − (I + λN

j P j ) (y)
∣∣2 = |x − y|2 + 2λN

j (x − y) · (P j (x) − P j (y))

+ (λN
j

)2 |P j (x) − P j (y)|2

≥ (
1 + 2λN

j + (λN
j

)2)|P j (x) − P j (y)|2

≥ (
1 + λN

j

)2 |P j (x) − P j (y)|2.

Therefore, P j ◦ (I + λN
j P j )−1 is 1

1+λN
j
−Lipschitz. Then, since (I + λN

i Pi ) is 1 +
λN

i −Lipschitz:

|gi ,z(x) − gi ,z(y)| ≤ 1
N − 1

∑
j 
=i

λ j

1 + λN
j

(
1 + λN

i

)∣∣x − y|.

Notice that λ j

1+λN
j

(1 + λN
i ) ≤ max(λi , λ j ), with equality if and only if λi = λ j .

Therefore, condition (4.13) implies that Ki := 1
N−1

∑
j 
=i

λ j

1+λN
j

(1 + λN
i ) < 1, where

Ki depends only on N and the λ j s. Then, gi ,z is a strict contraction and admits a
unique fixed point that we write {ψ(z)}i . It is then immediate that ζ = ψ(z) is the
unique solution of (4.17).

3. Finally, we prove that ψ is Lipschitz with a constant depending only on N and the
λ j s. Let z1, z2 ∈ RNd , from (4.19), we compute

|ψ(z1)i − ψ(z2)i | ≤ |zi
1 − zi

2| + Ki |ψ(z1)i − ψ(z2)i | + 2 sup
1≤ j≤N

|z j
1 − z j

2 |.

Since K := sup1≤ j≤N K j < 1, we get sup1≤ j≤N |ψ(z1) j − ψ(z2) j | ≤ 3
1−K

sup1≤ j≤N |z j
1 − z j

2 |, which completes the proof since K depends only on N
and the λ j s. �
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4.3. The Main Results

Similar to the classical literature on portfolio optimization with exponential utility (El
Karoui and Rouge 2000; Hu, Imkeller, and Müller 2005; Mania and Schweizer 2005), we
first establish a connection between Nash equilibria and a quadratic multidimensional
BSDE.

THEOREM 4.7. Under (4.1) and (4.13), assume that (π̃1, . . . , π̃ N) is a Nash equilibrium.
Then, there exists a solution (Y, Z) ∈ H2(RN) × H2

loc(RNd ) of the following N-dimensional
BSDE:

Y i
t = ηiξ + 1

2ηi

∫ T

t

∣∣(I − Pi
u

) ◦ ψ i
u(Zu)

∣∣2 du −
∫ T

t
Z i

u · dBu,(4.20)

where ξ is defined by (4.7), and we have

π̃ i
t = σ−1

t Pi
t

(
ψ i

t (Zt)
)

and Vi = −e− 1
ηi

(xi −λi x̄i −Yi
0 )
.

Proof. See Section 4.5. �
Our second main result focuses on the multidimensional Black–Scholes financial mar-

ket, where we can guess an explicit solution to the BSDE (4.20). Although no uniqueness
result is available for the BSDE (4.20) in this context, the following complete characteri-
zation is obtained by means of a PDE verification argument.

In view of Lemma 4.6, under Condition (4.13), the maps

ψ̄ i
t (x) := ψ i

t (η1x, . . . , ηNx) for all x ∈ Rd , i = 1, . . . , N, t ∈ [0, T],(4.21)

are well defined and Lipschitz continuous on Rd .

THEOREM 4.8. Under (4.1) and (4.13), assume that σ and θ are deterministic continuous
functions. Then, there exists a unique deterministic Nash equilibrium:

π̂ i
t = σ (t)−1 Pi

t ◦ ψ̄ i
t (θ (t)) for all t ∈ [0, T].(4.22)

Moreover, the value function for agent i at equilibrium is given by

Vi = −e− 1
ηi

(xi −λi x̄i −Yi
0 )
, Yi

0 = −ηi

2

∫ T

0
|θ (t)|2dt + 1

2ηi

∫ T

0

∣∣(I − Pi
t

) ◦ ψ̄ i
t (θ (t))

∣∣2dt.

Proof. See Section 4.6. �
We conclude this section by two simple examples. More interesting situations will be

obtained later under the additional condition that the constraints sets are linear.

EXAMPLE 4.9 (Common investment). Let σ = Id , λi = λ, ηi = η, and Ai = B̄(x, r ) for
some x ∈ Rd and r > 0, i = 1, . . . , N. Here, B̄(x, r ) is the closed ball centered at x with
radius r > 0 for the canonical Euclidean norm of Rd . Using Theorem 4.8, we compute
the following equilibrium portfolio:

π̂ i
t = P

(
ηθ (t)
1 − λ

)
=

⎧⎪⎪⎨
⎪⎪⎩

ηθ (t)
1 − λ

if
ηθ (t)
1 − λ

∈ B̄(x, r )

x + r

| ηθ (t)
1−λ

− x|

(
ηθ (t)
1 − λ

− x
)

otherwise.
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Notice in particular that as one could expect, π̂ i
t − x is collinear to ηθ (t)

1−λ
− x and that

π̂ i
t is in the boundary of B̄(x, r ) whenever ηθ (t)

1−λ

∈ B̄(x, r ). One can prove that |π̂ | is

nondecreasing w.r.t. λ and η. Notice also that this expression is independent of N.

EXAMPLE 4.10 (Specific independent investments). Let σ = Id , λi = λ, ηi = η, and
Ai = [ai , bi ]ei , for some ai ≤ bi , i = 1, . . . , N. Here, (e j , 1 ≤ j ≤ d) is the canonical basis
of Rd . Using Theorem 4.8, we compute the following equilibrium portfolio for agent i :

π̂ i
t = Pi (ηθ (t)

) = ai ∨ (ηθ (t)
) ∧ bi .

This is exactly the same expression as in the classical case with no interaction between
managers. Hence, the equilibrium portfolio is not affected by λ and N.

REMARK 4.11. Suppose that the portfolio constraints sets Ai are not convex. Then, we
have to face two major problems. First, the projection operators Ai are not well defined.
Second, and more importantly, the map ϕ may fail to be one-to-one or surjective onto
RNd . The failure of the one-to-one property means that there could exist more than
one Nash equilibrium. However, the failure of the surjectivity onto RNd , as illustrated
by Examples A.1 and A.2 in the Appendix section, would lead to a constrained (N-
dimensional) BSDE with no additional nondecreasing penalization process. Such BSDEs
do not have solutions even in the case of Lipschitz generators, meaning that there is no
Nash equilibrium in this context.

4.4. Infinite Managers Asymptotics

In the spirit of the theory of mean-field games, see Lasry and Lions (2007), we examine
the situation when the number of mangers N increases to infinity with the hope of getting
some more explicit qualitative results with behavioral implications. In this section, we
assume that the number of assets d is not affected by the increase of the number of
managers, see, however, the examples of Section 5.3. We also specialize the discussion to
the case where the agents have similar preferences and only differ by their specific access
to market.

The following result is similar to Proposition 5.1 in Espinosa (2010). Therefore, the
proof is omitted.

PROPOSITION 4.12. Let λ j = λ ∈ [0, 1) and η j = η > 0 for all j ≥ 1. Assume
1
N

∑N
i=1 Pi

t −→ U1
t uniformly on any compact subsets, for all t ∈ [0, T] (respectively, uni-

formly on [0, T] × K, for any compact subset K of Rd). Then,

π̂ i ,N
t −→ π̂ i ,∞

t := σ (t)−1 ◦ Pi
t ◦ (I − U1

t ◦ (λI)
)−1(

ηiθ (t) + U1
t (0)

)
for all t ∈ [0, T] (respectively, uniformly in t ∈ [0, T]).

