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Abstract. The martingale representation theorem in a Brownian filtration represents
any square integrable r.v. ξ as a stochastic integral with respect to the Brownian motion.
This is the simplest Backward SDE with nul generator and final data ξ, which can be seen
as the non-Markov counterpart of the Cauchy problem in second order parabolic PDEs.
Similarly, the notion of Second order BSDEs is the non-Markov counterpart of the fully-
nonlinear Cauchy problem, and is motivated by applications in finance and probabilistic
numerical methods for PDEs.
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1. Introduction

The theory of backward stochastic differential equations (BSDE hereafter) received
a considerable attention in the recent literature. The ongoing developments are mo-
tivated by financial mathematics, stochastic control, stochastic differential games,
and probabilistic numerical methods for partial differential equations (PDEs here-
after). We refer to [12] for a review.

These notes provide an overview on the recent extension to the second order
which correspond to second order PDEs. Our objective is to define second order
BSDEs in the general non Markov case, which can be viewed as the natural coun-
terpart of PDEs in the non Markovian framework. We put a special emphasis on
the examples, mainly from financial mathematics, which acted as a driving line for
the progress which was achieved.

Section 2 provides a quick review of the basics of standard BSDEs and their
connection to semilinear PDEs. We also provide a non-expert exposition of the
main applications in financial mathematics.

∗Based on a long collaboration with Mete Soner, Jianfeng Zhang, Patrick Cheridito, and Bruno
Bouchard. Research supported by the Chair Financial Risks of the Risk Foundation sponsored
by Société Générale, the Chair Derivatives of the Future sponsored by the Fédération Bancaire
Française, and the Chair Finance and Sustainable Development sponsored by EDF and Calyon.
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In Section 3, we report our main example of hedging under gamma constraints,
which show the main difficulties that one has to solve. The main resukt of this sec-
tion is the uniqueness result of [8] obtained within a restricted class of integrands.

Section 4 provides a new definition of solutions of 2BSDE motivated by the
quasi-sure stochastic analysis developed by Denis and Martini [10] in the context
of their analysis of the uncertain volatility model.

Section 5 collects the mains results of these notes, mainly the wellposedness of
the quasi-sure formulation of the 2BSDE. We state a representation result which
implies uniqueness. With the representation result, comparison becomes trivial.
Then, we provide the appropriate a priori estimates. Finally, existence is obtained
as follows. First for bounded uniformly continuous final data, the representation
suggest a natural candidate for the solution of the 2BSDE, that can be defined
by means of the notion of regular conditional probability density. Then, using the
a priori estimates, we prove the existence of a solution in an appropriate closure
of the space of bounded uniformly continuous random variables. Finally in the
Markovian case, under natural condition, the solution of the 2BSDE is a viscosity
solution of the corresponding fully nonlinear PDE.

Notations: Scalar products wil be denotes by dots, and transposition of matrices
by an exponent T. For a σ−algebra F , a filtration F, and a probability measure
P, we will denote
• L2(F , P), the set of F−measurable r.v. with finite second moment under P,
•H2(F, P), the set of all F−progressively measurable processes H with E

[ ∫
|Ht|2dt

]
<

∞,
• S2(F, P), the subset of H2(F, P) with P−a.s. càdlàg sample paths.

2. Review of Standard Backward SDEs

Let (Ω,F , P) be a probability space supporting a Brownian motion W on Rd, and
denote by F = {Ft, t ≥ 0} the corresponding P−augmented canonical filtration.

Consider the two ingredients:
• the generator F : R+ × Ω × R × Rd −→ R is such that (t, ω) 7−→ Ft(ω, y, z) is
F−progressively measurable for all (y, z) ∈ R× Rd,
• the final data ξ ∈ L2(P,FT ) for some time horizon T > 0.

Given a time horizon T > 0, a (scalar) backward stochastic differential equation
(BSDE in short) is defined by:

Yt = ξ +
∫ T

t

Fs(Ys, Zs)ds−
∫ T

t

Zs · dWs, t ≤ T. (1)

Equations of this type appeared naturally in the work of Bismut [5] on the stochas-
tic maximum Pontryagin principle for stochastic control problems. A systematic
study was started by Pardoux and Peng [18], where an existence and uniqueness
theory of an F−progressively measurable solution (Y, Z) was introduced. This
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seminal work generated an extensive literature in stochastic analysis, with natural
motivations from financial mathematics.

In this section, we provide a quick review of this theory under the condition

F Lipschitz-continuous in (y, z) uniformly in (t, ω) (2)

2.1. The linear case. Consider first the case F ≡ 0:

Yt = ξ −
∫ T

t

Zs · dWs, t ≤ T. (3)

Then, for any ξ ∈ L2(P,FT ), there is a unique F−progressively measurable square
integrable process Y satisfying (1), given by Yt := E[ξ|Ft], t ≤ T . Moreover,
by the martingale representation theorem in the present Brownian filtration, the
process Y can be considered in its continuous version, and there exists a unique
F−progressively measurable square integrable process Z satisfying (1). By the
Doob’s maximal inequality, this construction provides a unique solution (Y, Z) of
(1) in the space S2(P, F)×H2(P, F), i.e.

