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B.2.3 Fonction caractéristique . . . . . . . . . . . . . . . . . . . 263

B.3 Espaces Lp et convergences
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B.4.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . 271
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Chapter 1

Introduction: discrete time
derivatives pricing

Financial mathematics is a young field of applications of mathematics which
experienced a huge growth during the last thirty years. It is by now considered
as one of the most challenging fields of applied mathematics by the diversity of
the questions which are raised, and the high technical skills that it requires.

These lecture notes provide an introduction to stochastic finance for the
students of third year of Ecole Polytechnique. Our objective is to cover the basic
Black-Scholes theory from the modern martingale approach. This requires the
development of the necessary tools from stochastic calculus and their connection
with partial differential equations.

Modeling financial markets by continuous-time stochastic processes was ini-
tiated by Louis Bachelier (1900) in his thesis dissertation under the supervision
of Henri Poincaré. Bachelier’s work was not recognized until the recent his-
tory. Sixty years later, Samuelson (Nobel Prize in economics 1970) came back
to this idea, suggesting a Brownian motion with constant drift as a model for
stock prices. However, the real success of Brownian motion in the financial
applications was realized by Fisher Black, Myron Scholes, et Robert Merton
(Nobel Prize in economics 1997) who founded between 1969 and 1973 the mod-
ern theory of financial mathematics by introducing the portfolio theory and
the no-arbitrage pricing arguments. Since then, this theory gained an impor-
tant amount of rigor and precision, essentially thanks to the martingale theory
developed in the eighties.

Although continuous-time models are more demanding from the technical
viewpoint, they are widely used in the financial industry because of the sim-
plicity of the resulting formulae for pricing and hedging. This is related to the
powerful tools of differential calculus which are available only in continuous-
time. We shall first provide a self-contained introduction of the main concept
from stochastic analysis: Brownian motion, stochastic integration with respect
to the Brownian motion, Itô’s formula, Girsanov change of measure Theorem,

9



10 CHAPTER 1. INTRODUCTION

connection with the heat equation, and stochastic differential equations. We
then consider the Black-Scholes continuous-time financial market where the no-
arbitrage concept is sufficient for the determination of market prices of derivative
securities. Prices are expressed in terms of the unique risk-neutral measure, and
can be expressed in closed form for a large set of relevant derivative securities.
The final chapter provides the main concepts in interest rates models in the
gaussian case.

In order to motivate the remaining content of theses lecture notes, we would
like to draw the reader about the following major difference between finan-
cial engineering and more familiar applied sciences. Mechanical engineering is
based on the fundamental Newton’s law. Electrical engineering is based on the
Maxwell equations. Fluid mechanics are governed by the Navier-Stokes and the
Bernoulli equations. Thermodynamics rest on the fundamental laws of conser-
vation of energy, and entropy increase. These principles and laws are derived
by empirical observation, and are sufficiently robust for the future development
of the corresponding theory.

In contrast, financial markets do not obey to any fundamental law except the
simplest no-dominance principle which states that valuation obeys to a trivial
monotonicity rule, see Section 1.2 below.

Consequently, there is no universally accurate model in finance. Financial
modeling is instead based upon comparison between assets. The Black-Scholes
model derives the price of an option by comparison to the underlying asset price.
But in practice, more information is available and one has to incorporate the
relevant information in the model. For this purpose, the Black-Scholes model
is combined with convenient calibration techniques to the available relevant
information. Notice that information is different from one market to the other,
and the relevance criterion depends on the objective for which the model is built
(prediction, hedging, risk management...). Therefore, the nature of the model
depends on the corresponding market and its final objective.

So again, there is no universal model, and any proposed model is wrong. Fi-
nancial engineering is about building convenient tools in order to make these
wrong models less wrong. This is achieved by accounting for all relevant in-
formation, and using the only no-dominance law, or its stronger version of no-
arbitrage. An introduction to this important aspect is contained in Chapter
10.

Given this major limitation of financial modeling, a most important issue
is to develop tools which measure the underlying risk in any financial position,
and also the risk induced by any model used in its management. The impor-
tance of this activity was highlighted by the past financial crisis, and even more
emphasized during the recent subprime financial crisis. Chapter 14 provides the
main tools and ideas in this area.

In the remaining of this introduction, we introduce the reader to the main
notions in derivative securities markets. We shall focus on some popular exam-
ples of derivative assets, and we provide some properties that their prices must
satisfy independently of the distribution of the primitive assets prices. The
only ingredient which will be used in order to derive these properties is the no
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dominance principle introduced in Section1.2 below.

1.1 Basic derivative products

1.1.1 European and American options

The most popular examples of derivative securities are European and American
call and put options. More examples of contingent claims are listed in Section
1.5 below.

A European call option on the asset Si is a contract where the seller promises
to deliver the risky asset Si at the maturity T for some given exercise price, or
strike, K > 0. At time T , the buyer has the possibility (and not the obligation)
to exercise the option, i.e. to buy the risky asset from the seller at strike K. Of
course, the buyer would exercise the option only if the price which prevails at
time T is larger than K. Therefore, the gain of the buyer out of this contract is

B = (SiT −K)+ = max{SiT −K, 0} ,

i.e. if the time T price of the asset Si is larger than the strike K, then the
buyer receives the payoff SiT −K which corresponds to the benefit from buying
the asset from the seller of the contract rather than on the financial market. If
the time T price of the asset Si is smaller than the strike K, the contract is
worthless for the buyer.

A European put option on the asset Si is a contract where the seller promises
to purchase the risky asset Si at the maturity T for some given exercise price, or
strike, K > 0. At time T , the buyer has the possibility, and not the obligation,
to exercise the option, i.e. to sell the risky asset to the seller at strike K. Of
course, the buyer would exercise the option only if the price which prevails at
time T is smaller than K. Therefore, the gain of the buyer out of this contract
is

B = (K − SiT )+ = max{K − SiT , 0} ,

i.e. if the time T price of the asset Si is smaller than the strike K, then the
buyer receives the payoff K − SiT which corresponds to the benefit from selling
the asset to the seller of the contract rather than on the financial market. If the
time T price of the asset Si is larger than the strike K, the contract is worthless
for the buyer, as he can sell the risky asset for a larger price on the financial
market.

An American call (resp. put) option with maturity T and strike K > 0
differs from the corresponding European contract in that it offers the possibility
to be exercised at any time before maturity (and not only at the maturity).

The seller of a derivative security requires a compensation for the risk that
he is bearing. In other words, the buyer must pay the price or the premium
for the benefit of the contrcat. The main interest of this course is to determine
this price. In the subsequent sections of this introduction, we introduce the no
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dominance principle which already allows to obtain some model-free properties
of options which hold both in discrete and continuous-time models.

In the subsequent sections, we shall consider call and put options with ex-
ercise price (or strike) K, maturity T , and written on a single risky asset with
price S. At every time t ≤ T , the American and the European call option price
are respectively denoted by

Call(t, St, T,K) and call(t, St, T,K).

Similarly, the prices of the American and the Eurpoean put options are respec-
tively denoted by

Put(t, St, T,K) and put(t, St, T,K).

The intrinsic value of the call and the put options are respectively:

Call(t, St, t,K) = call(t, St, t,K) = (St −K)+ .

Put(t, St, t,K) = put(t, St, t,K) = (K − St)+ ,

i.e. the value received upon immediate exercing the option. An option is said to
be in-the-money (resp. out-of-the-money) if its intrinsic value is positive (resp.
negative). If K = St, the option is said to be at-the-money. Thus a call option
is in-the-money if St > K, while a put option is in-the-money if St < K.

1.1.2 Bonds and term structure of interest rates

A zero-coupon bon (ZCB) is a contrat stipulating that the seller delivers a fixed
unitary amont at some fixed maturity (expressed in the corresponding currency),
and receives a premium from the buyer at the signature of the contract. For
instance, a T−maturity ZCB, denominated in Euros, is defined by the payment
of 1 Euro at the maturity T .

The singularity of ZCB’s is that they are defined so as to isolate the effect of
interest rates, avoiding any other randomness in the definition of the contract.
We shall denote by

Pt(T )

the time t−price of the T−maturity ZCB. The corresponding yield to maturity
Rt(T ) is defined by

e−(T−t)Rt(T ) := Pt(T )

and allows to compare different maturities interest rates after convenient nor-
malization. The graph of the map:

T ∈ (t,∞) 7−→ Rt(T )

is called the term structure of interest rates. By extrapolating this graph to the
origin T = t, we may define the instantaneous interest rate

rt := Rt(t),
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which is not more than a limiting value, un-observable from the market data,
and allowing to simplify the mathematical analysis by passage to the continuous-
time setting.

A bond is a contract defined by a deterministic stream of payments F1, . . . , Fn
at given maturities T1 < . . . < Tn, respectively. Given the term structure of
interest rates, the price of such a bon at any time t ≤ T1 is given by:

F1Pt(T1) + . . .+ FnPt(Tn).

In practice, bonds available on the financial market are all defined by means of
annual stream of payments called coupons, which are payables at fixed annual
dates. Consequently, only bonds with less than one year remaining maturity
are free of coupons and can be considered as ZCB. The prices of the remaining
ZCB (with more than one year remaining maturties) are computed from the
market prices of bonds by solving a linear system. This method of resolution is
called the Bootstrapping technique.

The last financial crisis evidenced the importance of the counterparty risk,
and highlighted the crucial importance of liquidity and funding risks. In par-
ticular, the assumption stating the existence of a ”default-free” reference coun-
terparty, whose emission bonds serve as a reference for the term structure of
interest rates, can not be admitted any more. Such a role was played by gov-
ernment bounds, and can not be accepted in view of the current sovereign debt
crisis... An important consequence is the co-existence of various term struc-
tures of interest rates {Rit(T ), T ≥ t}, i = 1, . . . , N , corresponding to different
underlying debtors.

1.1.3 Forward contrats

A forward contract stipulates that the seller delivers one unit of some underlying
asset S at some given maturity T for an exercise price Kt fixed at the date t of
signature of the contract, with the two following major differences with european
calls:

• the buyer has the obligation to pay the price Kt for the risky asset at the
maturity T , inducing a linear payoff SiT −Kt at the maturity T which may
be negative,

• the forward contract is set so as there is no premium transfer between the
buyer and the seller at inception of the contract.

From the last feature of forward contracts, it is clear that the exercice price Kt

is the key-quantity on which the buyer and the seller need to agree in order
for the trade to happen. For this reason, Kt is referred to as the price of the
forward contract at time t.

We shall see in Section 1.2.1 that the time t−price of the forward contract

S
(fw)
t (T ) in a financial market without frictions is computed from the under-
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lying spot price and the ZCB by:

S
(fw)
t (T ) =

St
Pt(T )

.

This relation will be seen to hold regardless of any choice of modeling, i.e.
model-free.

1.2 No dominance principle and first properties

We shall assume that there are no market imperfections as transaction costs,
taxes, or portfolio constraints, and we will make use of the following concept.

No dominance principle Let X be the gain from a portfolio strategy with
initial cost x. If X ≥ 0 in every state of the world, Then x ≥ 0.

1.2.1 Valuation of forward Contracts

Recall that a forward contract F on the underlying S, traded at time tfor the
maturity T , sets an exercise price Kt (the price of the forward contract) so as
to generate a payoff at maturity T :

FT = ST −Kt,

with zero initial value of the contract at time t.
Assume that the underlying asset is without dividends. It is clear that

FT is the time T−value of the portfolio consisting of a long position of one
unit of the underlying and a short position of a quantity Kt of T−maturity
ZCBs. By the domination principle, applied both to F and −F , it follows that
Ft = St −KtPt(T ). Consequently, the price of the forward contract is defined
by solving 0 = Ft = St −KtPt(T ). This shows that the forward contract price
of completely determined by the no-domination principle:

Kt =
St

Pt(T )
,

regardless of any choice of modeling.

1.2.2 Some properties of options prices

1 Notice that, choosing to exercise the American option at the maturity T
provides the same payoff as the European counterpart. Then the portfolio con-
sisting of a long position in the American option and a short position in the
European counterpart has at least a zero payoff at the maturity T . It then
follows from the dominance principle that American calls and puts are at least
as valuable as their European counterparts:

Call(t, St, T,K) ≥ call(t, St, T,K) and Put(t, St, T,K) ≥ put(t, St, T,K)
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2 By a similar easy argument, we now show that American and European call
(resp. put) options prices are decreasing (resp. increasing) in the exercise price,
i.e. for K1 ≥ K2:

Call(t, St, T,K1) ≤ Call(t, St, T,K2) and call(t, St, T,K1) ≤ call(t, St, T,K2)

Put(t, St, T,K1) ≥ Put(t, St, T,K2) and put(t, St, T,K1) ≥ put(t, St, T,K2)

Let us justify this for the case of American call options. If the holder of the
low exercise price call adopts the optimal exercise strategy of the high exercise
price call, the payoff of the low exercise price call will be higher in all states of
the world. Hence, the value of the low exercise price call must be no less than
the price of the high exercise price call.
3 American/European Call and put prices are convex in K. Let us justify this
property for the case of American call options. For an arbitrary time instant
u ∈ [t, T ] and λ ∈ [0, 1], it follows from the convexity of the intrinsic value that

λ (Su −K1)
+

+ (1− λ) (Su −K2)
+ − (Su − λK1 + (1− λ)K2)

+ ≥ 0 .

We then consider a portfolio X consisting of a long position of λ calls with strike
K1, a long position of (1 − λ) calls with strike K2, and a short position of a
call with strike λK1 + (1 − λ)K2. If the two first options are exercised on the
optimal exercise date of the third option, the resulting payoff is non-negative
by the above convexity inequality. Hence, the value at time t of the portfolio is
non-negative.
4 We next show the following result for the sensitivity of European call options
with respect to the exercise price:

−Pt(T ) ≤ call (t, St, T,K2)− call (t, St, T,K1)

K2 −K1
≤ 0

The right hand-side inequality follows from the decrease of the European call
option c in K. To see that the left hand-side inequality holds, consider the
portfolio X consisting of a short position of the European call with exercise
price K1, a long position of the European call with exercise price K2, and a
long position of K2 −K1 zero-coupon bonds. The value of this portfolio at the
maturity T is

XT = −(ST −K1)+ + (ST −K2)+ + (K2 −K1) ≥ 0 .

By the dominance principle, this implies that −call (St, τ,K1)+call (St, τ,K2)+
Pt(τ)(K2 −K1) ≥ 0, which is the required inequality.
5 American call and put prices are increasing in maturity, i.e. for T1 ≥ T2:

Call(t, St, T1,K) ≥ Call(t, St, T2,K)and Put(t, St, T1,K1) ≥ Put(t, St, T2,K2)

This is a direct consequence of the fact tat all stopping strategies of the shorter
maturity option are allowed for the longer maturity one. Notice that this argu-
ment is specific to the American case.
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1.3 Put-Call Parity

When the underlying security pays no income before the maturity of the options,
the prices of calls and puts are related by

put(t, St, T,K) = call(t, St, T,K)− St +KPt(T ) .

Indeed, Let X be the portfolio consisting of a long position of a European
put option and one unit of the underlying security, and a short position of a
European call option and K zero-coupon bonds. The value of this portfolio at
the maturity T is

XT = (K − ST )+ + ST − (ST −K)+ −K = 0 .

Applying the dominance principle to XT and −XT , we see that the initial
value of this portfolio is both non-negative and non-positive, which provides the
required identity.

Notice that this argument is specific to European options. We shall see in
fact that the corresponding result does not hold for American options.

Finally, if the underlying asset pays out some dividends then, the above
argument breaks down because one should account for the dividends received
by holding the underlying asset S. If we assume that the dividends are known
in advance, i.e. non-random, then it is an easy exercise to adapt the put-call
parity to this context. However, if the dividends are subject to uncertainty as
in real life, there is no direct way to adapt the put-call parity.

1.4 Bounds on call prices and early exercise of
American calls

1. From the monotonicity of American calls in terms of the exercise price, we
see that

call(t, St, τ,K) ≤ Call(t, St, τ,K) ≤ St

Moreover, when the underlying security pays no dividends before maturity, we
have the following lower bound on call options prices:

Call(t, St, T,K) ≥ call(t, St, T,K) ≥ (St −KPt(T ))
+
.

Indeed, consider the portfolio X consisting of a long position of a European
call, a long position of K T−maturity zero-coupon bonds, and a short position
of one share of the underlying security. The required result follows from the
observation that the final value at the maturity of the portfolio is non-negative,
and the application of the dominance principle.
2. Assume that interest rates are positive. Then, an American call on a secu-
rity that pays no dividend before the maturity of the call will never be exercised
early.
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Indeed, let u be an arbitrary instant in [t, T ),
- the American call pays Su −K if exercised at time u,
- but Su −K < S −KPu(T ) because interest rates are positive.
- Since Call(Su, u,K) ≥ Su−KPu(T ), by the lower bound, the American option
is always worth more than its exercise value, so early exercise is never optimal.
3. Assume that the security price takes values as close as possible to zero.
Then, early exercise of American put options may be optimal before maturity.

Indeed, suppose the security price at some time u falls so deeply that Su <
K −KPu(T ).
- Observe that the maximum value that the American put can deliver when if
exercised at maturity is K.
- The immediate exercise value at time u is K − Su > K − [K − KPu(T )] =
KPu(T ) ≡ the discounted value of the maximum amount that the put could
pay if held to maturity,
Hence, in this case waiting until maturity to exercise is never optimal.

1.4.1 Risk effect on options prices

1 The value of a portfolio of European/american call/put options, with com-
mon strike and maturity, always exceeds the value of the corresponding basket
option.

Indeed, let S1, . . . , Sn be the prices of n security, and consider the portfolio
composition λ1, . . . , λn ≥ 0. By sublinearity of the maximum,

n∑
i=1

λi max
{
Siu −K, 0

}
≥ max

{
n∑
i=1

λiSiu −K, 0

}

i.e. if the portfolio of options is exercised on the optimal exercise date of the
option on the portfolio, the payoff on the former is never less than that on the
latter. By the dominance principle, this shows that the portfolio of options is
more valuable than the corresponding basket option.
2 For a security with spot price St and price at maturity ST , we denote its
return by

Rt(T ) :=
ST
St

.

Definition Let Rit(T ), i = 1, 2 be the return of two securities. We say that
security 2 is more risky than security 1 if

R2
t (T ) = R1

t (T ) + ε with E
[
ε|R1

t (T )
]

= 0 .

As a consequence, if security 2 is more risky than security 1, the above
definition implies that

Var
[
R2
t (T )

]
= Var

[
R1
t (T )

]
+ Var[ε] + 2Cov[R1

t (T ), ε]

= Var
[
R1
t (T )

]
+ Var[ε] ≥ Var

[
R1
t (T )

]



18 CHAPTER 1. INTRODUCTION

3 We now assume that the pricing functional is continuous in some sense to be
precised below, and we show that the value of an European/American call/put
is increasing in its riskiness.

To see this, let R := Rt(T ) be the return of the security, and consider the
set of riskier securities with returns Ri := Rit(T ) defined by

Ri = R+ εi where εi are iid and E [εi|R] = 0 .

Let Calli(t, St, T,K) be the price of the American call option with payoff
(
StR

i −K
)+

,

and Calln(t, St, T,K) be the price of the basket option defined by the payoff(
1
n

∑n
i=1 StR

i −K
)+

=
(
ST + 1

n

∑n
i=1 Stεi −K

)+
.

We have previously seen that the portfolio of options with common maturity
and strike is worth more than the corresponding basket option:

Call1(t, St, T,K) =
1

n

n∑
i=1

Calli(t, St, T,K) ≥ Calln(t, St, T,K).

Observe that the final payoff of the basket option Calln(T, ST , T,K)−→ (ST −K)
+

a.s. as n → ∞ by the law of large numbers. Then assuming that the pricing
functional is continuous, it follows that Calln(t, St, T,K) −→ Call(t, St, T,K),
and therefore: that

Call1(t, St, T,K) ≥ Call(t, St, T,K).

Notice that the result holds due to the convexity of European/American call/put
options payoffs.

1.5 Some popular examples of contingent claims

Example 1.1. (Basket call and put options) Given a subset I of indices in
{1, . . . , n} and a family of positive coefficients (ai)i∈I , the payoff of a Basket
call (resp. put) option is defined by

B =

(∑
i∈I

aiS
i
T −K

)+

resp.

(
K −

∑
i∈I

aiS
i
T

)+

.

♦

Example 1.2. (Option on a non-tradable underlying variable) Let Ut(ω) be
the time t realization of some observable state variable. Then the payoff of a
call (resp. put) option on U is defined by

B = (UT −K)
+

resp. (K − UT )
+
.

For instance, a Temperature call option corresponds to the case where Ut is the
temperature at time t observed at some location (defined in the contract).
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Example 1.3. (Asian option)An Asian call option on the asset Si with matu-
rity T > 0 and strike K > 0 is defined by the payoff at maturity:(

S
i

T −K
)+

,

where S
i

T is the average price process on the time period [0, T ]. With this
definition, there is still choice for the type of Asian option in hand. One can

define S
i

T to be the arithmetic mean over of given finite set of dates (outlined
in the contract), or the continuous arithmetic mean...

Example 1.4. (Barrier call options) Let B,K > 0 be two given parameters,
and T > 0 given maturity. There are four types of barrier call options on the
asset Si with stike K, barrier B and maturity T :

• When B > S0:

– an Up and Out Call option is defined by the payoff at the maturity
T :

UOCT = (ST −K)+1{max[0,T ] St≤B}.

The payoff is that of a European call option if the price process of
the underlying asset never reaches the barrier B before maturity.
Otherwise it is zero (the contract knocks out).

– an Up and In Call option is defined by the payoff at the maturity T :

UICT = (ST −K)+1{max[0,T ] St>B}.

The payoff is that of a European call option if the price process of the
underlying asset crosses the barrier B before maturity. Otherwise it
is zero (the contract knocks out). Clearly,

UOCT + UICT = callT

is the payoff of the corresponding European call option.

• When B < S0:

– an Down and In Call option is defined by the payoff at the maturity
T :

DICT = (ST −K)+1{min[0,T ] St≥B}.

The payoff is that of a European call option if the price process of
the underlying asset never reaches the barrier B before maturity.
Otherwise it is zero (the contract knocks out).
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– an Down and Out Call option is defined by the payoff at the maturity
T :

DOCT = (ST −K)+1{min[0,T ] St<B}.

The payoff is that of a European call option if the price process of the
underlying asset crosses the barrier B before maturity. Otherwise it
is zero (the contract knocks out). Clearly,

DOCT + DICT = callT

is the payoff of the corresponding European call option.

♦

Example 1.5. (Barrier put options) Replace calls by puts in the previous
example



Chapter 2

A first approach to the
Black-Scholes formula

2.1 The single period binomial model

We first study the simplest one-period financial market T = 1. Let Ω = {ωu, ωd},
F the σ-algebra consisting of all subsets of Ω, and P a probability measure on
(Ω,F) such that 0 < P(ωu) < 1.

The financial market contains a non-risky asset with price process

S0
0 = 1 , S0

1(ωu) = S0
1(ωd) = er ,

and one risky asset (d = 1) with price process

S0 = s , S1(ωu) = su , S1(ωd) = sd ,

where s, r, u and d are given strictly positive parameters with u > d. Such a
financial market can be represented by the binomial tree :

time 0 time 1

Su

Risky asset S0 = s ��
��1

PPPPq Sd

Non-risky asset S0
0 = 1

-
R = er

In the terminology of the Introduction Section 1, the above model is the sim-
plest wrong model which illustrates the main features of the valuation theory in
financial mathematics.

The discounted prices are defined by the value of the prices relative to the
nonrisky asset price, and are given by

S̃0 := S0, S̃0
0 := 1, and S̃1 :=

S1

R
, S̃0

1 := 1.

21
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A self-financing trading strategy is a pair (x, θ) ∈ R2 where x is an initial capital
and θ is the number of shares of risky asset that the investor chooses to hold
over the time period [0, 1]. The corresponding wealth process at time 1 is given
by :

Xx,θ
1 := (x− θS0)R+ θS1,

or, in terms of discounted value

X̃x,θ
1 := x+ θ(S̃1 − S̃0).

(i) The No-Arbitrage condition : An arbitrage opportunity is a portfolio strat-
egy θ ∈ R such that

X0,θ
1 (ωi) ≥ 0, i ∈ {u, d}, and P[X0,θ

1 > 0] > 0.

It can be shown that excluding all arbitrage opportunities is equivalent to the
condition

d < R < u. (2.1)

Exercise 2.1. In the context of the present one-period binomial model, prove
that the no-arbitrage condition is equivalent to (2.1).

Under the no-arbitrage condition (2.1), we ay introduce the equivalent1 prob-
ability measure Q defined by

Q[S1 = uS0] = 1−Q[S1 = dS0] = q :=
R− d
u− d

, (2.2)

Then, we see that the discounted price process satisfies

S̃ is a martingale under Q, i.e. EQ[S̃1] = S0. (2.3)

The probability measure Q is called risk-neutral measure, or equivalent martin-
gale measure.

(ii) Hedging contingent claims : A contingent claim is defined by its payoff
Bu := B(ωu) and Bd := B(ωd) at time 1.

In the context of the binomial model, it turns out that there exists a pair

(x0, θ0) ∈ R × A such that Xx0,θ0

T = B. Indeed, the equality Xx0,θ0

1 = B
is a system of two (linear) equations with two unknowns which can be solved
straightforwardly :

x0(B) = q
Bu
R

+ (1− q)Bd
R

= EQ[B̃] and θ0(B) =
Bu −Bd
su− sd

.

The portfolio (x0(B), θ0(B)) satisfies Xx0,θ0

T = B, and is therefore called a
perfect replication strategy for B.

1Two probability measures are equivalent if they have the same zero-measure events.
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(iii) No arbitrage valuation : Suppose that the contingent claim B is available
for trading at time 0 with market price p(B), and let us show that, under
the no-arbitrage condition, the price p(B) of the contingent claim contract is
necessarily given by

p(B) = x0(B) = EQ[B̃].

(iii-a) Indeed, suppose that p(B) < x0(B), and consider the following portfolio
strategy :

- at time 0, pay p(B) to buy the contingent claim, so as to receive the payoff
B at time 1,

- perform the self-financing strategy (−x0,−θ), this leads to paying −x0 at
time 0, and receiving −B at time 1.
The initial capital needed to perform this portfolio strategy is p(B) − x0 < 0.
At time 1, the terminal wealth induced by the self-financing strategy exactly
compensates the payoff of the contingent claim. We have then built an arbi-
trage opportunity in the financial market augmented with the contingent claim
contract, thus violating the no-arbitrage condition on this enlarged financial
market.

(iii-b) If p(B) > x0(B), we consider the following portfolio strategy :
- at time 0, receive p(B) by selling the contingent claim, so as to pay the

payoff B at time 1,
- perform the self-financing strategy (x0, θ), this leads to paying x0 at time

0, and receiving B at time 1.
The initial capital needed to perform this portfolio strategy is −p(B) + x0 < 0.
At time 1, the terminal wealth induced by the self-financing strategy exactly
compensates the payoff of the contingent claim. This again defines an arbi-
trage opportunity in the financial market augmented with the contingent claim
contract, thus violating the no-arbitrage condition on this enlarged financial
market.

2.2 The Cox-Ross-Rubinstein model

In this section, we present a dynamic version of the previous binomial model.
Let Ω = {−1, 1}N, and let F be the Borel σ-algebra on Ω. Let (Zk)k≥0

be a sequence of independent random variables with distribution P[Zk = 1] =
P[Zk = −1] = 1/2. We shall see later that we may replace the value 1/2 by
any parameter in (0, 1), see Remark 2.4). We consider the trivial filtration F0

= {∅,F}, Fk = σ(Z0, . . . , Zk) and Fn = {F0, . . . ,Fn}.
Let T > 0 be some fixed finite horizon, and (bn, σn)n≥1 the sequence defined

by :

bn = b
T

n
and σn = σ

(
T

n

)1/2

,

where b and σ are two given strictly positive parameters.
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Remark 2.2. All the results of this section hold true with a sequence (bn, σn)
satisfying :

nbn −→ bT and
√
nσn −→ σ

√
T whenever n→∞ .

For n ≥ 1, we consider the price process of a single risky asset Sn = {Snk ,
k = 0, . . . , n} defined by :

Sn0 = s and Snk = s exp

(
kbn + σn

k∑
i=1

Zi

)
, k = 1, . . . , n .

The non-risky asset is defined by a constant interest rate parameter r, so that
the return from a unit investment in the bank during a period of length T/n is

Rn := er(T/n) .

For each n ≥ 1, we have then defined a financial market with time step T/n.
In order to ensure that these financial markets satisfy the no-arbitrage con-

dition, we assume that :

dn < Rn < un where un = ebn+σn , dn = ebn−σn , n ≥ 1 . (2.4)

Under this condition, the risk-neutral measure Qn defined by :

Qn[Zi = 1] = qn :=
Rn − dn
un − dn

.

2.3 Valuation and hedging
in the Cox-Ross-Rubinstein model

Consider the contingent claims

Bn := g(Snn) where g(s) = (s−K)+ and K > 0 .

At time n − 1, we are facing a binomial model, and we can therefore conclude
from our previous discussions that the no-arbitrage market price of this con-
tingent claim at time n− 1 and the corresponding perfect hedging strategy are
given by

Bnn−1 := EQn
n−1[B̃n] and θnn−1(ωn−1) =

Bn(ωn−1, un)−Bn(ωn−1, dn)

unSnn−1(ωn−1)− dnSnn−1(ωn−1)
,

where ωn−1 ∈ {dn, un}n−1, and EQn
n−1 denotes the expectation operator under

Qn conditional on the information at time n − 1. Arguying similarly step by
step, backward in time, we may define the contingent claim Bnk at each time
step k as the no-arbitrage market price of the contingent claim Bnk+1 and the
corresponding perfect hedging strategy:

Bnk := EQn
k [B̃nk+1] and θnk (ωk) =

Bnk+1(ωk, un)−Bnk+1(ωk, dn)

unSnk (ωk)− dnSnk (ωk)
, k = 0, . . . , n− 1.
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Remark 2.3. The hedging strategy is the finite differences approximation (on
the binomial tree) of the partial derivative of the price of the contingent claim
with respect to the spot price of the underlying asset. This observation will be
confirmed in the continuous-time framework.

By the law of iterated expectations, we conclude that the no-arbitrage price
of the European call option is :

pn(Bn) := e−rTEQn
[
(Snn −K)+

]
.

Under the probability measure Qn, the random variables (1 + Zi)/2 are inde-
pendent and identically distributed as a Bernoulli with parameter qn. Then :

Qn

[
n∑
i=1

1 + Zi
2

= j

]
= Cjnq

j
n(1− qn)n−j for j = 0, . . . , n .

This provides

pn(Bn) = e−rT
n∑
j=0

g
(
sujnd

n−j
n

)
Cjnq

j
n(1− qn)n−j .

Remark 2.4. The reference measure P is not involved neither in the valuation
formula, nor in the hedging formula. This is due to the fact that the no-arbitrage
price in the present framework coincides with the perfect replication cost, which
in turn depends on the reference measure only through the corresponding zero-
measure sets.

2.4 Continuous-time limit

In this paragraph, we examine the asymptotic behavior of the Cox-Ross-Rubinstein
model when the time step T/n tends to zero, i.e. when n −→∞. Our final goal
is to show that the limit of the discrete-time valuation formulae coincides with
the Black-Scholes formula which was originally derived in [7] in the continuous-
time setting.

Although the following computations are performed in the case of European
call options, the convergence argument holds for a large class of contingent
claims.

Introduce the sequence :

ηn := inf{j = 0, . . . , n : sujnd
n−j
n ≥ K} ,

and let

B(n, p, η) := Prob [Bin(n, p) ≥ η] ,

where Bin(n, p) is a Binomial random variable with parameters (n, p).
The following Lemma provides an interesting reduction of our problem.
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Lemma 2.5. For n ≥ 1, we have :

pn(Bn) = sB

(
n,
qnun
Rn

, ηn

)
−Ke−rTB(n, qn, ηn) .

Proof. Using the expression of pn(Bn) obtained in the previous paragraph, we
see that

pn(Bn) = R−nn

n∑
j=ηn

(
sujnd

n−j
n −K

)
Cjnq

j
n(1− qn)n−j

= s

n∑
j=ηn

Cjn

(
qnun
Rn

)j (
(1− qn)dn

Rn

)n−j
− K

Rnn

n∑
j=ηn

Cjnq
j
n(1− qn)n−j .

The required result follows by noting that qnun + (1− qn)dn = Rn. ♦

Hence, in order to derive the limit of pn(Bn) when n −→ ∞, we have
to determine the limit of the terms B (n, qnun/Rn, ηn) et B(n, qn, ηn). We
only provide a detailed exposition for the second term ; the first one is treated
similarly.

The main technical tool in order to obtain these limits is the following.

Lemma 2.6. Let (Xk,n)1≤k≤n be a triangular sequence of iid Bernoulli ramdom
variables with parameter πn:

P[Xk,n = 1] = 1− P[Xk,n = 0] = πn .

Then: ∑n
k=1Xk,n − nπn√
nπn(1− πn)

−→ N (0, 1) in distribution .

The proof of this lemma is reported at the end of this paragraph.

Exercise 2.7. Use Lemma 2.6 to show that

ln

(
Snn
s

)
−→ N (bT, σ2T ) in distribution under P .

This shows that the Cox-Ross-Rubinstein model is a discrete-time approxima-
tion of a continuous-time model where the risky asset price has a log-normal
distribution.

Theorem 2.8. In the context of the Cox-Ross-Rubinstein model, the no-arbitrage
price pn(Bn) of a European call option converges, as n → ∞, to the Black-
Scholes price :

p(B) = s N
(
d+(s, K̃, σ2T )

)
− K̃ N(d−

(
s, K̃, σ2T )

)
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where

K̃ := Ke−rT , d±(s, k, v) :=
ln(s/k)√

v
±
√
v

2
,

and N(x) =
∫ x
−∞ e−v

2/2dv/
√

2π is the cumulative distribution function of stan-
dard Gaussian N (0, 1).

Proof. Under the probability measure Qn, notice that Bi := (Zi + 1)/2, i ≥ 0,
defines a sequence of iid Bernoulli random variables with parameter qn. Then

B(n, qn, ηn) = Qn

 n∑
j=1

Bi ≥ ηn

 .

We shall only develop the calculations for this term.
1. By definition of ηn, we have

suηn−1
n dn−ηn+1

n ≤ K ≤ suηnn dn−ηnn .

Then,

2ηnσ

√
T

n
+ n

(
b
T

n
− σ

√
T

n

)
= ln

(
K

s

)
+O

(
n−1/2

)
,

which provides, by direct calculation that

ηn =
n

2
+
√
n

ln(K/s)− bT
2σ
√
T

+ ◦(
√
n) . (2.5)

We also compute that

nqn =
1

2
+

(
r − b− σ2

2

)
T

2σ
√
T

√
n+ ◦(

√
n) . (2.6)

By (2.5) and (2.6), it follows that

lim
n→∞

ηn − nqn√
nqn(1− qn)

= −d−(s, K̃, σ2T ) .

2. Applying Lemma 2.6 to the sequence (Z1, . . . , Zn), we see that :

LQn

(
1
2

∑n
k=1(1 + Zj) − nqn√
nqn(1− qn)

)
−→ N (0, 1) ,

where LQn(X) denotes the distribution under Qn of the random variable X.
Then :

lim
n→∞

B(n, qn, ηn) = lim
n→∞

Qn

[
1
2

∑n
k=1(1 + Zj)− nqn√
nqn(1− qn)

≥ ηn − nqn√
nqn(1− qn)

]
= 1−N

(
−d−(s, K̃, σ2T )

)
= N

(
d−(s, K̃, σ2T )

)
.
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♦
Proof of Lemma 2.6. (i) We start by recalling a well-known result on char-
acteristic functions (see Exercise B.9). Let X be a random variable with E[Xn]
< ∞. Then :

ΦX(t) := E
[
eitX

]
=

n∑
k=0

(it)k

k!
E[Xk] + ◦(tn) . (2.7)

To prove this result, we denote F (t, x) := eitx and f(t) = E[F (t,X)]. The
function t 7−→ F (t, x) is differentiable with respect to the t variable. Since
|Ft(t,X)| = |iXF (t,X)| ≤ |X| ∈ L1, it follows from the dominated convergence
theorem that the function f is differentiable with f ′(t) = E[iXeitX ]. In partic-
ular, f ′(0) = iE[X]. Iterating this argument, we see that the function f is n
times differentiable with n−th order derivative at zero given by :

f (n)(0) = inE[Xn] .

The expansion (2.7) is an immediate consequence of the Taylor-Young formula.
(ii) We now proceed to the proof of Lemma 2.6. Let

Yj :=
Xj,n − πn√
nπn(1− πn)

and ΣYn :=

n∑
k=1

Yj .

Since the random variables Yj are independent and identically distributed, the
characteristic function ΦΣYn of ΣYn factors in terms of the common character-
istic function ΦY1

of the Yi’s as :

ΦΣYn(t) = (ΦY1
(t))

n
.

Moreover, we compute directly that E[Yj ] = 0 and E[Y 2
j ] = 1/n. Then, it

follows from (2.7) that :

ΦY1
(t) = 1− t2

2n
+ ◦

(
1

n

)
.

Sending n to ∞, this provides :

lim
n→∞

ΦΣYn(t) = e−t
2/2 = ΦN (0,1)(t) .

This shows the convergence in distribution of ΣYn towards the standard normal
distribution. ♦



Chapter 3

Some preliminaries on
continuous-time processes

3.1 Filtration and stopping times

Throughout this chapter, (Ω,F ,P) is a given probability space.

A stochastic process with values in a set E is a map

V : R+ × Ω −→ E

(t, ω) 7−→ Vt(ω)

The index t is conveniently interpreted as the time variable. In the context of
these lectures, the state space E will be a subset of a finite dimensional space,
and we shall denote by B(E) the corresponding Borel σ−field. The process V
is said to be measurable if the mapping

V : (R+ × Ω,B(R+)⊗F) −→ (E,B(E))

(t, ω) 7−→ Vt(ω)

is measurable. For a fixed ω ∈ Ω, the function t ∈ R+ 7−→ Vt(ω) is the sample
path (or trajectory) of V corresponding to ω.

3.1.1 Filtration

A filtration F = {Ft, t ≥ 0} is an increasing family of sub-σ−algebras of F .
Similar to the discrete-time context, Ft is intuitively understood as the infor-
mation available up to time t. The increasing feature of the filtration, Fs ⊂ Ft
for 0 ≤ s ≤ t, means that information can only increase as time goes on.

Definition 3.1. A stochastic process V is said to be
(i) adapted to the filtration F if the random variable Vt is Ft−measurable for

29
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every t ∈ R+,
(ii) progressively measurable with respect to the filtration F if the mapping

V : ([0, t]× Ω,B([0, t])⊗Ft) −→ (E,B(E))

(s, ω) 7−→ Vs(ω)

is measurable for every t ∈ R+.

Given a stochastic process V , we define its canonical filtration by FVt :=
σ (Vs, s ≤ t), t ∈ R+. This is the smallest filtration to which the process V is
adapted.

Obviously, any progressively measurable stochastic process is measurable
and adapted. The following result states that these two notions are equivalent
for processes which are either right-continuous or left-continuous.

Proposition 3.2. Let V be a stochastic process with right-continuous sample
paths or else left-continuous sample paths. Then, if V is adapted to a filtration
F, it is also progressively measurable with respect to F.

Proof. Assume that every sample path of V is right-continuous (the case of
left-continuous sample paths is treated similarly), and fix an arbitraty t ≥ 0.
Observe that Vs(ω) = limn→∞ V ns (ω) for every s ∈ [0, t], where V n is defined
by

V ns (ω) = Vkt/n(ω) for (k − 1)t < sn ≤ kt and k = 1, . . . , n .

Since the restriction of the map V n to [0, t]×Ω is obviously B([0, t])⊗Ft−measurable,
we deduce the measurability of the limit map V defined on [0, t]× Ω. ♦

3.1.2 Stopping times

A random time is a random variable τ with values in [0,∞]. It is called
- a stopping time if the event set {τ ≤ t} is in Ft for every t ∈ R+,
- an optional time if the event set {τ < t} is in Ft for every t ∈ R+.

Obviously, any stopping time is an optional time. It is an easy exercise to
show that these two notions are in fact identical whenever the filtration F is
right-continuous, i.e.

Ft+ := ∩s>tFs = Ft for every t ≥ 0 .

This will be the case in all of the financial applications of this course. An
important example of a stopping time is:

Exercise 3.3. (first exit time) Let V be a stochastic process with continuous
paths adapted to F, and consider a closed subset Γ ∈ B(E) together with the
random time

TΓ := inf {t ≥ 0 : Xt 6∈ Γ} ,

with the convention inf ∅ = ∞. Show that if Γ is closed (resp. open), then TΓ

is a stopping time (resp. optional time).
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Proposition 3.4. Let τ1 and τ2 be two stopping times. Then so are τ1 ∧ τ2,
τ1 ∨ τ2, and τ1 + τ2, .

Proof. For all t ≥ 0, we have {τ1 ∧ τ2 ≤ t} = {τ1 ≤ t} ∪ {τ2 ≤ t} ∈ Ft, and
{τ1 ∨ τ2 ≤ t} = {τ1 ≤ t} ∩ {τ2 ≤ t} ∈ Ft. This proves that τ1 ∧ τ2, τ1 ∨ τ2 are
stopping times. Finally:

{τ1 + τ2 > t} =
(
{τ1 = 0} ∩ {τ2 > t}

)
∪
(
{τ1 > t} ∩ {τ2 = 0}

)
∪
(
{τ1 ≥ t} ∩ {τ2 > 0}

)
∪
(
{0 < τ1 < t} ∩ {τ1 + τ2 > t}

)
.

Notice that the first three events sets are obviously in Ft. As for the fourth one,
we rewrite it as

{0 < τ1 < t} ∩ {τ1 + τ2 > t} =
⋃

r∈(0,t)∩Q

(
{r < τ1 < t} ∩ {τ2 > t− r}

)
∈ Ft.

♦

Exercise 3.5. (i) If (τn)n≥1 is a sequence of optional times, then so are supn≥1 τn,
infn≥1 τn, lim supn→∞ τn, lim infn→∞ τn.
(ii) If (τn)n≥1 is a sequence of stopping times, then so is supn≥1 τn.

Given a stopping time τ with values in [0,∞], we shall frequently use the
approximating sequence

τn :=
bnτc+ 1

n
1{τ<∞} +∞1{τ=∞}, n ≥ 1, (3.1)

which defines a decreasing sequence of stopping times converging a.s. to τ . Here
btc denotes the largest integer less than or equal to t. Notice that the random

time bnτcn is not a stopping time in general.
The following example is a complement to Exercise (3.5).