4.5. Proof of Theorem 4.7

Assume that (π̃1, . . . , π̃ N) is a Nash equilibrium for our problem. First, by Hölder’s
inequality, the admissibility conditions for all i = 1, . . . , N imply that e− 1

ηi
(Xi

T−λi X̄i
T ) be-

longs to Lp, for any p > 0. Let T be the set of all stopping times with values in [0, T],
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we define the following family of random variables:

Ji ,π (τ ) : = E
[− e− 1

ηi
(
∫ T
τ

σuπu ·dBu−λi (X̄i
T−x̄i ))|Fτ

]
,(4.23)

V i (τ ) : = ess sup
π∈Ai

Ji ,π (τ ) for all τ ∈ T so that V i (0) = e
1
ηi

(xi −λi x̄i )Vi
0 .(4.24)

1. By Lemma 4.13 below, the family {V i (τ ); τ ∈ T } satisfies a supermartingale property.
Indeed, let β

i ,π
t := e− 1

ηi

∫ t
0 σ (u)πu ·dBu for all π ∈ Ai , we have

β i ,π
τ V i

τ ≥ E(β i ,π
θ V i

θ |Fτ ) for all stopping times τ ≤ θ.

Then, we can extract a process (V i
t ) that is càdlàg and consistent with the family defined

previously in the sense that V i
τ = V i (τ ) a.s. (see Karatzas and Shreve 1991, proposition

I.3.14 p. 16, for more details). Moreover, this process also satisfies the dynamic program-
ming principle stated in Lemma 4.13 so that for any π ∈ Ai , the process β i ,πV i is a
P-supermartingale.

The definition of a Nash equilibrium implies that π̃ i is optimal for agent i , i.e.,

V i
0 = sup

π∈Ai

E − e− 1
ηi

(Xπ
T−xi −λi (X̄i

T−x̄i ))(4.25)

= E − e− 1
ηi

(Xπ̃ i
T −xi −λi (X̄i

T−x̄i ))
,

which implies that the process β i ,π̃ iV i is a square integrable martingale, as the conditional
expectation of a r.v. in L2.

2. We now show that the adapted and continuous process:

γ i
t := Xπ̃ i

t − xi + ηi ln
(− β i ,π̃ i

t V i
t

)
, t ∈ [0, T],(4.26)

solves the required BSDE.
(a) First, by Jensen’s inequality, and the fact that ln x ≤ x for any x > 0, we have

− 1
ηi

E
[
Xπ̃ i

T − xi − λi
(
X̄i

T − x̄i )∣∣Ft
] ≤ ln

(− β i ,π̃ i

t V i
t

)
≤ E

[− e− 1
ηi

(Xπ̃ i
T −xi −λi (X̄i

T−x̄i ))∣∣Ft
]
.(4.27)

By the admissibility conditions, both sides of (4.27) belong to H2, as conditional expec-
tations of random variables in L2. Since Xπ̃ i

is also in H2, we see that γ i is in H2. Then,
for all π ∈ Ai , we have that

Mi ,π
t := −e− 1

ηi
(Xπ

t −xi −γ i
t ) = M̃i

te
− 1

ηi
(Xπ

t −Xπ̃ i
t )

, t ∈ [0, T],

where M̃i = β i ,π̃ iV i is a square integrable martingale. By Hölder’s inequality, it follows

that e− 1
ηi

(Xπ
t −Xπ̃ i

t ) ∈ Lp for all p > 0. Then, Mi ,π is integrable.
(b) In this step, we prove that Mi ,π is a supermartingale for all π ∈ Ai . Assume, to the

contrary, that there exists π ∈ Ai , t ≥ s and A ∈ Fs , with P(A) > 0 and such that

E
(− e− 1

ηi
(Xπ

t −xi −γ i
t )|Fs

)
> −e− 1

ηi
(Xπ

s −xi −γ i
s ) on A,
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and let us work toward a contradiction. Define:

π̂u(ω) := πu(ω)1{[s,t]×A}(u, ω) + π̃u(ω)1{([s,t]×A)c}(u, ω).

Since A ∈ Fs , using Hölder’s inequality, we see that π̂ ∈ Ai and we have

V i
0 ≥ E − e− 1

ηi
(Xπ̂

T−xi −γ i
T )

= E
[
E
{− e− 1

ηi
(Xπ̂

T−xi −γ i
T )|Ft

}] = E − e− 1
ηi

(Xπ̂
t −xi −γ i

t )

by the fact that π̂ = π̃ on [t, T] and M̃i is a martingale. Since P[A] > 0, A ∈ Fs , and
recalling the definition of π̂ , this implies that

V i
0 ≥ E

[
E
{− e− 1

ηi
(Xπ̂

t −xi −γ i
t )|Fs

}]
= E

[
E
{− e− 1

ηi
(Xπ

t −xi −γ i
t )|Fs

}
1A + E

{− e− 1
ηi

(Xπ̃
t −xi −γ i

t )|Fs
}
1Ac )

]
> E − e− 1

ηi
(Xπ̂

s −xi −γ i
s ) = −e

1
ηi

γ i
0 = V i

0,

which provides the required contradiction.
(c) Since M̃i = β i ,π̃ iV i is a martingale, it follows from the martingale representation

theorem that M̃i is an Itô process. Therefore, (4.26) implies that γ i is also an Itô process
defined by some coefficients bi and ζ i :

dγ i
t = −bi

tdt + ζ i
t · dWt with (γ i , ζ i ) ∈ H2(R) × H2

loc(Rd ).(4.28)

Moreover, by Jensen’s inequality, ln(−Mi ,π̃ i
) is a supermartingale, and by (4.27), it is

bounded in L2. Therefore, it admits a Doob–Meyer decomposition ln(−Mi ,π̃ i
) = N + A,

where N is a (uniformly integrable) martingale and Aa decreasing process. The martingale
representation theorem then implies that there exists a process δ ∈ H2

loc(Rd ) such that
Nt = ∫ t

0 δu · dWu . Using (4.27) and (4.28), we get ζ i
t = σtπ̃

i
t + ηiδt.

(d) We next compute the drift of Mi ,π . From the previous supermartingale and mar-
tingale properties of Mi ,π and M̃i , respectively, together with (4.28), we get

bi
t ≤ 1

2ηi

∣∣σtπt − (ζ i
t + ηiθt

)∣∣2 − ηi

2
|θt|2 − ζ i

t · θt for all π ∈ Ai ,

and bi
t = 1

2ηi

∣∣σtπ̃
i
t − (ζ i

t + ηiθt
)∣∣2 − ηi

2
|θt|2 − ζ i

t · θt.

This implies that

π̃ i
t = σ−1

t Pi
t

(
ζ i

t + ηiθt
)
,(4.29)

bi
t = f i (t, ζ i

t ) = 1
2ηi

d
(
ζ i

t + ηiθt, σt Ai
)2 − ηi

2
|θt|2 − ζ i

t · θt,

and therefore (γ i , ζ i ) ∈ H2(R) × H2
loc(Rd ) is a solution of the BSDE:

dγ i
t =

(
ζ i

t · θt + ηi |θt|2
2

− 1
2ηi

∣∣(I − Pi
t

)(
ζ i

t + ηiθt
)∣∣2) dt + ζ i

t · dWt,

γ i
T = λi

(
X̄i

T − x̄i
) = λN

i

∑
j 
=i

∫ T

0
π̃ j

u · σu(dWu + θudu).



240 G.-E. ESPINOSA AND N. TOUZI

Recalling that dBt = dWt + θtdt, we can write it:

dγ i
t =

(
ηi |θt|2

2
− ηi

2

∣∣(I − Pi
t

)(
ζ i

t + ηiθt
)∣∣2) dt + ζ i

t · dBt,(4.30)

γ i
T = λi

(
X̄i

T − x̄i
) = λN

i

∑
j 
=i

∫ T

0
π̃ j

u · σudBu .

3. We finally put together the N BSDEs obtained in step 2. Since (π̃1, . . . , π̃ N) is a Nash
equilibrium, equation (4.30) holds for each i = 1, . . . , N. Replacing the value of π̃ j by
(4.29) in the expression of γ i and writing �i := ζ i + ηiθ , we see that (γ i , �i ) must satisfy
for each t ∈ [0, T]:

γ i
t = λN

i

∑
j 
=i

∫ T

0
P j

u

(
� j

u

) · dBu − ηi

2

∫ T

t
|θu |2du + 1

2ηi

∫ T

t

∣∣(I − Pi
u

)(
�i

u

)∣∣2du

−
∫ T

t
(�i

u − ηiθu) · dBu,

so that the adapted process Y i
t := γ i

t − ηi
2

∫ t
0 |θu |2du + ηi

2

∫ t
0 θu · dBu − λN

i∑
j 
=i

∫ t
0 P j

u (� j
u ) · dBu , t ∈ [0, T], satisfies:

Yi
t = ηiξ + 1

2ηi

∫ T

t

∣∣(I − Pi
u

)(
�i

u

)∣∣2du −
∫ T

t

⎛
⎝�i

u − λN
i

∑
j 
=i

P j
u

(
� j

u

)⎞⎠ · dBu,

with (Yi , �i ) ∈ H2(R) × H2
loc(Rd ). We finally define

Zi
t := ϕi

t (�t) = �i
t − λN

i

∑
j 
=i

P j
t
(
�

j
t
)
.