E
[
sup
t≤T

|Yt|2
]
+ E

[ ∫ T

0

|Zt|2dt
]

< ∞. (4)

We next consider the linear case

Ft(y, z) = −kty + λt · z + αt, (5)

for some F−progressively measurable processes k, λ, α, that we assume to be bounded,
for simplicity. Defining

Ỹt := Yte
−

∫ t
0 ksds, t ∈ [0, T ], and ξ̃ := ξe−

∫ t
0 ksds +

∫ T

0

αse
−

∫ s
0 kududs, (6)

we can convert the BSDE (1) into a BSDE with nul generator under the equivalent
probability measure

dQ
dP

∣∣∣∣
FT

:= e
∫ T
0 λt·dWt− 1

2

∫ T
0 |λt|2dt. (7)

Example Hedging contingent claims in frictionless financial markets. Consider a
financial market consisting of d risky assets with price processes:

dSt = diag[St] (btdt + σtdWt) , (8)

where diag[St] denotes the diagonal matrix with diagonal entries Si
t , and b, σ, σ−1

are F−progressively measurable bounded processes.
- A portfolio strategy is an F−progressively measurable process {θt, t ∈ [0, T ]}

with values in Rd. Here each component θi
t indicates the amount invested in asset
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Si at time t. The self-financing condition defines the dynamics of the liquidation
value of the portfolio:

dVt =
d∑

i=1

θi
t

dSi
t

Si
t

+

(
Vt −

d∑
i=1

θi
t

)
rtdt, (9)

where the instantaneous interest rate r is F−progressively measurable and bounded.
The latter equation is the budget constraint which says that the change in the liqui-
dation value of the portfolio has two components. First, for each asset i the change
of value of the holding in asset Si is given by the change of the corresponding price
times the number of shares of this asset held in portfolio at time t. The difference
Vt−

∑d
i=1 θi

t represents the holding in cash on the bank account. Then the second
component of the above busget constraint simply says that this investment in the
bank has an instantaneous riskless return defined by the instantaneous interest
rate.

- A portfolio strategy θ is admissible if σTθ ∈ H2(P, F), so that the process V
is well-defined in H2(P, F). We denote by V θ the corresponding liquidation value
process.

- A European contingent claim is a r.v. ξ ∈ L2(P,FT ) which indicates the
random payoff of a contract between two partes. The seller of such a contract
bears the risk of the random payment, and wishes to hedge his position against
the bad states of the world. A natural problem is then to

Find an admissible portfolio θ so that V θ
T = ξ, P− a.s. (10)

This is a BSDE problem with final data ξ, and affine generator Ft(y, z) = −rty −
(σT )−1(bt − rt1), where 1 is the vector of ones in Rd.

2.2. Wellposedness of Backward SDEs. Next, let F be a generator
satisfying (2) and denote F 0

t := Ft(0, 0). Then assuming ξ ∈ L2(P,FT ) and
F 0 ∈ H2(P, F), it follows from a fixed point argument that the BSDE (1) has
a unique solution in S2(P, F)×H2(P, F).

When the generator is either convex or concave, the solution of the BSDE
corresponds to a stochastic control problem in standard form but without diffusion
control.

Various extensions of this result have been obtained in the previous literature
by weakening the Lipschitz condition (2). The most challenging is probably the
case where F has quadratic growth in z, see Kobylanski [16] and Tevzadze [24].

A comparison result is easily obtained, and reads as follows. Suppose that
(F, ξ) and (F ′, ξ′) satisfy the above conditions for the existence and uniqueness of
solutions (Y, Z) and (Y ′, Z ′) of the corresponding BSDEs. Assume that ξ ≤ ξ′ and
ft(Yt, Zt) ≤ f ′t(Yt, Zt). Then Y ≤ Y ′ on [0, T ], P−a.s.

Such a comparison result plays a central role in the theory. For instance,
it allows to define the notion of reflected BSDEs (a misleading denomination,
to which I prefer the name of obstacle BSDE) which are connected to optiomal
stopping problems and Dynking games.
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Example: Hedging and different borrowing and lending rates. Let us turn to the
example of the previous subsection. The holding in cash Vt − θt · 1 can be either
positive, meaning a positive amount on the bank account, or negative, meaning a
loan from the bank. In the real life, borrowing and lending rtes are differents are
given resectively by rt ≥ rt. Then, the dynamics of the liquidation value of the
portfolio (9) is replaced by:

dVt =
d∑

i=1

θi
t

dSi
t

Si
t

+
(
(Vt − θt · 1)+rt − (Vt − θt · 1)−rt

)
dt, (11)

which is our simplest example of nonlinear BSDE.