Exercise 3.6. Let τ be a finite optional time, and consider the sequence (τn)n≥1

defined by (3.1). Show that τn is a stopping time for all n ≥ 1.

As in the discrete-time framework, we provide a precise definition of the
information available up to some stopping time τ of a filtration F:

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for every t ∈ R+} .

Definition 3.7. Let τ be a stopping time, and V a stochastic process. We
denote

Vτ (ω) := Vτ(ω)(ω), V τt := Vt∧τ for all t ≥ 0,

and we call V τ the process V stopped at τ .



32 CHAPTER 3. CONTINUOUS-TIME PROCESSES PRELIMINARIES

Proposition 3.8. Let F = {Ft, t ≥ 0} be a filtration, τ an F−stopping time,
and V a progressively measurable stochastic process. Then
(i) Fτ is a σ−algebra,
(ii) Vτ is Fτ−measurable, and the stopped process {V τt , t ≥ 0} is progressively
measurable.

Proof. (i) First, for all t ≥ 0, Ω ∩ {τ ≤ t} = {τ ≤ t} ∈ Ft proving that Ω ∈ Fτ .

Next, for any A ∈ Fτ , we have Ac∩{τ ≤ t} = {τ ≤ t}∩(A∩{τ ≤ t})c. Since
τ is a stopping time, {τ ≤ t} ∈ Ft. Since A ∩ {τ ≤ t} ∈ Ft, its complement is
in Ft, and we deduce that the intersection {τ ≤ t} ∩ (A ∩ {τ ≤ t})c is in Ft.
Since this holds true for any t ≥ 0, this shows that Ac ∈ Fτ .

Finally, for any countable family (Ai)i≥1 ⊂ Fτ , we have (∪i≥1Ai) ∩ {τ ≤
t} = ∪i≥1(Ai ∩ {τ ≤ t}) ∈ Ft proving that ∪i≥1Ai ∈ Fτ .
(ii) We first prove that the stopped process V τ is progressively measurable.
To see this, observe that the map (s, ω) 7−→ Xτ

s (ω) is the composition of the
B([0, t])⊗Ft−measurable maps

f : (s, ω) 7−→ (τ(ω), ω) and V : (s, ω) 7−→ Vs(ω),

where the measurability of the second map is is exactly the progressive measur-
ability assumption on V , and that of the first one follows from the fact that for
all u ≤ t, A ∈ Ft:

f |−1
[0,t]([0, s)×A) = {(u, ω) ∈ [0, t]× Ω : u < s, u < τ(ω), ω ∈ A} ∈ B[0, t]×Ft,

as a consequence of {τ(ω) > u} ∈ Fu ⊂ Ft.
Finally, For every t ≥ 0 and B ∈ B(E), we write {Xτ ∈ B} ∩ {τ ≤ t} =

{Xτ
t ∈ B} ∩ {τ ≤ t} ∈ Ft by the progressive measurability of the stopped

process Xτ . ♦

Proposition 3.9. Let τ1 and τ2 be two F−stopping times. Then the events sets
{τ1 < τ2} and {τ1 = τ2} are in Fτ1 ∩ Fτ2 .

Proof. (i) We first prove that {τ1 > τ2} ∈ Fτ2 . For an arbitrary t ≥ 0, we have
{τ1 ≤ τ2} ∩ {τ2 ≤ t} = {τ1 ≤ t} ∩ {τ2 ≤ t} ∩ {τ1 ∧ t ≤ τ2 ∧ t}. Notice that
{τi ≤ t} ∈ Ft, by the definition of τi as stopping times, and {τ1∧t ≤ τ2∧t} ∈ Ft
because both τ1∧t and τ2∧t are in Ft. Consequently, {τ1 ≤ τ2}∩{τ2 ≤ t} ∈ Ft,
and therefore {τ1 ≤ τ2} ∈ Fτ2 by the arbitrariness of t ≥ 0 and the definition
of Fτ2 . Since Fτ2 is a σ−algebra, this shows that {τ1 > τ2} ∈ Fτ2 .
(ii) On the other hand, {τ1 > τ2} = {τ1 ∧ τ2 < τ1} ∈ Fτ1 , since τ1 ∧ τ2 and τ1
are Fτ1−measurable.
(iii) Finally {τ1 = τ2} = {τ1 > τ2}c ∩ {τ2 > τ1}c ∈ Fτ1 ∩Fτ2 by the first part of
this proof and the fact that Fτ1 ∩ Fτ2 is a σ−algebra. ♦
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3.2 Martingales and optional sampling

In this section, we shall consider real-valued adapted stochastic processes V on
the filtered probability space (Ω,F ,F,P). The notion of martingales is defined
similarly as in the discrete-time case.

Definition 3.10. Let V be an F−adapted stochastic process with E|Vt| <∞ for
every t ∈ R+.
(i) V is a submartingale if E[Vt|Fs] ≥ Vs for 0 ≤ s ≤ t,
(ii) V is a supermartingale if E[Vt|Fs] ≤ Vs for 0 ≤ s ≤ t,
(iii) V is a martingale if E[Vt|Fs] = Vs for 0 ≤ s ≤ t.

The following Doob’s optional sampling theorem states that submartingales
and supermartingales satisfy the same inequalities when sampled along random
times, under convenient conditions.

Theorem 3.11. (Optional sampling) Let V = {Vt, 0 ≤ t ≤ ∞} be a right-
continuous submartingale where the last element V∞ := limt→∞ Vt exists for
almost every ω ∈ Ω (see Remark 3.12). If τ1 ≤ τ2 are two stopping times, then

E [Vτ2 |Fτ1 ] ≥ Vτ1 P− a.s. (3.2)

Proof. For stopping times τ1 and τ2 taking values in a finite set, the result re-
duces to the context of discrete-time martingales, and is addressed in Section
3.5.1 below. In order to extend the result to general stopping times, we approx-
imate the stopping times τi by the decreasing sequences (τni )n≥1 of (3.1). Then
by the discrete-time optional sampling theorem,

E
[
Vτn2 |Fτn1

]
≥ Vτn1 P− a.s.

- By definition of the conditional expectation, this means that
∫
Vτn2 1A ≤∫

Vτm1 1A for all A ∈ Fτm1 . Since τ1 ≤ τm1 , we have Fτ1 ⊂ Fτm1 , and there-
fore

E
[
Vτn2 1A

]
≥ E

[
Vτm1 1A

]
for all A ∈ Fτ1 . (3.3)

- For all i = 1, 2, the sequence {Vτni , n ≥ 1} is an {Fτni , n ≥ 1}−backward sub-

martingale in the sense that E|Vτni | <∞ and E
[
Vτni |Fτn+1

i

]
≥ Vτn+1

i
. Moreover,

E
[
Vτni
]
≥ E[V0]. Then it follows from Lemma 3.14 below that it is uniformly

integrable. Therefore, taking limits in (3.3) and using the right-continuity of V ,
we obtain that

E [Vτ21A] ≥ E [Vτ11A] for all A ∈ Fτ1 ,

completing the proof. ♦
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Remark 3.12. The previous optional sampling theorem requires the existence
of a last element V∞ ∈ L1, as defined in the statement of the theorem, with
E[V∞|Ft] ≥ Vt. For completeness, we observe that the existence of a last element
V∞ ∈ L1 is verified for right-continuous submartingales V with supt≥0 E

[
V +
t

]
<

∞. This is the so-called submartingale convergence theorem, see e.g. Karatzas
and Shreve [30] Theorem 1.3.15. Notice however that this does not guarantee
that E[V∞|Ft] ≥ Vt.

In the context of these lectures, we shall simply apply the following conse-
quence of the optional sampling theorem.

Exercise 3.13. For a right-continuous submartingale V and two stopping
times τ1 ≤ τ2, the optional sampling theorem holds under either of the following
conditions:
(i) τ2 ≤ a for some constant a > 0,
(ii) there exists an integrable r.v. Y such that Vt ≤ E[Y |Ft] P−a.s. for every
t ≥ 0. Hint: under this condition, the existence of V∞ is guaranteed by the
submartingale convergence theorem (see Remark 3.12), and the submartingale
property at infinity is a consequence of Fatou’s lemma.

We conclude this section by proving a uniform integrability result for back-
ward submartingales which was used in the above proof of Theorem 3.11.

Lemma 3.14. Let {Dn, n ≥ 1} be a sequence of sub-σ−algebras of F with
Dn ⊃ Dn+1 for all n ≥ 1. Let {Xn, n ≥ 1} be an integrable stochastic process
with

Xn Dn −measurable and E[Xn|Dn+1] ≥ Xn+1 for all n ≥ 1. (3.4)

Suppose that the sequence (E[Xn])n≥1 is bounded from below, then {Xn, n ≥ 1}
is uniformly integrable.

Proof. We organize the proof in three steps.
Step 1: By the Jensen inequality, it follows from (3.4) that E[X+

n |Dn+1] ≥
X+
n+1 for all n ≥ 1. Then E[X+

n+1] ≤ E[E{X+
n |Fn+1}] = E[X+

n ]

P[|Xn| > λ] ≤ 1

λ
E|Xn| =

1

λ

(
2E[X+

n ]− E[Xn]
)
≤ 1

λ

(
2E[X+

1 ]− E[Xn]
)
.

Since the sequence (E[Xn])n≥1 is bounded from below, this shows that, as λ→
∞, supn≥1 P[|Xn| > λ] −→ 0. In other words:

for all δ > 0, there exists λ∗ > 0 s.t. P[|Xn| > λ] ≤ δ for all n ≥ 1.(3.5)

Step 2: We finally prove that both {X−n , n ≥ 1} is uniformly integrable. By
(3.4) and the Jensen inequality, we directly estimate for λ > 0 that

E
[
X+
n 1{X+

n>λ}

]
≤ E

[
X+

1 1{Xn>λ}
]
.
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Let Aδ be the set of all events A ∈ F such that P[Aδ] ≤ δ. Let ε > 0 be given.
Since X+

1 is integrable, there exists δ > 0 such that E[X+
1 1A] ≤ ε for all A ∈ Aδ.

By (3.5), there exists λ∗ such that {{Xn > λ} ∈ Aδ for all n ≥ 1, and therefore

E
[
X+
n 1{X+

n>λ}

]
≤ ε for all λ ≥ λ∗ and n ≥ 1.

Step 3: We now prove that both {X+
n , n ≥ 1} is uniformly integrable.Similarly,

for λ > 0, it follows from (3.4) that E
[
X−n 1{X−n ≥λ}

]
≤ E

[
X−k 1{X−n ≥λ}

]
for all

k ≤ n. Then

0 ≤ E
[
X−n 1{X−n <λ}

]
≤ un − um + E

[
Xn1{Xn<−λ}

]
, (3.6)

where un := E[Xn], n ≥ 1, is bounded from below and decreasing by (3.4).
Then for all ε > 0, there exists k∗ > 0 such that |un − uk∗ | ≤ ε for all n ≥ k∗.
Arguying as in Step 2, it follows from the integrability of Xk∗ that

sup
n≥k∗

E
[
|Xk∗ |1{Xn<−λ}

]
≤ ε,

which concludes the proof by (3.6). ♦

3.3 Maximal inequalities for submartingales

In this section, we recall the Doob’s maximal inequality for discrete-time mar-
tingales, and extend it to continuous-time martingales.

Theorem 3.15. (Doob’s maximal inequality)
(i) Let {Mn, n ∈ N} be a nonnegative submartingale, and set M∗n := supk≤nMk.
Then for all n ≥ 0:

cP
[
M∗n ≥ c

]
≤ E

[
Mn1{M∗n≥c}

]
and ‖M∗n‖p ≤

p

p− 1
‖Mn‖p for all p > 1.

(ii) Let {Mt, t ≥ 0} be a nonnegative continuous submartingale, and set M∗t :=
sups∈[0,t]Ms. Then for all t ≥ 0:

cP
[
M∗t ≥ c

]
≤ E

[
Mt1{M∗t ≥c}

]
and ‖M∗t ‖p ≤

p

p− 1
‖Mt‖p for all p > 1.

Proof. 1- We first prove that

cP[M∗n ≥ c] ≤ E
[
Mn1{M∗n≥c}

]
≤ E[Mn] for all c > 0 and n ∈ N. (3.7)

To see this, observe that

{M∗n ≥ c} =
⋃
k≤n

Fk, F0 := {M0 ≥ c}, Fk :=

 ⋂
i≤k−1

{Mi < c}

 ∩ {Mk ≥ c}.

(3.8)
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Since Fk ∈ Fk, Mk ≥ c sur Fk, it follows from the submartingale property of
M that

E[Mn1Fk ] ≥ E[Mk1Fk ] ≥ cP[Fk], k ≥ 0.

Summing over k, this provides

E[Mn1∪kFk ] ≥ c
∑
k≥0

P[Fk] ≥ cP[∪kFk]

and (3.7) follows from (3.8).
2- Soit p > 0 et q := p/(p− 1). It follows from (3.7) that

L :=

∫ ∞
0

pcp−1P[M∗n ≥ c]dc ≤ R :=

∫ ∞
0

pcp−2E
[
Mn1{M∗n≥c}

]
dc.

since M ≥ 0, it follows from Fubini’s theorem that

L = E

[∫ M∗n

0

pcp−1dc

]
= E [(M∗n)p]

and

R = E

[∫ M∗n

0

pcp−2dc

]
= qE

[
[Mn(M∗n)p−1

]
≤ q‖Mn‖p‖(M∗n)p−1‖q,

by Hölder inequality. Hence ‖(M∗n)p‖pp ≤ q‖Mn‖p‖(M∗n)p−1‖q , and the required
inequality follows.
3- The extension of the inequality to continuous-time martingales which are
pathwise continuous follows from an obvious discretization and the monotone
convergence theorem. ♦

3.4 Submartingales with a.s. càd-làg versions

In this section, we show that submartingales have nice trajectorial properties,
up to the passage to a convenient version. We first show that almost all sample
paths of submartingales have left and right limits at any point.

Lemma 3.16. Let X = {Xt, t ≥ 0} be a submartingale. Then,

Xt+ := lim
Q3s↓t

Xs exists for all t ≥ 0, P− a.s.

Moreover, the process {Xt+, t ≥ 0} is a {Ft+}t≥0−submartingale with càd-làg
sample paths satisfying E[Xt+|Ft] ≥ Xt, P−a.s. for all t ≥ 0.

A similar statement holds for the left-hand side limits.
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Proof. Step 1 We first prove that,

Xt+ := lim
s↘t,s∈Q

Xs exists for all t ∈ [0, T ), P−a.s. (3.9)

and we will next prove, in Step 2 below, that the process {Xt+, t ≥ 0} is our
required version.

For α < β and T > 0, we denote by UXT (α, β) the number of up-crossings of
the interval [α, β] by the discrete-time process {Xt, t ∈ [0, T ] ∩Q}. Then, by a
classical result on discrete-time martingales, see the review in Subsection 3.5.2
below, we have E

[
UXT (α, β)

]
<∞. Consequently the event set

ΩXT (α, β) :=
{
ω ∈ Ω : U

X(ω)
T (α, β) =∞

}
is negligible under P. Since{
ω ∈ Ω : lim inf

s↓t
Xs(ω) < lim sup

s↓t
Xs(ω), for some t ∈ [0, T ]

}
⊂ ∪α,β∈QΩXT (α, β),

and P
[
∪α,β∈Q ΩXT (α, β)

]
= 0, we conclude that (3.9) holds true.

Step 2 Clearly, the process {Xt+, t ≥ 0} is càd-làg, and for all sequence of
rationals tn ↓ t, we have E[Xt+|Ft] = E[limn→∞Xtn |Ft], P−a.s. Since X is a
submartingale, it follows from Lemma 3.14, that (Xtn)n is uniformly integrable.
Then,

E[Xt+|Ft] = lim
n→∞

E[Xtn |Ft] ≥ Xt, P− a.s.

Similarly, for all sequence of rationals sn ↓ s < t, we have E[Xt+|Fsn ] ≥ Xsn ,
and therefore E[Xt+|Fs+] ≥ Xs+. ♦

The main result of this section provides a characterization of submartingales
which have a pathwise càd-làg version. We say that a filtration F = {Ft, t ≥ 0}
satisfies the usual properties if it is right continuous, and F0 contains all null
sets of F .

Theorem 3.17. Let F be a filtration satisfying the usual conditions, and X
an F−submartingale. Then, X has a càd-làg version if and only if the map
t 7−→ E[Xt] is right-continuous.

Moreover, such a càd-làg version is a submartingale.

Proof. Since F satisfies the usual conditions, we see that the càd-làg process
{Xt+, t ≥ 0}, introduced in Lemma 3.16, is a F−submartingale satisfying Xt+ =
E[Xt+|Ft] ≥ Xt, P−a.s.

For any sequence of rationals tn ↓ t, it follows from the submartingale prop-
erty of X, together with Lemma 3.14, that (Xtn)n is uniformly integrable. Then,
E[Xt+ −Xt] = limn→∞ E[Xtn −Xt] = 0. hence, Xt+ = Xt, P−a.s. if and only
if E[Xtn ] −→ E[Xt] as n → ∞. By arbitrariness of the sequence tn ↓ t, this
provides the required equivalence. ♦
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3.5 Appendix: on discrete-time martingales

3.5.1 Doob’s optional sampling for discrete martingales

This section reports the proof of the optional sampling theorem for discrete-time
martingales which was the starting point for the proof of the continuous-time
extension of Theorem 3.11.

Lemma 3.18. Let {Xn, n ≥ 0} be a supermartingale (resp. submartingale,
martingale) and ν a stopping time on (Ω,A,F,P). Then, the stopped process
Xν is a supermartingale (resp. submartingale, martingale).

Proof. We only prove the result in the martingale case. We first observe that
Xν is F−adapted since, for all n ≥ 0 and B ∈ E ,

(Xν
n)
−1

(B) =
[
∪k≤n−1{ν = k} ∩ (Xk)−1(B)

]
∪
[
{ν ≤ n− 1}c ∩ (Xn)−1(B)

]
.

For n ≥ 1, |Xν
n| ≤

∑
k≤n |Xk| ∈ L1(Ω,Fn,P), and we directly compute that

E[Xν
n|Fn−1] = E

[
Xν1{ν≤n−1} +Xn1{ν>n−1}|Fn−1

]
= Xν1{ν≤n−1} + E

[
Xn1{ν>n−1}|Fn−1

]
.

Since ν is a stopping time, the event {ν > n− 1} = {ν ≤ n− 1}c ∈ Fn−1. Since
Xn and Xn1{ν>n−1} are integrable, we deduce that

E[Xν
n|Fn−1] = Xν1{ν≤n−1} + 1{ν>n−1}E [Xn|Fn−1]

≤ Xν1{ν≤n−1} + 1{ν>n−1}Xn−1 = Xν
n−1.

♦

Theorem 3.19. (Optional sampling, Doob). Let {Xn, n ≥ 0} be a martingale
(resp. supermartingale) and ν, ν̄ two bounded stopping times satisfying ν ≤ ν̄
a.s. Then :

E
[
Xν̄ |Fν

]
= Xν (resp. ≤ Xν).

Proof. We only prove the result for the martingale case ; the corresponding
result for supermartingales is proved by the same argument. Let N ∈ N be a
bound on ν.
(i) We first show that E[XN |Fν ] = Xν for all stopping time ν. For an arbitrary
event A ∈ Fν , we have A ∩ {ν = n} ∈ Fn and therefore:

E
[
(XN −Xν)1A∩{ν=n}

]
= E

[
(XN −Xn)1A∩{ν=n}

]
= 0

since X is a martingale. Summing up over n, we get:

0 =

N∑
n=0

E
[
(XN −Xν)1A∩{ν=n}

]
= E [(XN −Xν)1A] .
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By the arbitrariness of A in Fν , this proves that E[XN −Xν |Fν ] = 0.
(ii) It follows from Lemma 3.18 that the stopped process X ν̄ is a martingale.
Applying the result established in (i), we see that:

E
[
Xν̄ |Fν

]
= E

[
X ν̄
T |Fν

]
= X ν̄

ν = Xν

since ν ≤ ν̄. ♦

3.5.2 Upcrossings of discrete-time submartingales

In this subsection, we consider a submartingale {Xn, n ≥ 0}. For all α < β, we
define the sequence of stopping times

τ0 = 0, θn+1 := inf {i ≥ τn : Xi ≤ α} , and τn+1 := inf {i ≥ θn+1 : Xi ≥ β} .

Then, for all n ≥ 0, the random variable

Uα,βn := max {j : τj ≤ n} (3.10)

represents of crossings of the level β starting below the level α on the time
interval [0, n]. We call Un the number of upcrossings of the interval [α, β] before
time n.

Lemma 3.20. For a submartingale {Xn, n ≥ 0}, and two scalars α < β. we
have:

E
[
Uα,βn

]
≤ 1

β − α
E
[
(Xn − α)+

]
.

Proof. Denote Yn := (Xn − a)+, n ≥ 0. By the Jensen inequality, we immedi-
ately verify that {Yn, n ≥ 0} inherits the submartingale property of {Xn, n ≥ 0}.
Since θn+1 > n, we have

Yn = Yn∧θ1 +

n∑
i=1

(Yn∧τi − Yn∧θi) +

n∑
i=1

(
Yn∧θi+1 − Yn∧τi

)
≥

n∑
i=1

(Yn∧τi − Yn∧θi) +

n∑
i=1

(
Yn∧θi+1 − Yn∧τi

)
.

By definition of upcrossings, we have Yθi = 0, Yτi ≥ b − a on {τi ≤ n}, and
Yn∧τi − Yn∧θi ≥ 0, a.s. Then:

(β − α)E
[
Uα,βn

]
≤ E[Yn]−

n∑
i=1

E
[
Yn∧θi+1 − Yn∧τi

]
≤ E[Yn],

where the second inequality follows from the optional sampling theorem, to-
gether with the submartingale property of the process {Yn, n ≥ 0}. ♦
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Chapter 4

The Brownian Motion

The Brownian motion was introduced by the scottish botanist Robert Brown in
1828 to describe the movement of pollen suspended in water. Since then it has
been widely used to model various irregular movements in physics, economics,
finance and biology. In 1905, Albert Einstein (1879-1955) introduced a model
for the trajectory of atoms subject to shocks, and obtained a Gaussian density.
Louis Bachelier (1870-1946) was the very first to use the Brownian motion as
a model for stock prices in his thesis in 1900, but his work was not recognized
until the recent history. It is only sixty years later that Samuelson (1915-2009,
Nobel Prize in economics 1970) suggested the Brownian motion as a model for
stock prices. The real success of Brownian motion in the financial application
was however realized by Fisher Black (1938-1995), Myron Scholes (1941-), and
Robert Merton (1944-) who received the Nobel Prize in economics 1997 for their
seminal work between 1969 and 1973 founding the modern theory of financial
mathematics by introducing the portfolio theory and the no-arbitrage pricing
argument.

The first rigorous construction of the Brownian motion was achieved by
Norbert Wiener (1894-1964) in 1923, who provided many applications in signal
theory and telecommunications. Paul Lévy, (1886-1971, Alumni X1904 from
Ecole Polytechnique, and Professor at Ecole Polytechnique from 1920 to 1959)
contributed to the mathematical study of the Brownian motion and proved
many surprising properties. Kyioshi Itô (1915-2008) developed the stochastic
differential calculus. The theory benefitted from the considerable activity on
martingales theory, in particular in France around Paul-André Meyer. (1934-
2003).

The purpose of this chapter is to introduce the Brownian motion and to
derive its main properties.

41
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4.1 Definition of the Brownian motion

Definition 4.1. Let W = {Wt, t ∈ R+} be a stochastic process on the proba-
bility space (Ω,F ,P), and F a filtration. W is an F−standard Brownian motion
if
(i) W is F−adapted.
(ii) W0 = 0 and the sample paths W.(ω) are continuous for a.e. ω ∈ Ω,
(iii) independent increments: Wt −Ws is independent of Fs for all s ≤ t,
(iv) the distribution of Wt −Ws is N (0, t− s) for all t > s ≥ 0,

An interesting consequence of (iii) is that:

(iii’) the increments
(
Wti − Wti−1

)
i≤n are independent for all n ∈ N and all

0 ≤ t0 ≤ · · · ≤ tn.

Let us observe that, for any given filtration F, an F−standard Brownian
motion is also an FW−standard Brownian motion, where FW is the canonical
filtration of W . This justifies the consistency of the above definition with the
following one which does not refer to any filtration:

Definition 4.2. Let W = {Wt, t ∈ R+} be a stochastic process on the probabil-
ity space (Ω,F ,P). W is a standard Brownian motion if it satisfies conditions
(ii), (iii’) and (iv) of Definition 4.1.

We observe that the pathwise continuity condition in the above Property (ii)
can be seen to be redundant. This is a consequence of the Kolmogorov-Čentsov
Theorem, that we recall (without proof) for completeness, and which shows that
the pathwise continuity follows from Property (iv).

Theorem 4.3. Let {Xt, t ∈ [0, T ]} be a process satisfying

E|Xt −Xs|r ≤ C|t− s|1+γr, 0 ≤ s, t ≤ T, for some r, γ, C ≥ 0.

Then there exists a modification {X̃t, t ∈ [0, T ]} of X (P[Xt = X̃t] = 1 for all
t ∈ [0, T ]) which is a.s. α−Hölder continuous for every α ∈ (0, γ).

Exercise 4.4. Use Theorem 4.3 to prove that, P−a.s., the Brownian motion is
( 1

2 − ε)−Hölder continuous for any ε > 0 (Theorem 4.22 below shows that this
result does not hold for ε = 0.

We conclude this section by extending the definition of the Brownian motion
to the vector case.

Definition 4.5. Let W = {Wt, t ∈ R+} be an Rn−valued stochastic process on
the probability space (Ω,F ,P), and F a filtration. W is an F−standard Brow-
nian motion if the components W i, i = 1, . . . , n, are independent F−standard
Brownian motions (i.e. (i)-(ii)-(iv) of Definition 4.1 hold), and W satisfies the
following Property (iii)n:
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Figure 4.1: Approximation of a sample path of a Brownian motion

(iii)n the distribution of Wt −Ws is N (0, (t− s)In) for all t > s ≥ 0, where In
is the identity matrix of Rn.

4.2 The Brownian motion as a limit of a random
walk

Before discussing the properties of the Brownian motion, let us comment on
its existence as a continuous-time limit of a random walk. Given a family
{Yi, i = 1, . . . , n} of n independent random variables defined by the distribution

P[Yi = 1] = 1− P[Yi = −1] =
1

2
, (4.1)

we define the symmetric random walk

M0 = 0 and Mk =

k∑
j=1

Yj for k = 0, . . . , n .

A continuous-time process can be obtained from the sequence {Mk, k = 0, . . . , n}
by linear interpollation:

Mt := Mbtc + (t− btc)Ybtc+1 for t ≥ 0 ,
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Figure 4.2: A sample path of the two-dimensional Brownian motion

 

Figure 4.3: Sample path of a random walk
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where btc denotes the largest integer less than or equal to t. Figure 4.3 shows a
typical sample path of the process M .

We next define a stochastic process Wn from the previous process by speed-
ing up time and conveniently scaling:

Wn
t :=

1√
n
Mnt , t ≥ 0 .

In the above definition, the normalization by
√
n is suggested by the Central

Limit Theorem. We next set

tk :=
k

n
for k ∈ N

and we list some obvious properties of the process Wn:
• for 0 ≤ i ≤ j ≤ k ≤ ` ≤ n, the increments Wn

t`
−Wn

tk
and Wn

tj −W
n
ti are

independent,
• for 0 ≤ i ≤ k, the two first moments of the increment Wn

tk
−Wn

ti are given
by

E[Wn
tk
−Wn

ti ] = 0 and Var[Wn
tk
−Wn

ti ] = tk − ti ,

which shows in particular that the normalization by n−1/2 in the definition of
Wn prevents the variance of the increments from blowing up,
• with Fnt := σ (Yj , j ≤ bntc), t ≥ 0, the sequence

{
Wn
tk
, k ∈ N

}
is a dis-

crete
{
Fntk , k ∈ N

}
−martingale:

E
[
Wn
tk
|Fnti

]
= Wn

ti for 0 ≤ i ≤ k .

Hence, except for the Gaussian feature of the increments, the discrete-time
process

{
Wn
tk
, k ∈ N

}
is approximately a Brownian motion. One could even

obtain Gaussian increments with the required mean and variance by replacing
the distribution (4.1) by a convenient normal distribution. However, since our
objective is to imitate the Brownian motion in the asymptotics n → ∞, the
Gaussian distribution of the increments is expected to hold in the limit by a
central limit type of argument.

Figure 4.4 represents a typical sample path of the process Wn. Another
interesting property of the rescaled random walk, which will be inherited by the
Brownian motion, is the following quadratic variation result:

[Wn,Wn]tk :=

k∑
j=1

(
Wn
tj −W

n
tj−1

)2

= tk for k ∈ N .

A possible proof of the existence of the Brownian motion consists in proving
the convergence in distribution of the sequence Wn toward a Brownian motion,
i.e. a process with the properties listed in Definition 4.2. This is the so-called
Donsker’s invariance principle. The interested reader may consult a rigorous
treatment of this limiting argument in Karatzas and Shreve [30] Theorem 2.4.20.
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Figure 4.4: The rescaled random walk

4.3 Distribution of the Brownian motion

Let W be a standard real Brownian motion. In this section, we list some
properties of W which are directly implied by its distribution.

• The Brownian motion is a martingale:

E [Wt|Fs] = Ws for 0 ≤ s ≤ t ,

where F is any filtration containing the canonical filtration FW of the Brown-
ian motion. From the Jensen inequality, it follows that the squared Brownian
motion W 2 is a submartingale:

E
[
W 2
t |Fs

]
≥ W 2

s , for 0 ≤ s < t .

The precise departure from a martingale can be explicitly calculated

E
[
W 2
t |Fs

]
= W 2

s + (t− s) , for 0 ≤ s < t ,
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which means that the process
{
W 2
t − t, t ≥ 0

}
is a martingale. This is an

example of the very general Doob-Meyer decomposition of submartingales which
extends to the continuous-time setting under some regularity conditions, see
Chapter 12.

• The Brownian motion is a Markov process, i.e.

E [φ (Ws, s ≥ t) |Ft] = E [φ (Ws, s ≥ t) |Wt]

for every t ≥ 0 and every bounded continuous function φ : C0(R+) −→ R,
where C0(R+) is the set of continuous functions from R+ to R. This follows
immediately from the fact that Ws −Wt is independent of Ft for every s ≥ t.
We shall see later in Corollary 4.12 that the Markov property holds in a stronger
sense by replacing the deterministic time t by an arbitrary stopping time τ .

• The Brownian motion is a centered Gaussian process: A process {Xt, t ≥ 0}
is gaussian if (Xt1 , . . . , Xtn) is a Gaussian vector for all n ≥ 1 and 0 ≤ t1 <
. . . < tn.

By definition of the Brownian motion, the random vector (Wt1 , . . . ,Wtn) is
Gaussian for every 0 ≤ t1 < . . . < tn. Centered Gaussian processes can be
characterized in terms of their covariance function, see Exercise 4.7 below. A
direct calculation provides the covariance function of the Brownian motion

Cov (Wt,Ws) = E [WtWs] = t ∧ s = min{t, s}

The Kolmogorov theorem provides an alternative construction of the Brownian
motion as a centered Gaussian process with the above covariance function, we
will not elaborate more on this and we send the interested reader to Karatzas
and Shreve [30], Section 2.2.

We conclude this section by the following property which is very useful for
the purpose of simulating the Brownian motion.

Exercise 4.6. For 0 ≤ t1 < t̂ < t2, show that the conditional distribution of
Wt̂ given (Wt1 ,Wt2) = (x1, x2) is Gaussian, and provided its mean and variance
in closed form. ♦

Exercise 4.7. 1. Prove that a Gaussian process X is characterized by the
mean and covariances functions:

m(t) := E[Xt] and c(s, t) := Cov[Xs, Xt], s, t ≥ 0.

2. Let (Xt)t∈R+ be a Gaussian process with continuous sample paths, a.s.
and X0 = 0. Prove that X is a Brownian motion if and only if the
corresponding mean and covariances functions are given by m(t) = 0, and
c(s, t) = s ∧ t, s, t ≥ 0.



48 CHAPTER 4. THE BROWNIAN MOTION

Solution of Exercise 4.7 1. For Y := (Xt1 , . . . , Xtn), we have E[Y ] =(
m(t1), . . . ,m(tn)

)T
and Var[Y ] =

(
c(ti, tj)

)
1≤i≤j≤n. This proves that the

functions m and c characterize completely any Gaussian process.
2. First, the mean and the covariances functions of the Brownian motion are
indeed given by m(t) = 0, and c(s, t) = s∧ t, s, t ≥ 0. Now let X be a Gaussian
process with a.s. continuous sample paths, X0 = 0, and mean and covariances
functions m(t) = 0, and c(s, t) = s ∧ t, s, t ≥ 0. We need to prove that X has
independent increments and that Xt+h −Xt is N (0, h) for all t, h ≥ 0:

– For t1 ≤ · · · ≤ tn, we have Cov
[
Xti+2

−Xti+1
, Xti −Xti−1

]
= c(ti+2, ti)−

c(ti+2, ti−1) − c(ti+1, ti) + c(ti+1, ti−1) = 0. As the vector (Xt1 , . . . , Xtn) is
Gaussian, it follows that the vector (Xti+2−Xti+1 , Xti−Xti−1)i is also Gaussian,
so that zero covariances is equivalent to independence.

– As the random vector (Xt, Xt+h) is Gaussian, the difference Xt+h −Xt is
Gaussian, and we directly compute that E

[
Xt+h −Xt

]
= m(t+ h)−m(t) = 0,

and Var
[
Xt+h−Xt

]
= c(t+h, t+h)+ c(t, t)−2c(t, t+h) = (t+h)+ t−2t = h.

• Distribution: By definition of the Brownian motion, for 0 ≤ t < T , the
conditional distribution of the random variableWT givenWt = x is aN (x, T−t):

p(t, x, T, y)dy := P [WT ∈ [y, y + dy]|Wt = x] =
1√

2π(T − t)
e−

(y−x)2

2(T−t) dy

An important observation is that this density function satisfies the heat equation
for every fixed (t, x):

∂p

∂T
=

1

2

∂2p

∂y2
,

as it can be checked by direct calculation. One can also fix (T, y) and express
the heat equation in terms of the variables (t, x):

∂p

∂t
+

1

2

∂2p

∂x2
= 0 . (4.2)

We next consider a function g with polynomial growth, say, and we define the
conditional expectation:

V (t, x) = E [g (WT ) |Wt = x] =

∫
g(y)p(t, x, T, y)dy . (4.3)

Remark 4.8. Since p is C∞, it follows from the dominated convergence theorem
that V is also C∞.

By direct differentiation inside the integral sign, it follows that the function
V is a solution of

∂V

∂t
+

1

2

∂2V

∂x2
= 0 and V (T, .) = g . (4.4)

We shall see later in Section 8.5 that the function V defined in (4.3) is the
unique solution of the above linear partial differential equation in the class of
polynomially growing functions.
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4.4 Scaling, symmetry, and time reversal

The following easy properties follow from the properties of the centered Gaussian
distribution.

Proposition 4.9. Let W be a standard Brownian motion, t0 > 0, and c > 0.
Then, so are the processes
• {−Wt, t ≥ 0} (symmetry),
• {c−1/2Wct, t ≥ 0} (scaling),
• {Wt0+t −Wt0 , t ≥ 0} (time translation),
• {WT−t −WT , 0 ≤ t ≤ T} (time reversal).

Proof. Properties (ii), (iii’) and (iv) of Definition 4.2 are immediately checked.
♦

Remark 4.10. For a Brownian motion W in Rn, the symmetry property of the
Brownian motion extends as follows: for any (n×n) matrix A, with AAT = In,
the process {AWt, t ≥ 0} is a Brownian motion.

Another invariance property for the Brownian motion will be obtained by
time inversion in subsection 4.6 below. Indeed, the process B defined by B0 := 0
and Bt := tW1/t, t > 0, obviously satisfies properties (iii’) and (iv); property
(ii) will be obtained as a consequence of the law of large numbers.

We next investigate whether the translation property of the Brownian motion
can be extended to the case where the deterministic time t0 is replaced by some
random time. The following result states that this is indeed the case when the
random time is a stopping time.

Proposition 4.11. Let W be a Brownian motion, and consider some finite
stopping time τ . Then, the process B defined by

Bt := Wt+τ −Wτ , t ≥ 0 ,

is a Brownian motion independent of Fτ .

Proof. Clearly B0 = 0 and B has a.s. continuous sample paths. In the rest
of this proof, we show that, for 0 ≤ t1 < t2 < t3 < t4, s > 0, and bounded
continuous functions φ, ψ and f :

E [φ (Bt4 −Bt3)ψ (Bt2 −Bt1) f (Ws) 1s≤τ ]

= E [φ (Wt4 −Wt3)]E [ψ (Wt2 −Wt1)]E [f (Wu) 1u<τ ] , (4.5)

where we denote Wu = (Wr, r ≤ u). The extension to arbitrary increments
t1 ≤ · · · ≤ tn is immediate, so that this would imply that B has independent
increments with the required Gaussian distribution.

Observe that we may restrict our attention to the case where τ has a finite
support {s1, . . . , sn}. Indeed, given that (4.5) holds for such stopping times, one
may approximate any stopping time τ by a sequence of bounded stopping times
(τN := τ ∧N)N≥1, and then approximate each τN by the decreasing sequence
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of stopping times τN,n :=
(
bnτNc+ 1

)
/n of (3.1), apply (4.5) for each n ≥ 1,

and pass to the limit by the dominated convergence theorem thus proving that
(4.5) holds for τ .

For a stopping time τ with finite support {s1, . . . , sn}, we have:

E
[
φ (Bt4 −Bt3)ψ (Bt2 −Bt1) f (Ws) 1{s≤τ}

]
=

n∑
i=1

E
[
φ (Bt4 −Bt3)ψ (Bt2 −Bt1) f (Wu) 1{u≤τ}1{τ=si}

]
=

n∑
i=1

E
[
φ
(
Wti4
−Wti3

)
ψ
(
Wti2
−Wti1

)
f (Wu) 1{τ=si≥u}

]
where we denoted tik := si + tk for i = 1, . . . , n and k = 1, . . . , 4. We next
condition upon Fsi for each term inside the sum, and recall that 1{τ=si} is
Fsi−measurable as τ is a stopping time. This provides

E
[
φ (Bt4 −Bt3)ψ (Bt2 −Bt1) f (Wu) 1{u≤τ}

]
=

n∑
i=1

E
{
E
[
φ
(
Wti4
−Wti3

)
ψ
(
Wti2
−Wti1

)∣∣∣Fsi] f (Wu) 1{τ=si≥u}

}
=

n∑
i=1

E
{
E [φ (Wt4 −Wt3)]E [ψ (Wt2 −Wt1)] f (Wu) 1{τ=si≥u}

}
where the last equality follows from the independence of the increments of the
Brownian motion and the symmetry of the Gaussian distribution. Hence

E
[
φ (Bt4 −Bt3)ψ (Bt2 −Bt1) f (Wu) 1{u≤τ}

]
= E [φ (Wt4 −Wt3)]E [ψ (Wt2 −Wt1)]

n∑
i=1

E
[
f (Wu) 1{τ=si≥u}

]
which is exactly (4.5). ♦

An immediate consequence of Proposition 4.11 is the strong Markov property
of the Brownian motion.

Corollary 4.12. The Brownian motion satisfies the strong Markov property:

E [φ (Ws+τ , s ≥ 0) |Fτ ] = E [φ (Ws, s ≥ τ) |Wτ ]

for every stopping time τ , and every bounded function φ : C0(R+) −→ R.

Proof. Since Bs := Ws+τ −Wτ is independent of Fτ for every s ≥ 0, we have

E [φ (Ws, s ≥ τ) |Fτ ] = E [φ (Bs +Wτ , s ≥ τ) |Fτ ]

= E [φ (Bs +Wτ , s ≥ τ) |Wτ ] .

♦
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We next use the symmetry property of Proposition 4.11 in order to provide
explicitly the joint distribution of the Brownian motion W and the correspond-
ing running maximum process:

W ∗t := sup
0≤s≤t

Ws , t ≥ 0 .

The key-idea for this result is to make use of the Brownian motion started at
the first hitting time of some level y:

Ty := inf {t > 0 : Wt > y} .

Observe that

{W ∗t ≥ y} = {Ty ≤ t} ,

which implies in particular a connection between the distributions of the running
maximum W ∗ and the first hitting time Ty.

Proposition 4.13. Let W be a Brownian motion and W ∗ the corresponding
running maximum process. Then, for t > 0, the random variables W ∗t and |Wt|
have the same distribution, i.e.

P [W ∗t ≥ y] = P [|Wt| ≥ y] .

Furthermore, the joint distribution of the Brownian motion and the correspond-
ing running maximum is characterized by

P [Wt ≤ x , W ∗t ≥ y] = P [Wt ≥ 2y − x] for y > 0 and x ≤ y .

Proof. From Exercise 3.3 and Proposition 4.11, the first hitting time Ty of
the level y is a stopping time, and the process

Bt :=
(
Wt+Ty −WTy

)
, t ≥ 0 ,

is a Brownian motion independent of FTy . Since Bt and −Bt have the same
distribution and WTy = y, we compute that

P [Wt ≤ x , W ∗t ≥ y] = P
[
y +Bt−Ty ≤ x , Ty ≤ t

]
= E

[
1{Ty≤t}P{Bt−Ty ≤ x− y|FTy}

]
= E

[
1{Ty≤t}P{−Bt−Ty ≤ x− y|FTy}

= P [Wt ≥ 2y − x , W ∗t ≥ y] = P [Wt ≥ 2y − x] ,

where the last equality follows from the fact that {Wt ≥ 2y−x} ⊂ {W ∗t ≥ y} as
y ≥ x. As for the marginal distribution of the running maximum, we decompose:

P [W ∗t ≥ y] = P [Wt < y , W ∗t ≥ y] + P [Wt ≥ y , W ∗t ≥ y]

= P [Wt < y , W ∗t ≥ y] + P [Wt ≥ y]

= 2P [Wt ≥ y] = P [|Wt| ≥ y]

where the two last equalities follow from the first part of this proof together
with the symmetry of the Gaussian distribution. ♦
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Exercise 4.14. For a Brownian motion W and t > 0, show that

P [W ∗t ≥ y|Wt = x] = e
−2
t y(y−x) for y ≥ x+ .

4.5 Brownian filtration and the Zero-One law

Because the Brownian motion has a.s. continuous sample paths, the correspond-
ing canonical filtration FW := {FWt , t ≥ 0} is left-continuous, i.e. ∪s<tFWs =
FWt . However, FW is not right-continuous. To see this, observe that the event
set {W has a local maximum at t} is in FWt+ := ∩s>tFWs , but is not in FWt .