Under (4.13), using Lemma 4.6, we know that ϕt is invertible. As a consequence, (Y, Z) ∈
H2(RN) × H2

loc(RNd ) is a solution of the following system of BSDEs:

Yi
0 = ηiξ + 1

2ηi

∫ T

0

∣∣(I − Pi
t

)(
ψ i

t (Zt)
)∣∣2dt −

∫ T

0
Zi

t · dBt.

Moreover, for each i , the equilibrium portfolio is given by

σ (t)π̃ i
t = Pi

t [ψt(Zt)i ], t ∈ [0, T].

The following dynamic programming principle was used in step 1 of the previous
proof.

LEMMA 4.13 (Dynamic Programming). For any stopping times τ ≤ ν in T , we have

V i (τ ) = ess sup
π∈Ai

E
[
e− 1

ηi

∫ ν

τ
σuπu ·,dBuV i (ν)|Fτ

]
, i = 1, . . . , N.
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Proof. Let τ ≤ ν ≤ T a.s. We first obtain by the tower property that

V i (τ ) = ess sup
π∈Ai

E
[
E
[− e− 1

ηi
(
∫ T
ν

σuπu ·dBu−λi (X̄i
T−x̄i ))|Fν

]
e− 1

ηi

∫ ν

τ
σ (u)πu ·dBu |Fτ

]
≤ ess sup

π∈Ai

E
[
e− 1

ηi

∫ ν

τ
σuπu ·dBuV i (ν)|Fτ

]
.

To prove the converse inequality, we fix π0 ∈ Ai and we observe that Ji ,π (ν) de-
fined by (4.23) depends on π only through its values on [ν, T]. Therefore, we have the
identity:

V i (ν) = ess sup
π∈Ai (ν)

Ji ,π (ν), where Ai (ν) := {π ∈ Ai ; π = π0 on [0, ν], dt ⊗ dP-a.e}.

We next observe that the family {Ji ,π (ν), π ∈ Ai (ν)} is closed under pairwise max-
imization. Indeed, let π1, π2 in Ai (ν), A := {ω ∈ �; Ji ,π1 (ν)(ω) ≥ Ji ,π2 (ν)(ω)} and de-
fine the process π := 1Aπ1 + 1�\Aπ2. Since π1 = π2 = π0 on [[0, ν]], and A ∈ Fν , it
is immediate that π is predictable. We compute Ee± p

ηi
(Xπ

τ −Xπ
ν ) = Ee± p

ηi

∫ τ

ϑ
σtπ

1
t ·dBt 1A +

Ee± p
ηi

∫ τ

ϑ
σtπ

2
t ·dBt 1�\A so that since π1, π2 ∈ Ai (ν), the family {e± 1

ηi
(Xπ

τ −Xπ
ϑ ); ϑ ≤ τ ∈ T } is

uniformly bounded in any Lp, p > 1. Therefore, π ∈ Ai (ν) and it is immediate that
Ji ,π (ν) = max(Ji ,π1 (ν), Ji ,π2 (ν)). Then, it follows from Theorem A.3 (p. 324 in Karatzas
and Shreve 1998) that there exists a sequence (π̂n) satisfying:

� ∀n, π̂n = π0 on [[0, ν]]
� (Ji ,π̂n (ν)) is nondecreasing and converges to V i (ν).

Then, we have

Ji ,π̂n (τ ) = E[Ji ,π̂n (ν)e− 1
ηi

∫ ν

τ
σuπ0

u ·dBu |Fτ ].

Since Ji ,π̂n (ν) is nondecreasing and converges to V i (ν), it follows from the monotone
convergence theorem that

V i (τ ) ≥ E
[
e− 1

ηi

∫ ν

τ
σuπ0

u ·dBuV i (ν)|Fτ

]
,

and the required inequality follows from the arbitrariness of π0. �

4.6. Proof of Theorem 4.8

1. We first prove that the portfolio (4.22) is indeed a Nash equilibrium. The idea is to
show that we can make the formal computations of Section 4.1 in the reverse sense.

(a) Let

ξt :=
∫ t

0
θ (u).dBu − 1

2

∫ T

0
|θ (u)|2du, t ∈ [0, T],(4.31)

Since θ and σ are deterministic and continuous functions, the functions Pi s are also
deterministic and continuous w.r.t. (t, z) ∈ [0, T] × Rd . Let us prove that the same holds
for ψ , and therefore for that π̂ i

t := σ (t)−1 Pi
t ◦ ψ i

t (Zt) is deterministic and continuous w.r.t.
t ∈ [0, T]. Indeed, it is immediate that ϕ is deterministic and continuous w.r.t. (t, ζ ) so that
ψ is a deterministic function of (t, z). Then, from Lemma 4.6, under condition (4.13), ψt

is Lipschitz in z, uniformly in t, so that there exists a constant K > 0 such that for all t ∈
[0, T], and all z, z′ ∈ Rd , |ψt(z) − ψt(z′)| ≤ |z − z′|. Let tn → t, z ∈ RNd , and ζ := ϕt(z).
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We define zn := ϕtn (ζ ) for each n. Since ϕ is continuous w.r.t. t, zn → z, and we have, for
all n, ψtn (zn) = ζ , so that |ψtn (z) − ζ | = |ψtn (z) − ψtn (zn)| ≤ K|z − zn| → 0. Therefore,
ψ is continuous w.r.t. t. Then, if zn → z and tn → t, we compute |ψtn (zn) − ψt(z)| ≤
|ψtn (zn) − ψtn (z)| + |ψtn (z) − ψt(z)| → 0, since ψ is continuous w.r.t. t and Lipschitz in z
uniformly in t. As a consequence, we can define the following adapted and continuous
processes:

Zi
t := ηiθ (t) and Y i

t := ηiξt + 1
2ηi

∫ T

t

∣∣(I − Pi
u

) ◦ ψ i
u(Zu)

∣∣2du, t ∈ [0, T].

Then, we directly verify that (Y, Z) satisfies the following N-dimensional BSDE:

Y i
t = ηiξ + 1

2ηi

∫ T

t

∣∣(I − Pi
u

)(
ψ i

u(Zu)
)∣∣2du −

∫ T

t
Z i

u · dBu .

Set

γ i
t = Y i

t + ηi

2

∫ t

0
|θ (u)|2du − ηi

∫ t

0
θ (u) · dBu + λN

i

∑
j 
=i

∫ t

0
P j

u

(
ψ j

u (Zu)
) · dBu,

ζ i
t = ψt(Zt)i − ηiθ (t) = (ψ̄ i

t − ηi I
)

(θ (t)).

By the same computations as in Section 4.1, we see that for all i = 1, . . . , N, (γ i , ζ i ) is a
solution of the one-dimensional BSDE:

dγ i
t =

(
ζ i

t · θ (t) + ηi |θ (t)|2
2

− 1
2ηi

∣∣(I − Pi
t

)(
ζ i

t + ηiθ (t)
)∣∣2) dt + ζ i

t · dWt,

γ i
T = λN

i

∑
j 
=i

∫ T

0
π̂ j

u · σ (u)(dWu + θ (u) du).

Then, using the definition of ϕ and ψ , we can rewrite γ i as

γ i
t = −ηi

2

∫ t

0
|θ (u)|2du + 1

2ηi

∫ T

t

∣∣(I − Pi
u

) ◦ ψ̄ i
u(θ (u))

∣∣2du + λN
i

∑
j 
=i

∫ t

0
P j

u [ψu(Zu)] j · dBu

= −ηi

2

∫ t

0
|θ (u)|2du + 1

2ηi

∫ T

t

∣∣(I − Pi
u

) ◦ ψ̄ i
u(θ (u))

∣∣2du +
∫ t

0
ζ i

u · dBu

= −ηi

2

∫ t

0
|θ (u)|2du + 1

2ηi

∫ T

t

∣∣(I − Pi
u

) ◦ ψ̄ i
u(θ (u))

∣∣2du +
∫ t

0

(
ψ̄ i

u − ηi I
)

(θ (u)) · dBu .