2.3. Markov BSDEs. The Markov case correspond to the particular spec-
ification

Ft(ω, y, z) = f
(
t, Xt(ω), y, z

)
and ξ = g

(
XT (ω)

)
(12)

where X is the solution of some (well-posed) stochastic differential equation

Xt = X0 +
∫ t

0

b(s,Xs)ds +
∫ t

0

σ(s,Xs)dWs, t ≤ T. (13)

Moving the time origin to an arbitrary t ∈ [t, T ], we denote by {Xt,x
s , s ∈ [t, T ]}

the solution of the above SDE with initial data Xt,x
t = x, and by {(Y t,x

s , Zt,x
s ), s ∈

[t, T ]} the solution of the corresponding BSDE. Then, since the Brownian motion
has independent increments and is translation invariant, we easily see that

u(t, x) := Y t,x
t , t ∈ [0, T ], x ∈ Rd, (14)

defines a deterministic function satisfying the semigroup property (or the dynamic
programming principle, in the language of stochastic control):

u(s,Xt,x
s ) = Y t,x

s = u(t, x) +
∫ s

t

f
(
r, Xt,x

r , Y t,x
r , Zt,x

r

)
dr −

∫ s

t

Zt,x
r dWr (15)

Then, if u is C1,2, it follows that Zt,x
t = σT(t, x)Du(t, x), and u is a classical

solution of the semilinear Cauchy problem:

−∂tu−
1
2
Tr
[
σσTD2u

]
− f(t, x, u,Du) = 0, u(T, ·) = g. (16)

Of course, this equation can be derived in the sense of viscosity solutions when no
regularity of u is available.

2.4. Numerical implications. From the latter connection with the Cauchy
problem, one can formuate an extension of the so-called Feynman-Kac represen-
tation formula to the semilinear case, which states that whenever the Cauchy
problem (16) has a classical solution u, then it has a representation (14) in terms
of a corresponding BSDE. Among the various applications of this representation,
I would like to highlight its numerical implications.
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1. The case of a nul generator f ≡ 0 is well known to open the door to prob-
abillistic numerical methods for the approximation of the solution of (16).
Indeed, in this case, the BSDE representation reduces to u(t, x) = Y t,x

t =
E[g(Xt,x

T )] which suggests an approximation based on the law of large num-
bers. For instance, one can generate independent copies of the r.v. g(Xt,x

T )
(or an appropriate approximation), and define the crude Monte Carlo approx-
imation by simple averaging. A remarkable feature of this approximation is
that the rate of convergence, as provided by the central limit theorem, is inde-
pendent of the dimension d of the state x. This represents a clear advantage
of probabilistic schemes.

2. For a general nonlinearity f , let π : t = t0 < . . . < tn = T be a partition
of the interval [t, T ] with time steps δtk := tk − tk−1, and corresponding
increments of the Brownian motion δWtk

:= Wtk
−Wtk−1 . Denote by Xπ the

euler discretization of X along the partition π. The following discretization
of (1) was suggested by Bally and Pagès [1] when f does not depend on
z, and independently by Bouchard Touzi [6] and Zhang [25] for a general
nonlinearity:

Y π
tn

= g
(
Xπ

tn

)
, (17)

and

Y π
tk−1

= E
[
Y π

tk
|Xπ

tk−1

]
+ δtkf

(
tk−1, X

π
tk−1

, Y π
tk−1

, Zπ
tk−1

)
, (18)

Zπ
tk−1

= E
[
Y π

tk
(δtkσ(tk, Xπ

tk
))−1δWtk

|Xπ
tk−1

]
. (19)

For a feasible scheme, one further needs to introduce an implementable ap-
proximation of the regression operator E

[
.|Xπ

tk−1
= x

]
. Convergence re-

sults of the discrete-time process (Y π, Zπ) towards the solution (Y, Z) of the
Markov BSDE, together with bounds on the rate of convergence are available
in the literature, see [6, 14, 9]. Notice however that the asymptotic results
in the present nonlinear case depend on the dimension of the state d.

3. Second order BSDEs: difficulties and intuitions

Backward stochastic differential equation are naturally connected to semilinear
PDEs of the form (16), i.e. linear dependence of the equation in terms of the hessian
matrix. The first objective of the notion of second order BSDEs is to enlarge the
notion of BSDEs so as to obtain a connection with fully nonlinear PDEs. This
allows to capture more interesting examples. In this section, we provide a simple
example which is beyond the scope of standard BSDEs. moreover, this example
reveals the difficulty we are facing for our extension.

3.1. Hedging under Gamma constraints. Let us specialize the ex-
ample of Subsection 2.1 to the one-dimensional case d = 1. Denote πt := θt

St
the
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number of shares of S held in portfolio at time t, and V π := V θ. The practice of
the optimal hedging strategy induced by this model leads to a portfolio adjustment
at each time t from πt ti πt+dt, i.e. the investor has to buy or sell (depending on the
sign) πt+dt − πt shares of the asset S. Although our model assumes that the price
process is exogeneous, practioners are fully aware of the nonlinear dependence of
the price in terms of the transaction volume, and the impact of their strategies on
the price process. This is the so-called illiquidity effect.