This difficulty can be overcome by slightly enlarging the canonical filtration
by the collection of zero-measure sets:

FWt := FWt ∨N (F) := σ
(
Ft ∪N (F)

)
, t ≥ 0,

where

N (F) :=
{
A ∈ Ω : there exists Ã ∈ F s.t. A ⊂ Ã and P[Ã] = 0

}
.

The resulting filtration FW := {FWt , t ≥ 0} is called the augmented canonical
filtration which will now be shown to be continuous.

We first start by the Blumenthal Zero-One Law.

Theorem 4.15. For any A ∈ FW0+, we have P[A] ∈ {0, 1}.

Proof. Since the increments of the Brownian motion are independent, it follows
that FW0+ ⊂ Fε is independent of Gε := σ

(
Ws −Wε, ε ≤ s ≤ 1

)
, for all ε > 0.

Then, for A ∈ FW0+, we have P[A|Gε] = P[A], a.s.
On the other hand, since Wε −→W0, P−a.s. we see that, for all t > 0, Wt =

limε→0(Wt −Wε), a.s. so that Wt is measurable with respect to the σ−algebra
G := (∨nG1/n) ∨ N (F). Then FW0+ ⊂ G, and therefore by the monotonicity of
Gε:

1A = P[A|G] = lim
ε→0

P[A|Gε] = P[A].

♦

Theorem 4.16. Let W be a Brownian motion. Then the augmented filtration

FW is continuous and W is an FW−Brownian motion.

Proof. The left-continuity of FW is a direct consequence of the path continuity

of W . The inclusion FW0 ⊂ FW0+ is trivial and, by Theorem 4.15, we have

FW0+ ⊂ σ(N (F)) ⊂ FW0 . Similarly, by the independent increments property,

FWt+ = FWt for all t ≥ 0. Finally, W is an FW−Brownian motion as it satisfies
all the required properties of Definition 4.1. ♦

In the rest of these notes, we will always work with the augmented filtration,

and we still denote it as FW := FW .
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4.6 Small/large time behavior of the Brownian
sample paths

The discrete-time approximation of the Brownian motion suggests that Wt

t tends
to zero at least along natural numbers, by the law of large numbers. With a
little effort, we obtain the following strong law of large numbers for the Brownian
motion.

Theorem 4.17. For a Brownian motion W , we have

Wt

t
−→ 0 P− a.s. as t→∞ .

Proof. We first decompose

Wt

t
=

Wt −Wbtc
t

+
btc
t

Wbtc

btc

By the law of large numbers, we have

Wbtc

btc
=

1

btc

btc∑
i=1

(Wi −Wi−1) −→ 0 P− a.s.

We next estimate that∣∣Wt −Wbtc
∣∣

t
≤ btc

t

∣∣∆btc∣∣
btc

, where ∆n := sup
n−1<t≤n

(Wt −Wn−1) , n ≥ 1 .

Clearly, {∆n, n ≥ 1} is a sequence of independent identically distributed random
variables. The distribution of ∆n is explicitly given by Proposition 4.13. In
particular, by a direct application of the Chebychev inequality, it is easily seen
that

∑
n≥1 P[∆n ≥ nε] =

∑
n≥1 P[∆1 ≥ nε] < ∞. By the Borel Cantelli

Theorem, this implies that ∆n/n −→ 0 P−a.s.

Wt −Wbtc
btc

−→ 0 P− a.s. as t→∞ ,

and the required result follows from the fact that t/btc −→ 1 as t→∞. ♦

As an immediate consequence of the law of large numbers for the Brownian
motion, we obtain the invariance property of the Brownian motion by time
inversion:

Proposition 4.18. Let W be a standard Brownian motion. Then the process

B0 = 0 and Bt := tW 1
t

for t > 0

is a Brownian motion.
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Proof. This result relies on the characterization of the Brownian motion as a
centered gaussian process with appropriate covariance function c(s, t) = s∧t and
a.s. continuous sample paths, see Exercice 4.7. Notice that the a.s. continuity
of the sample paths at the origin is equivalent to the law of large numbers stated
in Proposition 4.17. ♦

The following result shows the path irregularity of the Brownian motion.

Proposition 4.19. Let W be a Brownian motion in R. Then, P−a.s. W
changes sign infinitely many times in any time interval [0, t], t > 0.

Proof. Observe that the random times

τ+ := inf {t > 0 : Wt > 0} and τ− := inf {t > 0 : Wt < 0}

are stopping times with respect to the augmented filtration FW . Since this
filtration is continuous, it follows that the event sets {τ+ = 0} and {τ− = 0}
are in FW0 . By the symmetry of the Brownian motion, its non degeneracy
on any interval [0, t], t > 0, and the fact that FW0 is trivial, it follows that
P [τ+ = 0] = P [τ− = 0] = 1. Hence for a.e. ω ∈ Ω, there are sequences of
random times τ+

n ↘ 0 and τ−n ↗ 0 with Wτ+
n
> 0 and Wτ−n

< 0 for n ≥ 1. ♦

We next state that the sample path of the Brownian motion is not bounded
and oscillating at infinity, P−a.s.

Proposition 4.20. For a standard Brownian motion W , we have

lim sup
t→∞

Wt = ∞ and lim inf
t→∞

Wt = −∞, P− a.s.

Proof. By symmetry of the Brownian motion, we only have to prove the
limsup result. The invariance of the Brownian motion by time inversion of
Proposition 4.18 implies that

lim sup
t→∞

Wt = lim sup
u→0

1

u
Bu where Bu := uW1/u1{u6=0}

defines a Brownian motion. Then, it follows from the Zero-One law of Theo-
rem 4.15 that C0 := lim supt→∞Wt is deterministic. By the symmetry of the
Brownian motion, we see that C0 ∈ R+ ∪ {∞}.

By the translation invariance of the Brownian motion, we see that

C0 = lim sup
t→∞

(Wt −Ws) in distribution for every s ≥ 0.

Then, if C0 <∞, it follows that

e−λC0 = E
[
e−λC0+λWs

]
= e−λC0+λ2s/2

which can not happen. Hence C0 =∞. ♦
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Another consequence is the following result which shows the complexity of
the sample paths of the Brownian motion.

Proposition 4.21. For any t0 ≥ 0, we have

lim inf
t↘t0

Wt −Wt0

t− t0
= −∞ and lim sup

t↘t0

Wt −Wt0

t− t0
= ∞ .

Proof. From the invariance of the Brownian motion by time translation, it
is sufficient to consider t0 = 0. From Proposition 4.18, Bt := tW1/t defines a
Brownian motion. Since Wt/t = B1/t, it follows that the behavior of Wt/t for
t ↘ 0 corresponds to the behavior of Bu for u ↗∞. The required limit result
is then a restatement of Proposition 4.20. ♦

We conclude this section by the law of the iterated logarithm for the Brow-
nian motion. This result will not be used in our applications to finance, and is
only reported for completeness. We shall organize its proof in the subsequent
problem set.

Theorem 4.22. For a Brownian motion W , we have

lim sup
t→0

Wt√
2t ln(ln 1

t )
= 1 and lim inf

t→0

Wt√
2t ln(ln 1

t )
= −1, P− a.s.

In particular, this result shows that the Brownian motion is nowhere 1
2−Hölder

continuous, see Exercise 4.4.

Exercise 4.23. (Law of Iterated Logarithm)
Let W be a Brownian motion, and h(t) := 2t ln(ln(1/t)). We want to proove
the Law of Iterated Logarithm :

lim sup
t↘0

Wt√
h(t)

= 1 a.s.

1. (a) For λ, T > 0 with 2λT < 1, prove that

P
[

max
0≤t≤T

{W 2
t − t} ≥ α

]
≤ e−λαE

[
eλ(W 2

T−T )
]
.

(b) For θ, η ∈ (0, 1), and λn :=
[
2θn(1 + η)

]−1
, deduce that:

P
[

max
0≤t≤θn

{W 2
t − t} ≥ (1 + η)2h(θn)

]
≤ e−1/2(1+η)(1+η−1)1/2|n ln θ|−(1+η).

(c) By the Borel Cantelli Lemma, justify that lim supt↘0
W 2
t

h(t) ≤
(1+η)2

θ ,

P−a.s.

(d) Conclude that lim supt↘0
Wt√
h(t)
≤ 1, P−a.s.
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2. For θ ∈ (0, 1), consider the event sets

An :=
{
Wθn −Wθn+1 ≥

√
1− θ

√
h(θn)

}
, n ≥ 1.

(a) Using the inequality
∫∞
x
e−u

2/2du ≥ xe−x
2/2

1+x2 , show that for some con-
stant C

P[An] ≥ C

n
√

ln(n)
for n sufficiently large.

(b) By the Borel-Cantelli Lemma, deduce that Wθn−Wθn+1 ≥
√

1− θ
√
h(θn),

P−a.s.

(c) Combining with question (1d), show that lim supt↘0
Wt√
h(t)
≥
√

1− θ−
4θ, P−a.s.

(d) Deduce that lim supt↘0
Wt√
h(t)

= 1, P−a.s.

Solution of Exercise 4.23
1. We first show that

lim sup
t↘0

Wt√
h(t)

≤ 1 a.s. (4.6)

Let T > 0 and λ > 0 be such that 2λT < 1. Notice that {W 2
t − t, t ≤ T} is

a martingale. Then {eλ(W 2
t −t), t ≤ T} is a nonnegative submartingale, by the

Jensen inequality. It follows from the Doob maximal inequality for submartin-
gales that for all α ≥ 0,

P
[

max
0≤t≤T

{W 2
t − t} ≥ α

]
= P

[
max

0≤t≤T
eλ(W 2

t −t) ≥ eλα
]

≤ e−λαE
[
eλ(W 2

T−T )
]

=
e−λ(α+T )

√
1− 2λT

.

Then, for θ, η ∈ (0, 1), and

αk := (1 + η)2h(θk), λk := [2θk(1 + η)]−1, k ∈ N,

we have

P
[

max
0≤t≤θk

(W 2
t − t) ≥ (1 + η)2h(θk)

]
≤ e−1/2(1+η)

(
1 + η−1

) 1
2 (−k log θ)−(1+η) .

Since
∑
k≥0 k

−(1+η) < ∞, it follows from the Borel-Cantelli lemma that, for

almost all ω ∈ Ω, there exists a natural number Kθ,η(ω) such that for all
k ≥ Kθ,η(ω),

max
0≤t≤θk

(W 2
t (ω)− t) < (1 + η)2h(θk) .
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In particular, for all t ∈ (θk+1, θk], W 2
t (ω)− t < (1 + η)2h(θk) ≤ (1 + η)2h(t)/θ,

and therefore:

lim sup
t↘0

W 2
t

h(t)
= lim sup

t↘0

W 2
t − t
h(t)

<
(1 + η)2

θ
a.s.

and the required result follows by letting θ tend to 1 and η to 0 along the
rationals.

2. We now show the converse inequality. Let θ ∈ (0, 1) be fixed, and define:

An :=
{
Wθn −Wθn+1 ≥

√
1− θ

√
h(θn)

}
, n ≥ 1.

Using the inequality
∫∞
x
e−u

2/2du ≥ xe−x
2/2

1+x2 with x = xn :=
√

h(θn)
θn , we see

that

P[An] = P
[Wθn −Wθn+1√

θn − θn+1
≥ xn

]
≥ e−x

2
n/2

√
2π(xn + 1

xn
)
≥ C

n
√

ln(n)

for n > −1/ ln θ, and some constant C > 0. Then
∑
n P[An] = ∞. Since

the events An’s are independent, it follows from the Borel-Cantelli lemma that
Wθn −Wθn+1 ≥

√
1− θ

√
h(θn), P−a.s. Since (−W ) is a Brownian motion, it

satisfies (4.6). Then

Wθn√
h(θn)

≥
√

1− θ − 4θ, and therefore lim sup
n→∞

Wθn√
h(θn)

≥
√

1− θ − 4θ,P− a.s.

We finally send θ ↘ 0 along the rationals to conclude that lim supt↘0
Wt√
h(t)
≥ 1.

♦

4.7 Quadratic variation

In this section, we consider a sequence of partitions πn = (tni )i≥1 ⊂ R+, n ≥ 1,
such that

∆tni := tni − tni−1 ≥ 0 and |πn| := sup
i≥1
|∆tni | −→ 0 as n→∞, (4.7)

where we set tn0 := 0, and we define the discrete quadratic variation:

QVπn

t (W ) :=
∑
i≥1

∣∣Wtni ∧t −Wtni−1∧t
∣∣2 for all n ≥ 1. (4.8)

As we shall see shortly, the Brownian motion has infinite total variation, see
(4.9) below. In particular, this implies that classical integration theories are not
suitable for the case of the Brownian motion. The key-idea in order to define an
integration theory with respect to the Brownian motion is the following result
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which states that the quadratic variation defined as the L2−limit of (4.8) is
finite.

Before stating the main result of this section, we observe that the quadratic
variation (along any subdivision) of a continuously differentiable function f
converges to zero. Indeed,

∑
ti≤t |f(ti+1)− f(ti)|2 ≤ ‖f ′‖2L∞([0,t])

∑
ti≤t |ti+1 −

ti|2 −→ 0. Because of the non-differentiability property stated in Proposition
4.21, this result does not hold for the Brownian motion.

Proposition 4.24. Let W be a standard Brownian motion in R, and (πn)n≥1

a partition as in (4.7). Then the quadratic variation of the Brownian motion is
finite and given by:

〈W 〉t := L2 − lim
n→∞

QVπn

t (W ) = t for all t ≥ 0.

Proof. We directly compute that:

E
[(

QVπn

t (W )− t
)2]

= E
[(∑

i≥1

∣∣Wtni ∧t −Wtni−1∧t
∣∣2 − (tni ∧ t− tni−1 ∧ t)

)2]
=

∑
i≥1

E
[(∣∣Wtni ∧t −Wtni−1∧t

∣∣2 − (tni ∧ t− tni−1 ∧ t)
)2]

= 2
∑
i≥1

(tni ∧ t− tni−1 ∧ t)2 ≤ 2t|πn|

by the independence of the increments of the Brownian motion and the fact
that Wtni ∧t −Wtni−1∧t ∼ N (0, tni ∧ t− tni−1 ∧ t). ♦

Remark 4.25. Proposition 4.24 has a natural direct extension to the multi-
dimensional setting. Let W be a standard Brownian motion in Rd, then:∑

tni ≤t

(
Wtni+1

−Wtni

)(
Wtni+1

−Wtni

)T −→ t Id, in L2, for all t ≥ 0,

where Id is the identity matrix of Rd. We leave the verification of this result as
an exercise.

The convergence result of Proposition 4.24 can be improved for partition
πn whose mesh |πn| satisfies a fast convergence to zero. As a complement, the
following result considers the dyadic partition δn = (δni )i≥1 defined by:

δni := i2−n , for integers i ≥ 0 and n ≥ 1.

Proposition 4.26. Let W be a standard Brownian motion in R. Then:

P
[

lim
n→∞

V δ
n

t (W ) = t , for every t ≥ 0
]

= 1.

Before proceeding to the proof of this result, we make some important com-
ments.
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Remark 4.27. Inspecting the proof of Proposition 4.26, we see that the
quadratic variation along any subdivision 0 = sn0 < . . . < snn = t satisfies:

n∑
i=1

∣∣∣Wsni+1
−Wsni

∣∣∣2 −→ t P− a.s. whenever
∑
n≥1

sup
1≤i≤n

|sni+1 − sni | < 0.

Remark 4.28. We finally observe that Proposition 4.24 implies that the
total variation of the Brownian motion infinite:

L2 − lim
n→∞

∑
i≥1

∣∣∣Wtni ∧t −Wtni−1∧t

∣∣∣ = ∞. (4.9)

This follows from the inequality

QVπn

t (W ) ≤ max
i≥1

∣∣∣Wtni ∧t −Wtni−1∧t

∣∣∣ ∑
i≥1

∣∣∣Wtni ∧t −Wtni−1∧t

∣∣∣ ,
together with the fact that maxi≥1

∣∣∣Wtni ∧t −Wtni−1∧t

∣∣∣ −→ 0, P−a.s., due to

the continuity of the Brownian motion. For this reason, the Stieltjes theory of
integration does not apply to the Brownian motion.

Proof of Proposition 4.26 We shall simply denote V nt := V δ
n

t (W ).
(i) We first fix t > 0 and show that V nt −→ t P−a.s. as n→∞, or equivalently:∑

tni ≤t

Zi
n→∞−→ 0 P− a.s. where Zi :=

((
Wtni+1

−Wtni

)2 − 2−n
)
.

Observe that E[ZiZj ] = 0 for i 6= j, and E[Z2
j ] = C2−2n for some constant

C > 0. Then∑
n≤N

E
[( ∑

tni ≤t

Zi

)2]
=
∑
n≤N

∑
tni ≤t

E
[
Z2
i

]
= C

∑
n≤N

2−n
∑
tni ≤t

2−n = C
∑
n≤N

2−n.

Then, it follows from the monotone convergence theorem that

E
[∑
n≥1

(∑
tni ≤t

Zi

)2]
≤ lim inf

N→∞

∑
n≤N

E
[( ∑

tni ≤t

Zi

)2]
< ∞ .

In particular, this shows that the series
∑
n≥1

(∑
tni ≤t

Zi

)2

is a.s. finite, and

therefore
∑
tni ≤t

Zi −→ 0 P−a.s. as n→∞.

(ii) From the first step of this proof, we can find a zero measure set Ns for
each rational number s ∈ Q. For an arbitrary t ≥ 0, let (sp) and (s′p) be two
monotonic sequences of rational numbers with sp ↗ t and s′p ↘ t. Then, except
on the zero-measure set N := ∪s∈QNs, it follows from the monotonicity of the
quadratic variation that

sp = lim
n→∞

V nsp ≤ lim inf
n→∞

V nt

≤ lim sup
n→∞

V nt ≤ lim
n→∞

V ns′p = s′p.
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Sending p → ∞ shows that V nt −→ t as n → ∞ for every ω outside the zero-
measure set N . ♦



Chapter 5

Stochastic integration with
respect to the Brownian
motion

Recall from (4.9) that the total variation of the Brownian motion is infinite:

lim
n→∞

∑
tni ≤t

∣∣∣Wtni+1
−Wtni

∣∣∣ = ∞, P− a.s.

Because of this property, one can not hope to define the stochastic integral with
respect to the Brownian motion pathwise. To understand this, let us forget
for a moment about stochastic processes. Let ϕ, f : [0, 1] −→ R be continuous
functions, and consider the Riemann sum:

Sn :=
∑
tni ≤1

ϕ
(
tni−1

) [
f (tni )− f

(
tni−1

)]
.

Then, if the total variation of f is infinite, one can not guarantee that the above
sum converges for every continuous function ϕ.

In order to circumvent this limitation, we shall make use of the finiteness
of the quadratic variation of the Brownian motion, which allows to obtain an
L2−definition of stochastic integration.

5.1 Stochastic integrals of simple processes

Throughout this section, we fix a final time T > 0. A process φ is called simple
if there exists a strictly increasing sequence (tn)n≥0 in R and a sequence of
random variables (ϕn)n≥0 such that

φt = ϕ01{0}(t) +

∞∑
n=0

ϕn1(tn,tn+1](t), t ≥ 0,
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and

ϕn is Ftn −measurable for every n ≥ 0 and sup
n≥0
‖ϕn‖∞ <∞.

We shall denote by S the collection of all simple processes. For φ ∈ S, we define
its stochastic integral with respect to the Brownian motion by:

I0
t (φ) :=

∑
n≥0

ϕn
(
Wt∧tn+1 −Wt∧tn

)
, 0 ≤ t ≤ T. (5.1)

By this definition, we immediately see that:

E
[
I0
t (φ)|Fs

]
= Is(φ) for 0 ≤ s ≤ t, (5.2)

i.e. {I0
t (φ), t ≥ 0} is a martingale. We also calculate that

E
[
I0
t (φ)2

]
= E

[∫ t

0

|φs|2ds
]

for t ≥ 0. (5.3)

Exercise 5.1. Prove properties (5.2) and (5.3).

Our objective is to extend I0 to a stochastic integral operator I acting on
the larger set

H2 :=
{
φ : measurable, F− adapted processes with E

[ ∫ T

0

|φt|2dt
]
<∞

}
,

which is a Hilbert space when equipped with the norm

‖φ‖H2 :=
(
E
[ ∫ T

0

|φt|2dt
])1/2

.

The extension of I0 to H2 is crucially based on the following density result.

Proposition 5.2. The set of simple processes S is dense in H2, i.e. for ev-
ery φ ∈ H2, there is a sequence

(
φ(n)

)
n≥0

of processes in S such that ‖φ −
φ(n)‖H2 −→ 0 as n→∞.

The proof of this result is reported in the Complements section 5.4.

5.2 Stochastic integrals of processes in H2

5.2.1 Construction

We now consider a process φ ∈ H2, and we intend to define the stochastic
integral IT (φ) for every T ≥ 0 by using the density of simple processes.
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a. From Proposition 5.2, there is a sequence
(
φ(n)

)
n≥0

which approximates φ

in the sense that ‖φ − φ(n)‖H2 −→ 0 as n → ∞. We next observe from (5.3)
that, for every t ≥ 0:∥∥∥I0

t

(
φ(n)

)
− I0

t

(
φ(m)

)∥∥∥2

L2
= E

[
I0
t

(
φ(n) − φ(m)

)2]
= E

[∫ t

0

|φ(n)
s − φ(m)

s |2ds
]

=
∥∥∥φ(n) − φ(m)

∥∥∥2

H2

converges to zero as n,m→∞. This shows that the sequence
(
I0
t

(
φ(n)

))
n≥0

is

a Cauchy sequence in L2, and therefore

I0
t

(
φ(n)

)
−→ It(φ) in L2 for some random variable It(φ).

b. We next show that the limit It(φ) does not depend on the choice of the
approximating sequence

(
φ(n)

)
n
. Indeed, for another approximating sequence(

ψ(n)
)
n

of φ, we have∥∥∥I0
t

(
ψ(n)

)
− It(φ)

∥∥∥
L2
≤

∥∥∥I0
t

(
ψ(n)

)
− I0

t

(
φ(n)

)∥∥∥
L2

+
∥∥∥I0
t

(
φ(n)

)
− It(φ)

∥∥∥
L2

≤
∥∥∥ψ(n) − φ(n)

∥∥∥
H2

+
∥∥∥I0
t

(
φ(n)

)
− It(φ)

∥∥∥
L2

−→ 0 as n→∞.

c. Observe that the above construction applies without any difficulty if the
time index t ≤ T is replaced by a stopping time τ with values in [0, T ]. The
only ingredient needed for this is the Doob’s optional sampling theorem 3.11.
The notation of the stochastic integral is naturally extended to Iτ (φ) for all
such stopping time.

The following result summarizes the above construction.

Theorem 5.3. For φ ∈ H2 and a stopping time τ with values in [0, T ], the
stochastic integral denoted

Iτ (φ) :=

∫ τ

0

φsdWs

is the unique limit in L2 of the sequence
(
I0
τ (φ(n))

)
n

for every choice of an

approximating sequence
(
φ(n)

)
n

of φ in H2.

5.2.2 The stochastic integral as a continuous process

For every φ ∈ H2, the previous theorem defined a family {Iτ (φ), τ} where τ
ranges in the set of all stopping times with values in [0, T ]. We now aim at
aggregating this family into a process {It(φ), t ∈ [0, T ]} so that

Iτ (φ)(ω) = Iτ(ω)(φ)(ω) = IT (φ1[0,τ ])(ω). (5.4)
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The meaning of (5.4) is the following. For a stopping time τ with values in [0, T ],
and a process φ ∈ H2, we may compute the stochastic integral of φ with respect
to the Brownian motion on [0, τ ] either by Iτ (φ) or by IT (φ1[0,τ ]). Therefore,
for the consistency of the stochastic integral operator, we have to verify that
Iτ (φ) = IT (φ1[0,τ ]).

Proposition 5.4. For a process φ ∈ H2 and a stopping time τ with values in
[0, T ], we have Iτ (φ) = IT (φ1[0,τ ]).

Proof. Consider the approximation of τ by the decreasing sequence of stop-
ping times τn := (bnτc + 1)/n. Let ti := i/n, and observe that 1[0,τn] =∑
i 1[ti,ti+1)(τ)1(0,ti+1] is a simple process. Then, the equality

Iτn(φ) = IT (φ1[0,τn]) for simple processes φ ∈ S (5.5)

is trivial. Since φ1[0,τn] −→ φ1[0,τ ] in H2, it follows that IT (φ1[0,τn]) −→
IT (φ1[0,τ ]) in L2. Then, by the pathwise continuity of {It(φ), t ∈ [0, T ]}, we
deduce that the proposition holds true for simple processes.

Now for φ ∈ H2 with an approximating sequence φn −→ φ in H2, we have
Iτ (φn) = IT (φn1[0,τ ]) for all n, and we obtain the required result by sending n
to infinity. ♦

In the previous proof we used the fact that, for a simple process φ ∈ S, the
process {It(φ), t ∈ [0, T ]} is pathwise continuous. The next result extends this
property to any φ ∈ H2.

Proposition 5.5. Let φ be a process in H2. Then the process {It(φ), t ∈ [0, T ]}
has continuous sample paths a.s.

Proof. Denote Mt := It(φ). By definition of the stochastic integral, Mt is the
L2−limit of Mn

t := I0
t (φn) for some sequence (φn)n of simple processes con-

verging to φ in H2. By definition of the stochastic integral of simple integrands
in (5.1), notice that the process {Mn

t −Mm
t = I0

t (φn) − I0
t (φm), t ≥ 0} is a.s.

continuous and the process (|Mn
t −Mm

t |)m≥n is a non-negative submartingale.
We then deduce from the Doobs maximal inequality of Theorem 3.15 that:

E
[
(|Mn −Mm|∗t )

2
]
≤ 4 E

[∫ t

0

|φns − φms |2ds
]
.

This shows that the sequence (Mn)n is a Cauchy sequence in the Banach space

of continuous processes endowed with the norm E
[
sup[0,T ] |Xs|2

]
. Then Mn

converges towards a continuous process M̄ in the sense of this norm. We know
however that Mn

t −→ Mt := It(φ) in L2 for all t ∈ [0, T ]. By passing to
subequences we may deduce that M̄ = M is continuous. ♦
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5.2.3 Martingale property and the Itô isometry

We finally show that the uniquely defined limit It(φ) satisfies the analogue
properties of (5.2)-(5.3).

Proposition 5.6. For φ ∈ H2 and t ≤ T , we have:

• Martingale property: E [IT (φ)|Ft] = It(φ),

• Itô isometry: E
[
IT (φ)2

]
= ‖φ‖2H2 .

Proof. To see that the martingale property holds, we directly compute with(
φ(n)

)
n

an approximating sequence of φ in H2 that

‖E [IT (φ)|Ft]− It(φ)‖L2 ≤
∥∥∥E [IT (φ)|Ft]− E

[
I0
t (φ(n))|Ft

]∥∥∥
L2

+
∥∥∥E [I0

T (φ(n))|Ft
]
− It(φ)

∥∥∥
L2

=
∥∥∥E [IT (φ)|Ft]− E

[
I0
T (φ(n))|Ft

]∥∥∥
L2

+
∥∥∥I0
t (φ(n))− It(φ)

∥∥∥
L2

by (5.2). By the Jensen inequality and the law of iterated expectations, this
provides

‖E [IT (φ)|Ft]− It(φ)‖L2 ≤
∥∥∥IT (φ)− I0

T (φ(n))
∥∥∥
L2

+
∥∥∥I0
t (φ(n))− It(φ)

∥∥∥
L2

which implies the required result by sending n to infinity.
As for the Itô isometry, it follows from the H2− convergence of φ(n) towards

φ and the L2−convergence of I0
(
φ(n)

)
towards I(φ), together with (5.3), that:

E

[∫ T

0

|φs|2dt

]
= lim
n→∞

E

[∫ T

0

|φ(n)
t |2dt

]
= lim
n→∞

E
[
I0
T

(
φ(n)

)2
]

= E
[
IT (φ)

2
]
.

♦

5.2.4 Deterministic integrands

We report the main message of this subsection in the following exercise.

Exercise 5.7. Let f : [0, T ] −→ Rd be a deterministic function with
∫ T

0
|f(t)|2dt <

∞.

1. Prove that∫ T

0

f(t) · dWt has distribution N

(
0,

∫ T

0

|f(t)|2dt

)
.

Hint: Use the closeness of the Gaussian space.
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2. Prove that the process

exp

(∫ t

0

f(s) · dWs −
1

2

∫ t

0

|f(s)|2ds
)
, t ≥ 0

is a martingale.

5.3 Stochastic integration beyond H2 and Itô pro-
cesses

Our next task is to extend the stochastic integration to integrands in the set

H2
loc :=

{
φ measurable, F− adapted

∫ T

0

|φs|2ds <∞ a.s.
}
. (5.6)

To do this, we consider for every φ ∈ H2
loc the sequence of stopping times

τn := inf
{
t > 0 :

∫ t

0

|φu|2du ≥ n
}
.

Clearly, (τn)n is non-decreasing sequence of stopping times and

τn −→∞ P− a.s. when n→∞.

For fixed n > 0, the process φn := φ.1.∧τn is in H2. Then the stochastic integral
It (φn) is well-defined by Theorem 5.3. Since (τn)n is a non-decreasing and
P [τn ≥ t for some n ≥ 1] = 1, it follows that the limit

It(φ) := (a.s.) lim
n→∞

It (φn) (5.7)

exists (in fact It (φ) = It (φn) for n sufficiently large, a.s.).

Remark 5.8. The above extension of the stochastic integral to integrands in
H2

loc does not imply that It(φ) satisfies the martingale property and the Itô
isometry of Proposition 5.6. This issue will be further developed in the next
subsection. However the continuity property of the stochastic integral is con-
served because it is a pathwise property which is consistent with the pathwise
definition of (5.7).

As a consequence of this remark, when the integrand φ is in H2
loc but is not

in H2, the stochastic integral fails to be a martingale, in general. This leads us
to the notion of local martingale.

Definition 5.9. An F−adapted process M = {Mt, t ≥ 0} is a local mar-
tingale if there exists a sequence of stopping times (τn)n≥0 (called a localizing
sequence) such that τn −→ ∞ P−a.s. as n → ∞, and the stopped process
Mτn = {Mt∧τn , t ≥ 0} is a martingale for every n ≥ 0.
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Proposition 5.10. Let φ be a process in H2
loc. Then, for every T > 0, the

process {It(φ), 0 ≤ t ≤ T} is a local martingale.

Proof. The above defined sequence (τn)n is easily shown to be a localizing se-
quence. The result is then a direct consequence of the martingale property of
the stochastic integral of a process in H2. ♦

An example of local martingale which fails to be a martingale will be given
in the next chapter.

Definition 5.11. An Itô process X is a continuous-time process defined by:

Xt = X0 +

∫ t

0

µsds+

∫ t

0

σs · dWs, t ≥ 0,

where µ and σ are measurable, F−adapted processes with
∫ t

0
(|µs|+ |σs|2)ds <∞

a.s.

Remark 5.12. Observe that the process µ above is only assumed to be mea-
surable and F−adapted, so we may ask whether the process {

∫ t
0
µsds, t ≤ T} is

adapted. This is indeed true as a consequence of the density result of Propo-
sition 5.2: Let (µn)n≥1 be an approximation of µ in H2. This implies that∫ t

0
µns ds −→

∫ t
0
µsds a.s. along some subsequence. Since µn is a simple process,∫ t

0
µns ds is Ft−adapted, and so is the limit

∫ t
0
µsds.

We conclude this section by the following easy result:

Lemma 5.13. Let M = {Mt, 0 ≤ t ≤ T} be a local martingale bounded from
below by some constant m, i.e. Mt ≥ m for all t ∈ [0, T ] a.s. Then M is a
supermartingale.

Proof. Let (Tn)n be a localizing sequence of stopping times for the local mar-
tingale M , i.e. Tn −→ ∞ a.s. and {Mt∧Tn , 0 ≤ t ≤ T} is a martingale for every
n. Then :

E [Mt∧Tn |Fu] = Mu∧Tn , 0 ≤ u ≤ t ≤ T,

for every fixed n. We next send n to infinity. By the lower bound on M , we can
use Fatou’s lemma, and we deduce that :

E [Mt|Fu] ≤ Mu, 0 ≤ u ≤ t ≤ T ,

which is the required inequality. ♦

Exercise 5.14. Show that the conclusion of Lemma 5.13 holds true under the
weaker condition that the local martingale M is bounded from below by a mar-
tingale.
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5.4 Complement: density of simple processes in
H2

The proof of Proposition 5.2 is a consequence of the following Lemmas. Through-
out this section, tni := i2−n, i ≥ 0 is the sequence of dyadic numbers.

Lemma 5.15. Let φ be a bounded F−adapted process with continuous sample
paths. Then φ can be approximated by a sequence of simple processes in H2.

Proof. Define the sequence

φ
(n)
t := φ01{0}(t) +

∑
tni ≤T

φtni 1(tni ,t
n
i+1](t), t ≤ T.

Then, φ(n) is a simple process for each n ≥ 1. By the dominated convergence

theorem, E
[∫ T

0
|φ(n)
t − φt|2

]
−→ 0 as n→∞. ♦

Lemma 5.16. Let φ be a bounded F−progressively measurable process. Then φ
can be approximated by a sequence of simple processes in H2.

Proof. Notice that the process

ψ
(k)
t := k

∫ t

0∨(t− 1
k )

φsds, 0 ≤ t ≤ T,

is progressively measurable as the difference of two adapted continuous pro-
cesses, see Proposition 3.2, and satisfies∥∥∥ψ(k) − φ

∥∥∥
H2
−→ 0 as k →∞, (5.8)

by the dominated convergence theorm. For each k ≥ 1, we can find by Lemma
5.15 a sequence

(
ψ(k,n)

)
n≥0

of simple processes such that ‖ψ(k,n)−ψ(k)‖H2 −→ 0

as n→∞. Then, for each k ≥ 0, we can find nk such that

the process φ(k) := ψ(k,nk) satisfies
∥∥∥φ(k) − φ

∥∥∥
H2
−→ 0 as k →∞.

♦

Lemma 5.17. Let φ be a bounded measurable and F−adapted process. Then φ
can be approximated by a sequence of simple processes in H2.

Proof. In the present setting, the process ψ(k), defined in the proof of the
previous Lemma 5.16, is measurable but is not known to be adapted. For each
ε > 0, there is an integer k ≥ 1 such that ψε := ψ(k) satisfies ‖ψε − φ‖H2 ≤ ε.
Then, with φt = φ0 for t ≤ 0:

‖φ− φ.−h‖H2 ≤ ‖φ− ψε‖H2 +
∥∥ψε − ψε.−h∥∥H2 +

∥∥ψε.−h − φ.−h∥∥H2

≤ 2ε+
∥∥ψε − ψε.−h∥∥H2 .
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By the continuity of ψε, this implies that

lim sup
h↘0

‖φ− φ.−h‖H2 ≤ 4ε2. (5.9)

We now introduce

ϕn(t) := 1{0}(t) +
∑
i≥1

tni 1(tni−1,t
n
i ],

and

φ
(n,s)
t := φϕn(t−s)+s, t ≥ 0, s ∈ (0, 1].

Clearly φn,s is a simple adapted process, and

E

[∫ T

0

∫ 1

0

|φ(n,s)
t − φt|2dsdt

]
= 2nE

[∫ T

0

∫ 2−n

0

|φt − φt−h|2dhdt

]

= 2n
∫ 2−n

0

E

[∫ T

0

|φt − φt−h|2dt

]
dh

≤ max
0≤h≤2−n

E

[∫ T

0

|φt − φt−h|2dt

]

which converges to zero as n→∞ by (5.9). Hence

φ
(n,s)
t (ω) −→ φt(ω) for almost every (s, t, ω) ∈ [0, 1]× [0, T ]× Ω,

and the required result follows from the dominated convergence theorem. ♦

Lemma 5.18. The set of simple processes S is dense in H2.

Proof. We only have to extend Lemma 5.17 to the case where φ is not neces-
sarily bounded. This is easily achieved by applying Lemma 5.17 to the bounded
process φ ∧ n, for each n ≥ 1, and passing to the limit as n→∞. ♦
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Chapter 6

Itô Differential Calculus

In this chapter, we focus on the differential properties of the Brownian motion.
To introduce the discussion, recall that E

[
W 2
t

]
= t for all t ≥ 0. If standard

differential calculus were valid in the present context, then one would expect that
W 2
t be equal to Mt = 2

∫ t
0
WsdWs. But the process M is a square integrable

martingale on every finite interval [0, T ], and therefore E[Mt] = M0 = 0 6=
E[W 2

t ] !

So, the standard differential calculus is not valid in our context. We should
not be puzzled by this small calculation, as we already observed that the Brow-
nian motion sample path has very poor regularity properties, has infinite total
variation, and finite quadratic variation.

We can elaborate more on the above example by considering a discrete-time
approximation of the stochastic integral Mt:

n∑
i=1

2Wti−1

(
Wti −Wti−1

)
= −

n∑
i=1

(
Wti −Wti−1

)2
+

n∑
i=1

(
W 2
ti −W

2
ti−1

)
= W 2

t −
n∑
i=1

(
Wti −Wti−1

)2
,

where 0 = t0 < t1 < . . . , tn = t. We know that the latter sum converges in
L2 towards t, the quadratic variation of the Brownian motion at time t (the
convergence holds even P−a.s. if one takes the dyadics as (ti)i). Then, by
sending n to infinity, this shows that

∫ t

0

2WsdWs = W 2
t − t, t ≥ 0. (6.1)

In particular, by taking expectations on both sides, there is no contradiction
anymore.

71
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6.1 Itô’s formula for the Brownian motion

The purpose of this section is to prove the Itô formula for the change of variable.
Given a smooth function f(t, x), we will denote by ft, Df and D2f , the partial
gradients with respect to t, to x, and the partial Hessian matrix with respect
to x.

Theorem 6.1. Let f : R+ × Rd −→ R be C1,2
(
[0, T ],Rd

)
. Then, with proba-

bility 1, we have:

f(T,WT ) = f(0, 0) +

∫ T

0

Df (t,Wt) · dWt +

∫ T

0

(
ft +

1

2
Tr[D2f ]

)
(t,Wt)dt

for every T ≥ 0.

Proof. 1 We first fix T > 0, and we show that the above Itô’s formula holds
with probability 1. Also, without loss of generality, we may assume that f and
its derivatives ft, Df and D2f are bounded by some constant C > 0. Indeed, we
may reduce the analysis to the stochastic interval [0, τN ], with τN := inf{t ≥ 0 :
|Wt| ≥ N}, so that by the C1,2 regularity of f , it follows that f, ft, Df,D

2f are
bounded in [0, τN ], and we obtain the required result by sending N →∞.Finally,
by possibly adding a constant to f , we may assume that f(0, 0) = 0.

Let πn = (tni )i≥0 be a partition of R+ with tn0 = 0, and denote n(T ) :=
sup{i ≥ 0 : tni ≤ T}, so that tnn(T ) ≤ T < tnn(T )+1. We also denote

∆n
iW := Wtni+1

−Wtni
and ∆n

i t := tni+1 − tni .

1.a We first decompose

f
(
tnn(T )+1,Wtn

n(T )+1

)
=

∑
tni ≤T

[
f
(
tni+1,Wtni+1

)
− f

(
tni ,Wtni+1

)]
+
∑
tni ≤T

[
f
(
tni ,Wtni+1

)
− f

(
tni ,Wtni

)]
.

By a Taylor expansion, this provides:

InT (Df) :=
∑
tni ≤T

Df
(
tni ,Wtni

)
·∆n

iW

= f
(
tnn(T )+1,Wtn

n(T )+1

)
−
∑
tni ≤T

ft

(
τni ,Wtni+1

)
∆n
i t

−1

2

∑
tni ≤T

Tr
[(
D2f (tni , ξ

n
i )−D2f

(
tni ,Wtni

))
∆n
iW∆n

iW
T
]

−1

2

∑
tni ≤T

Tr
[
D2f

(
tni ,Wtni

)
∆n
iW∆n

iW
T
]
, (6.2)

where τni is a random variable with values in
[
tni , t

n
i+1

]
, and ξni = λniWtni

+
(1− λni )Wtni+1

for some random variable λni with values in [0, 1].
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1.b Since a.e. sample path of the Brownian motion is continuous, and there-
fore uniformly continuous on the compact interval [0, T + 1], it follows that

f
(
tnn(T )+1,Wtn

n(T )+1

)
−→ f(T,WT ) , P− a.s.∑

tni ≤T
ft

(
τni ,Wtni+1

)
∆n
i t −→

∫ T
0
ft(t,Wt)dt P− a.s.

Next, using again the above uniform continuity together with Proposition 4.24
and the fact that the L2−convergence implies the a.s. convergence along some
subsequence, we see that:∑

tni ≤T

Tr
[(
D2f (tni , ξ

n
i )−D2f

(
tni ,Wtni

))
∆n
iW∆n

iW
T
]
−→ 0 P− a.s.

1.c. For the last term in the decomposition (6.2), we estimate:∣∣∣ ∑
tni ≤T

Tr
[
D2f

(
tni ,Wtni

)
∆n
iW∆n

iW
T
]∣∣∣ ≤ ∣∣∣ ∑

tni ≤T

Tr
[
D2f

(
tni ,Wtni

)]
∆n
i t
∣∣∣

+
∣∣∣ ∑
tni ≤T

Tr
[
D2f

(
tni ,Wtni

) (
∆n
iW∆n

iW
T −∆n

i tId
)]∣∣∣
(6.3)

Denote ϕi := D2f
(
tni ,Wtni

)
Since |ϕi| ≤ C and ϕi is Fti−1

−measurable for all
i, we have

E
[( ∑

tni ≤T

Tr
[
ϕi
(
∆n
iW∆n

iW
T −∆n

i tId
)])2]

≤ C2
∑
tni ≤T

E
[∣∣|∆n

iW |2 − d∆n
i t
∣∣2]

= 2C2d2
∑
tni ≤T

∣∣∆n
i t
∣∣2

≤ 2C2d2|πn|T −→ 0.

This L2−convergence implies that
∑
tni ≤T

Tr
[
ϕi
(
∆n
iW∆n

iW
T−∆n

i tId
)]
−→ 0,

P−a.s. along some subsequence. Then, it follows from (6.3) that, along some
subsequence,∑
tni ≤T

Tr
[
D2f

(
tni ,Wtni

)
∆n
iW∆n

iW
T
]
−→

∫ T

0

Tr
[
D2f(t,Wt)

]
dt, P− a.s.