(b) Throughout this step, we fix an integer i ∈ {1, . . . , N}, and we define

M π
t := −e− 1

ηi
(Xi ,π

t −xi −γ i
t ) for all π ∈ Ai .

By Itô’s formula, it follows that M π is a local supermartingale for each π ∈ Ai , and Mπ̂ i

is a local martingale. Then, there exist increasing sequences of stopping times (τπ
n ) in T

such that for each π , τπ
n → T a.s. and for each n and any s ≤ t:

E
[
M π

t∧τπ
n
|Fs
] ≤ M π

s∧τπ
n

for all π ∈ Ai and E
[
Mπ̂ i

t∧τ π̂
n
|Fs
] = Mπ̂ i

s∧τ π̂
n
.(4.32)
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We next introduce the measure Qi , equivalent to P, defined by its Radon–Nikodym
density:

Li
t = dQi

dP

∣∣∣∣
Ft

= e
∫ t

0 ( 1
ηi

ψ̄ i
u−I)(θ (u))·dWu− 1

2

∫ t
0 |( 1

ηi
ψ̄ i

u−I)(θ (u))|2du
.(4.33)

We denote by Ei the expectation operator under Qi . Since θ is a deterministic and contin-
uous function on [0, T], − ηi

2

∫ t
0 |θ (u)|2du + 1

2ηi

∫ T
t |(I − Pi

u ) ◦ ψ̄ i
u(θ (u))|2du is bounded.

Then, for any π ∈ Ai :

(4.34)
EM π

t∧τn
= 1

Li
s
Ei [− e

− 1
ηi

(Xπ
t∧τn −xi )− 1

2

∫ t∧τn
0 |θ (u)|2du+ 1

2η2
i

∫ T
t∧τn

|(I−Pi
u )◦ f i

u (θ (u))|2du

× e
∫ t∧τn

0 ( 1
ηi

ψ̄ i
u−I)(θ (u))·θ (u)du+ 1

2

∫ t∧τn
0 |( 1

ηi
ψ̄ i

u−I)(θ (u))|2du]
,

where we simply denoted τn := τπ
n . In (4.34), all the terms inside the expectation

other than e− 1
ηi

Xπ
t∧τn are bounded. We shall prove in step 1(c) below that the family

{e− 1
ηi

Xπ
τ ; τ ∈ T } is uniformly integrable under Qi . Hence, the sequence of processes

inside the expectation in (4.34) is uniformly integrable under Qi , and we may ap-
ply the dominated convergence theorem to pass to the limit n → ∞, and we obtain
limn→∞ EM π

t∧τn
= EM π

t . Together with (4.32), this implies that

E − e− 1
ηi

(Xπ
t −xi −γ i

t ) ≤ −e
1
ηi

γ i
0 for all π ∈ Ai and

E − e− 1
ηi

(Xπ̂ i
t −xi −γ i

t ) = −e
1
ηi

γ i
0 .

Multiplying by e− 1
ηi

(xi −λi x̄i ), we finally get Vi = −e− 1
ηi

(xi −λi x̄i −Yi
0 ), since Yi

0 = γ i
0 , and π̂ i is

optimal for agent i . Hence, (π̂1, . . . , π̂ N) is a Nash equilibrium.
(c) In this step, we prove that the family {Yτ := e− 1

ηi
Xi ,π

τ : τ ∈ T } is Qi uniformly inte-
grable for all π ∈ Ai . Fix some p > 1. Then, by the admissibility condition, the family
{Yτ : τ ∈ T } is uniformly bounded in Lp(P). With r := (1 + p)/2, it follows that the fam-
ily {Yr

τ : τ ∈ T } is uniformly integrable. Then, for all c > 0 and τ ∈ T , it follows from
Hölder’s inequality:

EQi
[Yτ 1Yτ ≥c] = E

[
Li

TYτ 1Yτ ≥c
] ≤ ∥∥Li

T

∥∥
Lq (P)‖Yr

τ 1Yτ ≥c‖Lr (P),

where q is defined by (1/q) + (1/r ) = 1. Since {Yr : τ ∈ T } is uniformly integrable, the
last term uniformly goes to 0 as c → ∞.

REMARK 4.14. We mention again that based on a first version of this paper contained in
the PhD thesis Espinosa (2010), Frei and dos Reis developed many interesting extensions
in Frei and dos Reis (2011). In particular, their argument for the existence part of Theorem
4.8 is shorter than our previous step 1.

2. We now prove uniqueness by using a verification argument.
(a) Let (π1, . . . , π N) be a deterministic Nash equilibrium, and define for all i =

1, . . . , N:

ui (t, x, y) := −e
− 1

ηi
(x−λi y)− 1

2

∫ T
t |θ (u)|2du+ 1

2η2
i

∫ T
t |(I−Pi

u )(ηi θ (u)+ λi σ (u)π̄ i
N(u))|2du

,(4.35)
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where

π̄ i
N(u) := 1

N − 1

∑
j 
=i

π j (u).

Since π j is a continuous function for all j = 1, . . . , N, the functions ui are C1 in the t
variable. Direct calculation reveals that ui is a classical solution of the equation:

−∂tui − sup
p∈Ai

Lpui = 0 and ui (T, x, y) = −e−(x−λi y)/ηi ,

where for all p ∈ Ai , Lp is the linear second-order differential operator:

Lp := σ (t)π̄ i
N(t) · θ (t)∂y + 1

2

∣∣σ (t)π̄ i
N(t)

∣∣2∂2
yy

+ σ (t)p.θ (t)∂x + σ (t)p · σ (t)π̄ i
N(t)∂2

xy + 1
2
|σ (t)p|2∂2

xx,

and the supremum is attained at a unique point

π∗
t := σ (t)−1 Pi

t

(
ηiθ (t) + λiσ (t)π̄ i

N(t)
)
.(4.36)

(b) In this step, we prove that ui (0, Xi
0, X̄i

0) = Vi
0 . First, by Itô’s formula, we have for

all π ∈ Ai :

(4.37)

ui (t, x, y) = ui (τn, Xπ
τn

, X̄i
τn

)−
∫ τn

t
Lπ ui (r , Xπ

r , X̄i
r

)
dr −

∫ τn

t

(
π − π̄ i

N

)
(r ) · σ (r ) dWr ,

where τn := inf{r ≥ t, |Xπ
r − x| ≥ n or |X̄i

r − x̄i | ≥ n}. Taking conditional expectations
in (4.37), and using the fact that Lπt ui ≤ 0 for any π ∈ Ai , we get

ui (t, x, y) ≥ Et,x,yui (τn, Xπ
τn

, X̄i
τn

) for all π ∈ Ai .(4.38)

Since the π j s, σ , and θ are continuous deterministic functions and π i ∈ Ai , it follows from

Hölder’s inequality that {e− 1
ηi

(Xi
τ −λi X̄i

τ )
, τ ∈ T } is uniformly bounded in any Lp. By the

definition of Ui , this property is immediately inherited by the family {ui (τ, Xπ
τ , X̄i

τ ), τ ∈
T }. Therefore, taking the limit n → ∞ in (4.38), we get ui (t, x, y) ≥ Et,x,ye− 1

ηi
(Xπ

T−λi X̄i
T ).

By the arbitrariness of π ∈ Ai , this implies that ui (0, Xi
0, X̄i

0) ≥ Vi
0 .

We next observe that π∗ ∈ Ai and the inequality in (4.38) is turned into an equality if
π∗ is substituted to π . By the dominated convergence theorem, this provides

ui (t, x, y) = Et,x,ye− 1
ηi

(Xπ∗
T −λi X̄i

T )
,

which, in view of (4.38), shows that ui (0, Xi
0, X̄i

0) = Vi
0 .