To avoid (or at least minimize) such illiquidity costs, we assume that πt is a
continuous semimartingale with

d〈π, S〉t = Γt〈S〉t, P− a.s. (20)

and we impose some constraints on the process Γ. In fact, the interpretation
of Γ, as viewed by practitioners, is the portfolio adjustment consequent to an
immediate jump of the underlying price process. Although jumps are not allowed
by the model, this is a conservative behavior aiming at building strategies which
are robust to such a specification error of the model.

Given a contingent claim ξ ∈ L2(P,FT ), our new hedging problem is now:

Find an admissible portfolio π so that Γ ∈ [Γ,Γ] and V π
T = ξ, P− a.s.(21)

where Γ < 0 < Γ are given.
We also observe that in the Markov framework, ”we expect” that Γt should

identify the Hessian matrix of the function u defined in (14). Then, this problem
is expected to be connected to a fully nonlinear PDE.

However, there is a fundamental difficulty related to the following result due
to Bank and Baum [2].

Lemma 3.1. Let φ be a progressively measurable process with
∫ T

0
|φt|2dt < ∞,

P−a.s. Then, for every ε > 0, there exists a progressively measurable process φε,
absolutely continuous with respect to the Lebesgue measure, with

∫ T

0
|φε

t |2dt < ∞,
and

sup
0≤t≤T

∥∥∫ t

0

φt · dWt −
∫ t

0

φε
t · dWt

∥∥
∞ ≤ ε. (22)

This result shows a high instability of the problem: by accepting to miss the
target ξ within a small range of ε, we may approximate the optimal hedging strat-
egy of the frictionless financial market (Subsection 2.1) so that Gamma process of
the approximation is zero !

3.2. Non-uniqueness in L2. The latter difficulty which appears naturally
in the context of the financial application is not exceptional. Let us consider
the simplest backward SDE problem involving the Gamma process, similar to the
above example:

Yt = c

∫ T

t

Γsds−
∫ T

t

ZsdWs where d〈Z,W 〉t = Γtdt, t ∈ [0, T ], P− a.s. (23)
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Obviously, Y = Z = Γ = 0 is a solution. However, if we admit any square
integrable semimartingale Z with square integrable corresponding Γ process, it is
shown in Example 6.1 of [23] that, except for the case c = 0, the above problem
has a non-zero solution.

Consequently, introducing a second order term in the BSDE can not be per-
formed within the classical framework, and one has to face the difficulties due to
the instability highlighted in Lemma 3.1. This is the main object of these notes
which was dealt with by to approaches

• the first approach, developed in the subsequent subsection 3.3, is to restrict
the process Z to an appropriate space, so as to obtain uniqueness. This
approach was successful for uniqueness in the Markov framework, but we
were not able to have a satisfactory existence theory.

• the second approach is motivated by the example of Subsection 3.4 below, and
consists in reinforcing the constraint by requiring the BSDE to be satisfied
on a bigger support... This is the content of Section 4 below which contains
our main wellposedness results of second order BSDEs.

3.3. A first uniqueness result. In order to involve the process Γ in the
problem formulation, we need that the process Z be a semimartingale. Then,
we have the following correspondence between the Itô and the Fisk-Stratonovich
integrals

a

∫ t

0

Zt · dWt =
1
2
Γtdt +

∫ t

0

Zt ◦ dWt. (24)

a We prefer to write the problem using the Fisk-Stratonovich stochastic integral
rather than the Itô one. In the present subsection, this is just cosmetic, but it will
play a crucial role in Section 4.

Consider the Markov 2BSDE:

Yt = g(XT ) +
∫ T

t

h(s,Xs, Ys, Zs,Γs)ds−
∫ T

t

Zs ◦ dXs, P− a.s. (25)

where X is defined by the stochastic differential equation

dXt = b(t, Xt)dt + σ(t, Xt)dWt, (26)

that we assume wellposed with support in the whole space Rd.
An appropriate class Z of processes Z is introduced in [8]. Since we will be

mainly concentrating on the alternative approach, we do not report the precise
description of this class in these notes. To prove the uniqueness result, we introduce
the stochastic target problems

V(0, X0) := inf {Y0 : YT ≥ g(XT ), P− a.s. for some Z ∈ Z} , (27)
U(0, X0) := sup {Y0 : YT ≤ g(XT ), P− a.s. for some Z ∈ Z} . (28)
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By moving the time origin to an arbitrary t ∈ [0, T ], we also define the value
functions V(t, s) and U(t, x) for all (t, x) ∈ [0, T ] × Rd. The following result is
obtained in [8] by proving that V and U are respectively viscosity supersolution
and subsolution of the (fully nonlinear) dynamic programming equation:

−∂tv − h(t, x, v, Dv,D2v) = 0 on [0, T )× Rd, and v(T, .) = g. (29)

Theorem 3.2. Let h be continuous, locally Lipschitz in y, uniformly in all other
variables, non-increasing in γ, and has polynomial growth in (x, y, z, γ). Let g be
continuous with polynomial growth. Assume further that the nonlinear PDE (29)
satisfies a comparison result in the sense of viscosity solutions, within the class of
polynomially growing functions. Then there is at most one solution to the backward
SDE (25) with Z ∈ Z.