1.d In order to complete the proof of Itô’s formula for fixed T > 0, it remains
to prove that

InT (Df) −→
∫ T

0

Df(t,Wt) · dWt P− a.s. along some subsequence.(6.4)

Notice that InT (Df) = I0
T

(
φ(n)

)
where φ(n) is the simple process defined by

φ
(n)
t =

∑
tni ≤T

Df
(
tni ,Wtni

)
1[tni ,tni+1)

(t), t ≥ 0.
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Since Df is continuous, it follows from the proof of Proposition 5.2 that φ(n) −→
φ in H2 with φt := Df (t,Wt). Then InT (Df) −→ IT (φ) in L2, by the definition
of the stochastic integral in Theorem 5.3, and (6.4) follows from the fact that
the L2 convergence implies the a.s. convergence along some subsequence.
2. From the first step, we have the existence of subsets Nt ⊂ F for every t ≥ 0
such that P[Nt] = 0 and the Itô’s formula holds on N c

t , the complement of Nt.
Of course, this implies that the Itô’s formula holds on the complement of the set
N := ∪t≥0Nt. But this does not complete the proof of the theorem as this set is
a non-countable union of zero measure sets, and is therefore not known to have
zero measure. We therefore appeal to the continuity of the Brownian motion
and the stochastic integral, see Proposition 3.15. By usual approximation along
rational numbers, it is easy to see that, with probability 1, the Itô formula holds
for every T ≥ 0. ♦

Remark 6.2. Since, with probability 1, the Itô formula holds for every T ≥ 0,
it follows that the Itô’s formula holds when the deterministic time T is replaced
by a random time τ .

Remark 6.3. (Itô’s formula with generalized derivatives) Let f : Rd −→ R be
C2(Rd \ K) for some compact subset K of Rd. Assume that f ∈ W 2(K), i.e.
there is a sequence of functions (fn)n≥1 such that

fn = f on Rd \K, fn ∈ C2(K) and ‖fnx − fmx ‖L2(K) + ‖fnxx − fmxx‖L2(K) −→ 0.

Then, Itô’s formula holds true:

f(Wt) = f(0) +

∫ t

0

Df(Ws)dWs +
1

2

∫ t

0

D2f(Ws)ds,

where Df and D2f are the generalized derivatives of f . Indeed, Itô’s formula
holds for fn, n ≥ 1, and we obtain the required result by sending n→∞.

A similar statement holds for a function f(t, x).

Exercise 6.4. Let W be a Brownian motion in Rd and consider the process

Xt := X0 + bt+ σWt, t ≥ 0,

where b is a vector in Rd and σ is an (d× d)−matrix. Let f be a C1,2(R+,Rd)
function. Show that

df(t,Xt) =
∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt) · dXt +

1

2
Tr

[
∂2f

∂x∂xT
(t,Xt)σσ

T

]
.

Exercise 6.5. Let W be a Brownian motion in Rd, and consider the process

St := S0 exp (bt+ σ ·Wt) , t ≥ 0,

where b ∈ R and σ ∈ Rd are given.
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1. For a C1,2 function f : R+ × R+ −→ R, show that {f(t, St), t ≥ 0} is an
Itô process, and provide its dynamics.

2. Find a function f so that the process {f(t, St), t ≥ 0} is a local martingale.

Exercise 6.6. Let f : R+ × R+ → R be a C1,2 function such that, for some
constant C > 0,

|f(t, x)|+ |f ′t(t, x)|+ |f ′x(t, x)|+ |f ′′x,x(t, x)| ≤ C exp(C|x|)

for all (t, x) ∈ R+ × R.

1. If T is a bounded stopping time, show that

E(f(T,WT )) = f(0, 0) + E

[∫ T

0

[f ′t(s,Ws) +
1

2
f ′′x,x(s,Ws)] ds

]

2. When T is a bounded stopping time, compute E(WT ) and E(W 2
T ).

3. Show that if T is a stopping time such that E(T ) < +∞, then E(WT ) = 0.

4. For every real number a 6= 0, we define

τa = inf{t ≥ 0 : Wt = a}.

Is it a finite stopping time? Is it bounded? Deduce from question 3) that
E(τa) = +∞.

5. Show that the law of τa is characterized by its Laplace transform :

E(exp{−λτa}) = exp(−
√

2λ|a|), λ ≥ 0.

6. From question 2), deduce the value of P(τa < τb), for a > 0 and b < 0.

6.2 Extension to Itô processes

We next provide Itô’s formula for a general Itô process with values in Rn:

Xt := X0 +

∫ t

0

µsds+

∫ t

0

σsdWs, t ≥ 0,

where µ and σ are adapted processes with values in Rn and MR(n, d), respec-
tively and satisfying ∫ T

0

|µs|ds+

∫ T

0

|σs|2ds <∞ a.s.
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Observe that stochastic integration with respect to the Itô process X reduces
to the stochastic integration with respect to W : for any F−adapted Rn−valued

process φ with
∫ T

0
|σT
t φt|2dt+

∫ T
0
|φt · µt|dt <∞,a.s.∫ T

0

φt · dXt =

∫ T

0

φt · µtdt+

∫ T

0

φt · σtdWt

=

∫ T

0

φt · µtdt+

∫ T

0

σT
t φt · dWt.

Theorem 6.7. Let f : R+ × Rn −→ R be C1,2 ([0, T ],Rn). Then, with proba-
bility 1, we have:

f(T,XT ) = f(0, 0) +

∫ T

0

Df (t,Xt) · dXt

+

∫ T

0

(
ft(t,Xt) +

1

2
Tr[D2f(t,Xt)σtσ

T
t ]

)
dt

for every T ≥ 0.

Proof. Let τN := inf
{
t : max

(
|Xt −X0|,

∫ t
0
σ2
sds,

∫ t
0
|µs|ds

)
≥ N

}
. Obviously,

τN →∞ a.s. when N →∞, and it is sufficient to prove Itô’s formula on [0, τN ],
since any t ≥ 0 can be reached by sending N to infinity. In view of this, we
may assume without loss of generality that X,

∫ t
0
µsds,

∫ t
0
σ2
sds are bounded

and that f has compact support. We next consider an approximation of the
integrals defining Xt by step functions which are constant on intervals of time
(tni−1, t

n
i ] for i = 1, . . . , n, and we denote by Xn the resulting simple approxi-

mating process. Notice that Itô’s formula holds true for Xn on each interval
(tni−1, t

n
i ] as a direct consequence of Theorem 6.1. The proof of the theorem

is then concluded by sending n to infinity, and using as much as needed the
dominated convergence theorem. ♦

Exercise 6.8. Let W be a Brownian motion in Rd, and consider the process

St := S0 exp

(∫ t

0

budu+

∫ t

0

σu · dWu

)
, t ≥ 0,

where b and σ are measurable and F−adapted processes with values in R and

Rd, repectively, with
∫ T

0
|bu|du+

∫ T
0
|σu|2du <∞, a.s. for all T > 0.

1. For a function f : R+ × R+ −→ R, show that {f(t, St), t ≥ 0} is an Itô
process, and provide its dynamics.

2. Let γ be a measurable F−adapted process with values in R with
∫ T

0
|γu|du <

∞, a.s. Show that the process {Xt := e−
∫ t
0
γuduSt, t ≥ 0} is an Itô process,

and provide its dynamics.
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3. Find a process γ such that {Xt, t ≥ 0} is a local martingale.

Exercise 6.9. Let W be a Brownian motion in Rd, and X and Y be the Itô
processes defined for all t ≥ 0 by:

Xt = X0 +

∫ t

0

µXu du+

∫ t

0

σXu · dWu

Yt = Y0 +

∫ t

0

µYu du+

∫ t

0

σYu · dWu,

where µX , µY , σX , σY are measurable and F−adapted processes with appropriate

dimension, satisfying
∫ T

0
(|µXu |+ |µYu |+ |σXu |2 + |σYu |2)du <∞, a.s.

Provide the dynamics of the process Z := f(X,Y ) for the following functions
f :

1. f(x, y) = xy, x, y ∈ R,

2. f(x, y) = x
y , x, y ∈ R, (assuming that Y0, µY and σY are such that Y is a

positive process).

Exercise 6.10. Let a and σ be two measurable and F−adapted processes such
that

∫ t
0
|as|ds+

∫ t
0
|σs|2ds <∞.

1. Prove the integration by parts formula:∫ t

0

∫ s

0

σuasdWuds =

(∫ t

0

σudWu

)(∫ t

0

asds

)
−
∫ t

0

∫ u

0

asσudsdWu.

2. We now take the processes as = a(s) and bs = b(s) to be deterministic

functions. Show that the random variable
∫ t

0

∫ s
0
σuasdWuds has a Gaus-

sian distribution, and compute the corresponding mean and variance.

We conclude this section by providing an example of local martingale which
fails to be a martingale, although positive and uniformly integrable.

Example 6.11. (A strict local martingale) Let W be a Brownian motion in
Rd.
• In the one-dimensional case d = 1, we have P [|Wt| > 0, ∀ t > 0] = 0, see
also Proposition 4.19.
• When d ≥ 2, the situation is drastically different as it can be proved that
P [|Wt| > 0, for every t > 0] = 1, see e.g. Karatzas and Shreve [30] Proposition
3.22 p161. In words, this means that the Brownian motion never returns to the
origin P−a.s. This is a well-known result for random walks on Zd. Then, for a
fixed t0 > 0, the process

Xt := |Wt0+t|−1
, t ≥ 0 ,

is well-defined, and it follows from Itô’s formula that

dXt = X3
t

(
1

2
(3− d)dt−Wt · dWt

)
.
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• We now consider the special case d = 3. By the previous Proposition 5.10, it
follows from Itô’s formula that X is a local martingale. However, by the scaling
property of the Brownian motion, we have

E[Xt] =

√
t0

t+ t0
E[X0] , t ≥ 0 ,

so that X has a non-constant expectation and can not be a martingale.

• Passing to the polar coordinates, we calculate directly that

E
[
X2
t

]
= (2π(t0 + t))−3/2

∫
|x|−2e−|x|

2/2(t0+t)dx

= (2π(t0 + t))−3/2

∫
r−2e−r

2/2(t0+t)4πr2dr

=
1

t0 + t
≤ 1

t0
for every t ≥ 0.

This shows that supt≥0 E
[
X2
t

]
<∞. In particular, X is uniformly integrable.

6.3 Lévy’s characterization of Brownian motion

The next result is valid in a larger generality than the present framework.

Theorem 6.12. Let W be a Brownian motion in Rd, and φ anMR(n, d)−valued

process with components in H2, and such that
∫ t

0
φsφ

T
s ds = t In for all t ≥ 0.

Then, the process X defined by:

Xj
t := Xj

0 +

d∑
k=1

∫ t

0

φjkt dW
k
t , j = 1, . . . , n

is a Brownian motion on Rn.

Proof. ClearlyX0 = 0 andX has continuous sample paths, a.s. and is F−adapted.
To complete the proof, we show that Xt − Xs is independent of Fs, and is
distributed as a N (0, (t− s)In). By using the characteristic function, this is
equivalent to show

E
[
eiu·(Xt−Xs)

∣∣∣Fs] = e−|u|
2(t−s)/2 for all u ∈ Rn, 0 ≤ s ≤ t. (6.5)

For fixed s, we apply Itô’s formula to the function f(x) := eiu·x:

eiu·(Xt−Xs) = 1 + i

d∑
j=1

uj

∫ t

s

eiu·(Xr−Xs)dXj
r −

1

2
|u|2

∫ t

s

eiu·(Xr−Xs)dr
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Since |f | ≤ 1 and φsφ
T
s = In, dt×dP−a.s., we have E

[∫ t
s
eiu·(Xr−Xs)dXj

r

∣∣∣Fs] =

0. Then, the function h(t) := E
[
eiu·(Xt−Xs)

∣∣Fs] satisfies the ordinary differen-
tial equation:

h(t) = 1− 1

2
|u|2

∫ t

s

h(r)dr,

and therefore h(t) = e−|u|
2(t−s)/2, which is the required result (6.5). ♦

6.4 A verification approach to the Black-Scholes
model

Our first contact with the Black-Scholes model was by means of the continuous-
time limit of the binomial model. We shall have a cleaner presentation in the
larger class of models later on when we will have access to the change of measure
tool. In this paragraph, we provide a continuous-time presentation of the Black-
Scholes model which only appeals to Itô’s formula.

Consider a financial market consisting of a nonrisky asset with constant
interest rate r ≥ 0, and a risky asset defined by

St = S0 exp

(
(µ− 1

2
σ2)t+ σWt

)
, t ≥ 0. (6.6)

An immediate application of Itô’s formula shows that the dynamics of this
process are given by:

dSt
St

= µdt+ σdWt, t ≥ 0.

A portfolio strategy is a measurable and F−adapted process {θt, t ∈ [0, T ]} with∫ T
0
|θt|2dt <∞, a.s. where θt represents the amount invested in the risky asset

at time t, corresponding to a number of shares θt/St. Denoting by Xt the value
of the portfolio at time t, we see that the investment in the nonrisky asset is
given by Xt−θt, and the variation of the portfolio value under the self-financing
condition is given by

dXθ
t = θt

dSt
St

+ (Xt − θt)rdt, t ≥ 0.

We say that the portfolio θ is admissible if in addition the corresponding port-
folio value Xθ is bounded from below. The admissibility condition means that
the investor is limited by a credit line below which he is considered bankrupt.
We denote by A the collection of all admissible portfolios.

Using again Itô’s formula, we see that the discounted portfolio value process
X̃t := Xte

−rt satisfies the dynamics:

dX̃θ
t = e−rtθt

dS̃t

S̃t
where S̃t := Ste

−rt, (6.7)
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and then

dS̃t = e−rt(−rStdt+ dSt) = S̃t
(
(µ− r)dt+ σdWt

)
. (6.8)

We recall the no-arbitrage principle which says that if a portfolio strategy on
the financial market produces an a.s. nonegative final portfolio value, starting
from a zero intial capital, then the portfolio value is zero a.s.

A contingent claim is an FT−measurable random variable which describes
the random payoff of the contract at time T . The following result is specific
to the case where the contingent claim is g(ST ) for some deterministic function
g : R+ −→ R. Such contingent claims are called Vanilla options.

In preparation of the main result of this section, we start by

Proposition 6.13. Suppose that the function g : R+ −→ R has polynomial
growth, i.e. |g(s)| ≤ α(1 + sβ) for some α, β ≥ 0. Then, the linear partial
differential equation on [0, T )× (0,∞):

Lv :=
∂v

∂t
+ rs

∂v

∂s
+

1

2
σ2s2 ∂

2v

∂s2
− rv = 0 and v(T, .) = g, (6.9)

has a unique solution v ∈ C0 ([0, T ]× (0,∞)) ∩ C1,2 ([0, T ), (0,∞)) in the class
of polynomially growing functions, and given by

v(t, s) = E
[
e−r(T−t)g

(
Ŝt,sT

)]
, (t, s) ∈ [0, T ]× (0,∞)

where

Ŝt,sT := se(r− 1
2σ

2)(T−t)+σ(WT−Wt).

Proof. We denote V (t, s) := E
[
e−r(T−t)g

(
Ŝt,sT

)]
.

1- We first observe that V ∈ C0 ([0, T ]× (0,∞)) ∩ C1,2 ([0, T ), (0,∞)). To see
this, we simply write

V (t, s) = e−r(T−t)
∫
R
g (ex)

1√
2πσ2(T − t)

e
− 1

2

(
x−ln(s)(r− 1

2
σ2)(T−t)

σ
√
T−t

)2

dx,

and see that the claimed regularity holds true by the dominated convergence
theorem.
2- Immediate calculation reveals that V inherits the polynomial growth of g.
Let

Ŝu := e(r−µ)tSu, u ≥ t, so that
dŜu

Ŝu
= rdu+ σdWu,

an consider the stopping time τ := inf
{
u > t : | ln (Ŝu/s)| > 1

}
. Then, it fol-

lows from the law of iterated expectations that

V (t, s) = Et,s
[
e−r(τ∧h−t)V

(
τ ∧ h, Ŝτ∧h

)]
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for every h > t, where we denoted by Et,s the expectation conditional on {Ŝt =
s}. It then follows from Itô’s formula that

0 = Et,s

[∫ τ∧h

t

e−ruLV (u, Ŝu)du+

∫ τ∧h

t

e−ru
∂V

∂s
(u, Ŝu)σŜudWu

]

= Et,s

[∫ τ∧h

t

e−ruLV (u, Ŝu)du

]
.

Normalizing by (h − t) and sending h ↘ t, il follows from the dominated con-
vergence theorem that V is a solution of (6.9).
3- We next prove the uniqueness among functions of polynomial growth. Let

τn := inf
{
u > t : | ln (Ŝu/s)| > n

}
, and consider an arbitrary solution v of (6.9)

with |v(t, s)| ≤ α(1 + sβ) for some α, β ≥ 0. Then, it follows from Itô’s formula
together with the fact that v solves (6.9) that:

e−r(T∧τn)v
(
T ∧ τn, ŜT∧τn

)
= e−rtv(t, s) +

∫ T∧τn

t

e−rt
∂V

∂s
(u, Ŝu)σŜudWu.

Since the integrand in the latter stochastic integral is bounded on [t, T ∧ τn],
this provides

e−rtv(t, s) = Et,s
[
e−r(T∧τn)v

(
T ∧ τn, ŜT∧τn

)]
.

By the continuity of v, we see that e−r(T∧τn)v (T ∧ τn, ST∧τn) −→ e−rT v(T, ST ) =
e−rT g(ST ), a.s. We next observe from the polynomial growth of v that∣∣∣e−r(T∧τn)v

(
T ∧ τn, ŜT∧τn

)∣∣∣ ≤ α
(
1 + βerT+σmaxu≤T Wu

)
∈ L1.

We then deduce from the dominated convergence theorem that v(t, s) = V (t, s).
♦

We now have the tools to obtain the Black-Scholes formula in the continuous-
time framework of this section.

Proposition 6.14. Let g : R+ −→ R be a polynomially growing function
bounded from below, i.e. −c ≤ g(s) ≤ α(1 + sβ) for some α, β ≥ 0. Assume
that the contingent claim g(ST ) is available for trading, and that the financial
market satisfies the no-arbitrage condition. Then:
(i) the market price at time 0 of the contingent claim g(ST ) is given by V (0, S0) =

E
[
e−rT g(Ŝ0,S0

T )
]
,

(ii) there exists a replicating portfolio θ∗ ∈ A for g(ST ), i.e. Xθ∗

0 = V (0, S0)
and Xθ∗

T = g(ST ), a.s. given by

θ∗t =
∂V

∂s
(t, St), where V (t, s) := E

[
e−r(T−t)g(Ŝt,sT )

]
.
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Proof. By Itô’s formula, we compute that:

e−rTV (T, ST ) = V (0, S0) +

∫ T

0

e−rt
(
−rV +

∂V

∂t
+ µs

∂V

∂s
+

1

2
σ2s2 ∂

2V

∂s2

)
(t, St)dt

+

∫ T

0

e−rt
∂V

∂s
(t, St)σStdWt.

Since V solves the PDE (6.9), this provides:

e−rT g(ST ) = V (0, S0) +

∫ T

0

e−rt
∂V

∂s
(t, St) (−rStdt+ dSt)

= V (0, S0) +

∫ T

0

S̃t
∂V

∂s
(t, St)

dS̃t

S̃t
,

which, in view of (6.8), can be written in:

e−rT g(ST ) = V (0, S0) +

∫ T

0

e−rtθ∗t
dS̃t

S̃t
where θ∗t := St

∂v

∂s
(t, St).

By (6.7), we see that e−rT g(ST ) = X̃θ∗

T with X̃θ∗

0 = V (0, S0), and therefore

Xθ∗

T = g(ST ), a.s.

Notice that X̃θ∗

t = E[e−rT g(ST )|Ft], t ∈ [0, T ]. Then, the process X inherits
the lower bound of g, implying that θ∗ ∈ A.

We finally conclude the proof by using the no-arbitrage property of the
market consisting of the nonrisky asset, the risky one, and the contingent claim,
arguying exactly as in Section 2.1 (iii). ♦

Exercise 6.15. Let g(s) := (s − K)+ for some K > 0. Show that the no-
arbitrage price of the last proposition coincides with the Black-Scholes formula
(2.8).

6.5 The Ornstein-Uhlenbeck process

We consider the Itô process defined on (Ω,F ,F,P) by

Xt := b+ (X0 − b)e−at + σ

∫ t

0

e−a(t−s)dWs, t ≥ 0

where X0 is an F0−measurable square integrable r.v.

6.5.1 Distribution

Conditional onX0, X is a continuous gaussian process whose covariance function
can be explicitly computed:

Cov (Xs, Xt|X0) = e−a(t−s)Var [Xs|X0] for 0 ≤ s ≤ t.
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The conditional mean and variance ar given by:

E [Xt|X0] = b+ (X0 − b) e−at , Var [Xt|X0] =
σ2

2a

(
1− e−2at

)
.

We then deduce the unconditional mean:

E [Xt] = b+ (E[X0]− b) e−at

and the variance

Var [Xt] = E {Var[Xt|X0]}+ Var {E[Xt|X0]}

= e−2atVar[X0] +
σ2

2a

(
1− e−2at

)
Since X|X0 is Gaussian, we deduce that

• if X0 is distributed as N
(
b, σ

2

2a

)
, then Xt =d X0 for any t ≥ 0, where =d

denotes equality in distribution,

• if X0 is an F0−Gaussian r.v. then X0 is independent of W , and

Xt −→ N
(
b,
σ2

2a

)
in law as t→∞.

We say that N
(
b, σ

2

2a

)
is the invariant (or stationary) distribution of the process

Y .
Finally, when Xt models the instantaneous interest rate, the discount factor

for a payoff at time T is defined by exp
(
−
∫ T

0
Xtdt

)
plays an important role in

the theory of interest rates. The distribution of
∫ T

0
Xtdt can be characterized

as follows: ∫ T

0

Xtdt = bT + (X0 − b)A(T ) + σ

∫ T

0

MtdA(t),

where Mt :=

∫ t

0

easdWsdt and A(t) :=

∫ t

0

e−asds =
1− e−at

a
. Recall that the

integration by parts formula is valid, as a consequence of Itô’s formula. Then,∫ T

0

Xtdt = bT + (X0 − b)A(T ) + σ

∫ T

0

(∫ T

t

e−asds

)
eatdWt

= bT + (X0 − b)A(T ) + σ

∫ T

0

A(T − t)dWt.

Hence, conditional on X0, the r.v.

∫ T

0

Xtdt is distributed as Gaussian with

mean bT+(X0−b)A(T ) and variance σ2
∫ T

0
A(t)2dt. We can even conclude that,
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conditional on X0, the joint distribution of the pair ZT :=

(
XT ,

∫ T

0

Xtdt

)
is

Gaussian with mean

E[ZT ] =
(
b+ (X0 − b) e−aT bT + (X0 − b)A(T )

)
and variance

V[ZT ] = σ2

( ∫ T
0
e−2atdt

∫ T
0
e−atA(t)dt∫ T

0
e−atA(t)dt

∫ T
0
A(t)2dt

)
.

6.5.2 Differential representation

Let Yt := eatXt, t ≥ 0. Then, by direct calculation, we get:

Yt = X0 + b
(
eat − 1

)
+ σ

∫ t

0

easdWs,

or, in differential form,

dYt = abeatdt+ σeatdWt.

By direct application of Itô’s formula, we then obtain the process Xt = e−atYt
in differential form:

dXt = a (b−Xt) + σdWt.

This is an example of stochastic differential equation, see Chapter 8 for a sys-
tematic treatment. The last differential form shows that, whenever a > 0, the
dynamics of the process X exhibit a mean reversion effect in the sense that

• if Xt > b, then the drift is pushing the process down towards b,

• similarly, if Xt < b, then the drift is pushing the process up towards b.

The mean-reversion of this gaussian process is responsible for its stationarity
property, and its popularity in many application. In particular, in finance this
process is commonly used for the modelling of interest rates.

Exercise 6.16. Let B be a Brownian motion, and consider the processes

Xt := e−tBe2t , Yt := Xt −X0 +
∫ t

0
Xsds, t ≥ 0.

be an Ornstein-Uhlenbeck process defined by the dynamics dYt = −Ytdt+
√

2dWt.

1. Prove that Yt =
∫ e2t

1
u−1/2dBu, t ≥ 0.

2. Deduce that {Xt, t ≥ 0} is an Ornstein-Uhlenbeck process.
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6.6 The Merton optimal portfolio allocation

6.6.1 Problem formulation

Consider a financial market consisting of a nonrisky asset, with constant interest
rate r, and a risky asset with price process defined by (6.6), so that

dSt
St

= µdt+ σdWt.

A portfolio strategy is an F−adapted process π such that
∫ T

0
|πt|2dt <∞ P−a.s.

representing the proportion of wealth invested in the risky asset at time t. Let
A denote the set of all portfolio strategies.

Under the self-financing condition, the portfolio value at time t is defined
by:

Xt = ert
(
x+

∫ t

0

πuXue
−ru d (Sue

−ru)

Sue−ru

)
.

Then,

dXt = rXtdt+ πtXt ((µ− r)dt+ σdWt) ,

and it follows from a direct application of Itô’s formula to the function lnXt

that

d lnXt =

(
r + (µ− r)πt −

1

2
σ2π2

t

)
dt+ σπtdWt.

This provides the expression of Xt in terms of the portfolio strategy π and the
initial capital X0:

Xt = X0 exp

(∫ t

0

(
r + (µ− r)πu −

1

2
σ2π2

u

)
du+

∫ t

0

σπudWu

)
.(6.10)

The continuous-time optimal portfolio allocation problem, as formulated by
Merton (1969), is defined by:

V0(x) := sup
π∈A

E [U (Xx,π
T )] , (6.11)

where U is an increasing strictly concave function representing the investor
utility, i.e. describing his preferences and attitude towards risk. We assume
that U is bounded from below, which guarantees that he expectation in (6.11)
is well-defined.

6.6.2 The dynamic programming equation

The dynamic programming technique is a powerful approach to stochatsic con-
trol problems of the type (6.11). This method was developed by Richard Bell-
man in the fifties, while at the same time the russian school was exploring the
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stochastic extension of the Pontryagin maximum principle. Our objective is
to provide an intuitive introduction to the dynamic programming approach in
order to motivate our solution approach used in the subsequent section.

The main idea is to define a dynamic version V (t, x) of the problem (6.11)
by moving the time origin from 0 to t. For simplicity, let us restrict the set of
portfolio strategies to those so-called Markov ones, i.e. πt = π(t,Xt) Then, it
follows from the law of iterated expectations that

V (t, x) = sup
π∈A

Et,x [U (Xπ
T )]

= sup
π∈A

Et,x
[
Et+h,Xπt+h {U (Xπ

T )}
]
,

where we denoted by Et,x the expectation operator conditional on Xπ
t = x.

Then, we formally expect that the following dynamic programming principle

V (t, x) = sup
π∈A

Et,x
[
V
(
t+ h,Xπ

t+h

)]
holds true. A rigorous proof of the claim is far from obvious, and is not needed
in these notes, as this paragraph is only aiming at developing a good intuition
for the subsequent solution approach of the Merton problem.

We next assume that V is known to be sufficiently smooth so as to allow for
the use of Itô’s formula. Then:

0 = sup
π∈A

Et,x
[
V
(
t+ h,Xπ

t+h

)
− V (t, x)

]
= sup

π∈A
Et,x

[∫ t+h

t

LπtV (u,Xπ
u ) du+

∫ t+h

t

Vx (u,Xπ
u )σπuXudWu

]
,

where, for a function v ∈ C1,2 ([0, T ),R), we denote

Lαv :=
∂v

∂t
+ x (r + α(µ− r)) ∂v

∂x
+

1

2
x2α2σ2 ∂

2v

∂x2
. (6.12)

We continue our intuitive presentation by forgetting about any difficulties re-
lated to some strict local martingale feature of the stochastic integral inside the
expectation. Then

0 = sup
π∈A

Et,x

[
1

h

∫ t+h

t

LπtV (u,Xπ
u ) du

]
,

and by sending h → 0, we expect from the mean value theorem that V solves
the nonlinear partial differential equation

sup
α∈R
LαV (t, x) = 0 on [0, T )× R and V (T, .) = U.

The latter partial differential equation is the so-called dynamic programming
equation, also referred to as the Hamilton-Jacobi-Bellman equation.
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Our solution approach for the Merton problem will be the following. suppose
that one is able to derive a solution v of the dynamic programming equation,
then use a verification argument to prove that the candidate v is indeed coin-
ciding with the value function V of the optimal portfolio allocation problem.

6.6.3 Solving the Merton problem

We recall that for a C1,2 ([0, T ],R) function v, it follows from Itô’s formula that

v(t,Xπ
t ) = v(0, X0) +

∫ T

0

Lπtv(s,Xs)ds+

∫ t

0

vx(s,Xs)πtXtσdWt,

where the operator Lα is defined in (6.12).

Proposition 6.17. Let v ∈ C0 ([0, T ]× R) ∩ C1,2 ([0, T ),R) be a nonnegative
function satisfying

v(T, .) ≥ U and −Lαv(t, x) ≥ 0 for all (t, x) ∈ [0, T )× R, α ∈ R.

Then v(0, x) ≥ V0(x).

Proof. For every portfolio strategy π ∈ A and t ≤ T , it follows from Itô’s
formula that:

Mt :=

∫ t

0

∂v

∂x
(u,Xx,π

u )Xx,π
u πuσdWu

= v (t,Xx,π
t )− v(0, x)−

∫ t

0

Lπuv (u,Xx,π
u ) du

≥ v (t,Xx,π
t )− v(0, x).

Since v ≥ 0, the process M is a supermartingale, as a local martingale bounded
from below by a constant. Then:

0 ≥ E [MT ] ≥ E [v (T,Xx,π
T )]− v(0, x) = E [U (Xx,π

T )]− v(0, x),

and the required inequality follows from the arbitrariness of π ∈ A. ♦

We continue the discussion of the optimal portfolio allocation problem in
the context of the power utility function:

U(x) = xp, 0 < p < 1. (6.13)

This induces an important simplification as we immediately verify from (6.10)
that V0(x) = xpV0(1). We then search for a solution of the partial differential
equation

sup
α∈R

Lαv = 0 and v(T, x) = xp,
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of the form v(t, x) = xph(t) for some function h. Plugging this form in the above
nonlinear partial differential equation leads to an ordinary differential equation
for the function h, and provides the candidate solution:

v(t, x) := xpe
p(T−t)

(
r+

(µ−r)2

2(1−p)σ2

)
, t ∈ [0, T ], x ≥ 0.

By candidate solution, we mean that v satisfies:

sup
α∈R

Lαv = Lα̂v = 0 and v(T, x) = xp , where α̂ :=
µ− r

(1− p)σ2
.

Proposition 6.18. In the context of the power utility function (6.13), the value
function of the optimal portfolio allocation problem is given by:

V0(x) = v(0, x) = xpe
pT

(
r+

(µ−r)2

2(1−p)σ2

)
,

and the constant portfolio strategy π̂u := α̂ is an optimal portfolio allocation.

Proof. Let X̂ := Xx,π̂, τn := T ∧ inf
{
t > 0 : X̂t ≥ n

}
, and

M̂t :=

∫ t

0

∂v

∂x

(
u, X̂u

)
X̂uπ̂uσdWu, t ∈ [0, T ).

Since the integrand in the expression of M̂ is bounded on [0, τn], we see that
the stopped process {Mt∧τn , t ∈ [0, T ]} is a martingale. We then deduce from
Itô’s formula together with the fact that Lα̂v = 0 that:

0 = E
[
M̂τn

]
= E

[
v
(
τn, X̂τn

)]
− v(0, x). (6.14)

We next observe that, for some constant C > 0,

0 ≤ v
(
τn, X̂τn

)
≤ CeCmaxt≤T Wt ∈ L1,

recall that maxt≤T Wt =d |Wt|. We can then use the dominated convergence
theorem to pass to the limit n→∞ in (6.14):

lim
n→∞

E
[
v
(
τn, X̂τn

)]
= E

[
v
(
T, X̂T

)]
= E

[
U
(
X̂T

)]
,

where the last equality is due to v(T, .) = U . Hence, V0(x) = v(0, x) and π̂ is
an optimal portfolio strategy. ♦



Chapter 7

Martingale representation
and change of measure

In this chapter, we develop two essential tools in financial mathematics. The
martingale representation is the mathematical counterpart of the hedging port-
folio. Change of measure is a crucial tool for the representation and the calcula-
tion of valuation formulae in the everyday life of the financial industry oriented
towards derivative securities. The intuition behind these two tools can be easily
understood in the context of the one-period binomial model of Section 2.1 of
Chapter 2:

- Perfect hedging of derivative securities in the simple one-period model
is always possible, and reduces to a linear system of two equations with two
unknowns. It turns out that this property is valid in the framework of the
Brownian filtration, and this is exactly what the martingale representation is
about. But, we should be aware that this result is specific to the Brownian
filtration, and fails in more general models... this topic is outside the scope of
the present lectures notes.

- The hedging cost in the simple one-period model, which is equal to the no-
arbitrage price of the derivative secutity, can be expressed as an expected value
of the discounted payoff under the risk-neutral measure. This representation is
very convenient for the calculations, and builds a strong intuition for the next
developments of the theory. The Girsanov theorem provides the rigorous way
to express expectation under alternative measures than the initially given one.

7.1 Martingale representation

Let F be the canonical filtration of the Brownian motion completed with the
null sets, and consider a random variable F ∈ L1(FT ,P). The goal of this
section is to show that any such random variable or, in other words, any path-
dependent functional of the Brownian motion, can be represented as a stochastic
integral of some process with respect to the Brownian motion (and hence, a

89
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martingale). This has a natural application in finance where one is interested
in replicating contingent claims with hedging portfolios. We start with square
integrable random variables.

Theorem 7.1. For any F ∈ L2(FT ,P) there exists a unique adapted process
H ∈ H2 such that

F = E[F ] +

∫ T

0

HsdWs, P− a.s. (7.1)

Proof. The uniqueness is an immediate consequence of the Itô isometry. We
prove the existence in the two following steps.
Step 1: We start by proving the claim in the special case F = f(WT ), for some
bounded measurable function f : Rd −→ R. By standard molification, we may
find a sequence fn of bounded C2 functions such that fn(WT ) −→ f(WT ) in
L2. Then, the map (t, x) 7−→ u(t, x) := E[fn(WT )|Wt = x] is C∞([0, T ] × Rd),
and it follows from Itô’s formula that

fn(WT ) = u(T,WT ) = E[fn(WT )]+

∫ T

0

Hn
t ·dWt, with Hn

t :=
∂u

∂x
(t,Wt), (7.2)

see Remark 4.8. Then, it follows for n,m ≥ 1 that

fn(WT )− fm(WT ) = E
[
fn(WT )− fm(WT )

]
+

∫ T

0

(Hn
t −Hm

t ) · dWt.

By the Itô isometry, this implies that ‖Hn −Hm‖H2 ≤ E
∣∣fn(WT )− fm(WT )

∣∣+∥∥(fn − fm)(WT )
∥∥
L2 . As fn(WT ) −→ f(WT ) in L2, this shows that (Hn)n is a

Cauchy sequence in H2, and therefore Hn −→ H in H2. We may then pass to

limits in (7.2), and get f(WT ) = E[f(WT )] +
∫ T

0
Ht · dWt, as required.

Step 2: We next fix an integer n ≥ 1, 0 ≤ t1 < . . . < tn, and prove that for
every bounded function f : (Rd)n −→ R, the representation (7.1) holds with
ξ := f(Wt1 , . . . ,Wtn) for some H ∈ H2. To see this, denote xi := (x1, . . . , xi)
and set

un(t, xn) := E
[
f(xn−1,Wtn)|Wt = xn

]
, tn−1 ≤ t ≤ tn.

Then, for all (xn−1) fixed, we may apply the result of Step 1 to the mapping
(t, xn) 7−→ un(t, xn−1, xn), and get

f(xn−1,Wtn) = fn−1(xn−1) +

∫ tn

tn−1

Hs · dWs, (7.3)

where fn−1(xn−1) := un(tn−1, xn−1, xn−1). Similarly, we fix (xn−2), and apply
the result of Step 1 to the function of (t, xn−1) ∈ [tn−2, tn−1)× Rd:

un−1(t, xn−2, xn−1) := E
[
fn−1(xn−2,Wtn−1

)|Wt = xn−1

]
,
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so that

fn−1(xn−2,Wtn−1) = fn−2(xn−2) +

∫ tn−1

tn−2

Hs · dWs, (7.4)

where fn−2(xn−2) := un−1(tn−2, xn−2, xn−2). Combining (7.3) and (7.4), we
obtain:

f(xn−2,Wtn−1
,Wtn) = fn−2(xn−2) +

∫ tn

tn−2

Hs · dWs.

Repeating this argument, it follows that

f(Wt1 , . . . ,Wtn) = f0(0) +

∫ tn

0

Hs · dWs.

Since f is bounded, it follows that H ∈ H2.
Step 3: The subset R of L2 for which (7.1) holds is a closed linear sub-
space of the Hilbert space L2. To complete the proof, we now prove that its
L2−orthogonal R⊥ is reduced to {0}.

Let I denote the set of all events E = {(Wt1 , . . . ,Wtn) ∈ A} for some
n ≥ 1, 0 ≤ t1 < . . . , tn, and A ∈ B

(
(Rd)n

)
. Then I is a π−system (i.e.

stable by intersection), and by the previous step 1A(Wt1 , . . . ,Wtn) ∈ R for all
0 ≤ t1 < . . . , tn. Then, for all ξ ∈ R⊥, we have E[ξ1A(Wt1 , . . . ,Wtn)] = 0 or,
equivalently

E[ξ+1A(Wt1 , . . . ,Wtn)] = E[ξ−1A(Wt1 , . . . ,Wtn)].

In other words, the measures defined by the densities ξ+ and ξ− agree on the
π−system I. Since σ(I) = FT , it follows from Proposition A.5 that ξ+ = ξ−

a.s. ♦

The last theorem can be stated equivalently in terms of square integrable
martingales.

Theorem 7.2. Let {Mt, 0 ≤ t ≤ T} be a square integrable martingale. Then,
there exists a unique process H ∈ H2 such that

Mt = M0 +

∫ t

0

Hs · dWs, 0 ≤ t ≤ T, P− a.s.

In particular, M has continuous sample paths, a.s.

Proof. Apply Theorem 7.1 to the square integrable r.v. MT , and take condi-
tional expectations. ♦

We next extend the representation result to L1.

Theorem 7.3. For any F ∈ L1(FT ,P) there exists a process H ∈ H2
loc such

that

F = E[F ] +

∫ T

0

HsdWs, P− a.s. (7.5)
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Proof. Let Mt = E[F |Ft]. The first step is to show that M is continuous. Since
bounded functions are dense in L1, there exists a sequence of bounded random
variables (Fn) such that ‖Fn − F‖L1 ≤ 3−n. We define Mn

t = E[Fn|Ft]. From
Theorem 3.11 (ii),

P[ sup
0≤t≤T

|Mn
t −Mt| > 2−n] ≤ 2nE[|F − Fn|] ≤

(
2

3

)n
.

Therefore, by Borel-Cantelli lemma, the martingales Mn converge uniformly to
M , but since Fn ∈ L2(FT ,P), Mn is continuous for each n (by theorem 7.1), so
the uniform limit M is also continous.

The second step is to show that M can be represented as stochastic integral.
From continuity of M it follows that |Mt∧τn | ≤ n for all t with τn = inf{t :
|Mt| ≥ n}. Therefore, by theorem 7.1, for each n, there exists a process Hn ∈ H2

with

Mt∧τn = E[Mt∧τn ] +

∫ t∧τn

0

Hn
s dWs = E[F ] +

∫ t∧τn

0

Hn
s dWs.

Moreover, Itô isometry shows that the processes Hn and Hm must coincide for
t ≤ τn ∧ τm. Define the process

Ht :=
∑
n≥1

Hn
t 1t∈]τn−1,τn].

SinceM is continuous, it is uniformly continuous on [0, T ], and therefore bounded
a.s., which means that almost surely, starting from some n, Ht = Hn

t for all
t ∈ [0, T ], and so ∫ T

0

H2
sds <∞ a.s.

On the other hand, for every n,

Mt∧τn = E[F ] +

∫ t∧τn

0

HsdWs.

By passing to the almost-sure limit on each side of this equation, the proof is
complete. ♦

With the last result, we can now extend the representation Theorem 7.2 to
local martingales. Notice that uniqueness of the integrand process is lost.

Theorem 7.4. Let {Mt, 0 ≤ t ≤ T} be a local martingale. Then, there exists a
process H ∈ H2

loc such that

Mt = M0 +

∫ t

0

Hs · dWs, 0 ≤ t ≤ T.

In particular, M has continuous sample paths, a.s.
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Proof. There exists an increasing sequence of stopping times (τn)n≥1 with τn −→
∞, a.s., such that the stopped process {Mn

t := Mt∧τn , t ∈ [0, T ]} is a bounded
martingale for all n. Applying Theorem 7.3 to the bounded r.v. Mn

T , we ob-

tain the representation Mn
T = M0 +

∫ T
0
Hn
s dWs, for some Hn ∈ H2. By direct

conditioning, it follows that Mn
t = M0 +

∫ t
0
Hn
s dWs for all t ∈ [0, T ]. Simi-

lar to the proof of the previous Theorem 7.3, it follows from the Itô isometry
that Hn and Hm coincide dt ⊗ dP−a.s. on [0, τn ∧ τm], and we may define

Ht :=
∑
n≥1H

n
t 1]τn−1,τn] so that Mn

t = M0 +
∫ t

0
HsdWs, and we conclude by

taking the almost sure limit in n. ♦

7.2 The Cameron-Martin change of measure

Let N be a Gaussian random variable with mean zero and unit variance. The
corresponding probability density function is

∂

∂x
P[N ≤ x] = f(x) =

1√
2π

e−x
2/2 , x ∈ R .

For any constant a ∈ R, the random variable N + a is Gaussian with mean a
and unit variance with probability density function

∂

∂x
P[N + a ≤ x] = f(x− a) = f(x)eax−

a2

2 , x ∈ R .

Then, for every (at least bounded) function ψ, we have

E [ψ(N + a)] =

∫
ψ(x)f(x)eax−

a2

2 dx = E
[
eaN−

a2

2 ψ(N)
]
.

This easy result can be translated in terms of a change of measure. Indeed, since

the random variable eaN−
a2

2 is positive and integrates to 1, we may introduce

the equivalent measure Q := eaN−
a2

2 ·P. Then, the above equality says that the
Q−distribution of N coincides with the P−distribution of N + a, i.e.

under Q, N − a is distributed as N (0, 1) .

The purpose of this subsection is to extend this result to a Brownian motion
W in Rd.