(c) To see that the continuous deterministic Nash equilibrium is unique, consider
another continuous deterministic Nash equilibrium (π̂1, . . . , π̂ N), and denote by ûi the
corresponding value functions as in (4.35). It suffices to observe that Lπ ûi < 0 on any
nonempty open subset B of [0, T] such that π 
= π∗ on B, and the inequality (4.38) is
strict. Therefore, any Nash equilibrium must satisfy (4.36) for every i = 1, . . . , N.
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Set γ̂ i
t := σ (t)π̂ i

t , and let γ̂ be the matrix whose i th line is γ̂ i . From the previous
argument, (π̂1, . . . , π̂ N) is a Nash equilibrium if and only:

�i
t (γ̂t) := Pi

t

⎛
⎝ηiθ (t) + λN

i

∑
j 
=i

γ̂
j

t

⎞
⎠ = γ̂ i

t , i = 1, . . . , N, t ∈ [0, T],(4.39)

i.e., γ̂t is a fixed point of �t for all t ∈ [0, T]. Using Lemma 4.15 below, we have the
uniqueness of a Nash equilibrium. Finally, the expression for Vi at equilibrium follows
from the last statement of Lemma 4.15 together with (4.35).

Recall the function ψ̄ i defined in (4.21).

LEMMA 4.15. Under (4.13), the function �t defined in (4.39) has a unique fixed point
γ̂t for all t ∈ [0, T], given by

γ̂ i
t = Pi

t ◦ ψ̄ i
t (θ ) and satisfying ψ̄ i

t (θ ) = ηiθ + λN
i

∑
j 
=i

γ̂
j

t .

Proof.

1. Since Pi
t is a contraction, we compute

|�t(x1) − �t(x2)|1 :=
N∑

i=1

∣∣�i
t (x1) − �i

t (x2)
∣∣ ≤ N∑

i=1

1
N − 1

∑
j 
=i

∣∣xj
1 − xj

2 | = |x1 − x2|1,

proving that �t is a contraction.
2. We next show that (�t)2 := �t ◦ �t is a strict contraction. Indeed, under (4.13), we

may assume without loss of generality that λ1 < 1. Then,∣∣�i
t ◦ �t(x1) − �i

t ◦ �t(x2)
∣∣ ≤ λN

i

∑
j 
=i

∣∣� j
t (x1) − �

j
t (x2)

∣∣ ≤ λN
i

∑
j 
=i

λN
j

∑
k
= j

∣∣xk
1 − xk

2

∣∣,
so that

|(�t)2(x1) − (�t)2(x2)|1 ≤
N∑

i=1

∑
j 
=i

∑
k
= j

λN
i λN

j

∣∣xk
1 − xk

2

∣∣

≤ λ1

(N − 1)2

⎛
⎝ N∑

k=1

(N − 2)
∣∣xk

1 − xk
2

∣∣+∑
k
=1

∣∣xk
1 − xk

2

∣∣
⎞
⎠

+ N − 2
N − 1

∣∣x1
1 − x1

2

∣∣+ N − 1 + (N − 2)2

(N − 1)2

∑
k
=1

∣∣xk
1 − xk

2

∣∣

≤
(

λ1(N − 2)
(N − 1)2

+ (N − 2)2 + N − 1
(N − 1)2

)
|x1 − x2|1.

Observe that N − 2 + N − 1 + (N − 2)2 = (N − 1)2. Then, λ1 < 1 implies that
(�t)2 is a strict contraction.

3. Therefore, (�t)n is a strict contraction as well for any n ≥ 2. As a consequence,
(�t)2, (�t)3, and (�t)6, respectively, admit a unique fixed point x2, x3, and x6,
respectively. It is immediate that x2 and x3 are also fixed points for (�t)6; therefore,
x2 = x3 = x6, and finally, x2 = (�t)3(x2) = �t ◦ (�t)2(x2) = �t(x2) so that x2 is a
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fixed point of �t. The uniqueness is immediate since a fixed point of �t is also a
fixed point of (�t)2.

4. Let � ∈ RNd be defined by �i = ηiθ . By definition of ψt in Lemma 4.6, ϕi
t ◦

ψt(�) = ηiθ for all i = 1, . . . , N. Using the definition of ϕt in (4.9), this implies
that

ψ i
t (�) = ηiθ + λN

i

∑
j 
=i

P j
t ◦ ψ

j
t (�).(4.40)

Applying Pi
t and setting γ̂ i

t = Pi
t ◦ ψ i

t (�), this provides γ̂ i
t = �i

t (γ̂t), for each i =
1, . . . , N. By the definition of ψ̄ i together with the expression of ψ , we have
ψ̄ i

t (θ ) = ψ i
t (�) so that γ̂ i

t = Pi
t ◦ ψ̄ i

t (θ ). Plugging it into (4.40) provides the last
statement of the lemma. �

5. LINEAR PORTFOLIO CONSTRAINTS

We now focus on the case where the sets of constraints are such that

Ai is a vector subspace of Rd , for all i = 1, . . . , N.(5.1)

Our main objective in this section is to exploit the linearity of the projection operators
Pi in order to derive more explicit results.

5.1. Nash Equilibrium Under Linear Portfolio Constraints

In the present context, we show that condition (4.13) in Theorem 4.8 can be weakened
to

N∏
i=1

λi < 1 or
N⋂

i=1

Ai = {0}.(5.2)

In view of Lemma 4.4 (which is obvious in the present linear case), the map

R i
t := 1

N − 1

∑
j 
=i

λ j P j
t
(
I + λN

j P j
t
)−1(

I + λN
i Pi

t

)
(5.3)

is well defined. Moreover, for any j = 1, . . . , N, since P j
t is a projection, we compute

that (I + λN
j P j

t )−1 = I − λN
j

1+λN
j

P j
t so that

R i
t =

∑
j 
=i

λN
j

1 + λN
j

P j
t
(
I + λN

i Pi
t

)
.

The following statement is more precise than Lemma 4.6.

LEMMA 5.1. Let (Ai )1≤i≤N be vector subspaces of Rd . Then, for all t ∈ [0, T]:

(i) the linear operator ϕt is invertible if and only if (5.2) is satisfied,
(ii) this condition is equivalent to the invertibility of the linear operators I − R i

t , i =
1, . . . , N,
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(iii) under (5.2), the i th component of ψt = ϕ−1
t is given by

ψ i
t (z) = (I − R i

t )−1

⎛
⎝zi +

∑
j 
=i

1

1 + λN
j

P j
t
(
λN

i z j − λN
j zi )

⎞
⎠ .

The proof of this lemma is reported in Section 5.4. We now proceed to the characteriza-
tion of Nash equilibria in the context of the multivariate Black–Scholes financial market.
From Lemma 5.1, if condition (5.2) is satisfied, ψ̄ i defined by (4.21) is well defined, is a
linear operator, and has the following expression:

(5.4)

ψ̄ i
t = Mi

t :=
⎛
⎝I −

∑
j 
=i

λN
j

1 + λN
j

P j
t
(
I + λN

i Pi
t

)⎞⎠
−1⎛
⎝ηi I +

∑
j 
=i

λN
i η j − λN

j ηi

1 + λN
j

P j
t

⎞
⎠ .

THEOREM 5.2. Assume that σ and θ are deterministic, and (5.2) is satisfied. Then, there
exists a unique deterministic Nash equilibrium given by

π̂ i
t = σ (t)−1 Pi

t Mi
t θ (t) for i = 1, . . . , N, t ∈ [0, T].

Moreover, the value function for agent i at equilibrium is given by

Vi = −e− 1
ηi

(xi −λi x̄i −Yi
0 )

where

Yi
0 = −ηi

2

∫ T

0
|θ (t)|2dt + 1

2ηi

∫ T

0

∣∣(I − Pi
t

)
Mi

t θ (t)
∣∣2dt.

Proof. Follow the lines of the proof of Theorem 4.8, replacing Lemma 4.6 by Lemma
5.1 and Lemma 4.15 by the following Lemma 5.3. �

LEMMA 5.3. Let θ ∈ Rd be arbitrary and � : RNd → RNd be defined for any γ ∈ RNd

by

�i (γ ) = Pi

⎛
⎝ηiθ + λN

i

∑
j 
=i

γ j

⎞
⎠ .

Then, under (5.2), � admits a unique fixed point γ̂ given by γ̂ i = Pi ψ̄ i (θ ).

The proof of this lemma is reported in Section 5.4. We illustrate the previous Nash
equilibrium in the context of symmetric managers with different access to the financial
market.