3.4. Intuition from uncertain volatility models. The objective of
this example is to introduce uncertainty about the volatility process σ in our first
example of Subsection 2.1. To do this, we reformulate the problem in the setting
of the canonical space Ω = {ω ∈ C([0, T ]) : ω(0) = 0} as suggested by Denis
and Martini [10]. We denote by B be the coordinate process, F the corresponding
canonical filtration, and P0 the Wiener measure, so that B is a Brownian motion
under P0.

By obvious discounting, we may reduce to the zero interest rate case. More-
over, after an equivalent change of measure, we may also assume without loss of
generality that b = 0. The liquidation value process (9) is then given by:

Vt := V0 +
∫ t

0

θs · dBs, (30)

where the volatility coefficient can be viewed to be absorbed into the canonical
process by a time change argument. To model the uncertainty on the volatility,
we consider two given constants 0 < a ≤ a, and we introduce the set P = Pa,a of
all probability measures on Ω such that B is a martingale under P with quadratic
variation absolutely continuous with respect to Lebesgue, and

a ≤ d〈B〉t
dt

≤ a, t ∈ [0, T ]. (31)

Notice that the family P has no dominating measure, and all measures contained
therein are mutually singular. Since the stochastic integral is defined P−a.s. for all
P ∈ P, it is not clear how to define the liquidation value V in (30) simultaneously
under every P ∈ P. This achived in [10] by revisiting the stochastic integration
theory, replacing the reference probability measure by the capacity

ac(A) := sup
P∈P

P[A] for all A ∈ FT . (32)

a An event A is said to be polar if c(A) = 0, and a property is said to hold quasi-
surely (q.s. hereafter) if it holds on the complement of a polar set. The first main
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contribution of [10] is to isolate a set of integrands H, such that the stochastic
integral (30) with θ ∈ H is defined quasi-surely, i.e. P−almost surely for all P ∈ P.

The superhedging problem can now be formulate rigorously:

V(ξ) := inf {V0 : VT ≥ ξ, q.s. for some θ ∈ H} . (33)

This is weaker than the BSDE problem as existence is not required in the for-
mulation (33). The main result of [10] is the following dual formulation of this
problem:

V(ξ) = sup
P∈P

EP[ξ], (34)

for random variables ξ in a suitable class.
The interesting feature of this result is that, in the Markov framework ξ =

g(BT ), the dynamic programming equation corresponding to the dual problem
(34) is fully nonlinear:

−∂tv −G(D2v) = 0, where G(γ) := sup
a≤a≤a

1
2
aD2v =

1
2
(
a(D2v)+ − a(D2v)−

)
. (35)

In other words, this observation suggests that the fully nonlinear PDE corresponds
to a BSDE defined quasi-surely, similar to the super-hedging problem (33). This
is the starting point of our alternative formulation of second order BSDE in the
subsequent Section 4, which will turn out to allow for a complete existence and
uniqueness theory.

Finally, we observe that the above quasi-sure stochastic analysis is closely re-
lated to the G−stochastic integral which was recently introduced by Peng [19, 11].

4. A quasi-sure formulation of second order BSDEs

This section introduces the new framework motivated from [10] and [19].

4.1. A nondominated family of singular measures. As in Subsec-
tion 3.4, we work on the canonical space Ω. For the purpose of our second order
BSDEs, we need to extend the set of non-dominated mutually singular measure P
to the collection of all P which turn the canonical process B into a local martingale.
It follows from Karandikar [15] that there exists an F−progressively measurable
process, denoted as

∫ t

0
BsdBT

s , which coincides with the Itô’s integral, P−a.s. for
all local martingale measure P. In particular, this provides a pathwise definition
of

a〈B〉t := BtB
T
t − 2

∫ t

0

BsdBT
s and ât := lim

ε↓0

1
ε

(
〈B〉t − 〈B〉t−ε

)
, (36)

a where the lim is componentwise. Clearly, 〈B〉 coincides with the P−quadration
variation of B, P−a.s. for all local martingale measure P.
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For all F−progressively measurable process α taking values in the set S>0
d of

positive definite symmetric matrices and satisfying
∫ T

0
|αt|dt < ∞, P0−a.s. we

introduce the measure

Pα := P0 ◦ (Xα)−1 where Xα
t :=

∫ t

0

α1/2
s dBs, t ∈ [0, T ], P0 − a.s. (37)

We denote by PS the collection of all such measures. It can be shown that

every P ∈ PS satisfies the Blumenthal zero-one law
and the martingale representation property.

(38)

4.2. The nonlinear generator. Consider the map Ht(ω, y, z, γ) : [0, T ]×
Ω×R×Rd×DH → R, where DH ⊂ Rd×d is a given subset containing 0. We start
with the following natural condition.