Let h : [0, T ] −→ Rd be a deterministic function in L2, i.e.
∫ T

0
|h(t)|2dt <∞.

From Theorem 5.3, the stochastic integral

N :=

∫ T

0

h(t) · dWt

is well-defined as the L2−limit of the stochastic integral of some H2−approximating
simple function. In particular, since the space of Gaussian random variables is
closed, it follows that

N is distributed as N

(
0,

∫ T

0

|h(t)|2dt

)
,
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and we may define an equivalent probability measure Q by:

dQ
dP

:= e
∫ T
0
h(t)·dWt− 1

2

∫ T
0
|h(t)|2dt . (7.6)

Theorem 7.5 (Cameron-Martin formula). For a Brownian motion W in Rd,
let Q be the probability measure equivalent to P defined by (7.6). Then, the
process

Bt := Wt −
∫ t

0

h(u)du , t ∈ [0, T ] ,

is a Brownian motion under Q.

Proof. We first observe that B0 = 0 and B has a.s. continuous sample paths.
It remains to prove that, for 0 ≤ s < t, Bt − Bs is independent of Fs and
distributed as a centered Gaussian with variance t− s. To do this, we compute
the Q−Laplace transform

EQ
[
eλ·(Wt−Ws)

∣∣∣Fs] = E

 E
{
dQ
dP
∣∣Ft}

E
{
dQ
dP
∣∣Fs}eλ·(Wt−Ws)

∣∣∣∣∣∣Fs


= E
[
e
∫ t
s
h(u)·dWu− 1

2

∫ t
s
|h(u)|2dueλ·(Wt−Ws)

∣∣∣Fs]
= e−

1
2

∫ t
s
|h(u)|2duE

[
e
∫ t
s

(h(u)+λ)·dWu

∣∣∣Fs]
Since the random variable

∫ t
s
(h(u)+λ)·dWu is a centered Gaussian with variance∫ t

s
|h(u) + λ|2du, independent of Fs, this provides:

EQ
[
eλ·(Wt−Ws)

∣∣∣Fs] = e−
1
2

∫ t
s
|h(u)|2due

1
2

∫ t
s
|h(u)+λ|2

= e
1
2λ

2(t−s)+λ
∫ t
s
h(u)du .

This shows that Wt−Ws is independent of Fs and is distributed as a Gaussian
with mean

∫ t
s
h(u)du and variance t− s, i.e. Bt −Bs is independent of Fs and

is distributed as a centered Gaussian with variance t− s. ♦

7.3 The Girsanov’s theorem

The Cameron-Martin change of measure formula of the preceding section can be
extended to adapted stochastic processes satisfying suitable integrability condi-
tions. Let W be a d-dimensional Brownian motion on the probability space
(Ω,F ,F,P). Given a FT -measurable positive random variable Z such that
EP[Z] = 1, we define a new probability Q via Q := ZP:

Q(A) = EP[Z1A], ∀A ∈ FT .
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Z is called the density of Q with respect to P. For every A ∈ Ft,

Q(A) = EP[Z1A] = EP[1AE[Z|Ft]].

Therefore, the martingale Zt := E[Z|Ft] plays the role of the density of Q with
respect to P on Ft. The following lemma shows how to compute conditional
expectations under Q.

Lemma 7.6 (Bayes rule). Let Y ∈ FT with EQ[|Y |] <∞. Then

EQ[Y |Ft] =
E[ZY |Ft]
E[Z|Ft]

=
1

Zt
E[ZY |Ft].

Proof. Let A ∈ Ft.

EQ[Y 1A] = EP[ZY 1A] = EP[EP[ZY |Ft]1A]

= EP
[

Z

EP[Z|Ft]
EP[ZY |Ft]1A

]
= EQ

[
EP[ZY |Ft]
EP[Z|Ft]

1A

]
.

Since the above is true for any A ∈ F , this finishes the proof.

Let φ be a process in H2
loc. Inspired by equation (7.6), we define a candidate

for the martingale density:

Zt = exp

(∫ t

0

φs · dWs −
1

2

∫ t

0

|φs|2ds
)
, 0 ≤ t ≤ T. (7.7)

An application of Itô formula gives the dynamics of Z:

dZt = Ztφt · dWt,

which shows that Z is a local martingale (take τn = inf{t :
∫ t

0
Z2
sφ

2
sds ≤ n}

as localizing sequence). As shown by the following lemma, Z is also a super-
martingale and therefore satisfies E[Zt] ≤ 1 for all t.

Lemma 7.7. For any stopping time s ≤ t ≤ T , E[Zt|Fs] ≤ Zs.

Proof. Let (τn) be a localizing sequence for Z. Then Zt∧τn is a true martingale
and by Fatou’s lemma, which can be applied to conditional expectations,

E[Zt|Fs] = E[lim
n
Zt∧τn |Fs] ≤ lim inf

n
E[Zt∧τn |Fs] = lim inf

n
Zs∧τn = Zs.

However, Z may sometimes fail to be a true martingale. A sufficient condi-
tion for Z to be a true martingale for given in the next section; for now let us
assume that this is the case.
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Theorem 7.8 (Girsanov). Let Z be given by (7.7) and suppose that E[ZT ] = 1.
Then the process

W̃t := Wt −
∫ t

0

φsds, t ≤ T

is a Brownian motion under the probability Q := ZTP on FT .

Proof. Step 1: Let Yt :=
∫ t

0
bs · dW̃s, where b is an adapted process with∫ T

0
|bs|2ds, and let Xt := ZtYt. Applying Itô’s formula to X, we get

dXt = Zt(bt · dW̃t) + Yt(φtZt · dWt) + bt · Ztφtdt = Zt(bt + Ytφt) · dWt,

which shows that X is a local martingale under P. Let (τn) be a localizing
sequence for X under P. By lemma 7.6, for t ≥ s,

EQ[Yt∧τn |Fs] =
1

Zs
EP[ZTYt∧τn |Fs]

=
1

Zs
EP[EP[ZT |Fs∨τn∧t]Yt∧τn |Fs] =

1

Zs
EP[Zs∨τn∧tYt∧τn |Fs]

=
1

Zs
EP[Xτn∧t1τn≥s + ZsYτn1τn<s|Fs]

=
1

Zs
{Xs1τn≥s + ZsYτn1τn<s} = Ys∧τn ,

which shows that Y is a local martignale under Q with (τn) as localizing se-
quence.

Step 2: For a fixed u ∈ Rd, applying the Itô formula to eiuW̃ between s and

t and multiplying the result by e−iu·W̃s , we get:

eiu·(W̃t−W̃s) = 1 + i

∫ t

s

eiu·(W̃r−W̃s) · udW̃r −
1

2
|u|2

∫ t

s

eiu·(W̃r−W̃s)dr. (7.8)

By step 1, the stochastic integral∫ t

s

eiu·(W̃r−W̃s)u · dW̃r

is a local martingale (as a function of the parameter t), and since it is also
bounded (because all the other terms in the equation (7.8) are bounded), the
dominated convergence theorem implies that it is a true martingale and satisfies

EQ
[∫ t

s

eiu·(W̃r−W̃s)u · dW̃r

∣∣∣∣Fs] = 0.

Let hQ(t) := EQ[eiu·(W̃r−W̃s)
∣∣∣Fs]. Taking Q-expectations on both sides of

(7.8) leads to an integral equation for hQ:

hQ(t) = 1− 1

2
|u|2

∫ t

s

hQ(r)dr ⇒ hQ(t) = e−|u|
2(t−s)/2.
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This proves that W̃ has independent stationary and normally distributed incre-
ments under Q. Since it is also continuous and W̃0, W̃ is a Brownian motion
under Q.

7.3.1 The Novikov’s criterion

Theorem 7.9 (Novikov). Suppose that

E[e
1
2

∫ T
0
|φs|2ds] <∞.

Then E[ZT ] = 1 and the process {Zt, 0 ≤ t ≤ T} is a martingale.

In the following lemma and below, we use the notation

Z
(a)
t = exp

(∫ t

0

aφs · dWs −
a2

2

∫ t

0

|φs|2ds
)
, 0 ≤ t ≤ T.

Lemma 7.10. Assume that

sup
τ
E[e

1
2

∫ τ
0
φs·dWs ] <∞,

where the sup is taken over all stopping times τ with τ ≤ T . Then for all

a ∈ (0, 1) and all t ≤ T , E[Z
(a)
t ] = 1.

Proof. Let q = 1
a(2−a) > 1 et r = 2−a

a > 1, and let τ be a stopping time with

τ ≤ T . Then, applying the Hölder inequality with 1
s + 1

r = 1 and observing that

s(aq − a
√

q
r ) = 1

2 ,

E[(Z(a)
τ )q] = E[eaq

∫ τ
0
φs·dWs− a

2q
2

∫ τ
0
|φs|2ds]

= E[ea
√

q
r

∫ τ
0
φs·dWs− a

2qr
2

∫ τ
0
|φs|2dse(aq−a

√
q
r )
∫ τ
0
φs·dWs ]

≤ E[Z
(a
√
qr)

τ ]
1
rE[e

1
2

∫ τ
0
φs·dWs ]

1
s ≤ E[e

1
2

∫ τ
0
φs·dWs ]

1
s

by Lemma 7.7. Therefore, supτ E[(Z
(a)
τ )q] is bounded. With the sequence {τn}

defined by τn = inf{t :
∫ t

0
a2(Z

(a)
s )2φ2

sds ≤ n}, we now have by Doob’s maximal
inequality of Theorem 3.15,

E[sup
t≤T

Z
(a)
t∧τn ] ≤ E

[(
sup
t≤T

Z
(a)
t∧τn

)q] 1
q

≤
(

q

q − 1
sup
t≤T

E[(Z
(a)
t∧τn)q]

) 1
q

<∞.

By monotone convergence, this implies

E[sup
t≤T

Z
(a)
t ] <∞,

and by dominated convergence we then conclude that E[Z
(a)
t ] = 1 for all t ≤

T .
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Proof of theorem 7.9. For any stopping time τ ≤ T ,

e
1
2

∫ τ
0
φs·dWs = Z

1
2
τ

(
e

1
2

∫ τ
0
|φs|2ds

) 1
2

,

and by an application of the Cauchy-Schwartz inequality, using lemma 7.7 and
the assumption of the theorem it follows that

sup
τ

E[e
1
2

∫ τ
0
φs·dWs ] <∞. (7.9)

Fixing a < 1 and t ≤ T and observing that

Z
(a)
t = ea

2
∫ t
0
φs·dWs− a

2

2

∫ t
0
|φs|2dsea(1−a)

∫ t
0
φs·dWs = Za

2

t e
a(1−a)

∫ t
0
φs·dWs ,

we get, by Hölder’s inequality and Lemma 7.10,

1 = E[Z
(a)
t ] ≤ E[Zt]

a2

E[e
a

1+a

∫ t
0
φs·dWs ]1−a

2

≤ E[Zt]
a2

E[e
1
2

∫ t
0
φs·dWs ]2a(1−a).

Sending a to 1 and using (7.9) yields E[Zt] ≥ 1, it follows from Lemma 7.7 that
E[Zt] = 1.

Now, let s ≤ t ≤ T . In the same way as in Lemma 7.7, one can show that
E[Zt|Fs] ≤ Zs, and taking the expectation of both sides shows that E[Zt] = 1
can hold only if E[Zt|Fs] = Zs, P-a.s.

7.4 Application: the martingale approach to the
Black-Scholes model

This section contains the modern approach to the Black-Scholes valuation and
hedging theory. The prices will be modelled by Itô processes, and the results
obtained by the previous approaches will be derived by the elegant martingale
approach.

7.4.1 The continuous-time financial market

Let T be a finite horizon, and (Ω,F ,P) be a complete probability space sup-
porting a Brownian motion W = {(W 1

t , . . . ,W
d
t ), 0 ≤ t ≤ T} with values in Rd.

We denote by F = FW = {Ft, 0 ≤ t ≤ T} the canonical augmented filtration of
W , i.e. the canonical filtration augmented by zero measure sets of FT .

The financial market consists in d+ 1 assets :
(i) The first asset S0 is non-risky, and is defined by

S0
t = exp

(∫ t

0

rudu

)
, 0 ≤ t ≤ T,

where {rt, t ∈ [0, T ]} is a non-negative measurable and adapted processes with∫ T
0
rtdt <∞ a.s., and represents the instantaneous interest rate.
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(ii) The d remaining assets Si, i = 1, . . . , d, are risky assets with price
processes defined by the equations

Sit = Si0 exp

∫ t

0

µiu − 1

2

d∑
j=1

∣∣σiju ∣∣2
 du+

d∑
j=1

∫ t

0

σiju dW
j
u

 , t ≥ 0 ,

where µ, σ are measurable and F−adapted processes with
∫ T

0
|µit|dt+

∫ T
0
|σi,j |2dt <

∞ for all i, j = 1, . . . , d. Applying Itô’s formula, we see that

dSit
Sit

= µitdt+

d∑
j=1

σi,jt dW j
t , t ∈ [0, T ],

for 1 ≤ i ≤ d. It is convenient to use the matrix notations to represent the
dynamics of the price vector S = (S1, . . . , Sd):

dSt = diag[St] (µtdt+ σtdWt) , t ∈ [0, T ],

where diag[St] is the d×d−diagonal matrix with diagonal i−th component given
by Sit , and µ, σ are the Rd−vector with components µi’s, and theMR(d, d)−matrix
with entries σi,j .

We assume that the MR(d, d)−matrix σt is invertible for every t ∈ [0, T ]
a.s., and we introduce the process

λt := σ−1
t (µt − rt1) , 0 ≤ t ≤ T,

called the risk premium process. Here 1 is the vector of ones in Rd. We shall
frequently make use of the discounted processes

S̃t :=
St
S0
t

= St exp

(
−
∫ t

0

rudu

)
,

Using the above matrix notations, the dynamics of the process S̃ are given by

dS̃t = diag[S̃t] {(µt − rt1)dt+ σtdWt} = diag[S̃t]σt (λtdt+ dWt) .

7.4.2 Portfolio and wealth process

A portfolio strategy is an F−adapted process θ = {θt, 0 ≤ t ≤ T} with values
in Rd. For 1 ≤ i ≤ n and 0 ≤ t ≤ T , θit is the amount (in Euros) invested in the
risky asset Si.

We next recall the self-financing condition in the present framework. Let Xθ
t

denote the portfolio value, or wealth, process at time t induced by the portfolio
strategy θ. Then, the amount invested in the non-risky asset is Xθ

t −
∑n
i=1 θ

i
t

= Xt − θt · 1.
Under the self-financing condition, the dynamics of the wealth process is

given by

dXθ
t =

n∑
i=1

θit
Sit

dSit +
Xt − θt · 1

S0
t

dS0
t .
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Let X̃ be the discounted wealth process

X̃t := Xt exp

(
−
∫ t

0

r(u)du

)
, 0 ≤ t ≤ T .

Then, by an immediate application of Itô’s formula, we see that

dX̃t = θ̃t · diag[S̃t]
−1dS̃t (7.10)

= θ̃t · σt (λtdt+ dWt) , 0 ≤ t ≤ T . (7.11)

We still need to place further technical conditions on θ, at least in order for the
above wealth process to be well-defined as a stochastic integral.

Before this, let us observe that, assuming that the risk premium process
satisfies the Novikov condition:

E
[
e

1
2

∫ T
0
|λt|2dt

]
< ∞,

it follows from the Girsanov theorem that the process

Bt := Wt +

∫ t

0

λudu , 0 ≤ t ≤ T , (7.12)

is a Brownian motion under the equivalent probability measure

Q := ZT · P on FT where ZT := exp

(
−
∫ T

0

λu · dWu −
1

2

∫ T

0

|λu|2du

)
.

In terms of the Q Brownian motion B, the discounted price process satisfies

dS̃t = diag[S̃t]σtdBt, t ∈ [0, T ],

and the discounted wealth process induced by an initial capital X0 and a port-
folio strategy θ can be written in

X̃θ
t = X̃0 +

∫ t

0

θ̃u · σudBu, for 0 ≤ t ≤ T. (7.13)

Definition 7.11. An admissible portfolio process θ = {θt, t ∈ [0, T ]} is a mea-

surable and F−adapted process such that
∫ T

0
|σT
t θ̃t|2dt <∞, a.s. and the corre-

sponding discounted wealth process is bounded from below by a Q−martingale

X̃θ
t ≥Mθ

t , 0 ≤ t ≤ T, for some Q−martingale Mθ > 0.

The collection of all admissible portfolio processes will be denoted by A.

The lower bound Mθ, which may depend on the portfolio θ, has the interpre-
tation of a finite credit line imposed on the investor. This natural generalization
of the more usual constant credit line corresponds to the situation where the
total credit available to an investor is indexed by some financial holding, such as
the physical assets of the company or the personal home of the investor, used as
collateral. From the mathematical viewpoint, this condition is needed in order
to exclude any arbitrage opportunity, and will be justified in the subsequent
subsection.
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7.4.3 Admissible portfolios and no-arbitrage

We first define precisely the notion of no-arbitrage.

Definition 7.12. We say that the financial market contains no arbitrage op-
portunities if for any admissible portfolio process θ ∈ A,

X0 = 0 and Xθ
T ≥ 0 P− a.s. implies Xθ

T = 0 P− a.s.

The purpose of this section is to show that the financial market described
above contains no arbitrage opportunities. Our first observation is that, by the
very definition of the probability measure Q, the discounted price process S̃
satisfies:

the process
{
S̃t, 0 ≤ t ≤ T

}
is a Q− local martingale. (7.14)

For this reason, Q is called a risk neutral measure, or an equivalent local mar-
tingale measure, for the price process S.

We also observe that the discounted wealth process satisfies:

X̃θ is a Q−local martingale for every θ ∈ A, (7.15)

as a stochastic integral with respect to the Q−Brownian motion B.

Theorem 7.13. The continuous-time financial market described above contains
no arbitrage opportunities.

Proof. For θ ∈ A, the discounted wealth process X̃θ is a Q−local martingale
bounded from below by a Q−martingale. From Lemma 5.13 and Exercise 5.14,

we deduce that X̃θ is a Q−super-martingale. Then EQ
[
X̃θ
T

]
≤ X̃0 = X0. Recall

that Q is equivalent to P and S0 is strictly positive. Then, this inequality shows
that, whenever Xθ

0 = 0 and Xθ
T ≥ 0 P−a.s. (or equivalently Q−a.s.), we have

X̃θ
T = 0 Q−a.s. and therefore Xθ

T = 0 P−a.s. ♦

7.4.4 Super-hedging and no-arbitrage bounds

Let G be an FT−measurable random variable representing the payoff of a deriva-
tive security with given maturity T > 0. The super-hedging problem consists in
finding the minimal initial cost so as to be able to face the payment G without
risk at the maturity of the contract T :

V (G) := inf
{
X0 ∈ R : Xθ

T ≥ G P− a.s. for some θ ∈ A
}
.

Remark 7.14. Notice that V (G) depends on the reference measure P only by
means of the corresponding null sets. Therefore, the super-hedging problem is
not changed if P is replaced by any equivalent probability measure.

The following properties of the super-hedging problem are easy to prove.

Proposition 7.15. The function G 7−→ V (G) is
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1. monotonically increasing, i.e. V (G1) ≥ V (G2) for every G1, G2 ∈ L0(T )
with G1 ≥ G2 P−a.s.

2. sublinear, i.e. V (G1 +G2) ≤ V (G1) + V (G2) for G1, G2 ∈ L0(T ),

3. positively homogeneous, i.e. V (λG) = λV (G) for λ > 0 and G ∈ L0(T ),

4. V (0) = 0 and V (G) ≥ −V (−G) for every contingent claim G.

5. Let G be a contingent claim, and suppose that Xθ0

T = G P−a.s. for some
X0 and θ0 ∈ A. Then

V (G) = inf
{
X0 ∈ R : Xθ

T = G P− a.s. for some θ ∈ A
}
.

Exercise 7.16. Prove Proposition 7.15.

We now show that, under the no-arbitrage condition, the super-hedging
problem provides no-arbitrage bounds on the market price of the derivative se-
curity.

Assume that the buyer of the contingent claim G has the same access to
the financial market than the seller. Then V (G) is the maximal amount that
the buyer of the contingent claim contract is willing to pay. Indeed, if the seller
requires a premium of V (G) + 2ε, for some ε > 0, then the buyer would not
accept to pay this amount as he can obtain at least G be trading on the financial
market with initial capital V (G) + ε.

Now, since selling of the contingent claim G is the same as buying the con-
tingent claim −G, we deduce from the previous argument that

−V (−G) ≤ market price of G ≤ V (G) . (7.16)

Observe that this defines a non-empty interval for the market price of B under
the no-arbitrage condition, by Proposition 7.15.

7.4.5 Heuristics from linear programming

In this subsection, we present some heuristics which justify that the occurrence
of the risk-neutral measure Q as a crucial tool for the superhedging problem
V (G). We first re-write this optimization problem as:

V (G) = inf
(X0,θ)∈S(G)

X0,

where S(G) is the collection of all superhedging strategies for the payoff G at
maturity T :

S(G) :=
{

(X0, θ) ∈ R×A : X̃θ
T ≥ G̃, P− a.s.

}
.

Under this form, we see that V (G) is a linear optimization problem under linear
inequality constraints. The standard approach for such an optimization problem
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is to use the Kuhn-Tucker theorem. However, one then faces the main difficulty
that S(G) consists of an infinite number of constraints, i.e. for P−almost all
ω ∈ Ω, we have to satisfy the constraint X̃θ

T (ω) ≥ G̃(ω).
Let us ignore this difficulty, and introduce Lagrange multipliers Z(ω) ≥ 0,

ω ∈ Ω for each inequality constraint, so that

V (G) = inf
(X0,θ)∈R×A

sup
Z∈L0(R+)

{
X0 − E

[
Z(X̃θ

T − G̃)
]}

= inf
(X0,θ)∈R×A

sup
Z∈L0(R+)

{
X0(1− E[Z])− E

[
Z
(∫ T

0

∆t · dS̃t − G̃
)]}

,

where the process ∆ is defined by ∆t := diag[St]
−1θt, t ∈ [0, T ].

The next step is to justify the commutation of the inf and sup operators
by the min-max theorem. This is the main difficulty of this approach in our
infinite dimensional optimization problem. In the present heuristic argument,
we ignore this difficulty and we assume that we may indeed justify that

V (G) = sup
Z∈L0(R+)

inf
(X0,θ)∈R×A

{
X0(1− E[Z])− E

[
Z
(∫ T

0

∆t · dS̃t − G̃
)]}

.

Under this form, we see that in order to guarantee a finite value, it is necessary
to restrict the minimization to those Lagrange multipliers Z ∈ L0(R+) such that
E[Z] = 1. Then, Z can be identified to the probability measure P̃ absolutely
continuous with respect to P, defined by the density dP̃ = ZdP on FT . The
problem is thus reduced to:

V (G) = sup
P̃∼P

inf
θ∈A

EP̃
[
−
∫ T

0

∆t · dS̃t + G̃
]
.

We next consider some special hedging strategies θ ∈ A. Consider the buy-and-
hold strategies

∆t,t′,H
u := Ht1[t,t′](u), u ∈ [0, T ], for all t ≤ t′, and H ∈ L∞(Ft).

Then, we directly compute that

EP̃
[
−
∫ T

0

∆t,t′,H
u · dS̃u

]
= EP̃[−Ht · (S̃t′ − S̃t)

]
,

and it follows from the arbitrariness of H ∈ L∞(Ft) that, in order to guarantee
that the above inf is finite, it is necessary to restrict the maximization to those

probability measures P̃ ∼ P such that EP̃[−Ht · (S̃t′ − S̃t)] = 0 for all H ∈
L∞(Ft). By the definition of the conditional expectation, this is equivalent to

EP̃[S̃t′ |Ft] = S̃t, a.s. Since t ≤ t′ are arbitrary, this means that P̃ must be

chosen so that S̃ is P̃−martingale. Then ignoring the local martingale issue of
the stochastic integral

∫
∆tdS̃t, we obtain our final result

V (G) = sup
P̃∈M(P)

EP̃[G̃] where M(P) :=
{
P̃ ∼ P : S̃ is a P̃−martingale

}
.
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In the context of the financial market considered throughout this section, we
observe that the set of equivalent martingale measures M(P) = {Q} contains
one single element, namely the risk-neutral measure Q. Then, the expected
value of the superhedging cost is:

V (G) = EQ[G̃].

This will be proved rigorously in Theorem 7.17 below.

7.4.6 The no-arbitrage valuation formula

We denote by p(G) the market price of a derivative security G.

Theorem 7.17. Let G be an FT−measurabel random variable representing the
payoff of a derivative security at the maturity T > 0, and recall the notation

G̃ := G exp
(
−
∫ T

0
rtdt

)
. Assume that EQ[|G̃|] <∞. Then

p(G) = V (G) = EQ[G̃].

Moreover, there exists a portfolio θ∗ ∈ A such that Xθ∗

0 = p(G) and Xθ∗

T = G,
a.s., that is θ∗ is a perfect replication strategy.

Proof. 1- We first prove that V (G) ≥ EQ[G̃]. Let X0 and θ ∈ A be such that
Xθ
T ≥ G, a.s. or, equivalently, X̃θ

T ≥ G̃ a.s. Since X̃θ is a Q−local martingale
bounded from below by a Q−martingale, we deduce from Lemma 5.13 and
Exercise 5.14 that X̃θ is a Q−super-martingale. Then X0 = X̃0 ≥ EQ[X̃θ

T ] ≥
EQ[G̃].
2- We next prove that V (G) ≤ EQ[G̃]. Define the Q−martingale Yt := EQ[G̃|Ft]
and observe that FW = FB . Then, it follows from the martingale representation
theorem 7.3 that Yt = Y0+

∫ t
0
φu ·dBu for some φ ∈ H2

loc. Setting θ∗ := (σT)−1φ,
we see that

θ∗ ∈ A and Y0 +

∫ T

0

θ∗ · σtdBt = G̃ P− a.s.

which implies that Y0 ≥ V (G) and θ∗ is a perfect hedging stratgey forG, starting
from the initial capital Y0.
3- From the previous steps, we have V (G) = EQ[G̃]. Applying this result to −G,
we see that V (−G) = −V (G), so that the no-arbitrage bounds (7.16) imply that
the no-arbitrage market price of G is given by V (G). ♦

7.5 The continuous time Kalman-Bucy filter

In this section, we provide the continuous time analogue of Section C.4.
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7.5.1 Formulation

Let f, g :R+ −→ R be deterministic continuous functions, (Ω,F ,F = {Ft}t≥0,P)
a filtered probability space supporting a standard Brownian motion W :=
(WX ,WY ) in R2, and consider the processes X and Y defined by the linear
stochastic differential equations

Xt =

∫ t

0

f(s)Xsds+WX
t , Yt =

∫ t

0

g(s)Xsds+WY
t , t ≥ 0.

The process X models a non-observable signal, and the process Y represents a
noisy observation of X.

Notice that the process X is a time-dependent Ornstein-Uhlenbeck process.
Similarly to the constant coefficients case, we may obtain it in explicit form by
direct application of Itô’s formula to the product e−

∫ t
0
f(s)dsXs:

Xt =

∫ t

0

e
∫ t
s
f(r)drdWX

s , for all t ≥ 0,

Then, Xt is a centered Gaussian with variance
∫ t

0
e2
∫ t
s
f(r)drds.

In fact the pair (X,Y ) is a vector Ornstein-Uhlenbeck process with time-
dependent (matrix) coefficients, and we may therefore show similarly that (X,Y )
is a Gaussian process.

The main objective of the present problem is to characterize the best esti-
mate of X given the observation of Y :

X̂t := E
[
Xt|FYt

]
, where FYt := σ(Ys, s ≤ t), t ≥ 0.

We denote by FY := {FYt , t ≥ 0} the canonical filtration of Y , and by L2(FYt )
the space of square integrable FYt −measurable random variables. By definition,
the conditional expectation E[.|FYt ] is the orthogonal projection on the vector
space L2(FYt ). Then Xt − X̂t is orthogonal to L2(FYt ), and

Γ(t) := E
[
(Xt − X̂t)

2
]
≤ E

[
X2
t

]
<∞. (7.17)

In addition, as the process (X,Y ) is Gaussian, we deduce that

Xt − X̂t is independent of L2(FYt ), for all t ≥ 0. (7.18)

See Section C.4.1 for a review on conditional distributions of Gaussian vectors.

7.5.2 Main result

Definition 7.18. The innovation process I = {It, t ≥ 0} is defined by the

FY−adapted process It := Yt −
∫ t

0
g(s)X̂sds, t ≥ 0, so that

dYt = g(t)X̂tdt+ dIt, t ≥ 0.
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Theorem 7.19 (The Kalman-Bucy filter). The innovation process I is an
(P,FY )−Brownian motion, and X̂ is an Ornstein-Uhlenbeck process with dy-
namics:

X̂t =

∫ t

0

f(s)X̂sds+

∫ t

0

g(s)Γ(s)dIs, for all t ≥ 0, (7.19)

where Γ is the unique solution of the ODE:

Γ(t) =

∫ t

0

(
2f(s)Γ(s)− g(t)2Γ(t)2 + 1

)
ds, t ≥ 0. (7.20)

The system (7.19)-(7.20) defined by the joint dynamics of X̂ and Γ is called
the continuous time Kalman-Bucy filter.

7.5.3 The innovation process

Lemma 7.20. The process I is an (P,FY )−Brownian motion.

Proof. The process I is FY−adapted, with a.s. continuous sample paths and
I0 = 0. It remains to prove that the increment It − Is is independent of FYs
and distributed as a centered gaussian with variance t − s, for all 0 ≤ s ≤ t.
To prove this, we shall now verify that h(t) := E

[
eiu(It−Is)

∣∣FYs ] = e−
1
2u

2(t−s).
Indeed, it follows by Itô’s formula that

eiu(It−Is) = 1 + iu

∫ t

s

eiu(Ir−Is)dIr −
1

2
u2

∫ t

s

eiu(Ir−Is)dr

= 1 + iu

∫ t

s

eiu(Ir−Is)dWY
r

+iu

∫ t

s

eiu(Ir−Is)g(r)(Xr − X̂r)dr −
1

2
u2

∫ t

s

eiu(Ir−Is)dt.

Taking conditional expectations with respect to FYs , observing that the inte-
grand in the stochastic integral with respect to WY has unit modulus, and using
the tower property with FYs ⊂ Fs, this provides:

h(t) = 1 + iu

∫ t

s

E
[
eiu(Ir−Is)g(r)E{(Xr − X̂r)|FYr }

]
dr − 1

2
u2

∫ t

s

h(r)dt

= 1 +−1

2
u2

∫ t

s

h(r)dt.

This requires the required result as the unique solution of the last ODE is given
by h(t) = e−

1
2u

2(t−s) for all t ≥ 0. ♦
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7.5.4 Dynamics of the best estimate

Lemma 7.21. The process X̂ is an Ornstein-Uhlenbeck process with dynamics
(7.19) of Theorem 7.19.

Proof. We proceed in several steps.
1. For all n ∈ N, we introduce the FY−stopping times τn := inf{t > 0 : |X̂t| ≥
n}, so that the process X̂ is bounded by n on [0, τn], and

∫ t∧τn
0

g(s)2X̂2
sds ≤

n2
∫ t

0
g(s)2ds <∞. We may then introduce a probability measure Qn equivalent

to P on [0, τn], with density process

Znt =
dQn

dP

∣∣∣
FYt

:= e−
∫ t∧τn
0

g(s)X̂sdIs− 1
2

∫ t∧τn
0

g(s)2X̂2
sds, t ≥ 0.

By direct application of the Girsanov theorem, we see that the process

Y n.∧τn := I∧τn+

∫ .∧τn

0

g(s)X̂sds, is a Brownian motion, with Y nt = Yt for t ≤ τn.

2. Denote ŴX
t := E

[
WX
t |FYt

]
, t ≥ 0. In this step, we show that ŴX is an

(P,FY )−martingale, and that Mn :=
(
ŴX

Zn

)
·∧τn

is an (Qn,FY )−martingale.

First ŴX is an integrable process as the conditional expectation of the
integrable process W . Next, for 0 ≤ s ≤ t, we use the tower property, the
inclusion FYt ⊂ Ft, and the (P,F)−martingale property of WX , to compute
that

E
[
ŴX
t

∣∣FYs ] = E
[
E
{
ŴX
t

∣∣FYt }∣∣FYs ] = E
[
WX
t

∣∣FYs ]
= E

[
E
{
WX
t

∣∣Fs}∣∣FYs ] = E
[
WX
s

∣∣FYs ] = ŴX
s .

This shows that ŴX is a (P,FY )−martingale.
We next verify that Mn defines a (Qn,FY )−martingale on [0, τn]. Indeed,

EQn[|Mn
t∧τn |

]
= E

[
|WX

t∧τn |
]
< ∞, and for all 0 ≤ s ≤ t, it follows from the

Bayes rule together with the (P,FY )−martingale property of WX and Zn.∧τn
that:

EQn[Mn
t∧τn

∣∣FYs ] =
E
[
WX
t∧τn

∣∣FYs ]
E
[
Znt∧τn

∣∣FYs ] =
WX
s∧τn

Zns∧τn
= Mn

s∧τn .

3. As FY is the canonical filtration of the Qn−Brownian motion Y , and Mn :=
Ŵ
Zn is a (Qn,FY )−martingale on [0, τn] starting from zero, it follows from the

martingale representation theorem that Mn
t∧τn =

∫ t∧τn
0

Hn
s dYs, t ≥ 0, for some

FY−adapted process Hn ∈ H2. We now show that, for all n ∈ N, we may find
a process λn ∈ H2 such that

ŴX
t∧τn =

∫ t∧τn

0

λns dIs, t ≥ 0, P− a.s. and λn is FY −adapted. (7.21)
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Indeed, as Zn satisfies the dynamics dZnt = −Znt g(t)X̂tdIt for t ≤ τn, it follows
from Itô’s formula that

dŴX
t = d(Mn

t Z
n
t ) = Mn

t dZ
n
t + Znt dM

n
t − Znt g(t)X̂tH

n
t dt

= −Mn
t Z

n
t g(t)X̂tdIt + Znt H

n
t dYt − Znt g(t)X̂tH

n
t dt

= −ŴX
t g(t)X̂tdIt + Znt H

n
t

(
g(t)X̂tdt+ dIt

)
− Znt g(t)X̂tH

n
t dt

=
(
Znt H

n
t − g(t)ŴX

t X̂t

)
dIt.

The required result follows by setting λn := ZnHn− gŴXX̂ which inherits the
adaptability to FY from that of the process φ.
4. For an arbitrary FY−progressively measurable bounded process φ, set Vt :=∫ t

0
φsdIs. By direct application of Itô’s formula to the product XV , we see that

for t ≥ 0:

XtVt−
∫ t

0

f(s)XsVsds =

∫ t

0

φsg(s)Xs

(
Xs−X̂s

)
ds+

∫ t

0

VsdW
X
s +

∫ t

0

φsXsdW
Y
s .

We now show that for all t ≥ 0 and n ∈ N:

E
[ ∫ t∧τn

0

g(s)φsXs

(
Xs − X̂s

)
ds
]

= E
[
ŴX
t∧τnVt∧τn

]
(7.22)

= E
[(
X̂t∧τn −

∫ t∧τn

0

f(s)X̂sds
)
Vt∧τn

]
.

Clearly, X ∈ H2, and by the boundedness of φ, we have V ∈ H2 on [0, t] by
the the Itô isometry. Then, by taking expectation on both hands of the last
equality, we get:

E
[ ∫ t∧τn

0

g(s)φsXs

(
Xs − X̂s

)
ds
]

= E
[
Xt∧τnVt∧τn−

∫ t∧τn

0

f(s)XsVsds
]

(7.23)

= E
[
Vt∧τn

(
Xt∧τn −

∫ t∧τn

0

f(s)Xsds
)]

= E
[
Vt∧τnW

X
t∧τn

]
= E

[
Vt∧τnE

{
WX
t∧τn

∣∣FYt }]
= E

[
Vt∧τnŴ

X
t∧τn

]
,

where the second equality follows from the martingale property of V (as a
stochastic integral with respect to the Brownian motion I, with bounded inte-
grand), and the fourth inequality uses the inclusion FYt ⊂ F0 together with the
fact that V is FY−adapted.

To prove the second equality, we return to (7.23), and observe that the the
right hand side may be rearranged by using the tower property combined with
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the fact that V is FY−adapted and τn is an FY−stopping time:

E
[
E{Xt∧τn |FYt∧τn}Vt∧τn −

∫ t∧τn

0

f(s)E{Xs|FYs }Vsds
]

= E
[
X̂t∧τnVt∧τn −

∫ t∧τn

0

f(s)X̂sVsds
]

= E
[(
X̂t∧τn −

∫ t∧τn

0

f(s)X̂sds
)
Vt∧τn

]
;

the last equality holds as V is a martingale.
5. As E[Xs|FYs ] = X̂s, we have E

[
Xs(Xs− X̂s)

∣∣FYs ] = E
[
(Xs− X̂s)

2
∣∣FYs ]. By

the independence of Xs − X̂s and L2(FYs ), we see that

E
[
Xs(Xs − X̂s)

∣∣FYs ] = E
[
(Xs − X̂s)

2
]

=: Γ(s),

as defined in (7.17). Substituting in the equality of the first equality in (7.22),
and using the tower property together with the FY−adaptability of the process
V , we get

E
[
Vt∧τnŴ

X
t∧τn

]
=E
[ ∫ t∧τn

0

g(s)φsE
{
Xs(Xs−X̂s

)∣∣FYs }ds]=E
[ ∫ t∧τn

0

g(s)φsΓ(s)ds
]
.

6. As Vt =
∫ t

0
φsdWs, and ŴX

t∧τn =
∫ t∧τn

0
λns dIs by (7.21), it follows from

Lemma 7.20 together with the Itô isometry that E
[
Vt∧τnŴ

X
t∧τn

]
= E

[ ∫ t∧τn
0

φsλ
n
s ds
]
.

Then, we obtain from the last equality of the last step that

E
[ ∫ t∧τn

0

φs
(
λns − g(s)Γ(s)

)
ds
]

= 0, t ≥ 0.

Since φ is an arbitrary bounded FY−adapted process, this implies that λns =
g(s)Γ(s), ds⊗ dP−a.e. on [0, τn]. In particular, λn is independent of n, and the
representation of ŴX in (7.21) holds on R+, i.e.

ŴX
t =

∫ t

0

g(s)Γ(s)dIs, t ≥ 0.

On the other hand, by sending n ↗ ∞ in the second equality of (7.22), we
obtain by the dominated convergence theorem that:

E
[
Vt

(
X̂t −

∫ t

0

f(s)X̂sds− ŴX
t

)]
= 0, for all t ≥ 0.

By the martingale representation theorem, we see by standard approximation
that the set {c + Vt : c ∈ R, φ bounded process in H2} is dense in L2(FYt ).

Then, it follows from the arbitrariness of φ that t 7−→ X̂t −
∫ t

0
f(s)X̂sds− ŴX

t

is a (deterministic) constant, which is necessarily zero by considering its value
at time zero. Hence

X̂t =

∫ t

0

f(s)X̂sds+ ŴX
t =

∫ t

0

f(s)X̂sds+

∫ t

0

g(s)Γ(s)dIs

by the previous identification of the process λn. ♦
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7.5.5 ODE characterization of the variance

We finally derive the characterization of the function Γ.

Lemma 7.22. The function Γ is the unique solution of the the ODE (7.20) of
Theorem 7.19.

Proof. By direct calculation, we see that the error estimateX−X̂ is an Ornstein-
Uhlenbeck process with dynamics

d
(
Xt − X̂t

)
=

(
f(t)− g(t)2Γ(t)

)
(Xt − X̂t)dt+ dWX

t − g(t)Γ(t)dWY
t .

Then, X − X̂ is a centered Gaussian process with variance Γ(t). In order to
show that Γ solves the ODE of Lemma 7.22, we may use Itô’s formula to obtain
the dynamics of (X − X̂)2 and then take expectations while being careful with
the local martingale components...

Alternatively, we may compute explicitly, denoting γ := f − g2Γ, and δt :=
X − X̂, that

d
(
e−
∫ t
0
γ(s)dsδt

)
= e−

∫ t
0
γ(s)ds

(
dWX

t − g(t)Γ(t)dWY
t

)
.

As δ0 = 0, this provides

δt =

∫ t

0

e
∫ t
s
γ(r)dr

(
dWX

s − g(s)Γ(s)dWY
s

)
with distribution N

(
0,Γ(t)

)
,

which implies that Γ(t) = E[δ2
t ], and by the Itô isometry:

Γ(t) =

∫ t

0

e2
∫ t
s
γ(r)dr

(
1 + g(s)2Γ(s)2

)
ds

Differentiating both sides with respect to t, we see that

Γ′(t) = 2γΓ + 1 + g2Γ2 = 2(f − g2Γ)Γ + 1 + g2Γ2 = 2fΓ− g2Γ2 + 1,

which provides the required expression, given that Γ(0) = 0.
We finally justify that the ODE of Lemma (7.22) has a unique solution in

R+. Notice that any solution of this ODE lies in [0,M ] where M is the unique

(explicit) solution of the ODE M(t) =
∫ t

0
(2f(s)M(s) + 1)ds. We next solve

locally the ODE of Lemma (7.22) by the Cauchy Lipschitz theorem, and we
prove by standard arguments that the explosion time can not be finite, thanks
to the bounds 0 and M . ♦



Chapter 8

Stochastic differential
equations

8.1 First examples

In the previous sections, we have handled the geometric Brownian motion de-
fined by

St := S0 exp [(µ− 1

2
σ2)t+ σWt], t ≥ 0, (8.1)

where W is a scalar Brownian motion, and X0 > 0, µ, σ ∈ R are given constants.
An immediate application of Itô’s formula shows that X satisfies the dynamics

dSt = µStdt+ σStdWt, t ≥ 0. (8.2)

This is our first example of stochastic differential equations since S appears on
both sides of the equation. Of course, the geometric Brownian motion (8.1) is
a solution of the stochastic differential equation. A natural question is whether
this solution is unique. In this simple model, the answer to this squestion is
easy:

• Since S0 > 0, and any solution S of (8.2) has a.s. continuous sample
paths, as a consequence of the contituity of the stochastic integral t 7−→∫ t

0
σSsdWs, we see that S hits 0 before any negative real number.

• Let θ := inf{t : St = 0} be the first hitting time of 0, and set Lt := lnSt
for t < θ; then, it follows from Itô’s formula that

dLt =
(
µ− 1

2
σ2
)
dt+ σdWt, t < θ,

which leads uniquely to Lt = L0 + (µ − 1
2σ

2)t + σWt, t < θ, which cor-
respond exactly to the solution (8.1). In particular θ = +∞ a.s. and the
above arguments holds for any t ≥ 0.