EXAMPLE 5.4 (Similar agents with different investment constraints). Assume that σ

and θ are deterministic, and let λ j = λ ∈ [0, 1) and η j = η > 0, j = 1, . . . , N. Then, there
exists a unique deterministic Nash equilibrium given by

π̂ i
t = ησ (t)−1 Pi

t

⎛
⎝I − λN

1 + λN

∑
j 
=i

P j
t
(
I + λN Pi

t

)⎞⎠
−1

θ (t), i = 1, . . . , N.
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We conclude this section with the following qualitative result that shows, in partic-
ular, that the managers’ interactions induce an overinvestment on the risky assets, and
imply that the market portfolio π̄ of Definition 3.9 is nondecreasing in the interaction
coefficients λi , in agreement with Proposition 3.10. This result requires a quite restrictive
condition that, however, covers many examples, see also Remark 5.6 below.

PROPOSITION 5.5. Assume that the projection operators Pi commute, i.e., Pi P j = P j Pi

for all i , j = 1, . . . , N. Then, under the conditions of Theorem 5.2, Agent i ’s equilibrium
portfolio is such that |σ (t)π̂ i

t | is nondecreasing w.r.t. λ j and η j , for all i , j = 1, . . . , N and
t ∈ [0, T].

Proof. We fix an agent i = 1, . . . , N, and omit all t-dependence. The assumption that
the Pi ’s commute is equivalent to the existence of an orthonormal basis {uk, k = 1, . . . , d}
such that for all i , uk is an eigenvector of Pi for all k. We write Pi uk = εi ,kuk, and
we observe that εi ,k ∈ {0, 1} by the fact that Pi is a projection. Then, by the explicit
expression of π̂ i in Theorem 5.2, writing θ =∑d

k=1 θkuk, we directly compute that
|σ π̂ i |2 =∑d

k=1(θk)2(	i ,k)2, where

	i ,k = εi ,k

⎛
⎝1 −

∑
m 
=i

λN
mεm,k

1 + λN
m

(
1 + λN

i εi ,k
)⎞⎠

−1⎛
⎝ηi +

∑
m 
=i

λN
i ηm − λN

mηi

1 + λN
m

εm,k

⎞
⎠ .(5.5)

We now verify that 	i ,k is nondecreasing w.r.t. λ j and η j , for all j = 1, . . . , N and
k = 1, . . . , d, which implies the required result by the orthogonality of the basis {uk, k =
1, . . . , d}.

- That 	i ,k is nondecreasing in η j is obvious from (5.5).
- That 	i ,k is nondecreasing in λi is also obvious from (5.5).
- Finally, for j 
= i , we directly differentiate (5.5), and see that the sign of ∂	i ,k/∂λN

j
is given by the sign of

εi ,kε j ,k

⎛
⎝(1 + λN

i εi ,k
)⎛⎝ηi +

∑
m 
=i

λN
i ηm − λN

mηi

1 + λN
m

εm,k

⎞
⎠

− ηi

⎛
⎝1 −

∑
m 
=i

λN
mεm,k

1 + λN
m

(
1 + λN

i εi ,k
)⎞⎠
⎞
⎠

= εi ,kε j ,k

⎛
⎝λN

i ηi + λN
i

⎛
⎝1 + λN

i

∑
m 
=i

ηm

1 + λN
m

εm,k

⎞
⎠
⎞
⎠ ≥ 0.

�

REMARK 5.6. The statement of Proposition 5.5 is not valid for general portfolio
constraints, as illustrated by the following example. Let N = d = 2, A1 = Re1, A2 =
R(e1 + e2), and σ = I. Then, the projection operators P1 and P2 are defined by the
following matrices in the basis (e1, e2):

P1 =
(

1 0
0 0

)
and P2 =

(
1/2 1/2
1/2 1/2

)
,
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respectively. By direct calculation, |π̂1| = 1
2−λ1λ2

|(2η1 + λ1η2)θ1 + λ1η2θ2|, which can be
increasing or decreasing in ηi and λi , i = 1, 2 for appropriate choices of the risk premium
θ .

5.2. Infinite Managers Asymptotics

We now investigate the limiting behavior when the number of agents N goes to infinity
with fixed number of assets d.

Recall that |.| denotes the canonical Euclidean norm on Rd , and L(Rd ) is the space
of linear mappings on Rd endowed with operator norm ‖U‖ = sup|x|=1 |U(x)| for all
U ∈ L(Rd ).

PROPOSITION 5.7. Let d be fixed and the sequence (ηi )i∈N bounded in R. Assume that

1
N

N∑
i=1

λi Pi
t −→ Uλ

t inL(Rd ) and
1
N

N∑
i=1

ηi Pi
t → Uη

t in L(Rd ),(5.6)

for all (respectively, uniformly in) t ∈ [0, T]. Assume further that ‖Uλ
t ‖ < 1, t ∈ [0, 1].

Then,

π̂ i ,N
t −→ π̂ i ,∞

t := σ (t)−1 Pi
t (I − Uλ

t )−1(ηi
(
I − Uλ

t

)+ λi U
η
t
)
θ (t)

for all (respectively, uniformly in) t ∈ [0, T].

Proof. By Theorem 5.2, we have π̂
i ,N
t = σ (t)−1 Pi

t Ai
t Bi

t θ (t), where

Ai
t :=

⎛
⎝I −

∑
j 
=i

λN
j

1 + λN
j

P j
t (I + λN

i Pi
t )

⎞
⎠

−1

and Bi
t := ηi I +

∑
j 
=i

λN
i η j − λN

j ηi

1 + λN
j

P j
t .

Since ‖P j
t ‖ ≤ 1, we have

∥∥∥∥∥∥
1

N − 1

∑
j 
=i

λ j

1 + λN
j

P j
t − 1

N

N∑
j=1

λ j P j
t

∥∥∥∥∥∥
≤ 1

N − 1

∥∥∥∥∥∥
∑
j 
=i

λ j

1 + λN
j

P j
t − λ j P j

t

∥∥∥∥∥∥+
∥∥∥∥∥∥

1
N − 1

∑
j 
=i

λ j P j
t − 1

N

N∑
j=1

λ j P j
t

∥∥∥∥∥∥
≤
∥∥∥∥∥∥

1
(N − 1)2

∑
j 
=i

λ2
j

1 + λN
j

P j
t

∥∥∥∥∥∥+
∥∥∥∥∥∥

1
N

λi Pi
t + 1

N(N − 1)

∑
j 
=i

λ j P j
t

∥∥∥∥∥∥ ≤ 3
N

.

Similarly, by the boundedness of the sequence (ηi )i≥1:

∥∥∥∥∥∥
1

N − 1

∑
j 
=i

η j

1 + λN
j

P j
t − 1

N

N∑
j=1

η j P j
t

∥∥∥∥∥∥ ≤ 3|η|∞
N

.
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Then, as N → ∞, we have in L(Rd )

I + λN
i Pi

t → I,
1

N − 1

∑
j 
=i

λ j

1 + λN
j

P j
t −→ Uλ

t ,
1

N − 1

∑
j 
=i

η j

1 + λN
j

P j
t −→ Uη

t ,

and Ai
t → (I − Uλ

t )−1, Bi
t → ηi I + λi U

η
t − ηi Uλ

t . Under the condition ‖Uλ
t ‖ < 1, the

limit is finite. Moreover, the convergence is uniform in t whenever the convergence (5.6)
holds uniformly in t. �

EXAMPLE 5.8 (Symmetric agents with different access to the financial market). Let
λi = λ ∈ [0, 1) and ηi = η > 0, i ≥ 1. Then, the limiting Nash equilibrium portfolio
reduces to

π̂ i ,∞
t = ησ (t)−1 Pi

t

(
I − λU1

t

)−1
θ (t), t ∈ [0, T], i ≥ 1.

EXAMPLE 5.9 (Symmetric agents with finite market access possibilities). In the context
of the previous example, suppose further that {Ai , i ≥ 1} = {Aj , j = 1, . . . , p} for some
integer p > 1. We denote by kN

j the number of agents with portfolio constraint Aj , and we
assume that kN

j /N −→ κ j ∈ [0, 1] for all j = 1, . . . , p. Then, an immediate application
of Proposition 5.7 provides the limit Nash equilibrium portfolio:

π̂ i ,∞
t = ησ (t)−1 Pi

t

⎛
⎝I − λ

p∑
j=1

κ j P j
t

⎞
⎠

−1

θ (t).