Assumption 4.1. For fixed (y, z, γ), H is F−progressively measurable; H is
uniformly Lipschitz continuous in (y, z), uniformly continuous in ω under the
‖.‖∞−norm, and lower semi-continuous in γ.

An important role is played by the conjugate of H with respect to γ:

Ft(y, z, a) := sup
γ∈DH

{
1
2
Tr[aγ]−Ht(y, z, γ)

}
, a ∈ S>0

d . (39)

and we denote

F̂t(y, z) := Ft(y, z, ât), F̂ 0
t := F̂t(0, 0). (40)

Then F is a R∪{∞}−valued measurable map. By the above conditions on H, the
domain DFt

of F as a function of a is independent of (ω, y, z), and

F (·, a) is uniformly Lischitz continuous in (y, z) and uniformly continuous in ω,
uniformly on (t, a), for every a ∈ DFt

.
(41)

For every constant κ ∈ (1, 2], we denote by Pκ
H the collection of all those P ∈ PS

such that

aP ≤ â ≤ aP, dt× dP− a.s. for some aP, aP ∈ S>0
d , and EP

[( ∫ T

0

|F̂ 0
t |κdt

)2/κ
]

< ∞. (42)

In particular, ât ∈ DFt
, dt× dP−a.s. for all P ∈ Pκ

H .
By slightly abusing the terminology of Denis and Martini [10], we say a property

holds Pκ
H−quasi-surely (Pκ

H−q.s. for short) if it holds P−a.s. for all P ∈ Pκ
H .

Our main results reuire the following conditions on F̂ .

Assumption 4.2. (i) Pκ
H is not empty.

(ii) The process F̂ 0 satisfies:

‖F̂ 0‖2H2,κ
H

:= sup
P∈Pκ

H

EP
[
ess sup
0≤t≤1

P (EH,P
t

[ ∫ 1

0

|F̂ 0
s |κds

])2/κ
]

< ∞. (43)
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(iii) There exists a constant C such that for all (y, z1, z2) ∈ R × Rd × Rd and
P ∈ Pκ

H : ∣∣F̂t(y, z1)− F̂t(y, z2)
∣∣ ≤ C|â1/2

t (z1 − z2)|, dt× dP− a.s. (44)

Here we abuse the notation Hp,κ
H slightly by noting that, unlike the elements in

Hp
H , F̂ 0 is 1−dimensional and the norm in (43) does not contain the factor â1/2.

4.3. The spaces and norms. This subsection collects all norms needed
for our results.
• Lp,κ

H : space of all FT−measurable R−valued random variables ξ with

a‖ξ‖p

L2,κ
H

:= sup
P∈Pκ

H

EP[|ξ|p] < ∞. (45)

a • H2,κ
H : space of all F+−progressively measurable Rd−valued processes Z with

a‖Z‖2H2,κ
H

:= sup
P∈Pκ

H

EP
[ ∫ T

0

|â1/2
t Zt|2dt

]
< ∞. (46)

a • D2,κ
H the space of all F+−progressively measurable R−valued processes Y with

Pκ
H−q.s. càdlàg paths and

a‖Y ‖2D2,κ
H

:= sup
P∈Pκ

H

EP
[

sup
0≤t≤T

|Yt|2
]
. (47)

a • For ξ ∈ L1,κ
H , P ∈ Pκ

H , and t ∈ [0, T ]:

aEH,P
t [ξ] := ess sup

P′∈Pκ
H(t,P)

P EP′ [ξ|Ft] where Pκ
H(t, P) := {P′ ∈ Pκ

H : P′ = P on Ft}.(48)

a • L2,κ
H : subspace of all ξ ∈ L2

H such that

a‖ξ‖2L2,κ
H

:= sup
P∈Pκ

H

EP
[
ess sup
0≤t≤1

P
(
EH,P

t [|ξ|κ]
)2/κ]

< ∞. (49)

a • UCb(Ω): space of all bounded and uniformly continuous maps ξ : Ω −→ R
with respect to the ‖.‖∞−norm.
• L2,κ

H : closure of UCb(Ω) under the norm ‖ · ‖L2,κ
H

.