111
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Our next example of stochastic differential equations is the so-called Ornstein-
Uhlenbeck process, which is widely used for the modelling of the term structure
of interest rates:

dXt = k(m−Xt)dt+ σdWt, t ≥ 0. (8.3)

where k,m, σ ∈ R are given constants. From the modelling viewpoint, the
motivation is essentially in the case k > 0 which induces the so-called mean
reversion: when Xt > m, the drift points downwards, while for Xt < m the
drift coefficient pushes the solution upwards, hence the solution (if exists !) is
attracted to the mean level m. Again, the issue in (8.3) is that X appears on
both sides of the equation.

This example can also be handled explicitly by using the analogy with the
deterministic case (corresponding to σ = 0) which suggests the change of vari-
able Yt := ektXt. Then, it follows from Itô’s formula that

dYt = mkektdt+ σektdWt, t ≥ 0,

and we obtain as a unique solution

Yt = Y0 +m
(
ekt − 1

)
+ σ

∫ t

0

eksdWs, t ≥ 0,

or, back to X:

Xt = X0e
−kt +m

(
1− e−kt

)
+ σ

∫ t

0

e−k(t−s)dWs, t ≥ 0.

The above two examples are solved by a (lucky) specific change of variable.
For more general stochastic differential equations, it is clear that, as in the
deterministic framework, a systematic analysis of the existence and uniqueness
issues is needed, without any access to a specific change of variable. In this
section, we show that existence and uniqueness hold true under general Lipschitz
conditions, which of course reminds the situation in the deterministic case. More
will be obtained outside the Lipschitz world in the one-dimensional case.

Finally, let us observe that the above solutions S and X can be expressed
starting from an initial condition at time t as:

Su = St exp (µ− 1

2
σ2)(u− t) + σ(Wu −Wt)

Xu = Xte
−k(u−t) +m

(
1− e−k(u−t)

)
+ σ

∫ u

t

e−k(u−s)dWs,

for all u ≥ t ≤ 0. In particular, we see that:

• the distribution of Su conditional on the past values {Ss, s ≤ t} of S up
to time t equals to the distribution of Su conditional on the current value
St at time t; this is the so-called Markov property,
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• let St,su and Xt,x
u be given by the above expressions with initial condition

at time t frozen to St = s and Xt = x, respectiveley, then the random
functions s 7−→ St,su and x 7−→ Xt,x

u are strictly increasing for all u; this
is the so-called increase of the flow property.

These results which are well known for deterministic differential equations
will be shown to hold true in the more general stochastic framework.

8.2 Strong solution of a stochastic differential
equation

8.2.1 Existence and uniqueness

Given a filtered probability space (Ω,F ,F := {Ft}t,P) supporting a d−dimensional
Brownian motion W , we consider the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t ∈ [0, T ], (8.4)

for some T ∈ R. Here, b and σ are function defined on [0, T ]×Rn taking values
respectively in Rn and MR(n, d).

Definition 8.1. A strong solution of (8.4) is an F−adapted process X such that∫ T
0

(|b(t,Xt)|+ |σ(t,Xt)|2)dt <∞, a.s. and

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, t ∈ [0, T ].

Let us mention that there is a notion of weak solutions which relaxes some
conditions from the above definition in order to allow for more general stochas-
tic differential equations. Weak solutions, as opposed to strong solutions, are
defined on some probabillistic structure (which becomes part of the solution),
and not necessarilly on (Ω,F ,F,P,W ). Thus, for a weak solution we search for
a probability structure (Ω̃, F̃ , F̃, P̃, W̃ ) and a process X̃ such that the require-
ment of the above definition holds true. Obviously, any strong solution is a
weak solution, but the opposite claim is false.

Clearly, one should not expect that the stochastic differential equation (8.4)
has a unique solution without any condition on the coefficients b and σ. In the
deterministic case σ ≡ 0, (8.4) reduces to an ordinary differential equation for
which existence and uniqueness requires Lipschitz conditions on b. The following
is an example of non-uniqueness.

Exercise 8.2. Consider the stochastic differential equation:

dXt = 3X
1/3
t dt+ 3X

2/3
t dWt

with initial condition X0 = 0. Show that Xt = W 3
t is a solution (in addition to

the solution X = 0).
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Our main existence and uniqueness result is the following.

Theorem 8.3. Let X0 ∈ L2 be a r.v. independent of W , and assume that the
functions |b(t, 0)|, |σ(t, 0)| ∈ L2 (R+), and that for some K > 0:

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y| for all t ∈ [0, T ], x, y ∈ Rn.

Then, for all T > 0, there exists a unique strong solution of (8.4) in H2. More-
over,

E
[
sup
t≤T
|Xt|2

]
≤ C

(
1 + E|X0|2

)
eCT , (8.5)

for some constant C = C(T,K) depending on T and K.

Proof. We first establish the existence and uniqueness result, then we prove the
estimate (8.5).
Step 1 For a constant c > 0, to be fixed later, we introduce the norm

‖φ‖H2
c

:= E

[∫ T

0

e−ct|φt|2dt

]1/2

for every φ ∈ H2.

Clearly e−cT ‖φ‖H2 ≤ ‖φ‖H2
c
≤ ‖φ‖H2 . So the norm ‖.‖H2

c
is equivalent to the

standard norm ‖.‖H2 on the Hilbert space H2.
We define a map U on H2 ([0, T ]× Ω) by:

U(X)t := X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, 0 ≤ t ≤ T.

This map is well defined, as the processes {b(t,Xt), σ(t,Xt), t ∈ [0, T ]} are
immediately checked to be in H2. In order to prove existence and uniqueness of
a solution for (8.4), we shall prove that U(X) ∈ H2 for all X ∈ H2 and that U
is a contracting mapping with respect to the norm ‖.‖H2

c
for a convenient choice

of the constant c > 0.
1- We first prove that U(X) ∈ H2 for all X ∈ H2. To see this, we decompose:

‖U(X)‖2H2 ≤ 3T‖X0‖2L2 + 3E

[∫ T

0

∣∣∣∣∫ t

0

b(s,Xs)ds

∣∣∣∣2 dt
]

+3E

[∫ T

0

∣∣∣∣∫ t

0

σ(s,Xs)dWs

∣∣∣∣2 dt
]

By the Lipschitz-continuity of b and σ in x, uniformly in t, we have |b(t, x)|2 +
|σ(t, x)|2 ≤ K(1 + |b(t, 0)|2 + |x|2) for some constant K. We then estimate the
second term by:

E

[∫ T

0

∣∣∣∣∫ t

0

b(s,Xs)ds

∣∣∣∣2 dt
]
≤ KTE

[∫ T

0

(1 + |b(t, 0)|2 + |Xs|2)ds

]
<∞,
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since X ∈ H2, and b(., 0) ∈ L2([0, T ]).
As, for the third term, we first use the Itô isometry:

E

[∫ T

0

∣∣∣∣∫ t

0

σ(s,Xs)dWs

∣∣∣∣2 dt
]
≤ TE

[∫ T

0

|σ(s,Xs)|2ds

]

≤ TKE

[∫ T

0

(1 + |σ(t, 0)|2 + |Xs|2)ds

]
<∞.

2- We next show that U is a contracting mapping for the norm ‖.‖H2
c

for some
convenient choice of c > 0. For X,Y ∈ H2 with X0 = Y0 = 0, we have

E |U(X)t − U(Y )t|2

≤ 2E
∣∣∣∣∫ t

0

(b(s,Xs)− b(s, Ys)) ds
∣∣∣∣2 + 2E

∣∣∣∣∫ t

0

(σ(s,Xs)− σ(s, Ys)) dWs

∣∣∣∣2
= 2E

∣∣∣∣∫ t

0

(b(s,Xs)− b(s, Ys)) ds
∣∣∣∣2 + 2E

∫ t

0

|σ(s,Xs)− σ(s, Ys)|2 ds

≤ 2tE
∫ t

0

|b(s,Xs)− b(s, Ys)|2 ds+ 2E
∫ t

0

|σ(s,Xs)− σ(s, Ys)|2 ds

≤ 2(T + 1)K

∫ t

0

E |Xs − Ys|2 ds.

Then,

‖U(X)− U(Y )‖H2
c
≤ 2K(T + 1)

∫ T

0

e−ct
∫ t

0

E|Xs − Ys|2ds dt

=
2K(T + 1)

c

∫ T

0

e−csE|Xs − Ys|2(1− e−c(T−s))ds

≤ 2K(T + 1)

c
‖X − Y ‖H2

c
.

Hence, U is a contracting mapping for sufficiently large c > 1.
Step 2 We next prove the estimate (8.5). We shall alleviate the notation writ-
ing bs := b(s,Xs) and σs := σ(s,Xs). We directly estimate:

E
[
sup
u≤t
|Xu|2

]
= E

[
sup
u≤t

∣∣∣∣X0 +

∫ u

0

bsds+

∫ u

0

σsdWs

∣∣∣∣2
]

≤ 3

(
E|X0|2 + tE

[∫ t

0

|bs|2ds
]

+ E

[
sup
u≤t

∣∣∣∣∫ u

0

σsdWs

∣∣∣∣2
])

≤ 3

(
E|X0|2 + tE

[∫ t

0

|bs|2ds
]

+ 4E
[∫ t

0

|σs|2ds
])

where we used the Doob’s maximal inequality of Proposition 3.15. Since b and
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σ are Lipschitz-continuous in x, uniformly in t, this provides:

E
[
sup
u≤t
|Xu|2

]
≤ C(K,T )

(
1 + E|X0|2 +

∫ t

0

E
[
sup
u≤s
|Xu|2

]
ds

)
and we conclude by using the Gronwall lemma. ♦

The following exercise shows that the Lipschitz-continuity condition on the
coefficients b and σ can be relaxed. Further relaxation of this assumption is
possible in the one-dimensional case, see Section 8.3.

Exercise 8.4. In the context of this section, assume that the coefficients µ and σ
are locally Lipschitz with linear growth. By a localization argument, prove that
strong existence and uniqueness holds for the stochastic differential equation
(8.4).

8.2.2 The Markov property

Let Xt,x
. denote the solution of the stochastic differential equation

Xs = x+

∫ s

t

b(u,Xu)du+

∫ s

t

σ(u,Xu)dWu s ≥ t

The two following properties are obvious:

• Clearly, Xt,x
s = F (t, x, s, (W. −Wt)t≤u≤s) for some deterministic function

F .

• For t ≤ u ≤ s: Xt,x
s = X

u,Xt,xu
s . This follows from the pathwise uniqueness,

and holds also when u is a stopping time.

With these observations, we have the following Markov property for the solutions
of stochastic differential equations.

Proposition 8.5. (Markov property) For all 0 ≤ t ≤ s:

E [Φ (Xu, t ≤ u ≤ s) |Ft] = E [Φ (Xu, t ≤ u ≤ s) |Xt]

for all bounded function Φ : C[t, s] −→ R.

8.3 More results for scalar stochastic differential
equations

We first start by proving a uniqueness result for scalar stochastic differential
equation under weaker conditions than the general n−dimensional result of The-
orem 8.3. For example, the following extension allows to consider the so-called
Cox-Ingersol-Ross square root model for interest rates:

drt = k(b− rt)dt+ σ
√
rtdWt,
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or the Stochastic Volatility Constant Elasticity of Variance (SV-CEV) models
which are widely used to account for the dynamics of implied volatility, see
Chapter 10,

dSt
St

= µdt+ Sαt σtdWt,

where the process (σt)t≥0 is generated by another autonomous stochastic dif-
ferential equation.

The question of existence will be skipped in these notes as it requires to
develop the theory of weak solutions of stochastic differential equations, which
we would like to avoid. Let us just mention that the main result, from Yamada
and Watanabe (1971), is that the existence of weak solutions for a stochastic
differential equation for which strong uniqueness holds implies existence and
uniqueness of a strong solution.

Theorem 8.6. Let b, σ : R+ × R −→ R be two functions satisfying for all
(t, x) ∈ R+ × R:

|µ(t, x)− µ(t, y)| ≤ K|x− y| and |σ(t, x)− σ(t, y)| ≤ h(|x− y|), (8.6)

where h : R+ −→ R+ is strictly increasing, h(0) = 0, and
∫

(0,ε)
h(u)−2du = ∞

for all ε > 0. Then, there exists at most one strong solution for the stochastic
differential equation

Xt = X0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, t ≥ 0.

Proof. The conditions imposed on the function h imply the existence of a
strictly decreasing sequence (an)n≥0 ⊂ (0, 1], with a0 = 1, an −→ 0, and∫ an−1

an
h(u)−2du = n for all n ≥ 1. Then, for all n ≥ 0, there exists a continuous

function ρn : R −→ R such that

h = 0 outside of [an, an−1], 0 ≤ ρn ≤ 2
nh2 and

∫ an−1

an

ρn(x)dx = 1.

We now introduce the C2−function ψn(x) :=
∫ |x|

0

∫ y
0
ρn(u)dudy, x ∈ R, and we

observe that

|ψ′n| ≤ 1, |ψ′′n| ≤
2

nh2
1[an,an−1], and ψn(x) −→ |x|, n→∞. (8.7)

Let X and Y be two solutions of (8.6) with X0 = Y0, define the stopping time

τn := inf{t > 0 : (
∫ t

0
σ(s,Xs)

2ds)∨ (
∫ t

0
σ(s, Ys)

2ds) ≥ n}, and set δt := Xt − Yt.
Then, it follows from Itô’s formula that:

ψn (δt∧τn) =

∫ t∧τn

0

ψ′n(δs) (µ(s,Xs)− µ(s, Ys)) ds

+
1

2

∫ t∧τn

0

ψ′′n(δs) (σ(s,Xs)− σ(s, Ys))
2
ds

+

∫ t∧τn

0

ψ′n(δs) (σ(s,Xs)− σ(s, Ys)) dWs. (8.8)
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Then, by the definition of τn and the boundedness of ψ′n, the stochastic integral
term has zero expectation. Then, using the Lipschitz-continuity of µ and the
definition of the function h:

E[ψn (δt∧τn)] ≤ KE
[∫ t∧τn

0

|δs|ds
]

+ E
[∫ t∧τn

0

ψ′′n(δs)h
2(|δs|)ds

]
≤ KE

[∫ t

0

|δs|ds
]

+ E
[∫ t

0

ψ′′n(δs)h
2(|δs|)ds

]
≤ K

∫ t

0

E[|δs|]ds+
t

n
.

By sending n → ∞, we see that E[|δt|] ≤ K
∫ t

0
E[|δs|]ds + t

n , t ≥ 0, and we
deduce from the Gronwall inequality that δt = 0 for all t ≥ 0. ♦

Remark 8.7. It is well-known that the deterministic differential equationsXt =
X0 +

∫ t
0
b(s,Xs), has a unique solution for sufficiently small t > 0 when b is

locally Lipschitz in x uniformly in t, and bounded on compact subsets of R+×R.
In the absence of these conditions, we may go into problems of existence and
uniqueness. For example, for α ∈ (0, 1), the equation Xt =

∫ t
0
|Xs|αds has a

continuum of solutions Xθ, θ ≥ 0, defined by:

Xθ
t := [(1− α)(t− θ)]1/(1−α)1[θ,∞)(t), t ≥ 0.

The situation in the case of stochastic differential equations is different, as the
previous theorem 8.6 shows that strong uniqueness holds for the stochastic dif-
ferential equation Xt =

∫ t
0
|Xs|αdWs when α ≥ 1/2, and therefore X = 0 is the

unique strong solution.

We next use the methodology of proof of the previous theorem 8.6 to prove
a monotonicity of the solution of a scalar stochastic differential equation with
respect to the drift coefficient and the initial condition.

Proposition 8.8. Let X and Y be two F−adapted processes with continuous
sample paths, satisfying for t ∈ R+:

Xt = X0 +

∫ t

0

µ(t,Xt)dt+

∫ t

0

σ(t,Xt)dWt,

Yt = Y0 +

∫ t

0

η(t,Xt)dt+

∫ t

0

σ(t,Xt)dWt.

for some continuous functions µ, η, and σ. Assume further that either µ or η
is Lipschitz-continuous, and that σ satisfies Condition (8.6) from theorem 8.6.
Then

µ(.) ≤ η(.) and X0 ≤ Y0 a.s. implies that X. ≤ Y. a.s.

Proof. Define ϕn(x) := ψn(x)1(0,∞)(x), where ψn is as defined in the proof of

Theorem 8.6. With δt := Xt − Yt, and τn := inf{t > 0 : (
∫ t

0
σ(s,Xs)

2ds) ∨
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(
∫ t

0
σ(s, Ys)

2ds) ≥ n}, we apply Itô’s formula, and we deduce from the analogue
of (8.8), with ϕn replacing ψn, that

E[ϕn(δt)]−
t

n
≤ E

[∫ t∧τn

0

ϕ′n(δs) (µ(s,Xs)− η(s, Ys))

]
ds

Since ϕn ≥ 0 and µ ≤ η, this provides

E[ϕn(δt)]−
t

n
≤ E

[∫ t∧τn

0

ϕ′n(δs) (µ(s,Xs)− µ(s, Ys))

]
ds (8.9)

E[ϕn(δt)]−
t

n
≤ E

[∫ t∧τn

0

ϕ′n(δs) (η(s,Xs)− η(s, Ys))

]
ds. (8.10)

The following inequality then follows from (8.9) if µ is Lipschitz-continuous, or
(8.10) if η is Lipschitz-continuous:

E[ϕn(δt)]−
t

n
≤ K

∫ t

0

E[δ+
s ]ds,

By sending n → ∞, this provides E[δ+
t ] ≤ K

∫ t
0
E[δ+

s ]ds, and we conclude by

Gronwall lemma that E[δ+
t ] = 0 for all t. Hence, δt = 0, a.s. for all t ≥ 0, and

by the pathwise continuity of the process δ, we deduce that δ. = 0, a.s. ♦

We conclude this section by the following exercise which proves the existence
of a solution for the so-called Cox-Ingersol-Ross process (or, more exactly, the
Feller process) under the condition of non-attainability of the origin.

Exercise 8.9. (Exam, December 2002) Given a scalar Brownian motion W ,
we consider the stochastic differential equation:

Xt = x+

∫ t

0

(δ − 2λXs)ds+ 2

∫ t

0

√
XsdWs, (8.11)

where λ and the initial condition x are given positive parameters, and δ ≥ 2.
Denote Ta := inf{t ≥ 0 : Xt = a}.

1. Let u(x) :=
∫ x

1
y−δ/2eλydy. Show that u(Xt) is an Itô process and provide

its dynamics.

2. For 0 < ε ≤ x ≤ a, prove that E [u(Xt∧Tε∧Ta)] = u(x) for all t ≥ 0.

3. For 0 < ε ≤ x ≤ a, show that there exists a scalar α > 0 such that the
function v(x) := eαx

2

satisfies

(δ − 2λx)v′(x) + 2xv′′(x) ≥ 1 for x ∈ [ε, a].

Deduce that E [v(Xt∧Tε∧Ta)] ≥ v(x) +E[t∧Tε ∧Ta] for all t ≥ 0, and then
E[Tε ∧ Ta] <∞.
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4. Prove that E [u(XTε∧Ta)] = u(x), and deduce that

P [Ta ≤ Tε] =
u(x)− u(ε)

u(a)− u(ε)
.

5. Assume δ ≥ 0. Prove that P [Ta ≤ T0] = 1 for all a ≥ x. Deduce that
P[T0 = ∞] = 1 (you may use without proof that Ta −→ ∞, a.s. when
a→∞.

8.4 Linear stochastic differential equations

8.4.1 An explicit representation

In this paragraph, we focus on linear stochastic differential equations:

Xt = ξ +

∫ t

0

[A(s)Xs + a(s)] ds+

∫ t

0

σ(s)dWs, t ≥ 0, (8.12)

where W is a d−dimensional Brownian motion, ξ is a r.v. in Rd independent
of W , and A : R+ −→ MR(n, n), a : R+ −→ Rn, et σ : R+ −→ MR(n, d) are

deterministic Borel measurable functions with A bounded, and
∫ T

0
|a(s)|ds +∫ T

0
|σ(s)|2ds <∞ for all T > 0.
The existence and uniqueness of a strong solution for the above linear stochas-

tic differential equation is a consequence of Theorem 8.3.
We next use the analogy with deterministic linear differential systems to

provide a general representation of the solution of (8.12). Let H : R+ 7−→
MR(d, d) be the unique solution of the linear ordinary differential equation:

H(t) = Id +

∫ t

0

A(s)H(s)ds for t ≥ 0. (8.13)

Observe that H(t) is invertible for every t ≥ 0 for otherwise there would exist
a vector λ such that H(t0)λ = 0 for some t0 > 0; then since x := Hλ solves
the ordinary differential equation ẋ = A(t)x on Rd, it follows that x = 0,
contradicting the fact that H(0) = Id.

Given the invertible matrix solution H of the fundamental equation (8.13), it
follows that the unique solution of the deterministic ordinary differential equa-
tion x(t) = x(0) +

∫ t
0
[A(s)x(s) + a(s)]ds is given by

x(t) = H(t)

(
x(0) +

∫ t

0

H(s)−1a(s)ds

)
for t ≥ 0.

Proposition 8.10. The unique solution of the linear stochastic differential
equation (8.12) is given by

Xt := H(t)

(
ξ +

∫ t

0

H(s)−1a(s)ds+

∫ t

0

H(s)−1σ(s)dWs

)
for t ≥ 0.
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Proof. This is an immediate application of Itô’s formula, which is left as an
exercise. ♦

Exercise 8.11. In the above context, show that for all s, t ∈ R+:

E[Xt] = H(t)

(
E[X0] +

∫ t

0

H(s)−1a(s)ds

)
,

Cov[Xt, Xs] = H(t)

(
Var[X0] +

∫ s∧t

0

H(s)−1σ(s)[H(s)−1σ(s)]Tds

)
H(t)T.

8.4.2 The Brownian bridge

We now consider the one-dimensional linear stochastic differential equation:

Xt = a+

∫ t

0

b−Xs

T − s
ds+Wt, for t ∈ [0, T ), (8.14)

where T > 0 and a, b ∈ R are given. This equation can be solved by the method
of the previous paragraph on each interval [0, T − ε] for every ε > 0, with
fundamental solution of the corresponding linear equation

H(t) = 1− t

T
for all t ∈ [0, T ). (8.15)

This provides the natural unique solution on [0, T ):

Xt = a

(
1− t

T

)
+ b

t

T
+ (T − t)

∫ t

0

dWs

T − s
, pour 0 ≤ t < T. (8.16)

Proposition 8.12. Let {Xt, t ∈ [0, T ]} be the process defined by the unique
solution (8.16) of (8.14) on [0, T ), and XT = b. Then X has a.s. continuous
sample paths, and is a gaussian process with

E[Xt] = a

(
1− t

T

)
+ b

t

T
, t ∈ [0, T ],

Cov(Xt, Xs) = (s ∧ t)− st

T
, s, t ∈ [0, T ].

Proof. Consider the processes

Mt :=

∫ t

0

dWs

T − s
, t ≥ 0, Bu := Mh−1(u), u ≥ 0, where h(t) :=

1

T − t
− 1

T
.

Then, B0 = 0, B has a.s. continuous sample paths, and has independent incre-
ments, and we directly see that for 0 ≤ s < t, the distribution of the increment
Bt −Bs is gaussian with zero mean and variance

Var[Bt −Bs] =

∫ h−1(t)

h−1(s)

dr

(T − r)2
=
[ −1

T − r

]h−1(t)

h−1(s)
=
[
h(r)

]h−1(t)

h−1(s)
= t− s.
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Then, m(t) := E[Bt] = 0, and for s ≤ t, c(s, t) := Cov[Bt, Bs] = Var[Bs] +
Cov[Bt − Bs, Bs] = Var[Bs] = s. By Exercise 4.7, we may then conclude that
B is a Brownian motion, and therefore

lim
t↗T

(T − t)Mt = lim
u↗∞

Bu
u+ T−1

= 0, a.s.

by the law of large numbers for the Brownian motion. Hence Xt −→ b a.s. when
t ↗ T . The expressions of the mean and the variance are obtained by direct
calculation. ♦

8.5 Connection with linear partial differential
equations

8.5.1 Generator

Let {Xt,x
s , s ≥ t} be the unique strong solution of

Xt,x
s = x+

∫ s

t

µ(u,Xt,x
u )du+

∫ s

t

σ(u,Xt,x
u )dWu, s ≥ t,

where µ and σ satisfy the required condition for existence and uniqueness of a
strong solution.

For a function f : Rn −→ R, we define the function Af by

Af(t, x) = lim
h→0

E[f(Xt,x
t+h)]− f(x)

h
if the limit exists

Clearly, Af is well-defined for all bounded C2− function with bounded deriva-
tives and

Af = µ · ∂f
∂x

+
1

2
Tr

[
σσT ∂2f

∂x∂xT

]
, (8.17)

(Exercise !). The linear differential operator A is called the generator of X. It
turns out that the process X can be completely characterized by its generator or,
more precisely, by the generator and the corresponding domain of definition...

As the following result shows, the generator provides an intimate connection
between conditional expectations and linear partial differential equations.

Proposition 8.13. Assume that the function (t, x) 7−→ v(t, x) := E
[
g(Xt,x

T )
]

is C1,2 ([0, T )× Rn). Then v solves the partial differential equation:

∂v

∂t
+Av = 0 and v(T, .) = g.

Proof. Given (t, x), let τ1 := T ∧ inf{s > t : |Xt,x
s − x| ≥ 1}. By the law of

iterated expectation, it follows that

V (t, x) = E
[
V
(
s ∧ τ1, Xt,x

s∧τ1
)]
.
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Since V ∈ C1,2([0, T ),Rn), we may apply Itô’s formula, and we obtain by taking
expectations:

0 = E
[∫ s∧τ1

t

(
∂v

∂t
+Av

)
(u,Xt,x

u )du

]
+E

[∫ s∧τ1

t

∂v

∂x
(u,Xt,x

s ) · σ(u,Xt,x
u )dWu

]
= E

[∫ s∧τ1

t

(
∂v

∂t
+Av

)
(u,Xt,x

u )du

]
,

where the last equality follows from the boundedness of (u,Xt,x
u ) on [t, s∧τ1]. We

now send s↘ t, and the required result follows from the dominated convergence
theorem. ♦

8.5.2 Cauchy problem and the Feynman-Kac representa-
tion

In this section, we consider the following linear partial differential equation

∂v
∂t +Av − k(t, x)v + f(t, x) = 0, (t, x) ∈ [0, T )× Rd
v(T, .) = g

(8.18)

where A is the generator (8.17), g is a given function from Rd to R, k and f are
functions from [0, T ] × Rd to R, b and σ are functions from [0, T ] × Rd to Rd
and MR(d, d), respectively. This is the so-called Cauchy problem.

For example, when k = f ≡ 0, b ≡ 0, and σ is the identity matrix, the above
partial differential equation reduces to the heat equation.

Our objective is to provide a representation of this purely deterministic prob-
lem by means of stochastic differential equations. We then assume that µ and
σ satisfy the conditions of Theorem 8.3, namely that

µ, σ Lipschitz in x uniformly in t,

∫ T

0

(
|µ(t, 0)|2 + |σ(t, 0)|2

)
dt <∞. (8.19)

Theorem 8.14. Let the coefficients µ, σ be continuous and satisfy (8.19). As-
sume further that the function k is uniformly bounded from below, and f has
quadratic growth in x uniformly in t. Let v be a C1,2

(
[0, T ),Rd

)
solution of

(8.18) with quadratic growth in x uniformly in t. Then

v(t, x) = E

[∫ T

t

βt,xs f(s,Xt,x
s )ds+ βt,xT g

(
Xt,x
T

)]
, t ≤ T, x ∈ Rd ,

where Xt,x
s := x+

∫ s
t
µ(u,Xt,x

u )du+
∫ s
t
σ(u,Xt,x

u )dWu and βt,xs := e−
∫ s
t
k(u,Xt,xu )du

for t ≤ s ≤ T .
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Proof. We first introduce the sequence of stopping times

τn := (T − n−1) ∧ inf
{
s > t :

∣∣Xt,x
s − x

∣∣ ≥ n} ,
and we oberve that τn −→ T P−a.s. Since v is smooth, it follows from Itô’s
formula that for t ≤ s < T :

d
(
βt,xs v

(
s,Xt,x

s

))
= βt,xs

(
−kv +

∂v

∂t
+Av

)(
s,Xt,x

s

)
ds

+βt,xs
∂v

∂x

(
s,Xt,x

s

)
· σ
(
s,Xt,x

s

)
dWs

= βt,xs

(
−f(s,Xt,x

s )ds+
∂v

∂x

(
s,Xt,x

s

)
· σ
(
s,Xt,x

s

)
dWs

)
,

by the PDE satisfied by v in (8.18). Then:

E
[
βt,xτn v

(
τn, X

t,x
τn

)]
− v(t, x)

= E
[∫ τn

t

βt,xs

(
−f(s,Xs)ds+

∂v

∂x

(
s,Xt,x

s

)
· σ
(
s,Xt,x

s

)
dWs

)]
.

Now observe that the integrands in the stochastic integral is bounded by def-
inition of the stopping time τn, the smoothness of v, and the continuity of σ.
Then the stochastic integral has zero mean, and we deduce that

v(t, x) = E
[∫ τn

t

βt,xs f
(
s,Xt,x

s

)
ds+ βt,xτn v

(
τn, X

t,x
τn

)]
. (8.20)

Since τn −→ T and the Brownian motion has continuous sample paths P−a.s.
it follows from the continuity of v that, P−a.s.∫ τn

t

βt,xs f
(
s,Xt,x

s

)
ds+ βt,xτn v

(
τn, X

t,x
τn

)
n→∞−→

∫ T

t

βt,xs f
(
s,Xt,x

s

)
ds+ βt,xT v

(
T,Xt,x

T

)
=

∫ T

t

βt,xs f
(
s,Xt,x

s

)
ds+ βt,xT g

(
Xt,x
T

) (8.21)

by the terminal condition satisfied by v in (8.18). Moreover, since k is bounded
from below and the functions f and v have quadratic growth in x uniformly in
t, we have∣∣∣∣∫ τn

t

βt,xs f
(
s,Xt,x

s

)
ds+ βt,xτn v

(
τn, X

t,x
τn

)∣∣∣∣ ≤ C

(
1 + max

t≤T
|Xt|2

)
.

By the estimate stated in the existence and uniqueness theorem 8.3, the latter
bound is integrable, and we deduce from the dominated convergence theorem
that the convergence in (8.21) holds in L1(P), proving the required result by
taking limits in (8.20). ♦
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The above Feynman-Kac representation formula has an important numerical
implication. Indeed it opens the door to the use of Monte Carlo methods in order
to obtain a numerical approximation of the solution of the partial differential
equation (8.18). For sake of simplicity, we provide the main idea in the case
f = k = 0. Let

(
X(1), . . . , X(k)

)
be an iid sample drawn in the distribution of

Xt,x
T , and compute the mean:

v̂k(t, x) :=
1

k

k∑
i=1

g
(
X(i)

)
.

By the Law of Large Numbers, it follows that v̂k(t, x) −→ v(t, x) P−a.s. More-
over the error estimate is provided by the Central Limit Theorem:

√
k (v̂k(t, x)− v(t, x))

k→∞−→ N
(
0,Var

[
g
(
Xt,x
T

)])
in distribution,

and is remarkably independent of the dimension d of the variable X !

8.5.3 Representation of the Dirichlet problem

Let D be an open subset of Rd. The Dirichlet problem is to find a function u
solving:

Au− ku+ f = 0 on D and u = g on ∂D, (8.22)

where ∂D denotes the boundary of D, and A is the generator of the process
X0,X0 defined as the unique strong solution of the stochastic differential equation

X0,X0

t = X0 +

∫ t

0

µ(s,X0,X0
s )ds+

∫ t

0

σ(s,X0,X0
s )dWs, t ≥ 0.

Similarly to the the representation result of the Cauchy problem obtained in
Theorem 8.14, we have the following representation result for the Dirichlet prob-
lem.

Theorem 8.15. Let u be a C2−solution of the Dirichlet problem (8.22). As-
sume that k is bounded from below, and

E[τxD] <∞, x ∈ Rd, where τxD := inf
{
t ≥ 0 : X0,x

t 6∈ D
}
.

Then, we have the representation:

u(x) = E
[
g
(
X0,x
τD

)
e−
∫ τD
0 k(Xs)ds +

∫ τD

0

f
(
X0,x
t

)
e−
∫ t
0
k(Xs)dsdt

]
.

Exercise 8.16. Provide a proof of Theorem 8.15 by imitating the arguments in
the proof of Theorem 8.14.
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8.6 The hedging portfolio in a Markov financial
market

In this paragraph, we return to the context of Section 7.4, and we assume further
that the Itô process S is defined by a stochastic differential equation, i.e.

µt = µ(t, St), σt = σ(t, St),

and the interest rate process rt = r(t, St). In particular, the risk premium pro-
cess is also a deterministic function of the form λt = λ(t, St), and the dynamics
of the process S under the risk-neutral measure Q is given by:

dSt = diag[St] (r(t, St)1dt+ σ(t, St)dBt) ,

where we recall the B is a Q−Brownian motion. We assume that these coeffi-
cients are subject to all required conditions so that existence and uniqueness of
the Itô processes, together with the conditions of Section 7.4 are satisfied.

Finally, we assume that the derivative security is defined by a Vanilla con-
tract, i.e. G = g(ST ) for some function g with quadratic growth.

Then, from Theorem 7.17, the no-arbitrage market price of the derivative
security g(ST ) is given by

p(G) = V (0, S0) := EQ
[
e−
∫ T
0
rudug(ST )

]
.

Moreover, a careful inspection of the proof shows that the perfect replicating
strategy θ∗ is obtained by means of the martingale representations of the mar-
tingale Yt := EQ[G̃|Ft]. In order to identify the optimal portfolio, we introduce
the derivative security’s price at each time t ∈ [0, T ]:

V (t, St) = EQ
[
e−
∫ T
t
rudug(ST )

∣∣∣Ft]
= EQ

[
e−
∫ T
t
rudug(ST )

∣∣∣St] , t ∈ [0, T ],

and we observe that Yt = e−
∫ t
0
ruduV (t, St), t ∈ [0, T ].

Proposition 8.17. In the above context, assume that the function (t, s) 7−→
V (t, s) is C1,2

(
[0, T ), (0,∞)d

)
. Then the perfect replicating strategy of the

derivative security G = g(ST ) is given by

θ∗t = diag[St]
∂V

∂s
(t, St), t ∈ [0, T ).

In other words the perfect replicating strategy requires that the investor holds a
hedging portfolio consisting of

∆i
t :=

∂V

∂si
(t, St) shares of Si at each time t ∈ [0, T ).
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Proof. From the discussion preceeding the statement of the proposition, the
perfect hedging strategy is obtained from the martingale representation of the
process Yt = e−

∫ t
0
ruduV (t, St), t ∈ [0, T ]. Since V has the required regularity

for the application of Itô’s formula, we obtain:

dYt = e−
∫ t
0
rudu

(
...dt+

∂V

∂s
(t, St) · dSt

)
=

∂V

∂s
(t, St) · dS̃t,

where, in the last equality, the ”dt” coefficient is determined from the fact that
S̃ and Y are Q−martingales. The expression of θ∗ is then easily obtained by
identifying the latter expression with that of a portfolio value process. ♦

8.7 Application to importance sampling

Importance sampling is a popular variance reduction technique in Monte Carlo
simulation. In this section, we recall the basic features of this technique in the
simple context of simulating a random variable. Then, we show how it can be
extended to stochastic differential equations.

8.7.1 Importance sampling for random variables

Let X be a square integrable r.v. on Rn. We assume that its distribution is ab-
solutely continuous with respect to the Lebesgue measure in Rn with probability
density function fX . Our task is to provide an approximation of

θ := E[X]

by Monte Carlo simulation. To do this, we assume that independent copies
(Xi)i≥1 of the r.v. X are available. Then, from the law of large numbers, we
have:

θ̂N :=
1

N

N∑
i=1

Xi −→ θ P− a.s.

Moreover, the approximation error is given by the central limit theorem:

√
N
(
θ̂N − θ

)
−→ N (0,Var[X1]) in distribution.

We call the approximation θ̂N the naive Monte Carlo estimator of θ, in the
sense that it is the most natural. Indeed, one can devise many other Monte
Carlo estimators as follows. Let Y be any other r.v. absolutely continuous
with respect to the Lebesgue measure with density fY satisfying the support
restriction

fY > 0 on {fX > 0}.
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Then, one can re-write θ as:

θ = E
[
fX(Y )

fY (Y )
Y

]
.

Then, assuming that independent copies (Yi)i≥1 of the r.v. Y are available, this
suggests an alternative Monte Carlo estimator:

θ̂N (Y ) :=
1

N

N∑
i=1

f(Yi)

g(Yi)
Yi.

By the law of large numbers and the central limit theorem, we have:

θ̂N (Y ) −→ θ, a.s.

and

√
N
(
θ̂N (Y )− µ

)
−→ N

(
0,Var

[
fX(Y )

fY (Y )
Y

])
in distribution

Hence, for every choice of a probability density function fY satisfying the above
support restriction, one may build a corresponding Monte Calo estimator θ̂N (Y )
which is consistent, but differs from the naive Monte Carlo estimator by the
asymptotic variance of the error. It is then natural to wonder whether one can
find an optimal density in the sense of minimization of the asymptotic variance
of the error:

min
fY

Var
[
fX(Y )

fY (Y )
Y

]
.

This minimization problem turns out to be very easy to solve. Indeed, since

E
[
fX(Y )
fY (Y ) Y

]
= E[X] and E

[
fX(Y )
fY (Y ) |Y |

]
= E[|X|] do not depend on fY , we have

the equivalence between the following minimization problems:

min
fY

Var
[
fX(Y )

fY (Y )
Y

]
≡ min

fY
E
[
fX(Y )2

fY (Y )2
Y 2

]
≡ min

fY
Var

[
fX(Y )

fY (Y )
|Y |
]
,

and the solution of the latter problem is given by

f∗Y (y) :=
|y|fX(y)

E[|X|]
,

Moreover, when X ≥ 0 a.s. the minimum variance is zero ! this means that,
by simulating one single copy Y1 according to the optimal density f∗Y , one can
calculate the required expected value θ without error !

Of course, this must not be feasible, and the problem here is that the calcu-
lation of the optimal probability density function f∗Y involves the computation
of the unknown expectation θ.

However, this minimization is useful, and can be used as follows:
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- Start from an initial (poor) estimation of θ, from the naive Monte Carlo

estimator for instance. Deduce an estimator f̂∗Y of the optimal probability den-

sity f∗Y . Simulate independent copies (Yi)i≥1 according to f̂∗Y , and compute a
second stage Monte Carlo estimator.

- Another application is to perform a Hastings-Metropolis algorithm and take
advantage of the property that the normalizing factor E[|X|] is not needed...
(MAP 432).

8.7.2 Importance sampling for stochastic differential equa-
tions

We aim at approximating

u(0, x) := E
[
g
(
X0,x
T

)]
where X0,x

. is the unique strong solution of

X0,x
t = x+

∫ t

0

µ
(
t,X0,x

t

)
dt+

∫ t

0

σ
(
t,X0,x

t

)
dWt, t ≥ 0.

For Q := ZT · P, a probability measure equivalent to P on FT , we have

u(0, x) := EQ
[ 1

ZT
g
(
X0,x
T

)]
.

Then, assuming that one can produce independent copies
(
X̂i
T , Ẑ

i
T

)
under Q

of the r.v.
(
X0,x
T , ZT

)
(in practice, one can only generate a discrete-time ap-

proximation...), we see that each choice of density Z suggests a Monte Carlo
approximation:

ûZN (0, x) :=
1

N

N∑
i=1

1

ẐiT
g
(
X̂i
T

)
−→ u(0, x) P− a.s.

and the central limit theorem says that an optimal choice of Z consists in min-
imizing the asymptotic variance

min
ZT

VarQ
[

1

ZT
g
(
X0,x
T

)]
.

To do this, we restrict our attention to those densities defined by

Zh0 = 1 and dZht = Zht ht · dWt, t ∈ [0, T ],

for some ht = h(t,Xt) satisfying
∫ T

0
|ht|2dt < ∞ P−a.s. and E[ZhT ] = Zh0 = 1.

We denote by H the collection of all such processes.
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Under the probability measure Qh := ZhT · P on FT , it follows from the
Girsanov theorem that{

Wh
t = Wt −

∫ t

0

hudu, 0 ≤ t ≤ T
}

is a Qh − Brownian motion

The dynamics of X and Mh :=
(
Zh
)−1

under Qh are given by

dXt = (µ+ σh)dt+ σ(t,Xt)dW
h
t ,

dMh
t = −Mh

t h(t,Xt) · dWh
t .

We now solve the minimization problem

V0 := min
h∈H

VarQ
h [
Mh
T g
(
Xt,x
T

)]
The subsequent calculation uses the fact that the function u(t, x) := E

[
g
(
Xt,x
T

)]
=

EQh [Mh
T g
(
Xt,x
T

)]
solves the partial differential equation

∂u

∂t
+ L0

tu = 0,

by Proposition 8.13, where L0 is the generator of X under the original proba-
bility measure P.

Applying Itô’s formula to the product Mu
t u(t,Xt), we see that

Mh
T g(XT ) = Mh

Tu(T,XT )

= u(0, x) +

∫ T

0

Mh
t

{
− (hu)(t,Xt) · dWh

t + du(t,Xt)− (hσ)(t,Xt)dt
}

= u(0, x) +

∫ T

0

Mh
t

{
− (hu)(t,Xt) · dWh

t + (∂t + L0)u(t,Xt)dt

+(Du · σ)(t,Xt)dW
h
t

}
= u(0, x) +

∫ T

0

Mh
t

{
σTDu− uh

}
(t,Xt) · dWh

t .

Then, if h∗(t, x) := σT(∂ lnu/∂x)(t, x) induces a process in H, this shows that

Mh∗

T g(XT ) = u(0, x), implying that VarQh
∗ [
Mh∗

T g
(
Xt,x
T

)]
= 0. Since the

variance is non-negative, this shows that

V0 = 0 and a solution is h∗ := σT(∂ lnu/∂x)(., X.)

Similarly to the case of random variables, this result can be used either
to devise a two-stage Monte Carlo method, or to combine with a Hastings-
Metropolis algorithm.



Chapter 9

The Black-Scholes model
and its extensions

In the previous chapters, we have seen the Black-Sholes formula proved from
three different approaches: continuous-time limit of the Cox-Ingersol-Ross bi-
nomial model, verification from the solution of a partial differential equation,
and the elegant martingale approach. However, none of these approaches was
originally used by Black and Scholes. The first section of this chapter presents
the original intuitive argument contained in the seminal paper by Black and
Scholes. The next section reviews the Black-Scholes formula and shows vari-
ous extensions which are needed in the every-day practive of the model within
the financial industry. The final section provides some calculations for barrier
options.