REMARK 5.10. We may also adopt the following probabilistic point of view to re-
formulate Proposition 5.7. Assume that there is a continuum of independent players
modeled through a probability space (�,D, μ) independent from the space (�,F, P)
describing the financial market uncertainty. In such a setting, the market interactions,
the risk tolerance, and the projection operators are defined by the random variables λ

and η and the process P = {Pt, t ∈ [0, T]} taking values, respectively, in [0, 1], (0, +∞)
and L(Rd ). The limiting Nash equilibrium portfolio is then given by

π̂ i ,∞
t := σ (t)−1 Pt(I − μ(λPt))−1(η(I − μ(λPt)) + λμ(ηPt))θ (t),

provided that μ(λ‖Pt‖) + μ(η‖Pt‖) < ∞ and ‖μ(λPt)‖ < 1.

Our next comment concerns the asymptotics of the market index X̄N and the market
portfolio π̄ N of Definition 3.9.

REMARK 5.11. In the context of Remark 5.10, we further assume that the random
variables λ, η, and Pt are independent, and we denote P̄t := μ(Pt), λ̄ := μ(λ), η̄ := μ(η).
Then, under the condition λ̄P̄t < 1, the limit market portfolio and market index are given
by

π̄∞
t = σ (t)−1v̄∞

t , X̄∞
t = x̄ +

∫ t

0
v̄∞

t · (dWt + θ (t)dt
)
, where v∞

t := η̄Ūt
(
I − λ̄Ūt

)−1
θ (t).

In particular, we have the following observations that are consistent with Proposition
3.10:

- the drift of the market index is nonnegative,
- the drift and the volatility of the market index are nondecreasing in η̄ and λ̄,
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- the VRR index of the market portfolio is given by

VRR
∞
t = θ (t) · P̄t(I − λ̄P̄t)−1θ (t)

θ (t) · (P̄t(I − λ̄P̄t))2θ (t)
,

and is nonincreasing in η̄ and λ̄.

5.3. Examples with Linear Constraints

For simplicity, except for Example 5.16, we assume that the agents are symmetric
λi = λ and ηi = η for i = 1, . . . , N and only differ by their access to the financial market.

Except for the last Example 5.17, we shall consider a diagonal multidimensional
Black–Scholes model with volatility matrix σ = Id , i.e., the risky assets price processes
are independent.

Under the conditions of Theorem 5.2, the optimal Nash equilibrium is given by

π̂ i
t = ηPi

⎛
⎝I −

λ
N−1

1 + λ
N−1

∑
j 
=i

P j
(

I + λ

N − 1
Pi
)⎞⎠

−1

θ (t) for i = 1, . . . , N,(5.7)

see Example 5.4. Let (e1, . . . , ed ) be the canonical basis of Rd .

EXAMPLE 5.12. Let d = N and Ai = Rei , i = 1, . . . , N. Notice that ∩n
i=1 Ai = {0}.

Then, Theorem 5.2 applies for all λ ∈ [0, 1]. The projection matrices Pi are all diagonal
with unique nonzero diagonal entry Pi

i ,i = 1. The calculation of the Nash equilibrium is
then easy and provides

π̂ i
t = ησ (t)−1θi (t)ei , i = 1, . . . , N.

Hence, in agreement with the economic intuition, the interaction has no impact in this
example, and the optimal Nash equilibrium portfolio coincides with the classical case
with no interactions (λ = 0).

EXAMPLE 5.13. Let d = 3, N = 2, and A1 = Re1 + Re2, A2 = Re2 + Re3. Since A1 ∩
A2 
= {0}, Theorem 5.2 requires that λ ∈ [0, 1). In the present context, the projection
matrices are diagonal with P1

1,1 = P1
2,2 = 1, P1

3,3 = 0, and P2
1,1 = 0, P2

2,2 = P2
3,3 = 1. An

easy calculation provides the optimal Nash equilibrium:

π̂1
t = ηθ1(t)e1 + η

1 − λ
θ2(t)e2 and π̂2

t = η

1 − λ
θ2(t)e2 + ηθ3(t)e3.

Notice that the optimal investment in the first and the third stock for agent 1 and agent
2, respectively, is the same as in the classical case (λ = 0). However, the investment in
stock 2, which both agents can trade, is dilated by the factor (1 − λ)−1 ∈ [1, +∞).

EXAMPLE 5.14. Let d = N = 3 and A1 = Re1 + Re2, A2 = Re2 + Re3, A3 = Re3. Since
A1 ∩ A2 ∩ A3 = {0}, Theorem 5.2 applies for λ ∈ [0, 1]. The projection matrices P1 and
P2 are the same as in the previous example, and we similarly see that P3 is diagonal with
P3

1,1 = P3
2,2 = 0, P3

3,3 = 1. Direct calculation provides the optimal Nash equilibrium:

π̂1
t = ηθ1(t)e1 + η

1 − λ
2

θ2(t)e2, π̂2
t = η

1 − λ
2

θ2(t)e2 + η

1 − λ
2

θ3(t)e3,

π̂3
t = η

1 − λ
2

θ3(t)e3.
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Similar to the previous example, we see that the optimal investment in the first stock
for agent 1 and agent 2, respectively, is the same as in the classical case (λ = 0), while
the investment in stocks 2 and 3, which can both be traded by two agents, is dilated by
the factor (1 − λ

2 )−1 ∈ [1, +∞). Notice that the dilation factor in the present example is
smaller than that of the previous one.

EXAMPLE 5.15 (Investment with respect to hyperplanes). Let d = N and Ai = (Rei )⊥.
In words, each manager has access to the whole market except for its own stock or those
of the firms for which some private information is available to the manager. Direct
calculation from the expression of Theorem 5.2 provides the following unique Nash
equilibrium:

π̂ i ,N = η

1 − λ + λ
N−1

∑
j 
=i

θ j e j , i = 1, . . . , N.

EXAMPLE 5.16 (Groups of managers investing in independent sectors). We assume
that there are d groups of managers. The j th group consists of kj symmetric agents with
risk tolerance coefficient η j , interaction coefficient λ j , and market access defined by the
constraints set Aj = Re j . The total number of managers is N =∑d

j=1 kj . Then, it follows
from Theorem 5.2 that the Nash equilibrium portfolio for an agent of the j th group is

π̂ j = P j

⎛
⎝I −

∑
m 
= j

km
λN

m

1 + λN
m

Pm(I + λN
j P j )− (kj − 1)

λN
j

1 + λN
j

P j (I + λN
j P j )

⎞
⎠

−1

×
⎛
⎝η j I +

∑
m 
= j

λN
j ηm − λN

mη j

1 + λN
m

Pm

⎞
⎠ θ

= P j

⎛
⎝I −

∑
m 
= j

km
λN

m

1 + λN
m

Pm − (kj − 1)λN
j P j

⎞
⎠

−1⎛
⎝η j I +

∑
m 
= j

λN
j ηm − λN

mη j

1 + λN
m

Pm

⎞
⎠ θ,

where we used the fact that P j Pm = 0 for m 
= j . The inverse matrix in the previous
expression can be computed explicitly, and we get

π̂ j = P j

⎛
⎝ 1

1 − (kj − 1)λN
j

P j +
∑
m 
= j

1

1 − km
λN

m
1+λN

m

Pm

⎞
⎠
⎛
⎝η j I +

∑
m 
= j

λN
j ηm − λN

mη j

1 + λN
m

Pm

⎞
⎠ θ.

Using again the fact that P j Pm = 0 for m 
= j , we see that

π̂ j = η j

1 − kj −1
N λ j

θ j e j for each agent of group j , j = 1, . . . , d.

EXAMPLE 5.17 (Correlated investments). Let d = N, Ai = Rei , i = 1, . . . , N, and

θ = θNσ

d∑
i=1

ei , σ 2 = σ 2
N

⎛
⎜⎝

1 ρ2

. . .
ρ2 1

⎞
⎟⎠ ,(5.8)

for some θN ∈ R, ρ ∈ (−1, 1) and σN > 0.
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Since σ is invertible, (ui := σei )1≤i≤d forms a basis of Rd . We directly verify that for
j 
= i and x =∑d

i=1 xi ui ,

P j (x)=
⎛
⎝xj +ρ2

∑
k
= j

xk

⎞
⎠ u j , P j Pi (x)=ρ2

⎛
⎝xi +ρ2

∑
k
=i

xk

⎞
⎠ u j .(5.9)

By (5.7), the Nash equilibrium portfolio for the i th manager is given by π̂ i
t = ηPi x, where

x satisfies ⎛
⎝I −

λ
N−1

1 + λ
N−1

∑
j 
=i

P j
(

I + λ

N − 1
Pi
)⎞⎠ x = θ for i = 1, . . . , N.