We observe that when Pκ
H is reduced to a singleton:

aPκ
H = {P} =⇒ L2,κ

H = L2,κ
H = L2,κ

H = L2(P) for 1 ≤ κ < p. (50)

a
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4.4. Definition. We shall obtain a complete existence and uniqueness theory
for the second order BSDE (25) by considering instead the quasi-sure formulation:

Yt = ξ −
∫ T

t

F̂s(Ys, Zs)ds−
∫ T

t

Zs · dBs + K1 −Kt, 0 ≤ t ≤ T, Pκ
H − q.s. (51)

A solution to the 2BSDE (51) is a pair (Y,Z) ∈ D2,κ
H ×H2,κ

H such that:
• YT = ξ, Pκ

H−q.s.
• For all P ∈ Pκ

H , the process

KP
t := Y0 − Yt +

∫ t

0

F̂s(Ys, Zs)ds +
∫ t

0

ZsdBs, 0 ≤ t ≤ T, P− a.s. (52)

has non-decreasing paths, P−a.s.
• The family {KP, P ∈ Pκ

H} satisfies the minimumality condition:

KP
t = ess inf

P′∈Pκ
H(t,P)

P EP′
t [KP′

T ], P− a.s. for all P ∈ Pκ
H and t ∈ [0, 1]. (53)

The above definition is motivated in [22, 23] by the corresponding stochastic
target problem. Let us just verify it reduces to the standard notion of BSDE when
the generator H is linear in γ:

Ht(y, z, γ) =
1
2
Tr[a0

t γ]− ft(y, z), (54)

where a0 : [0, T ]× Ω → S>0
d is F−progressively measurable and has uniform lower

and upper bounds. We remark that in this case we do not need to assume that a0

and f are uniformly continuous in ω. Then, under obvious extension of notations,
we have

aDFt(ω) = {a0
t (ω)} and F̂t(y, z) = ft(y, z). (55)

a Assume further that there exists P ∈ PS such that

aâ = a0, P− a.s. and EP[ ∫ T

0

(
|ft(0, 0)|2dt

)]
< ∞, (56)

a then Pκ
H = P2

H = {P}. In this case, the minimum condition (53) implies

a0 = K0 = EP[KT ] and thus K = 0, P− a.s. (57)

a Hence, the 2BSDE (51) is equivalent to the following standard BSDE:

aYt = ξ −
∫ T

t

fs(Ys, Zs)ds−
∫ 1

t

ZsdBs, 0 ≤ t ≤ T, P− a.s. (58)

a Finally, we recall from the previous subsection that in the present case, we have
L2,κ

H = L2,κ
H = L2

H = L2(P) for all κ ∈ [1, 2).
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5. Wellposedness of second order BSDEs

This section contains the main results of the papers [20, 21, 22, 23].
For any P ∈ Pκ

H , F−stopping time τ , and Fτ−measurable random variable ξ ∈
L2(P), we denote by (YP,ZP) := (YP(τ, ξ),ZP(τ, ξ)) the solution to the following
standard BSDE:

YP
t = ξ −

∫ τ

t

F̂s(YP
s ,ZP

s )ds−
∫ τ

t

ZP
s dBs, 0 ≤ t ≤ τ, P− a.s. (59)

Our first result provides a representation of any solution of the 2BSDE (51).

Theorem 5.1. Let Assumptions 4.1 and 4.2 hold. Assume that ξ ∈ L2,κ
H and that

(Y, Z) ∈ D2,κ
H × H2,κ

H is a solution to 2BSDE (51). Then, for any P ∈ Pκ
H and

0 ≤ t ≤ T ,

Yt = ess sup
P′∈Pκ

H(t,P)

P YP′
t (T, ξ), P− a.s. (60)

Consequently, the 2BSDE (51) has at most one solution in D2,κ
H ×H2,κ

H .

The above representation, together with the comparison principle for standard
BSDEs, implies the following comparison principle for 2BSDEs.

Corollary. Let Assumptions 4.1 and 4.2 hold. Assume ξi ∈ L2,κ
H and (Y i, Zi) ∈

D2,κ
H × H2,κ

H is a corresponding solution of the 2BSDE (51), i = 1, 2. If ξ1 ≤ ξ2,
Pκ

H−q.s. then Y 1 ≤ Y 2, Pκ
H−q.s.

We next state the a priori estimates which will be used in the subsequent
existence result.

Theorem 5.2. Let Assumptions 4.1 and 4.2 hold.
(i) Assume that ξ ∈ L2,κ

H and that (Y, Z) ∈ D2,κ
H × H2,κ

H is a solution to 2BSDE
(51). Then there exist a constant Cκ such that

‖Y ‖2D2,κ
H

+ ‖Z‖2H2,κ
H

+ sup
P∈Pκ

H

EP[|KP
1 |2] ≤ Cκ

(
‖ξ‖2L2,κ

H

+ ‖F̂ 0‖2H2,κ
Pκ

H

)
. (61)

(ii) Assume that ξi ∈ L2,κ
H and that (Y i, Zi) ∈ D2,κ

H × H2,κ
H is a corresponding

solution to 2BSDE (51), i = 1, 2. Denote δξ := ξ1 − ξ2, δY := Y 1 − Y 2, δZ :=
Z1 − Z2, and δKP := K1,P −K2,P. Then there exists a constant Cκ such that

‖δY ‖D2,κ
H

≤ Cκ‖δξ‖L2,κ
H

,

‖δZ‖2H2,κ
H

+ sup
P∈Pκ

H

EP
[

sup
0≤t≤1

|δKP
t |2
]
≤ Cκ‖δξ‖L2,κ

H

(
‖ξ1‖L2,κ

H
+ ‖ξ2‖L2,κ

H
+ ‖F̂ 0‖H2,κ

Pκ
H

)
. (62)