9.1 The Black-Scholes approach for the Black-
Scholes formula

In this section, we derive a formal argument in order to obtain the valuation
PDE (6.9) from Chapter 6. The following steps have been employed by Black
and Scholes in their pioneering work [7].

1. Let p(t, St) denote the time−t market price of a contingent claim defined by
the payoff B = g(ST ) for some function g : R+ −→ R. Notice that we are
accepting without proof that p is a deterministic function of time and the spot
price, this has been in fact proved in the previous section.

2. The holder of the contingent claim completes his portfolio by some investment
in the risky assets. At time t, he decides to holds −∆i shares of the risky asset
Si. Therefore, the total value of the portfolio at time t is

Pt := p(t, St)−∆ · St , 0 ≤ t < T .

131
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3. Considering delta as a constant vector in the time interval [t, t + dt), and
assuming that the function p is of class C1,2, the variation of the portfolio value
is given by :

dPt = Lp(t, St)dt+
∂p

∂s
(t, St) · dSt −∆ · dSt .

where Lp = pt + 1
2Tr[diag[s]σσTdiag[s] ∂2p

∂s∂sT ]. In particular, by setting

∆ =
∂p

∂s
,

we obtain a portfolio value with finite quadratic variation

dPt = Lp(t, St)dt . (9.1)

4. The portfolio Pt is non-risky since the variation of its value in the time
interval [t, t + dt) is known in advance at time t. Then, by the no-arbitrage
argument, we must have

dPt = r(t, St)Ptdt = r(t, St)[p(t, St)−∆ · St]dt

= r(t, St)

[
p(t, St)−

∂p

∂s
· St
]
dt (9.2)

By equating (9.1) and (9.2), we see that the function p satisfies the PDE

∂p

∂t
+ rs · ∂p

∂s
+

1

2
Tr

[
diag[s]σσTdiag[s]

∂2p

∂s∂sT

]
− rp = 0 ,

which is exactly the PDE obtained in the previous section.

9.2 The Black and Scholes model for European
call options

9.2.1 The Black-Scholes formula

In this section, we consider the one-dimensional Black-Scholes model d = 1
so that the price process S of the single risky asset is given in terms of the
Q−Brownian motion B :

St = S0 exp

[(
r − σ2

2

)
t+ σBt

]
, 0 ≤ t ≤ T . (9.3)

Observe that the random variable St is log-normal for every fixed t. This is the
key-ingredient for the next explicit result.

Proposition 9.1. Let G = (ST −K)+ for some K > 0. Then the no-arbitrage
price of the contingent claim G is given by the so-called Black-Scholes formula :

p0(G) = S0 N
(
d+(S0, K̃, σ

2T )
)
− K̃ N

(
d−(S0, K̃, σ

2T )
)
, (9.4)
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where

K̃ := Ke−rT , d±(s, k, v) :=
ln (s/k)√

v
± 1

2

√
v , (9.5)

and the optimal hedging strategy is given by

π̂t = StN
(
d+(St, K̃, σ

2(T − t))
)
, 0 ≤ t ≤ T . (9.6)

Proof. This formula can be derived by various methods. One can just calcu-
late directly the expected value by exploiting the explicit probability density
function of the random variable ST . One can also guess a solution for the valu-
ation PDE corresponding to the call option. We shall present another method
which relies on the technique of change of measure and reduces considerably the
computational effort. We first decompose

p0(G) = EQ
[
S̃T 1{S̃T≥K̃}

]
− K̃ Q

[
S̃T ≥ K̃

]
(9.7)

where as usual, the tilda notation corresponds to discounting, i.e. multiplication
by e−rT in the present context.
1. The second term is directly computed by exploiting the knowledge of the
distribution of S̃T :

Q
[
S̃T ≥ K̃

]
= Q

[
ln (S̃T /S0) + (σ2/2)T

σ
√
T

≥ ln (K̃/S0) + (σ2/2)T

σ
√
T

]

= 1−N

(
ln (K̃/S0) + (σ2/2)T

σ
√
T

)
= N

(
d−(S0, K̃, σ

2T )
)
.

2. As for the first expected value, we define the new measure P1 := Z1
T · Q on

FT , where

Z1
T := exp

(
σBT −

σ2

2
T

)
=

S̃T
S0

.

By the Girsanov theorem, the process W 1
t := Bt − σt, 0 ≤ t ≤ T , defines a

Brownian motion under P1, and the random variable

ln (S̃T /S0)− (σ2/2)T

σ
√
T

is distributed as N (0, 1) under P1 .

We now re-write the first term in (9.7) as

EQ
[
S̃T 1{S̃T≥K̃}

]
= S0P1

[
S̃T ≥ K̃

]
= S0Prob

[
N (0, 1) ≥ ln (K̃/S0)− (σ2/2)T

σ
√
T

]
= S0N

(
d+(S0, K̃, σ

2T )
)
.
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3. The optimal hedging strategy is obtained by directly differentiating the price
formula with respect to the underlying risky asset price, see Proposition 8.17.
♦

 

Figure 9.1: The Black-Scholes formula as a function of S and t

Exercise 9.2 (Black-Scholes model with time-dependent coefficients). Consider
the case where the interest rate is a deterministic function r(t), and the risky
asset price process is defined by the time dependent coefficients b(t) and σ(t).
Show that the European call option price is given by the extended Black-Sholes
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formula:

p0(G) = S0 N
(
d+(S0, K̃, v(T ))

)
− K̃ N

(
d−(S0, K̃, v(T ))

)
(9.8)

where

K̃ := Ke−
∫ T
0
r(t)dt , v(T ) :=

∫ T

0

σ2(t)dt . (9.9)

What is the optimal hedging strategy. ♦

9.2.2 The Black’s formula

We again assume that the financial market contains one single risky asset with
price process defined by the constant coefficients Black-Scholes model. Let
{Ft, t ≥ 0} be the price process of the forward contract on the risky asset
with maturity T ′ > 0. Since the interest rates are deterministic, we have

Ft = Ste
r(T ′−t) = F0e

− 1
2σ

2t+σBt , 0 ≤ t ≤ T .

In particular, we observe that the process {Ft, t ∈ [0, T ′]} is a martingale under
the risk neutral measure Q. As we shall see in next chapter, this property is
specific to the case of deterministic interest rates, and the corresponding result in
a stochastic interest rates framework requires to introduce the so-called forward
neutral measure.

We now consider the European call option on the forward contract F with
maturity T ∈ (0, T ′] and strike price K > 0. The corresponding payoff at the
maturity T is G := (FT −K)

+
. By the previous theory, its price at time zero

is given by

p0(G) = EQ
[
e−rT (FT −K)

+
]
.

In order to compute explicitly the above expectation, we shall take advantage
of the previous computations, and we observe that erT p0(G) corresponds to the
Black-Scholes formula for a zero interest rate. Hence:

p0(G) = e−rT
[
F0N

(
d+(F0,K, σ

2T )
)
−KN

(
d−(F0,K, σ

2T )
) ]
.(9.10)

This is the so-called Black’s formula.

9.2.3 Option on a dividend paying stock

When the risky asset S pays out some dividend, the previous theory requires
some modifications. We shall first consider the case where the risky asset pays
a lump sum of dividend at some pre-specified dates, assuming that the process
S is defined by the Black-Scholes dynamics between two successive dates of
dividend payment. This implies a downward jump of the price process upon
the payment of the dividend. We next consider the case where the risky asset
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pays a continuous dividend defined by some constant rate. The latter case can
be viewed as a model simplification for a risky asset composed by a basket of a
large number of dividend paying assets.

Lump payment of dividends Consider a European call option with matu-
rity T > 0, and suppose that the underlying security pays out a lump of dividend
at the pre-specified dates t1, . . . , tn ∈ (0, T ). At each time tj , j = 1, . . . , n, the
amount of dividend payment is

δjStj−

where δ1, . . . , δn ∈ (0, 1) are some given constants. In other words, the dividends
are defined as known fractions of the security price at the pre-specified dividend
payment dates. After the dividend payment, the security price jumps down
immediately by the amount of the dividend:

Stj = (1− δj)Stj− , j = 1, . . . , n .

Between two successives dates of dividend payment, we are reduced to the pre-
vious situation where the asset pays no dividend. Therefore, the discounted
security price process must be a martingale under the risk neutral measure Q,
i.e. in terms of the Brownian motion B, we have

St = Stj−1
e

(
r−σ2

2

)
(t−tj−1)+σ(Bt−Btj−1) , t ∈ [tj−1, tj) ,

for j = 1, . . . , n with t0 := 0. Hence

ST = Ŝ0e

(
r−σ2

2

)
T+σBT where Ŝ0 := S0

n∏
j=1

(1− δj) ,

and the no-arbitrage European call option price is given by

EQ [erT (ST −K)+
]

= Ŝ0 N
(
d+(Ŝ0, K̃, σ

2T )
)
− K̃ N

(
d−(Ŝ0, K̃, σ

2T )
)
,

with K̃ = Ke−rT , i.e. the Black-Scholes formula with modified spot price from
S0 to Ŝ0.

Continuous dividend payment We now suppose that the underlying secu-
rity pays a continuous stream of dividend {δSt, t ≥ 0} for some given constant
rate δ > 0. This requires to adapt the no-arbitrage condition so as to account
for the dividend payment. From the financial viewpoint, the holder of the op-
tion can immediately re-invest the dividend paid in cash into the asset at any
time t ≥ 0. By doing so, the position of the security holder at time t is

S
(δ)
t := Ste

δt , t ≥ 0 .
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In other words, we can reduce the problem the non-dividend paying security
case by increasing the value of the security. By the no-arbitrage theory, the dis-

counted process
{
e−rtS

(δ)
t , t ≥ 0

}
must be a martingale under the risk neutral

measure Q:

S
(δ)
t = S

(δ)
0 e

(
r−σ2

2

)
t+σ Bt = S0e

(
r−σ2

2

)
t+σ Bt , t ≥ 0 ,

where B is a Brownian motion under Q. By a direct application of Itô’s for-
mula, this provides the expression of the security price process in terms of the
Brownian motion B:

St = S0e

(
r−δ−σ2

2

)
t+σ Bt , t ≥ 0 . (9.11)

We are now in a position to provide the call option price in closed form:

EQ
[
e−rT (ST −K)

+
]

= e−δT EQ
[
e−(r−δ)T (ST −K)

+
]

= e−δT
[
S0 N

(
d+(S0, K̃

(δ), σ2T )
)

− K̃(δ) N
(
d−(S0, K̃

(δ), σ2T )
)]

,(9.12)

where

K̃(δ) := Ke−(r−δ)T .

9.2.4 The Garman-Kohlhagen model for exchange rate
options

We now consider a domestic country and a foreign country with different cur-
rencies. The instantaneous interest rates prevailing in the domestic country and
the forign one are assumed to be constant, and will be denoted respectively by
rd and rf .

The exchange rate from the domestic currency to the foreign one is denoted
by Ed

t at every time t ≥ 0. This is the price at time t, expressed in the domestic
currency, of one unit of the foreig currency. For instance, if the domestic cur-
rency is the Euro, and the foreign currency is the Dollar, then Ed

t is the time−t
value in Euros of one Dollar; this is the Euro/Dollar exchange rate.

Similarly, one can introduce the exchange rate from the foreign currency
to the domestic one E f

t . Assuming that all exchange rates are positive, and
that the international financial market has no frictions, it follows from a simple
no-arbitrage argument that

E f
t =

1

Ed
t

for every t ≥ 0 . (9.13)

We postulate that the exchange rate process Ed is defined by the Black-Scholes
model

Ed
t = Ed

0 e

(
µd− |σ

d|2
2

)
t+σdWt

, t ≥ 0 . (9.14)
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Our objective is to derive the no-arbitrage price of the exchange rate call option

Gd :=
(
Ed
T −K

)+
,

for some K > 0, where the payoff Gd is expressed in domestic currency.
To do this, we will apply our results from the no-arbitrage valuation theory.

We will first identify a risky asset in the domestic country which will isolate a
unique risk neutral measure Pd, so that the no arbitrage price of the contin-
gent claim Gd will be easily obtained once the distribution of Ed under Pd is
determined.
1. In order to relate the exchange rate to a financial asset of the domestic
country, consider the following strategy, for an investor of the domestic country,
consisting of investing in the non-risky asset of the foreign country. Let the

initial capital at time t be Pt := 1 Euro or, after immediate conversion
(
Ed
)−1

Dollars. Investing this amount in the foreign country non-risky asset, the in-

vestor collects the amount
(
Ed
)−1

(1 + rfdt) Dollars after a small time period
dt. Finally, converting back this amount to the domestic currency provides the
amount in Euros

Pt+dt =
Ed
t+dt(1 + rfdt)

Ed
t

and therefore dPt =
dEd
t

Ed
t

+ rfdt .

2. Given the expression (9.14) of the exchange rate, it follows from a direct
application of Itô’s formula that

dPt =
(
µd + rf

)
dt+ σddWt = rddt+ σddBd

t

where

Bd
t := Wt + λdt , t ≥ 0 , where λd :=

µd + rf − rd

σd
.

Since Pt is the value of a portfolio of the domestic country, the unique risk
neutral measure Pd is identified by the property that the processes W d is a
Brownian motion under Pd, which provides by the Girsanov theorem:

dQd

dP
= e−λ

dWT− 1
2 |λ

d|2T on FT .

3. We now can rewrite the expression of the exchange rate (9.14) in terms of
the Brownian motion Bd of the risk neutral measure Qd:

Ed
t = Ed

0 e

(
rd−rf− |σ

d|2
2

)
t+σdBd

t
, t ≥ 0 .

Comparing with (9.11), we obtain the following

Interpretation The exchange rate Ed is equivalent to an asset of the domestic
currency with continuous dividend payment at the rate rf .
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4. We can now compute the call option price by directly applying (9.12):

EQd
[
e−r

dTGd
]

:= e−r
fT
[
Ed

0 N
(
d+(Ed

0 , K̃
(rf ), |σd|2T )

)
− K̃(rf ) N

(
d−(Ed

0 , K̃
(rf ), |σd|2T )

)]
,

where K̃(rf ) := Ke−(rd−rf )T .

5. Of course the previous analysis may be performed symmetrically from the
point of view of the foreign country. By (9.13) and (9.14), we have:

E f
t = E f

0e

(
µf− |σ

f |2
2

)
t+σfWt

, t ≥ 0 ,

where

µf := −µd + |σd|2 and σf := −σd . (9.15)

The foreign financial market risk neutral measure together with the correspond-
ing Brownian motion are definied by

dQf

dP
= e−λ

fWT− 1
2 |λ

f |2T on FT and Bf
t := Wt + λft ,

where

λf :=
µf + rd − rf

σf
= λd − σd

by (9.15).

9.2.5 The practice of the Black-Scholes model

The Black-Scholes model is used allover the industry of derivative securities. Its
practical implementation requires the determination of the coefficients involved
in the Black-Scholes formula. As we already observed the drift parameter µ
is not needed for the pricing and hedging purposes. This surprising feature is
easily understood by the fact that the perfect replication procedure involves the
underlying probability measure only through its zero-measure sets, and therefore
the problem is not changed by passage to any equivalent probability measure; by
the Girsanov theorem this means that the problem is not modified by changing
the drift µ in the dynamics of the risky asset.

Since the interest rate is observed, only the volatility parameter σ needs to be
determined in order to implement the Black-Scholes formula. After discussing
this important issue, we will focus on the different control variables which are
carefully scrutinized by derivatives traders in order to account for the departure
of real life financial markets from the simple Black-Scholes model.

Volatility: statistical estimation versus calibration
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1. According to the Black-Scholes model, given the observation of the risky
asset prices at times ti := ih, i = 1, . . . , n for some time step h > 0, the returns

Rti := ln

(
Sti
Sti−1

)
are iid distributed as N

((
µ− σ2

2

)
h , σ2h

)
.

Then the sample variance

σ̂2
n :=

1

n

n∑
i=1

(
Rti − R̄n

)2
, where R̄n :=

1

n

n∑
i=1

Rti ,

is the maximum likelihood estimator for the parameter σ2. The estimator σ̂n is
called the historical volatility parameter.

The natural way to implement the Black-Scholes model is to plug the his-
torical volatility into the Black-Scholes formula

BS (St, σ,K, T ) := StN
(
d+

(
St, K̃, σ

2T
))
− K̃N

(
d−

(
St, K̃, σ

2T
))

(9.16)

to compute an estimate of the option price, and into the optimal hedge ratio

∆ (St, σ,K, T ) := N
(
d+

(
St, K̃, σ

2T
))

(9.17)

in order to implement the optimal hedging strategy.
Unfortunately, the options prices estimates provided by this method per-

forms very poorly in terms of fitting the observed data on options prices. Also,
the use of the historical volatility for the hedging purpose leads to a very poor
hedging strategy, as it can be verified by a back-testing procedure on observed
data.

2. This anomaly is of course due to the simplicity of the Black-Scholes model
which assumes that the log-returns are gaussian independent random variables.
The empirical analysis of financial data reveals that securities prices exhibit fat
tails which are by far under-estimated by the gaussian distribution. This is the
so-called leptokurtic effect. It is also documented that financial data exhibits
an important skewness, i.e. asymmetry of the distribution, which is not allowed
by the gaussian distribution.

Many alternative statistical models have suggested in the literature in order
to account for the empirical evidence (see e.g. the extensive literature on ARCH
models). But none of them is used by the practioners on (liquid) options mar-
kets. The simple and by far imperfect Black-Scholes models is still used allover
the financial industry. It is however the statistical estimation procedure that
practitioners have gave up very early...

3. On liquid options markets, prices are given to the practitioners and are de-
termined by the confrontation of demand and supply on the market. Therefore,
their main concern is to implement the corresponding hedging strategy. To do
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this, they use the so-called calibration technique, which in the present context
reduce to the calculation of the implied volatility parameter.

It is very easily checked that the Black-Scholes formula (9.16) is a one-to-
one function of the volatility parameter, see (9.22) below. Then, given the
observation of the call option price C∗t (K,T ) on the financial market, there
exists a unique parameter σimp which equates the observed option price to the
corresponding Black-Scholes formula:

BS
(
St, σ

imp
t (K,T ),K, T

)
= C∗t (K,T ) , (9.18)

provided that C∗t satisfies the no-arbirage bounds of Subsection 1.4. This de-
fines, for each time t ≥ 0, a map (K,T ) 7−→ σimp

t (K,T ) called the implied
volatility surface. For their hedging purpose, the option trader then computes
the hedge ratio

∆imp
t (T,K) := ∆

(
St, σ

imp
t (K,T ),K, T

)
.

If the constant volatility condition were satisfied on the financial data, then the
implied volatility surface would be expected to be flat. But this is not the case
on real life financial markets. For instance, for a fixed maturity T , it is usually
observed that that the implied volatility is U-shaped as a function of the strike
price. Because of this empirical observation, this curve is called the volatility
smile. It is also frequently argued that the smile is not symmetric but skewed
in the direction of large strikes.

From the conceptual point of view, this practice of options traders is in con-
tradiction with the basics of the Black-Scholes model: while the Black-Scholes
formula is established under the condition that the volatility parameter is con-
stant, the practical use via the implied volatility allows for a stochastic variation
of the volatility. In fact, by doing this, the practioners are determining a wrong
volatility parameter out of a wrong formula !

Despite all the criticism against this practice, it is the standard on the deriva-
tives markets, and it does perform by far better than the statistical method.
It has been widely extended to more complex derivatives markets as the fixed
income derivatives, defaultable securities and related derivatives...

More details can be found in Chapter 10 is dedicated to the topic of implied
volatility.

Risk control variables: the Greeks

With the above definition of the implied volatility, all the parameters needed
for the implementation of the Black-Scholes model are available. For the purpose
of controlling the risk of their position, the practitioners of the options markets
various sensitivities, commonly called Greeks, of the Black-Scholes formula to
the different variables and parameters of the model. The following picture
shows a typical software of an option trader, and the objective of the following
discussion is to understand its content.
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 Figure 9.2: an example of implied volatility surface

1. Delta: This control variable is the most important one as it represents
the number of shares to be held at each time in order to perform a perfect
(dynamic) hedge of the option. The expression of the Delta is given in (9.17).
An interesting observation for the calculation of this control variables and the
subsequent ones is that

sN′ (d+(s, k, v)) = kN′ (d−(s, k, v)) ,

where N′(x) = (2π)−1/2e−x
2/2.

2. Gamma: is defined by

Γ (St, σ,K, T ) :=
∂2BS

∂s2
(St, σ,K, T )

=
1

Stσ
√
T − t

N′
(
d+

(
St, K̃, σ

2T
))

. (9.19)

The interpretation of this risk control coefficient is the following. While the sim-
ple Black-Scholes model assumes that the underlying asset price process is con-
tinuous, practitioners believe that large movemements of the prices, or jumps,
are possible. A stress scenario consists in a sudden jump of the underlying asset
price. Then the Gamma coefficient represent the change in the hedging strategy
induced by such a stress scenario. In other words, if the underlying asset jumps
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Figure 9.3: A typical option trader software

immediately from St to St+ξ, then the option hedger must immediately modify
his position in the risky asset by buying Γtξ shares (or selling if Γtξ < 0).

Given this interpretation, a position with a large Gamma is very risky, as it
would require a large adjustment in case of a stress scenario.

3. Rho: is defined by

ρ (St, σ,K, T ) :=
∂BS

∂r
(St, σ,K, T )

= K̃(T − t)N
(
d−

(
St, K̃, σ

2T
))

, (9.20)

and represents the sensitivity of the Black-Scholes formula to a change of the
instantaneous interest rate.

4. Theta: is defined by

θ (St, σ,K, T ) :=
∂BS

∂T
(St, σ,K, T )

=
1

2
Stσ
√
T − tN′

(
d−

(
St, K̃, σ

2T
))

, (9.21)

is also called the time value of the call option. This coefficient isolates the
depreciation of the option when time goes on due to the maturity shortening.
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5. Vega: is one of the most important Greeks (although it is not a Greek
letter !), and is defined by

V (St, σ,K, T ) :=
∂BS

∂σ
(St, σ,K, T )

= St
√
T − tN′

(
d−

(
St, K̃, σ

2T
))

. (9.22)

This control variable provides the exposition of the call option price to the
volatility risk. Practitioners are of course aware of the stochastic nature of the
volatility process (recall the smile surface above), and are therefore seeking a
position with the smallest possible Vega in absolute value.

 

Figure 9.4: Representation of the Greeks

9.2.6 Hedging with constant volatility: robustness of the
Black-Scholes model

In this subsection, we analyze the impact of a hedging strategy based on a
constant volatility parameter Σ in a model where the volatility is stochastic:

dSt
St

= µtdt+ σtdWt. (9.23)

Here, the volatility σ is a process in H2, the drift process µ is measurable

adapted with
∫ T

0
|µu|du < ∞, and B is the Brownian motion under the risk-

neutral measure. We denote by r the instantaneous interest rate assumed to be
constant.
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Consider the position of a seller of the option who hedges the promised
payoff (ST − K)+ by means of a self-financing portfolio based on the Black-
Scholes hedging strategy with constant volatility Σ. Then, the discounted final
value of the portfolio is:

X̃∆BS
T := BS(t, St,Σ)e−rt +

∫ T

t

∆BS(u, Su,Σ)dS̃u

where BS(t, St,Σ) is the Black-Scholes formula parameterized by the relevant
parameters for the present analysis, and ∆BS := ∂BS

∂s . We recall that:(
∂

∂t
+ rs

∂

∂s
+

1

2
Σ2s2 ∂

2

∂s2
− r·

)
BS(t, s,Σ) = 0. (9.24)

The Profit and Loss is defined by

P&LT (Σ) := X∆BS
T − (ST −K)+,

Since BS(T, s,Σ) = (s−K)+ independently of Σ:

e−rT P&LT (Σ) =

∫ T

t

∆BS(u, Su,Σ)dS̃u −
∫ T

t

d{e−ru BS(u, Su,Σ)} (9.25)

By the smoothness of the Black-Scholes formula, it follows from the Itô’s formula
and the (true) dynamics of the underlying security price process (9.23) that:

d BS(u, Su,Σ) = ∆BS(u, Su,Σ)dSu +

(
∂

∂t
+

1

2
s2σ2

u

∂2

∂s2

)
BS(u, Su,Σ)du

= ∆BS(u, Su,Σ)dSu +
1

2
(σ2
u − Σ2)S2

uΓBS(u, Su,Σ)du

+(rBS− rs∆BS)(u, Su,Σ)du,

where ΓBS = ∂2BS
∂s2 , and the last equality follows from (9.24). Plugging this

expression in (9.25), we obtain:

P&LT (Σ) =
1

2

∫ T

t

er(T−u)(Σ2 − σ2
u)S2

uΓBS(u, Su,Σ)du. (9.26)

An interesting consequence of the latter beautiful formula is the following ro-
bustness property of the Black-Scholes model which holds true in the very gen-
eral setting of the model (9.23).

Proposition 9.3. Assume that σt ≤ Σ, 0 ≤ t ≤ T , a.s. Then P&LT (Σ) ≥ 0,
a.s., i.e. hedging the European call option within the (wrong) Black-Scholes
model induces a super-hedging strategy for the seller of the option.

Proof. It suffices to observe that ΓBS ≥ 0. ♦
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9.3 Complement: barrier options in the Black-
Scholes model

So far, we have developed the pricing and hedging theory for the so-called plain
vanilla options defined by payoffs g(ST ) depending on the final value of the
security at maturity. We now examine the example of barrier options which are
the simplest representatives of the so-called path-dependent options.

A European barrier call (resp. put) option is a European call (resp. put)
option which appears or disappears upon passage from some barrier. To simplify
the presentation, we will only concentrate on European barrier call options. The
corresponding definition for European barrier call options follow by replacing
calls by puts.

The main technical tool for the derivation of explicit formulae for the no
arbitrage prices of barrier options is the explicit form of the joint distribution
of the Brownian motion Wt and its running maximum W ∗t := maxs≤tWs, see
Proposition 4.13:

fW∗t ,Wt
(m,w) =

2(2m− w)

t
√

2πt
exp

(
− (2m− w)2

2t

)
1{m≥0}1{w≤m}

In our context, the risky asset price process is defined as an exponential of a
drifted Brownian motion, i.e. the Black and Scholes model. For this reason, we
need the following result.

Proposition 9.4. For a given constant a ∈ R, let Xt = Wt + at and X∗t =
maxs≤tXs the corresponding running maximum process. Then, the joint distri-
bution of (X∗t , Xt) is characterized by the density:

fX∗t ,Xt(y, x) =
2(2y − x)

t
√

2πt
exp

(
ax− a2

2
t− (2y − x)2

2t

)
1{y≥0}1{x≤y}

Proof. By the Cameron-Martin theorem, X is a Brownian motion under the
probability measure Q with density

dQ
dP

= e−aWt− 1
2a

2t = e−aXt+
1
2a

2t .

Then,

P [X∗t ≤ y, Xt ≤ x] = EQ
[
eaXt−

1
2a

2t1{X∗t ≤y}1{Xt≤x}

]
.

Differentiating, we see that

fX∗t ,Xt(y, x) = eax−
1
2a

2tfQX∗t ,Xt(y, x) = eax−
1
2a

2tfW∗t ,Wt(y, x),

where we denoted by fQX∗t ,Xt the joint density under Q of the pair (X∗t , Xt). ♦
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9.3.1 Barrier options prices

We Consider a financial market with a non-risky asset S0 defined by

S0
t = ert, t ≥ 0,

and a risky security with price process defined by the Black and Scholes model

St = S0e
(r−σ2

2 )t+σBt , t ≥ 0,

where B is a Brownian motion under the risk neutral measure Q.
An up-and-out call option is defined by the payoff at maturity T :

UOCT := (ST −K)+1{max0≤t≤T St≤B}

Introducing the parameters

a :=
( r
σ
− σ

2

)
and b =

1

σ
log

(
B

S0

)
we may re-write the payoff of the up-and-out call option in:

UOCT =
(
S0e

σXT −K
)+

1{X∗T≤b} where Xt := Wt + at, t ≥ 0,

and X∗t = max0≤u≤tXu, t ≥ 0. The no-arbitrage price at time 0 of the up-and-
out call is

UOC0 = EQ
[
e−rT

(
S0e

σXT −K
)+

1{X∗T≤b}

]
.

We now show how to obtain an explicit formula for the up-and-out call option
price in the present Black and Scholes framework.

a. By our general no-arbitrage valuation theory, together with the change of
measure, it follows that

UOC0 = EQ [e−rTUOCT
]

= S0P̂ [XT ≥ k , X∗T ≤ b]−Ke−rTQ [XT ≥ k , X∗T ≤ b] (9.27)

where we set:

k :=
1

σ
log

(
K

S0

)
and P̂ is an equivalent probability measure defined by the density:

dP̂
dQ

= e−rT eσXT = e−rT
ST
S0
.

By the Cameron-Martin theorem, the process

Ŵt = Bt − σt, t ≥ 0,
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defines a Brownian motion under P̂. We introduce one more notation

â := a+ σ so that Xt = Bt + at = ŴT + ât, t ≥ 0. (9.28)

b. Using the explicit joint distribution of (XT , X
∗
T ) derived in Proposition 9.4,

we compute that:

Q [XT ≤ k,X∗T ≤ b] =

∫ b

0

∫ y∧k

−∞

2(2y − x)

T
√

2πT
exp

(
ax− 1

2
a2T − (2y − x)2

2T

)
dxdy

=

∫ k

−∞

eax−
1
2a

2T

√
2πT

∫ b

x+

4(2y − x)

2T
e−

(2y−x)2

2T dy dx

=

∫ k

−∞

eax−
1
2a

2T

√
2πT

[
−e−(2b−x)2/2T + e−x

2/2T
]
dx

= φ

(
k − aT√

T

)
− e2abφ

(
k − at− 2b√

T

)
(9.29)

By (9.28), it follows that the second probability in (9.27) can be immediately
deduced from (9.29) by substituting â to a:

P̂ [XT ≤ k , X∗T ≤ b] = φ

(
k − (a+ σ)T√

T

)
− e2(a+σ)bφ

(
k − (a+ σ)T − 2b√

T

)
c. We next compute

Q [X∗T ≤ b] = 1−Q [X∗T > b]

= 1−Q [X∗T > b,XT < b]−Q [X∗T > b,XT ≥ b]
= 1−Q [X∗T > b,XT < b]−Q [XT ≥ b]
= Q [X∗T ≤ b,XT ≤ b]−Q [XT ≥ b] .

Then,

Q [XT ≥ k,X∗T ≤ b] = Q [X∗T ≤ b]−Q [XT ≤ k,X∗T ≤ b]

= N

(
b− aT√

T

)
− e2abN

(
−b+ aT√

T

)
−N

(
k − aT√

T

)
+ e2abN

(
k − aT − 2b√

T

)
(9.30)

Similarly:

P̂ [XT ≥ k,X∗T ≤ b] = N

(
b− âT√

T

)
− e2âbN

(
−b+ âT√

T

)
−N

(
k − âT√

T

)
+ e2âbN

(
k − âT − 2b√

T

)
. (9.31)

d. The explicit formula for the price of the up-and-out call option is then
obtained by combining (9.27), (9.30) and (9.31).
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e. An Up-and-in call option is defined by the payoff at maturity T :

UICT := (ST −K)+1{max0≤t≤T St≥B}

The no-arbitrage price at time 0 of the up-and-in call is easily deduced from the
explicit formula of the up-and-out call price:

UIC0 = EQ
[
e−rT

(
S0e

σXT −K
)+

1{YT≥b}

]
= EQ

[
e−rT

(
S0e

σXT −K
)+]− EQ

[
e−rT

(
S0e

σXT −K
)+

1{YT≤b}

]
= c0 −U0C0,

where c0 is the Black-Scholes price of the corresponding European call option.

f. A down-and-out call option is defined by the payoff at maturity T :

DOCT := (ST −K)+1{min0≤t≤T St≥B}

=
(
S0e

σXT −K
)+

1{min0≤t≤T Xt≥b}

Observe that the process {Xt = Bt+at, t ≥ 0} has the same distribution as the
process {−xt, t ≥ 0}, where

xt := Bt − at, t ≥ 0.

Moreover min0≤t≤T Xt has the same distribution as − max
0≤t≤T

xt. Then the no-

arbitrage price at time 0 of the down-and-out call is

DOC0 = EQ
[
e−rT

(
S0e
−σxT −K

)+
1{max0≤t≤T xt≤−b}

]
.

We then can exploit the formula established above for the up-and-out call option
after substituting (−σ,−a,−b) to (σ, a, b).

g. A down-and-in call option is defined by the payoff at maturity T :

DICT := (ST −K)+1{min0≤t≤T St≤B}

The problem of pricing the down-and-in call option reduces to that of the down-
and-out call option:

DIC0 = EQ
[
e−rT (ST −K)

+
1{min0≤t≤T Xt≤b}

]
= EQ

[
e−rT (ST −K)

+
]
− EQ

[
e−rT (ST −K)

+
1{min0≤t≤T Xt≥b}

]
= c0 −DOC0,

where c0 is the Black-Scholes price of the corresponding European call option.
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Figure 9.5: Types of barrier options.

9.3.2 Dynamic hedging of barrier options

We only indicate how the Black-Scholes hedging theory extends to the case of
barrier options. We leave the technical details for the reader. If the barrier is
hit before maturity, the barrier option value at that time is known to be either
zero, or the price of the corresponding European option. Hence, it is sufficient
to find the hedge before hitting the barrier TB ∧ T with

TB := inf {t ≥ 0 : St = B} .

Prices of barrier options are smooth functions of the underlying asset price in
the in-region, so Itô’s formula may be applied up to the stopping time T ∧ TB .
By following the same line of argument as in the case of plain vanilla options,
it then follows that perfect replicating strategy consists in:

holding
∂f

∂s
(t, St) shares of the underlying asset for t ≤ TB ∧ T

where f(t, St) is price of the barrier option at time t.

9.3.3 Static hedging of barrier options

In contrast with European calls and puts, the delta of barrier options is not
bounded, which makes these options difficult to hedge dynamically. We conclude
this section by presenting a hedging strategy for barrier options, due to P. Carr
et al. [9], which uses only static positions in European products.

A barrier option is said to be regular if its pay-off function is zero at and
beyond the barrier, and reverse otherwise (see Figure 9.5 for an illustration).

In the following, we will treat barrier options with arbitrary pay-off functions
(not necessarily calls or puts). The price of an Up and In barrier option which
pays f(ST ) at date T if the barrier B has been crossed before T will be denoted
by UIt(St, B, f(ST ), T ), where t is the current date and St is the current stock
price. In the same way, UO denotes the price of an Up and Out option and
EURt(St, f(ST ), T ) is the price of a European option with pay-off f(ST ). These
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functions satisfy the following straightforward parity relations:

UIt + UOt = EURt

UIt(St, B, f(ST ), T ) = EURt(St, f(ST ), T ) if f(z) = 0 for z < B

UIt(St, B, f(ST ), T ) = UIt(St, B, f(ST )1ST<B , T )

+ EURt(St, f(ST )1ST≥B , T ) in general.

This means that in order to hedge an arbitrary barrier option, it is sufficient
to study options of type In Regular. In addition, Up and Down options can
be treated in the same manner, so we shall concentrate on Up and In regular
options.

The method is based on the following symmetry relationship:

EURt(St, f(ST ), T ) = EURt

(
St,

(
ST
St

)γ
f

(
S2
t

ST

)
, T

)
, (9.32)

with γ = 1− 2(r−q)
σ2 where r is the interest rate, q the dividend rate and σ the

volatility. It is easy to check that this relation holds in the Black-Scholes model,
but the method also applies to other models which possess a similar symmetry
property.

Replication of regular options Let f be the pay-off function of an Up and
In regular option. This means that f(z) = 0 for z ≥ B. We denote by TB the
first passage time by the price process above the level B. Consider the following
static hedging strategy:

• At date t, buy the European option EURt

(
St,
(
ST
B

)γ
f
(
B2

ST

)
, T
)

.

• When and if the barrier is hit, sell EURTB

(
B,
(
ST
B

)γ
f
(
B2

ST

)
, T
)

and

buy EURTB (B, f(ST ), T ). This transaction is costless by the symmetry
relationship (9.32).

It is easy to check that this strategy replicates the option UIt(St, f(ST ), T ). As
a by-product, we obtain the pricing formula:

UIt(St, B, f(ST ), T ) = EURt

(
St,

(
ST
B

)γ
f

(
B2

ST

)
, T

)
=

(
St
B

)γ
EURt

(
St, f

(
B2

S2
t

ST

)
, T

)
. (9.33)

The case of calls and puts Equation (9.33) shows that the price of a regular
In option can be expressed via the price of the corresponding European option,
for example,

UIPt(St, B,K, T ) =

(
St
B

)γ−2

pt

(
St,

KS2
t

B2
, T

)
.
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However, unless γ = 1, the replication strategies will generally involve European
payoffs other than calls or puts. If γ = 1 (that is, the dividend yield equals the
risk-free rate), then regular In options can be statically replicated with a single
call / put option. For example,

EURt

(
St,

(
ST
B

)γ (
K − B2

ST

)+

, T

)
= EURt

(
St,

(
KST
B
−B

)+

, T

)

=
K

B
ct

(
St,

B2

K
,T

)
.

The replication of reverse options will involve payoffs other than calls or puts
even if γ = 1.



Chapter 10

Local volatility models and
Dupire’s formula

10.1 Implied volatility

In the Black-Scholes model the only unobservable parameter is the volatility. We
therefore focus on the dependence of the Black-Scholes formula in the volatility
parameter, and we denote:

CBS(σ) := sN
(
d+(s, K̃, σ2T )

)
− K̃N

(
d−(s, K̃, σ2T )

)
,

where N is the cumulative distribution function of the N (0, 1) distribution, T
is the time to maturity, s is the spot price of the underlying asset, and K̃, d±
are given in (9.5).

In this section, we provide more quantitative results on the volatility calibra-
tion discussed in Section 9.2.5. First, observe that the model can be calibrated
from a single option price because the Black-Scholes price function is strictly
increasing in volatility:

lim
σ↓0

CBS(σ) = (s− K̃)+, lim
σ↑∞

CBS(σ) = s, and
∂CBS

∂σ
= sN′(d+)

√
T > 0

(10.1)
Then, whenever the observed market price C of the call option lies within the
no-arbitrage bounds:

(s− K̃)+ < C < s

there is a unique solution I(C) to the equation

CBS(σ) = C

called the implied volatility of this option. Direct calculation also shows that

∂2CBS

∂σ2
=
sN′(d+)

√
T

σ

( m2

σ2T
− σ2T

4

)
where m = ln

( s

Ke−rT
)
, (10.2)
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is the option moneyness. Equation (10.2) shows that the function σ 7→ CBS(σ)

is convex on the interval (0,
√

2|m|
T−t ) and concave on (

√
2|m|
T−t ,∞). Then the

implied volatility can be approximated by means of the Newton’s algorithm:

σ0 =

√
2m

T
and σn = σn−1 +

C − CBS(σn−1)
∂CBS

∂σ (σn)

which produces a monotonic sequence of positive scalars (σn)n≥0. However, in

practice, when C is too close to the arbitrage bounds, the derivative ∂CBS

∂σ (σn)
becomes too small, leading to numerical instability. In this case, it is better to
use the bisection method.

In the Black-Scholes model, the implied volatility of all options on the same
underlying must be the same and equal to the historical volatility (standard
deviation of annualized returns) of the underlying. However, when I is computed
from market-quoted option prices, one observes that

• The implied volatility is always greater than the historical volatility of the
underlying.

• The impied volatilities of different options on the same underlying depend
on their strikes and maturity dates.

The left graph on Fig. 10.1 shows the implied volatilities of options on the S&P
500 index as function of their strike and maturity, observed on January 23, 2006.
One can see that

• For almost all the strikes, the implied volatility is decreasing in strike (the
skew phenomenon).

• For very large strikes, a slight increase of implied volatility can sometimes
be observed (the smile phenomenon).

• The smile and skew are more pronounced for short maturity options; the
implied volatility profile as function of strike flattens out for longer matu-
rities.

The difference between implied volatility and historical volatility of the un-
derlying can be explained by the fact that the cost of hedging an option in
reality is actually higher than its Black-Scholes price, due, in particular to the
transaction costs and the need to hedge the risk sources not captured by the
Black-Scholes model (such as the volatility risk). The skew phenomenon is due
to the fact that the Black-Scholes model underestimates the probability of a
market crash or a large price movement in general. The traders correct this
probability by increasing the implied volatilities of options far from the money.
Finally, the smile can be explained by the liquidity premiums that are higher for
far from the money options. The right graph in figure 10.1 shows that the im-
plied volatilities of far from the money options are almost exclusively explained
by the Bid prices that have higher premiums for these options because of a lower
offer.
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Figure 10.1: Left: Implied volatility surface of options on the S&P500 index on
January 23, 2006. Right: Implied volatilities of Bid and Ask prices.

10.2 Local volatility models

In section 10.1 we saw that the Black-Scholes model with constant volatility
cannot reproduce all the option prices observed in the market for a given under-
lying because their implied volatility varies with strike and maturity. To take
into account the market implied volatility smile while staying within a Marko-
vian and complete model (one risk factor), a natural solution is to model the
volatility as a deterministic function of time and the value of the underlying:

dSt
St

= rdt+ σ(t, St)dBt, (10.3)

where r is the interest rate, assumed to be constant, and B is the Brownian mo-
tion under the risk-neutral measure Q. The SDE (10.3) defines a local volatility
model.

We recall from Section 8.6 that the price of an option with payoff h(ST ) at
date T is given by

C(t, s) = EQ
[
e−r(T−t)h(ST )|St = s

]
,

and is characterized by the partial differential equation:

rC =
∂C

∂t
+ rs

∂C

∂s
+

1

2
σ(t, s)2s2 ∂

2C

∂s2
, C(T, s) = h(s). (10.4)

The self-financing hedging portfolio contains δt = (∂C/∂s)(t, St) shares and the
amount δ0

t = C(t, St) − δtSt in cash. The pricing equation has the same form
as in the Black-Scholes model, but one can no longer deduce an explicit pricing
formula, because the volatility is now a function of the underlying.

The naive way to use the model is to estimate the parameters, under the
statistical measure P, and to estimate the risk premium, typically by using
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historical data on options prices. This allows to specify completely the risk-
neutral probability measure and the model (10.3).

The drawback of this approach is that option prices would then be com-
pletely determined by the historical model, and there is no hope for such an
estimated model to produce exactly the observed prices of the quoted options.
Consequently, the model can not be used under this form because it would
immediately lead to arbitrage opportunities on the options market.