Given the particular structure of the risk premium in (5.8), we search for a solution of
this linear system of the form x = xi ui + x0

∑
k
=i uk. By (5.9), this reduces the previous

linear system to

θ = xi ui +
∑
j 
=i

(
x0 − λ

N − 1
ρ2xi −

λ
N−1

1 + λ
N−1

(1 + (N − 2)ρ2 + λρ4)x0

)
u j ,

and provides the solution of the system

xi = θN and x0 = (1 + λ
N−1ρ2)θN

1 −
λ

N−1

1+ λ
N−1

(1 + (N − 2)ρ2 + λρ4)
,

and therefore, using again (5.9), the Nash equilibrium π̂ i = ηPi x is given by

π̂ i = ηθN

⎛
⎜⎝1 + (N − 1)ρ2(1 + λ

N−1ρ2)

1 −
λ

N−1

1+ λ
N−1

(1 + (N − 2)ρ2 + λρ4)

⎞
⎟⎠ ui , i = 1, . . . , N.

We finally observe that π̂ i ∼ ηθN
1+(N−1−λ)ρ2

1−λρ2 as N → ∞. Then,

π̂ i ∼ ηθ0ρ
2

1 − λρ2
ui whenever θN ≡ θ0

N
as N → ∞.

This shows that the Nash equilibrium portfolio consists again of a dilation of the no-
interaction optimal portfolio. However, in the present context, in addition to the dilation
due to the interaction coefficient λ, there is an additional dilation caused by the correlation
coefficient ρ. The dilation factor is increasing both in λ and ρ.

5.4. Proof of Technical Lemmas

Proof of Lemma 5.1. We omit all t subscripts. For arbitrary z1, . . . , zN in Rd , we want
to find a unique solution to the system:

zi − λN
i

∑
j 
=i

P j (z j ) = ζ i , 1 ≤ i ≤ N.(5.10)
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1. We reduce (5.10) to a simpler form. Subtracting λi times equation j from λ j times
equation i in (5.10), we get for any i , j

λi
(
I + λN

j P j ) z j = λ j
(
I + λN

i Pi ) zi + λiζ
j − λ jζ

i .

Since (I + λN
j P j )−1 = I − λN

j

1+λN
j

P j , we have

λi P j z j = 1

1 + λN
j

P j (λ j
(
I + λN

i Pi ) zi + λiζ
j − λ jζ

i ).
Thus, using (5.10) it follows that

ζ i = zi − 1
N − 1

∑
j 
=i

1

1 + λN
j

P j [λ j
(
I + λN

i Pi ) zi + λiζ
j − λ jζ

i ] ,
and we can rewrite (5.10) equivalently as

(5.11)⎛
⎝I −

∑
j 
=i

λN
j

1 + λN
j

P j (I + λN
i Pi )

⎞
⎠ zi = ζ i + 1

N − 1

∑
j 
=i

1

1 + λN
j

P j (λiζ
j − λ jζ

i ) ,
so that the invertibility of ϕ is equivalent to the invertibility of the linear operators I − Ri ,
for i = 1, . . . , N, where the Ri s are introduced in the statement of the lemma.

2. We prove that the I − Ri s are all invertible iff (5.2) holds true.
(a) First, assume that λ j = 1 for all j and that x ∈⋂N

j=1 Aj 
= {0} satisfies x 
= 0. Then,
we have for any j , P j x = x and so:

Ri x = 1
N − 1

∑
j 
=i

1

1 + 1
N−1

P j
(

I + 1
N − 1

Pi
)

x = x.

Therefore, I − Ri is not invertible.
(b) Conversely, assume that (5.2) holds true. We consider two separate cases.

� If λi0 < 1, for some i0 ∈ {1, . . . , N}, then we estimate that

λN
i0

1 + λN
i0

<

1
N−1

1 + 1
N−1

and
λN

j

1 + λN
j

≤
1

N−1

1 + 1
N−1

for any j 
= i0.

Then, since 1 + λN
i0

< 1 + 1
N−1 , for any i and any x 
= 0, |Ri x| < |x|, proving that

I − Ri is invertible.
� If λi = 1, for all i = 1, . . . , N and

⋂N
i=1 Ai = {0}. Let x ∈ Ker (I − Ri ) for some i ,

using the fact that the P j s are contractions, we have

|x| = |Ri x| =
∣∣∣∣∣∣

1
N − 1

∑
j 
=i

1

1 + 1
N−1

P j
(

I + 1
N − 1

Pi
)

x

∣∣∣∣∣∣
≤ 1

N − 1

∑
j 
=i

|x| = |x|,
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so that equality holds in the above inequality, which can only happen if P j x = x
for all j = 1, . . . , N, which implies that x ∈⋂N

j=1 Aj , and therefore x = 0, which
completes the proof. �

Proof of Lemma 5.3. We want to show that the system ηi Piθ + λN
i
∑

j 
=i Piγ j = γ i ,
for all i = 1, . . . , N, has a unique solution, or equivalently that λN

i
∑

j 
=i Piγ j − γ i = 0
is satisfied for all i = 1, . . . , N if and only if γ = 0. Writing this linear system Aγ = 0,
we have ∣∣∣∣∣∣λN

i

∑
j 
=i

Piγ j − γ i

∣∣∣∣∣∣ ≥ |γ i | − λN
i

∑
j 
=i

|Piγ j |,

so that γ ∈ KerA implies that |γ i | = |γ j | for any i , j . Having equality for i implies
that Piγ j = γ j for all j , the γ j s are all collinear (i included) and λi = 1. Therefore, if∏

i λi < 1 or ∩i Ai = {0}, the previous inequality becomes strict if γ ∈ KerA 
= 0.
Then, as in the proof of Lemma 4.15, we have γ̂ i = �i (γ̂ ), for each i = 1, . . . , N. �

APPENDIX

EXAMPLE A.1. Let N = 2, σ = Id , λi = λ, and Ai = A := {x ∈ Rd ; |x1| ≥ 1}, i = 1, 2.
The projection is uniquely determined for x1 
= 0, and we can take, for example, the
following:

P(x) =
⎧⎨
⎩

x, if x ∈ A
(1, x2, . . . , xd )t, if x1 ∈ [0, 1)
(−1, x2, . . . , xd )t, if x1 ∈ (−1, 0).

If ϕ was surjective onto R2d , then subtracting the expressions of ϕ1 and ϕ2, we see
that I + λP would be surjective onto Rd . Let y ∈ Rd , we want to find x such that
x + λP(x) = y.

- If x1 ≥ 1, then (1 + λ)x1 = y1 so that y1 ≥ 1 + λ;
- if x1 ∈ [0, 1), then x1 + λ = y1 so that y1 ∈ [λ, 1 + λ);
- if x1 ∈ (−1, 0), then x1 − λ = y1 so that y1 ∈ (−1 − λ,−λ);
- if x1 ≤ −1, then (1 + λ)x1 = y1 so that y1 ≤ −1 − λ.

Therefore, {x ∈ Rd ; x1 ∈ [−λ, λ)} is not attained by I + λP so that as soon as λ > 0, ϕ

is not surjective. Moreover, the interior of the complementary of its image is nonempty.

EXAMPLE A.2. Let Ai = B := {x ∈ Rd ; |x| ≥ 1}, the complement of the unit (open)
ball. The projection is uniquely determined for x 
= 0, and we can for example take:

P(x) =

⎧⎪⎪⎨
⎪⎪⎩

x, if x ∈ B,
1
|x| x, if |x| ∈ (0, 1),

1d , if x = 0.

Similar to the previous example, in order to have ϕ surjective, we need I + λP surjective
onto Rd . If y ∈ Rd , and x + λP(x) = y, we compute
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- if |x| ≥ 1, then (1 + λ)x = y so that |y| ≥ 1 + λ;
- if |x| ∈ (0, 1), then (1 + λ

|x| )x = y so that |y| ∈ (λ, 1 + λ);
- if x = 0, then y = λ1d .

Therefore, {x ∈ Rd ; |x| < λ} is not attained by I + λP, so again as soon as λ > 0, ϕ is
not surjective. Moreover, the interior of the complementary of its image is nonempty.
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