The main result of this paper is:

Theorem 5.3. Let Assumptions 4.1 and 4.2 hold. Then for any ξ ∈ L2,κ
H , the

2BSDE (51) has a unique solution (Y, Z) ∈ D2,κ
H ×H2,κ

H .
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Our final result concern the connection between the 2BSDE (51) and the cor-
responding fully nonlinear PDE in the Markov case:

aHt(ω, y, z, γ) = h(t, Bt(ω), y, z, γ) and ξ = g(ω). (63)

a Observe that h may not be nondecreasing in γ, but the following ĥ is:

ĥ(t, x, y, z, γ) = sup
a∈S>0

d

{
1
2
Tr[aγ]− f(t, x, y, z, a)

}
, γ ∈ Rd×d. (64)

To obtain the connection with the corresponding fully nonlinear PDE, we need
more assumptions which are detailed in [23]. Let us just mention that under those
assumptions, we have

Yt = u(t, Bt), t ∈ [0, T ], (65)

where
(i) u is a viscosity subsolution of

−∂tu
∗ − ĥ∗(·, u∗, Du∗, D2u∗) ≤ 0 on [0, 1)× Rd. (66)

(ii) u is a viscosity supersolution of

−∂tu∗ − ĥ∗(·, u∗, Du∗, D
2u∗) ≥ 0 on [0, 1)× Rd. (67)

Here, we used the classical notation in the theory of viscosity solutions:

au∗(θ) := lim
θ′→θ

u(θ) and u∗(θ) := lim
θ′→θ

u(θ′), for θ = (t, x), (68)

ĥ∗(θ) := lim
θ′→θ

ĥ(θ′) and ĥ∗(θ) := lim
θ′→θ

ĥ(θ′), for θ = (t, x, y, z, γ). (69)

a
Example Hedging under Gamma constraints. Consider the quasi-sure reformula-
tion of the problem of Subsection 3.1. The generator is given by

ah(t, x, y, z, γ) :=
1
2
γ if γ ∈ [Γ,Γ], and ∞ otherwise, (70)

a where Γ < 0 < Γ are given constants. By direct calculation, we see that

af(a) =
1
2
(
Γ(a− 1)+ − Γ(a− 1)−

)
, a ≥ 0, (71)

a and

aĥ(γ) =
1
2
(γ ∨ Γ) if γ ≤ Γ, and ∞ otherwise. (72)

a Then,

aĥ∗ = ĥ and ĥ∗(γ) =
1
2
(γ ∨ Γ)1{γ<Γ} +∞1{γ≥Γ}. (73)
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a In view of this, the above viscosity properties (66)-(67) are equivalent to

amin
{
− ∂tu

∗ − 1
2
(D2u∗ ∨ Γ), Γ̄−D2u∗

}
≤ 0, (74)

min
{
− ∂tu∗ −

1
2
(D2u∗ ∨ Γ), Γ̄−D2u∗

}
≥ 0. (75)

a

6. A probabilistic scheme for fully nonlinear PDEs

Consider the fully nonlinear Cauchy problem:

−LXv − h0

(
·, v,Dv,D2v

)
= 0, on [0, T )× Rd, (76)

v(T, ·) = g, on ∈ Rd. (77)

where

aLXϕ := ∂tϕ + µ ·Dϕ +
1
2
Tr[aD2ϕ] (78)

a is the Dynkin operator of some Markov diffusion process. Similar to Subsection
2.4, a probabilistic numerical scheme for fully nonlinear PDEs was suggested in [8]
and analyzed later in [13].

To simplify the notation, we consider the case σ = Id. let π : t = t0 < . . . <
tn = T be a partition of the interval [t, T ] with time steps δtk := tk − tk−1, and
corresponding increments of the Brownian motion δWtk

:= Wtk
−Wtk−1 . Denote

by Xπ the euler discretization of X along the partition π. Then the probabilistic
numerical scheme for the fully nonlinear PDE is defined by:

Y π
tn

= g
(
Xπ

tn

)
, (79)

and

Y π
tk−1

= E
[
Y π

tk
|Xπ

tk−1

]
+ δtkh0

(
tk−1, X

π
tk−1

, Y π
tk−1

, Zπ
tk−1

,Γπ
tk−1

)
, (80)

Zπ
tk−1

= E
[
Y π

tk

δWtk

δtk
|Xπ

tk−1

]
, (81)

Γπ
tk−1

= E
[
Y π

tk

δWtk
δWT

tk
− δtk

(δtk)2
|Xπ

tk−1

]
. (82)

The convergence of this probabilistic numerical scheme is analyzed in [13] by the
method of monotonic schemes introduced by Barles and Souganidis [4] and further
developed by Krylov [17], Barles and Jakobsen [3].

Moreover, a numerical implementation is reported in [13] for the 3-dimensional
mean curvature flow, and a five dimensional stochastic control problem.
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