For this reason, practicioners have adopted a different approach which allows
to use all observed prices of quoted options as an input for their pricing and
hedging activities. This is the so-called model calibration approach. The param-
eters obtained by calibration are of course different from those which would be
obtained by historical estimation. But this does not imply any problem related
to the presence of arbitrage opportunities.

The model calibration approach is adopted in view of the fact that financial
markets do not obey to any fundamental law except the simplest no-dominance
or the slightly stronger no-arbitrage, see Section 1.2 below. There is no univer-
sally accurate model in finance, and any proposed model is wrong. Therefore,
practitioners primarily base their strategies on comparison between assets, this
is exactly what calibration does.

10.2.1 CEV model

A well studied example of a parametric local volatility model is provided by the
CEV (Constant Elasticity of Variance) model [12]. In this model, the volatility is
a power-law function of the level of the underlying. For simplicity, we formulate
a CEV model on the forward price of the underlying Ft = er(T−t)St:

dFt = σ0F
α
t dBt, for some α ∈ (0, 1], (10.5)

together with the restriction that the left endpoint 0 is an absorbing boundary:
if Ft = 0 for some t, Fs ≡ 0 for all s ≥ t. The constraint 0 < α ≤ 1 needs to
be imposed to ensure that the above equation defines a martingale, see Lemma
10.2 below. We observe that one can show that for α > 1, (Ft) is a strict
local martingale, that is, not a true martingale. This can lead, for example, to
Call-Put parity violation and other problems.

In the above CEV model, the volatility function σ(f) := σ0f
α has a constant

elasticity:

fσ′(f)

σ(f)
= α.

The Black-Scholes model and the Gaussian model are particular cases of this
formulation corresponding to α = 1 and α = 0 respectively. When α < 1, the
CEV model exhibits the so-called leverage effect, commonly observed in equity
markets, where the volatility of a stock is decreasing in terms of the spot price
of the stock.
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For the equation (10.5) the existence and uniqueness of solution do not follow
from the classical theory of strong solutions of stochastic differential equations,
because of the non-Lipschitz nature of the coefficients. The following exercise
shows that the existence of a weak solution can be shown by relating the CEV
process with the so-called Bessel processes. We also refer to [17] for the proof
of the existence of an equivalent martingale measure in this model.

Exercise 10.1. Let W be a scalar Brownian motion. For δ ∈ R, X0 > 0, we
assume that there is a unique strong solution X to the SDE:

dXt = δdt+ 2
√
|Xt|dWt,

called the δ−dimensional square Bessel process.

1. Let Ŵ be a Brownian motion in Rd, d ≥ 2. Show that ‖Ŵ‖d is a
d−dimensional square Bessel process.

2. Find a scalar power γ and a constant a ∈ R so that the process Yt :=
aXβ

t , t ≥ 0, is a CEV process satisfying (10.5), as long as X does not hit
the origin.

3. Conversely, given a CEV process (10.5), define a Bessel process by an
appripriate change of variable.

Lemma 10.2. For 0 < α ≤ 1, let F be a solution of the SDE (10.5). Then F
is a square-integrable martingale on [0, T ] for all T <∞.

Proof. It suffices to show that

EQ

{
σ2

0

∫ T

0

F 2α
t dt

}
<∞. (10.6)

Let τn = inf{t : Ft ≥ n}. Then, FT∧τn is square integrable and for all 0 < α ≤ 1,

EQ[F 2
τn∧T ] = σ2

0EQ

[∫ τn∧T

0

F 2α
t dt

]

≤ σ2
0EQ

[∫ τn∧T

0

(1 + F 2
t )dt

]
≤ σ2

0EQ

[∫ T

0

(1 + F 2
t∧τn)dt

]

By Gronwall’s lemma we then get

σ2
0EQ

[∫ τn∧T

0

F 2α
t dt

]
= EQ[F 2

τn∧T ] ≤ σ2
0Te

σ2
0T ,

and (10.6) now follows by monotone convergence. ♦
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Figure 10.2: Skew (decreasing profile) of implied volatility in the CEV model
with σ = 0.3, α = 0.5, S0 = 1 and T = 1

The shape of the implied volatility in the CEV model is known from the
asymptotic approximation (small volatility) of Hagan and Woodward [25]:

σimp(K,T ) ≈ σ0

F 1−α
m

{
1 +

(1− α)(2 + α)

24

(
F0 −K
Fm

)2

+
(1− α)2

24

σ2
0T

F 2−2α
m

+ . . .

}
,

Fm =
1

2
(F0 +K).

To the first order, therefore, σimp(K,T ) ≈ σ0

F 1−α
m

: the implied volatility has the

same shape as local volatility but with an at the money slope which is two times
smaller than that of the local volatility (see figure 10.2).

10.3 Dupire’s formula

We now want to exploit the pricing partial differential equation (10.4) to deduce
the local volatility function σ(t, s) from observed call option prices for all strikes
and all maturities. Unfortunately, equation (10.4) does not allow to reconstruct
the local volatility from the formula

σ2(t, s) =
rC − ∂C

∂t − rs
∂C
∂s

1
2s

2 ∂2C
∂s2

,

because at a given date, the values of t and s are fixed, and the corresponding
partial derivatives cannot be evaluated. The solution to this problem was given
by Bruno Dupire [21] who suggested a method for computing σ(t, s) from the
observed option prices for all strikes and maturities at a given date.

To derive the Dupire’s equation, we need the following conditions on the
local volatility model (10.3).
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Assumption 10.3. For all x > 0 and all small δ > 0, there exists α > 0 and
a continuous function c(t) such that:

|xσ(t, x)− yσ(t, y)| ≤ c(t)|x− y|α for |x− y| < δ, t ∈ (t0,∞).

Theorem 10.4. Let Assumption 10.3 hold true. Let t0 ≥ 0 be fixed and (St)t0≤t

be a square integrable solution of (10.3) with EQ
[∫ t
t0
S2
t dt
]
< ∞ for all t ≥ t0.

Assume further that the random variable St has a continuous density p(t, x)on
(t0,∞)×(0,∞). Then the call price function C(T,K) = e−r(T−t0)EQ[(ST−K)+]
satisfies Dupire’s equation

∂C

∂T
=

1

2
σ2(T,K)K2 ∂

2C

∂K2
− rK ∂C

∂K
, (T,K) ∈ [t0,∞)× [0,∞) (10.7)

with the initial condition C(t0,K) = (St0 −K)+.

Proof. The proof is based on an application of Itô’s formula to the process
e−rt(St −K)+. Since the function f(x) = x+ is not C2, the usual Itô formula
does not apply directly. A possible solution [22] is to use the Meyer-Itô formula
for convex functions [35]. The approach used here, is instead to regularize the
function f , making it suitable for the usual Itô formula. Introduce the function

fε(x) =
(x+ ε/2)2

2ε
1−ε/2≤x≤ε/2 + x1x>ε/2.

Notice that fε and f are equal outside the interval [−ε/2, ε/2]. Direct calculation
provides:

f ′ε(x) =
x+ ε/2

ε
1−ε/2≤x≤ε/2 + 1x>ε/2, and for 2|x| 6= ε, f ′′ε (x) =

1

ε
1−ε/2≤x≤ε/2.

Then, we may apply Itô’s formula (with generalized derivatives, see Remark
6.3) to e−rtfε(St −K) between T and T + θ:

e−r(T+θ)fε(ST+θ −K)− e−rT fε(ST −K) = −r
∫ T+θ

T

e−rtfε(St −K)dt

+

∫ T+θ

T

e−rtf ′ε(St −K)dSt +
1

2

∫ T+θ

T

e−rtf ′′ε (St −K)σ2(t, St)S
2
t dt. (10.8)

The last term satisfies∫ T+θ

T

e−rtf ′′ε (St −K)σ2(t, St)S
2
t dt

=

∫ T+θ

T

dte−rtK2σ2(t,K)
1

ε
1K−ε/2≤St≤K+ε/2

+

∫ T+θ

T

dte−rt(S2
t σ

2(t, St)−K2σ2(t,K))
1

ε
1K−ε/2≤St≤K+ε/2.
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Using Assumption 10.3 above, the last term is dominated, up to a constant, by∫ T+θ

T

dte−rtc(t)
εα

ε
1K−ε/2≤St≤K+ε/2 (10.9)

Taking the expectation of each term in (10.8) under the assumption 1, we find

e−r(T+θ)EQ[fε(ST+θ−K)
]
−e−rTEQ[fε(ST−K)

]
= −r

∫ T+θ

T

e−rtEQ[fε(St−K)
]
dt

+

∫ T+θ

T

e−rtEQ[f ′ε(St −K)St
]
rdt

+
1

2

∫ T+θ

T

e−rtK2σ2(t,K)
1

ε
EQ[1K−ε/2≤St≤K+ε/2

]
dt+O(εα), (10.10)

where the estimate O(εα) for the last term is obtained using (10.9) and the
continuous density assumption. By the square integrability of S, we can pass
to the limit ε→ 0:

C(T + θ,K)− C(T,K)

= −r
∫ T+θ

T

EQ[(St −K)+
]
dt+ r

∫ T+θ

T

e−rtEQ[St1St≥K]dt
+

1

2

∫ T+θ

T

e−rtσ2(t,K)K2p(t,K)dt

= rK

∫ T+θ

T

e−rtQ
[
St ≥ K

]
dt+

1

2

∫ T+θ

T

e−rtσ2(t,K)K2p(t,K)dt.

Dividing both sides by θ and passing to the limit θ → 0, this gives

∂C

∂T
= rKe−rTQ

[
ST ≥ K

]
+

1

2
e−rTσ2(T,K)K2p(T,K).

Finally, observing that

e−rTQ[ST ≥ K] = − ∂C
∂K

and e−rT p(T,K) =
∂2C

∂K2
,

the proof of Dupire’s equation is completed. ♦

The Dupire equation (10.7) can be used to deduce the volatility function
σ(·, ·) from option prices. In a local volatility model, the volatility function σ
can therefore be uniquely recovered via

σ(T,K) =

√
2
∂C
∂T + rK ∂C

∂K

K2 ∂2C
∂K2

(10.11)

Notice that the fact that one can find a unique continuous Markov process from
European option prices does not imply that there are no other models (non-
Markovian or discontinuous) that produce the same European option prices.
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Knowledge of European option prices determines the marginal distributions
of the process, but the law of the process is not limited to these marginal
distributions.

Another feature of the Dupire representation is the following. Suppose that
the true model (under the risk-neutral probability) can be written in the form

dSt
St

= rdt+ σtdBt,

where σ is a general adapted process, and not necessarily a deterministic func-
tion of the underlying. It can be shown that in this case the square of Dupire’s
local volatility given by equation (10.11) coincides with the expectation of the
squared stochastic volatility conditioned by the value of the underlying:

σ2(t, S) = EQ[σ2
t |St = S].

Dupire’s formula can therefore be used to find the Markovian diffusion which
has the same marginal distributions as a given Itô martingale. In this sense,
a local volatility surface can be seen as an arbitrage-free representation of a
set of call prices for all strikes and all maturities just as the implied volatility
represents the call price for a single strike and maturity.

Theorem 10.4 allows to recover the volatility coefficient starting from a com-
plete set of call prices at a given date if we know that these prices were produced
by a local volatility model. It does not directly allow to answer the following
question: given a system of call option prices (C(T,K))T≥0,K≥0, does there
exist a continuous diffusion model reproducing these prices? To apply Dupire’s

formula (10.11), we need to at least assume that ∂2C
∂K2 > 0 and ∂C

∂T + rK ∂C
∂K ≥ 0.

These constraints correspond to arbitrage constraints of the positivity of but-
terfly spreads and calendar spreads respectively.

A butterfly spread is a portfolio containing one call with strikeK−∆, one call
with strike K + ∆ and a short position in two calls with strike K, where all the
options have the same expiry date. Since the terminal pay-off of this portfolio is
positive, its price must be positive at all dates: C(K−∆)−2C(K)+C(K+∆) ≥
0. This shows that the prices of call (and put) options are convex in strike, which

implies ∂2C
∂K2 > 0 if the price is twice differentiable and the second derivative

remains strictly positive.
A (modified) calendar spread is a combination of a call option with strike

K and maturity date T + ∆ with a short position in a call option with strike
Ke−r∆ and maturity date T . The Call-Put parity implies that this portfolio
has a positive value at date T ; its value must therefore be positive at all dates
before T : C(K,T + ∆) ≥ C(Ke−r∆, T ). Passing to the limit ∆ ↓ 0 we have,
under differentiability assumption,

lim
∆↓0

C(K,T + ∆)− C(Ke−r∆, T )

∆
=
∂C

∂T
+ rK

∂C

∂K
≥ 0.

Nevertheless, it may happen that the volatility σ(t, s) exists but does not
lead to a Markov process satisfying the three assumptions of theorem 10.4, for
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example, models with jumps in stock prices typically lead to explosive volatility
surfaces, for which the SDE (10.3) does not have a solution.

10.3.1 Dupire’s formula in practice

The figure 10.3 shows the results of applying Dupire’s formula to artificially
simulated data (left) and real prices of options on the S&P 500 index. While
on the simulated data, the formula produces a smooth local volatility surface,
its performance for real data is not satisfactory for several reasons:

• Market prices are not known for all strikes and all maturities. They must
be interpolated and the final result is very sensitive to the interpolation
method used.

• Because of the need to calculate the second derivative of the option price
function C(T,K), small data errors lead to very large errors in the solution
(ill-posed problem).

Due to these two problems, in pracrice, Dupire’s formula is not used directly
on the market prices. To avoid solving the ill-posed problem, practitioners
typically use one of two approaches:

• Start by a preliminary calibration of a parametric functional form to the
implied volatility surface (for example, a function quadratic in strike and
exponential in time may be used). With this smooth parametric function,
recalculate option prices for all strikes, which are then used to calculate
the local volatility by Dupire’s formula.

• Reformulate Dupire’s equation as an optimization problem by introduc-
ing a penalty term to limit the oscillations of the volatility surface. For
example, Lagnado and Osher [31], Crepey [15] and other authors propose
to minimize the functional

J(σ) ≡
N∑
i=1

wi(C(Ti,Ki, σ)− CM (Ti,Ki))
2 + α‖∇σ‖22, (10.12)

‖∇σ‖22 ≡
∫ Kmax

Kmin

dK

∫ Tmax

Tmin

dT

{(
∂σ

∂K

)2

+

(
∂σ

∂T

)2
}
, (10.13)

where CM (Ti,Ki) is the market price of the option with strike Ki et
expiry date Ti and C(Ti,Ki, σ) corresponds to the price of the same option
computed with the local volatility surface σ(·, ·).

10.3.2 Link between local and implied volatility

Dupire’s formula (10.11) can be rewritten in terms of market implied volatilities,
observing that for every option,

C(T,K) = CBS(T,K, I(T,K)),
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Figure 10.3: Examples of local volatility surface. Left: artificial data; the im-
plied volatility is of the form I(K) = 0.15 × 100

K for all maturities (S0 = 100).
Right: local volatility computed from S&P 500 option prices with spline inter-
polation.

where CBS(T,K, σ) denotes the Black-Scholes call price with volatility σ and
I(T,K) is the implied volatility for strike K and maturity date T .

Substituting this expression into Dupire’s formula, we get

σ2(T,K) = 2

∂CBS

∂T + ∂CBS

∂σ
∂I
∂T + rK

(
∂CBS

∂K + ∂CBS

∂σ
∂I
∂K

)
K2
(
∂2CBS

∂K2 + 2∂
2CBS

∂K∂σ
∂I
∂K + ∂2CBS

∂σ2

(
∂I
∂K

)2
+ ∂CBS

∂σ
∂2I
∂K2

)
=

I
T + 2 ∂I∂T + 2rK ∂I

∂K

K2
(

1
K2IT + 2 d+

KI
√
T
∂I
∂K + d+d−

I

(
∂I
∂K

)2
+ ∂2I

∂K2

) , (10.14)

with the usual notation

d± =
log
(

S
Ke−rT

)
± 1

2I
2T

I
√
T

.

Suppose first that the implied volatility does not depend on the strike (no
smile). In this case, the local volatility is also independent from the strike and
equation (10.14) is reduced to

σ2(T ) = I2(T ) + 2I(T )T
∂I

∂T
,

and so

I2(T ) =

∫ T
0
σ2(s)ds

T
.

The implied volatility is thus equal to the root of mean squared local volatility
over the lifetime of the option.
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To continue the study of equation (10.14), let us make a change of variable
to switch from the strike K to the log-moneyness variable x = log(S/K̃), with
I(T,K) = J(T, x). The equation (10.14) becomes

2JT
∂J

∂T
+ J2 − σ2

(
1− x

J

∂J

∂x

)2

− σ2JT
∂2J

∂x2
+

1

4
σ2J2T 2

(
∂J

∂x

)2

= 0.

Assuming that I and its derivatives remain bounded when T → 0, we obtain by
sending T to 0:

J2(0, x) = σ2(0, x)

(
1− x

J

∂J

∂x

)2

.

This differential equation can be solved explicitly:

J(0, x) =

{∫ 1

0

dy

σ(0, xy)

}−1

. (10.15)

We have thus shown that, in the limit of very short time to maturity, the implied
volatility is equal to the harmonic mean of local volatilities. This result was
established by Berestycki and Busca [8]. When the local volatility σ(0, x) is
differentiable at x = 0, equation (10.15) allows to prove that (the details are
left to the reader)

∂J(0, 0)

∂x
=

1

2

∂σ(0, 0)

∂x
.

The slope of the local volatility at the money is equal, for short maturities, to
twice the slope of the implied volatility.

This asymptotic makes it clear that the local volatility model, although it
allows to calibrate the prices of all options on a given date, does not reproduce
the dynamic behavior of these prices well enough. Indeed, the market implied
volatility systematically flattens out for long maturities (see Figure 10.1), which
results in the flattening of the local volatility surface computed from Dupire’s
formula. Assuming that the model is correct and that the local volatility surface
remains constant over time, we therefore find that the ATM slope of the implied
volatility for very short maturities should systematically decrease with time, a
property which is not observed in the data. This implies that the local volatility
surface cannot remain constant but must evolve with time: σ(T,K) = σt(T,K),
an observation which leads to local stochastic volatility models.



Chapter 11

Backward SDEs and
funding problems

The recent financial crisis motivated important deviations from the frictionless
market model developed in the previous chapter. An important aspect high-
lighted by the financial crisis is the importance of the funding needed for the
implementation of the hedging strategy, and the liquidity of the underlying se-
curities. In the simple frictionless model, the is one single interest rate which
serves both for borrowing and lending the non-risky asset (i.e. the cash). In real
financial markets, the situation is of course drastically different as the lending
and the borrowing rates are significantly different. Also, the there is no cost for
holding the underlying asset and, in particular, shorting the security is costless.
In practice, shorting the security requires a financial contract which allows to
borrow it for a ”renting price” referred to as the repo.

The objective of this chapter is to account for the last market imperfections
which gained a primary importance after the recent financial crisis. In order
to develop the corresponding models, we need to develop a nonlinear pricing
theory motivated by the underlying financial engineering techniques. This is in
contrast to the linear Black-Scholes model derived in the previous chapters. As
usual, we start by developing the required mathematical tools, and we return
to the financial application in the last sections.

11.1 Preliminaries: the BDG inequality

In this section, we consider a one-dimensional Brownian motion W , and we
introduce a local martingale

Mt :=

∫ t

0

HsdWs, t ≥ 0, for some H ∈ H2
loc. (11.1)

The corresponding quadratic variation process is 〈M〉t :=
∫ t

0
H2
sds, and we

denote M∗t := maxu≤t |Mu|, t ≥ 0, the running maximum process of the non-

165
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negative local submartingale |M |.
If it happens that M is a martingale, then it follows from the Doob’s mar-

tingale inequality of Theorem 3.15 that:

E
[
(M∗T )p

]
≤
( p

p− 1

)p
E
[
Mp
T

]
for all p > 1. (11.2)

In particular, for p = 2, we have M2
T = 2

∫ T
0
MsdMs + 〈M〉T , and it follows

from a direct localization argument that E
[
M2
T

]
= E

[
〈M〉T

]
, Then the Doob’s

martingale inequality reduces to

E
[
(M∗T )2

]
≤ 4 E

[
〈M〉T

]
.

Our objective in this section is to extend the last inequality to an arbitrary
power p > 0, so as to obtain the so-called Burkholder-Davis-Gundy (BDG)
inequality:

E
[
(M∗T )p

]
≤ Cp E

[
〈M〉p/2T

]
for all p > 0,

where Cp > 0 is a universal constant which only depends on p. We observe that
there are also universal constants cp > 0 such that

cp E
[
〈M〉p/2T

]
≤ E

[
(M∗T )p

]
for all p > 0,

but we shall not prove the last inequality as it will not be used in our applications
to finance.

11.1.1 The smooth power case

The power function x 7−→ |x|p is C2 for p ≥ 2. Since the Doob’s martingale
inequality holds true in this case, the main ingredient for the following statement
is to derive an upper bound for E

[
Mp
T

]
in terms of the quadratic variation

process. This is naturally obtained by using the Itô differential calculus.

Proposition 11.1. For M as in (11.1), and p ≥ 2, there exists a constant Cp
only depending on p such that

E
[
(M∗T )p

]
≤ Cp E

[
〈M〉p/2T

]
.

Proof. By direct localization, we may assume without loss of generality that M
is bounded. Notice that the function x 7−→ f(x) := |x|p is C2. Then, it follows

from Itô’s formula that Mp
T =

∫ T
0
f ′(Ms)dMs + 1

2

∫ T
0
f ′′(Ms)d〈M〉s. Taking

expected values, this implies that:

E
[
Mp
T

]
=

1

2
p(p− 1)E

[ ∫ T

0

|Ms|p−2d〈M〉s
]
≤ 1

2
p(p− 1)E

[
(M∗T )p−2〈M〉T

]
.

We next use the Hölder inequality to obtain

E
[
Mp
T

]
≤ 1

2
p(p− 1)E

[
(M∗T )p

] p−2
p E

[
〈M〉

p
2

T

] 2
p

,

and the required result follows from the Doob’s martingale inequality (11.2).
♦
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11.1.2 The case of an arbitrary power

Theorem 11.2. For M as in (11.1), and p > 0, there exists a constant Cp only
depending on p such that

E
[
(M∗T )p

]
≤ Cp E

[
〈M〉p/2T

]
.

Proof. Given the result of Proposition 11.1, it only remain to address the case
p ∈ (0, 2). Let X := (M∗)2 and A := C2〈M〉. Our starting point is the
observation that

A,X are continuous nondecreasing, and E[Xτ ] ≤ E[Aτ ] for all τ ∈ Tb, (11.3)

where Tb is the collection of all bounded stopping times, and the last inequality
is precisely the statement of Proposition 11.1 with p = 2. We organize the proof
in two steps.
1. For a, x > 0, let τ := inf{t ≥ 0 : At ≥ a}, and we compute that

P
[
XT ≥ x,At < a

]
= P

[
XT ≥ x, T < τ

]
≤ P

[
XT∧τ ≥ x

]
≤

E
[
XT∧τ

]
x

≤
E
[
AT∧τ

]
x

=
E
[
a ∧AT

]
x

,

where we used the non-decrease of A and X as stated in (11.3).
2. For 0 < k < 1, it follows from the trivial identity yk =

∫∞
0

1{y≥x}kx
k−1dx

that

E[(XT )k] = k

∫ ∞
0

P[XT ≥ x]xk−1dx

= k

∫ ∞
0

(
P[XT ≥ x,AT ≥ x] + P[XT ≥ x,AT < x]

)
xk−1dx

≤ k

∫ ∞
0

(
P[AT ≥ x] + P[XT ≥ x,AT < x]

)
xk−1dx

≤ k

∫ ∞
0

(
P[AT ≥ x] + x−1E[x ∧AT ]

)
xk−1dx,

by the inequality derived in the first step. Since E[x ∧ AT ] = xP[x ≤ AT ] +
E
[
AT1{AT<x}

]
, this provides:

E[(XT )k] ≤ k

∫ ∞
0

(
2P[AT ≥ x] +

1

x
E
[
AT1{AT<x}

])
xk−1dx =

2− k
1− k

E
[
(AT )k

]
.

Returning to our original notations, the last inequality translates into:

E[(M∗T )2k] ≤ 2− k
1− k

E
[
(C2〈MT 〉)k

]
,

which is the required inequality for p = 2k ∈ (0, 2). ♦
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11.2 Backward SDEs

Throughout this section, we consider a d−dimensional Brownian motion W on
a complete probability space (Ω,F ,P), and we denote by F = FW the corre-
sponding augmented filtration.

Given two integers n, d ∈ N, we consider the mapping

f : [0, T ]× Ω× Rn × Rn×d −→ R.

We assume that the process {ft(y, z), t ∈ [0, T ]} is F−progressively measurable,
for every fixed (y, z) ∈ Rn × Rn×d.

Our objective in this section is to find a pair process (Y, Z) satisfying the
following backward stochastic differential equation (BSDE):

dYt = −ft(Yt, Zt)dt+ ZtdWt and YT = ξ, P− a.s. (11.4)

where ξ is some given FT−measurable r.v. with values in Rn.
We will refer to (11.4) as BSDE(f, ξ). The map f is called the generator.

We may also rewrite the BSDE (11.4) in the integrated form:

Yt = ξ +

∫ T

t

fs(Ys, Zs)ds−
∫ T

t

ZsdWs, t ≤ T, ,P− a.s. (11.5)

11.2.1 Martingale representation for zero generator

When the generator f ≡ 0, the BSDE problem reduces to the martingale repre-
sentation theorem in the present Brownian filtration. More precisely, for every
ξ ∈ L2(Rn,FT ), there is a unique pair process (Y, Z) in H2(Rn×Rn×d) satisfying
(??):

Yt := E[ξ|Ft] = E[ξ] +

∫ t

0

ZsdWs

= ξ −
∫ T

t

ZsdWs.

Here, for a subset E of Rk, k ∈ N, we denoted by H2(E) the collection of all
F−progressively measurable L2([0, T ]×Ω,Leb⊗P)−processes with values in E.
We shall frequently simply write H2 keeping the reference to E implicit.

Let us notice that {Yt, t ∈ [0, T ]} is a martingale. Moreover, by the Doob’s
maximal inequality, we have:

‖Y ‖2S2 := E
[
sup
t≤T
|Yt|2

]
≤ 4E

[
|YT |2

]
= 4‖Z‖2H2 . (11.6)

Hence, the process Y is in the space S2− of continuous processes with finite
S2−norm.
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11.2.2 BSDEs with affine generator

We next consider a scalar BSDE (n = 1) with generator

ft(y, z) := at + bty + ct · z, (11.7)

where a, b, c are F−progressively measurable processes with values in R, R and

Rd, respectively. We also assume that b, c are bounded and E[
∫ T

0
|at|2dt] <∞.

This case is easily handled by reducing to the zero generator case.
We first introduce the equivalent probability Q ∼ P defined by the density

dQ
dP

= exp

(∫ T

0

ct · dWt −
1

2

∫ T

0

|ct|2dt

)
.

By the Girsanov theorem, the process Bt := Wt −
∫ t

0
csds defines a Brownian

motion under Q. Then, by viewing the BSDE under Q, we are reduced to the
case where the generator does not depend on z:

dYt = −(at + btYt)dt+ Zt · dBt.

Similarly, the linear term in y can be easily by-passed by considering the change
of variable:

Y t := Yte
∫ t
0
bsds so that dY t = −ate

∫ t
0
bsdsdt+ Zte

∫ t
0
bsdsdBt.

Finally, defining

Y t := Y t +

∫ t

0

aue
∫ u
0
bsdsdu,

we arrive at a BSDE with zero generator for Y t which can be solved by the
martingale representation theorem under the equivalent probability measure Q.

Of course, one can also express the solution under P:

Yt = E

[
ΓtT ξ +

∫ T

t

Γtsasds
∣∣∣Ft] , t ≤ T,

where

Γts := exp

(∫ s

t

budu−
1

2

∫ s

t

|cu|2du+

∫ s

t

cu · dWu

)
, 0 ≤ t ≤ s ≤ T. (11.8)

11.2.3 The main existence and uniqueness result

Similar to the case of forward stochastic differential equation, we now prove an
existence and uniqueness result for BSDEs by means of a fixed point argument
for the Picard iteration procedure.
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Theorem 11.3. Assume that {ft(0, 0), t ∈ [0, T ]} ∈ H2 and, for some constant
C > 0,

|ft(y, z)− ft(y′, z′)| ≤ C(|y − y′|+ |z − z′|), dt⊗ dP− a.s.

for all t ∈ [0, T ] and (y, z), (y′, z′) ∈ Rn × Rn×d. Then, for every ξ ∈ L2, there
is a unique solution (Y,Z) ∈ S2 ×H2 to the BSDE(f, ξ).

Proof. Denote S = (Y, Z), and introduce the equivalent norm in the correspond-
ing H2 space:

‖S‖α := E

[∫ T

0

eαt(|Yt|2 + |Zt|2)dt

]
.

where α will be fixed later. We consider the operator

φ : s = (y, z) ∈ H2 7−→ Ss = (Y s, Zs)

defined by:

Y st = ξ +

∫ T

t

fu(yu, zu)du−
∫ T

t

Zsu · dWu, t ≤ T.

This defines the Picard iteration operator which consists of a BSDE with con-
stant (random) generator independent of the unknown variables (Y s, Zs).
1. First, since |fu(yu, zu)| ≤ |fu(0, 0)| + C(|yu| + |zu|), it follows from our
assumption on the generator together with the fact that s ∈ H2 that the pro-
cess {fu(yu, zu), u ≤ T} is in H2. Then Ss = φ(s) ∈ H2 is well-defined by
the martingale representation theorem, as outlined in the previous subsection.
Moreover,

E
[

sup
t≤T
|Yt|2

]
≤ 3E

[
|ξ|2 +

∫ T

0

|ft(yt, zt)|2dt+ sup
t≤T

∣∣∣ ∫ t

0

ZsdWs

∣∣2]
≤ 3

(
|ξ|2L2 + ‖ft(0, 0)‖2H2 + C‖s‖2H2 + E

[
sup
t≤T

∣∣∣ ∫ t

0

ZsdWs

∣∣2])
≤ 3

(
|ξ|2L2 + ‖ft(0, 0)‖2H2 + C‖s‖2H2 + 4‖Z‖H2

)
by the Doob’s martingale inequality, together with the Itô isometry. Hence
Y ∈ S2.
2. For s, s′ ∈ H2, denote δs := s−s′, δS := Ss−Ss′ and δf := ft(S

s)−ft(Ss
′
).

Since δYT = 0, it follows from Itô’s formula that:

eαt|δYt|2 +

∫ T

t

eαu|δZu|2du =

∫ T

t

eαu
(
2δYu · δfu − α|δYu|2

)
du

−2

∫ T

t

eαu(δZu)TδYu · dWu.
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In the remaining part of this step, we prove that

Mt :=

∫ t

0

eαu(δZu)TδYu · dWu, t ∈ [0, T ], is a martingale, (11.9)

so that we deduce from the previous equality that

E

[
eαt|δYt|2 +

∫ T

t

eαu|δZu|2du

]
= E

[∫ T

t

eαu
(
2δYu · δfu − α|δYu|2

)
du

]
.

(11.10)
To prove (11.9), we verify that supt≤T |Mt| ∈ L1. Indeed, by the Burkholder-
Davis-Gundy inequality of Theorem 11.2, we have:

E
[

sup
t≤T
|Mt|

]
≤ CE

(∫ T

0

e2αu|δYu|2|δZu|2du

)1/2


≤ C ′E

sup
u≤T
|δYu|

(∫ T

0

|δZu|2du

)1/2


≤ C ′

2

(
E
[

sup
u≤T
|δYu|2

]
+ E

[∫ T

0

|δZu|2du

])
<∞.

3. We now continue estimating (11.10) by using the Lipschitz property of the
generator, we see that for any arbitrary parameter ε > 0:

E
[
eαt|δYt|2 +

∫ T

t

eαu|δZu|2du
]

≤ E
[ ∫ T

t

eαu
(
−α|δYu|2 + C2|δYu|(|δyu|+ |δzu|)

)
du
]

≤ E

[∫ T

t

eαu
(
−α|δYu|2 + C

(
ε2|δYu|2 + ε−2(|δyu|+ |δzu|)2

))
du

]
.

Choosing Cε2 = α, we obtain:

E

[
eαt|δYt|2 +

∫ T

t

eαu|δZu|2du

]
≤ E

[∫ T

t

eαu
C2

α
(|δyu|+ |δzu|)2du

]

≤ 2
C2

α
‖δs‖2α.

This provides

‖δZ‖2α ≤ 2
C2

α
‖δs‖2α and ‖δY ‖2α ≤ 2

C2T

α
‖δs‖2α

where we abused notation by writing ‖δY ‖α and ‖δZ‖α although these pro-
cesses do not have the dimension required by the definition. Finally, these two
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estimates imply that

‖δS‖α ≤
√

2C2

α
(1 + T )‖δs‖α.

By choosing α > 2(1 + T )C2, it follows that the map φ is a contraction on H2,
and that there is a unique fixed point.
4. It remain to prove that Y ∈ S2. This is easily obtained as in the first step
of this proof, by first estimating:

E
[
sup
t≤T
|Yt|2

]
≤ C

(
|Y0|2 + E

[∫ T

0

|ft(Yt, Zt)|2dt

]
+ E

[
sup
t≤T

∣∣∣ ∫ t

0

Zs · dWs

∣∣∣2]) ,
and then using the Lipschitz property of the generator and the Doob’s martin-
gale inequality. ♦

Remark 11.4. Consider the Picard iterations:

(Y 0, Z0) = (0, 0), and

Y k+1
t = ξ +

∫ T

t

fs(Y
k
s , Z

k
s )ds+

∫ T

t

Zk+1
s · dWs,

Given (Y k, Zk), the next step (Y k+1, Zk+1) is defined by means of the martin-
gale representation theorem. Then, Sk = (Y k, Zk) −→ (Y,Z) in H2 as k →∞.
Moreover, since

‖Sk‖α ≤
(

2C2

α
(1 + T )

)k
,

it follows that
∑
k ‖Sk‖α < ∞, and we conclude by the Borel-Cantelli lemma

that the convergence (Y k, Zk) −→ (Y, Z) also holds dt⊗ dP−a.s.

11.2.4 Complementary properties

This subsection collects some further properties of BSDEs, which are not essen-
tial for the purpose of our financial application.

Comparison

We first prove a monotonicity of property of BSDE which is the analogue of the
corresponding property for forward stochastic differential equations. We observe
that the following comparison result provides another (stronger) argument for
the uniqueness of the solution to a BSDE.

Theorem 11.5. Let n = 1, and let (Y i, Zi) be the solution of BSDE(f i, ξi) for
some pair (ξi, f i) satisfying the conditions of Theorem 11.3, i = 0, 1. Assume
that

ξ1 ≥ ξ0 and f1
t (Y 0

t , Z
0
t ) ≥ f0

t (Y 0
t , Z

0
t ), dt⊗ dP− a.s. (11.11)
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Then Y 1
t ≥ Y 0

t , t ∈ [0, T ], P−a.s.

Proof. We denote

δY := Y 1 − Y 0, δZ := Z1 − Z0, δ0f := f1(Y 0, Z0)− f0(Y 0, Z0),

and we compute that

d(δYt) = − (αtδYt + βt · δZt + δ0ft) dt+ δZt · dWt, (11.12)

where

αt :=
f1
t (Y 1

t , Z
1
t )− f1

t (Y 0
t , Z

1
t )

δYt
1{δYt 6=0},

and, for j = 1, . . . , d,

βjt :=
f1
t

(
Y 0
t , Z

1
t ⊕j−1 Z

0
t

)
− f1

t

(
Y 0
t , Z

1
t ⊕j Z0

t

)
δZ0,j

t

1{δZ0,j
t 6=0},

where δZ0,j denotes the j−th component of δZ0, and for every z0, z1 ∈ Rd,
z1 ⊕j z0 :=

(
z1,1, . . . , z1,j , z0,j+1, . . . , z0,d

)
for 0 < j < d, z1 ⊕0 z

0 := z0,
z1 ⊕d z0 := z1.

Since f1 is Lipschitz-continuous, the processes α and β are bounded. Solving
the linear BSDE (11.12) as in subsection 11.2.2, we get:

δYt = E

[
ΓtT δYT +

∫ T

t

Γtuδ0fudu
∣∣∣Ft] , t ≤ T,

where the process Γt is defined as in (11.8) with (δ0f, α, β) substituted to (a, b, c).
Then Condition (11.11) implies that δY ≥ 0, P−a.s. ♦

Stability

Our next result compares the difference in absolute value between the solu-
tions of the two BSDEs, and provides a bound which depends on the difference
between the corresponding final datum and the generators. In particular, this
bound provides a transparent information about the nature of conditions needed
to pass to limits with BSDEs.

Theorem 11.6. Let (Y i, Zi) be the solution of BSDE(f i, ξi) for some pair
(f i, ξi) satisfying the conditions of Theorem 11.3, i = 0, 1. Then:

‖Y 1 − Y 0‖2S2 + ‖Z1 − Z0‖2H2 ≤ C
(
‖ξ1 − ξ0‖2L2 + ‖(f1 − f0)(Y 0, Z0)‖2H2

)
,

where C is a constant depending only on T and the Lipschitz constant of f1.



174 CHAPTER 11. BACKWARD SDE AND FUNDING PROBLEMS

Proof. We denote δξ := ξ1−ξ0, δY := Y 1−Y 0, δf := f1(Y 1, Z1)−f0(Y 0, Z0),
and ∆f := f1 − f0. Given a constant β to be fixed later, we compute by Itô’s
formula that:

eβt|δYt|2 = eβT |δξ|2 +

∫ T

t

eβu
(
2δYu · δfu − |δZu|2 − β|δYu|2

)
du

+2

∫ T

t

eβuδZT
u δYu · dWu.

By the same argument as in the proof of Theorem 11.3, we see that the stochastic
integral term has zero expectation. Then

eβt|δYt|2 = Et

[
eβT |δξ|2 +

∫ T

t

eβu
(
2δYu · δfu − |δZu|2 − β|δYu|2

)
du

]
,

(11.13)
where Et := E[.|Ft]. We now estimate that, for any ε > 0:

2δYu · δfu ≤ ε−1|δYu|2 + ε|δfu|2

≤ ε−1|δYu|2 + ε
(
C(|δYu|+ |δZu|) + |∆fu(Y 0

u , Z
0
u)|
)2

≤ ε−1|δYu|2 + 3ε
(
C2(|δYu|2 + |δZu|2) + |∆fu(Y 0

n , Z
0
u)|2

)
.

We then choose ε := 1/(6C2) and β := 3εC2 +ε−1, and plug the latter estimate
in (11.13). This provides:

eβt|δYt|2+
1

2
Et

[∫ T

t

|δZu|2du

]
≤ Et

[
eβT |δξ|2 +

1

2C2

∫ T

0

eβu|∆fu(Y 0
u , Z

0
u)|2du

]
,

which implies the required inequality by taking the supremum over t ∈ [0, T ] and
using the Doob’s maximal inequality for the martingale {Et[eβT |δξ|2], t ≤ T}.
♦

BSDEs and semilinear PDEs

In this section, we specialize the discussion to the so-called Markov BSDEs in
the one-dimensional case n = 1. This class of BSDEs corresponds to the case
where

ft(y, z) = F (t,Xt, y, z) and ξ = g(XT ),

where F : [0, T ]× Rd × R× Rd −→ R and g : Rd −→ R are measurable, and X
is a Markov diffusion process defined by some initial data X0 and the SDE:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt. (11.14)

Here µ and σ are continuous and satisfy the usual Lipschitz and linear growth
conditions in order to ensure existence and uniqueness of a strong solution to
the SDE (11.14), and

F, g have polynomial growth in x

and F is uniformly Lipschitz in (y, z).
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Then, it follows from Theorem 11.3 that the above Markov BSDE has a unique
solution.

We next move the time origin by considering the solution {Xt,x
s , s ≥ t} of

(11.14) with initial data Xt,x
t = x. The corresponding solution of the BSDE

dYs = −F (s,Xt,x
s , Ys, Zs)ds+ ZsdWs, YT = g

(
Xt,x
T

)
(11.15)

will be denote by (Y t,x, Zt,x).

Proposition 11.7. The process {(Y t,xs , Zt,xs ) , s ∈ [t, T ]} is adapted to the fil-
tration

F ts := σ (Wu −Wt, u ∈ [t, s]) , s ∈ [t, T ].

In particular, u(t, x) := Y t,xt is a deterministic function and

Y t,xs = Y
s,Xt,xs
s = u

(
s,Xt,x

s

)
, for all s ∈ [t, T ], P− a.s.

Proof. The first claim is obvious, and the second one follows from the fact that

Xt,x
r = X

s,Xt,xs
r . ♦

Proposition 11.8. Let u be the function defined in Proposition 11.7, and as-
sume that u ∈ C1,2([0, T ),Rd). Then:

−∂tu− µ ·Du−
1

2
Tr[σσTD2u]− f(., u, σTDu) = 0 on [0, T )× Rd. (11.16)

Proof. This an easy application of Itô’s formula together with the usual local-
ization technique. ♦

We conclude this chapter by an nonlinear version of the Feynman-Kac for-
mula.

Theorem 11.9. Let v ∈ C1,2([0, T ),Rd) be a solution of the semilinear PDE
(11.16) with polynomially growing v and σTDv. Then

v(t, x) = Y t,xt for all (t, x) ∈ [0, T ]× Rd,

where (Y t,x, Zt,x) is the solution of the BSDE (11.15).

Proof. For fixed (t, x), denote Ys := v(s,Xt,x
s ) and Zs := σT(s,Xt,x

s ). Then,
it follows from Itô’s formula that (Y, Z) soves (11.15). From the polynomial
growth on v and Dv, we see that the processes Y and Z are both in H2. Then
they coincide with the unique solution of (11.15). ♦
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11.3 Application: Funding Value Adjustment of
the Black-Scholes theory

As previously mentioned, the standard Black-Scholes theory is a extreme sim-
plification of real world financial markets. One important focus of derivatives
trading in the recent period is on the funding possibilities of the hedging strat-
egy. The standard Black-Scholes model assumes that the cash component of the
hedging strategy is borrowed or invested at the same interest rate r, regardless
of any guarantee or collateral that the hedger may possess in portfolio. This
assumption was accepted for a long time with the Libor (London interbank of-
fered rate) as agreed interest rate. However, since the financial crisis started in
2007, the funding and the liquidity aspects became extremely important. As
a consequence, revisiting the standard Black-Scholes model to account for this
key aspect of the financial engineering activity is necessary.

In the following subsections, we show how to incorporate the funding value
adjustment (FVA) into the Black-Scholes theory. We shall see that this leads to
a nonlinear pricing rule. For Vanilla options with payoff defined by a determin-
istic function of some underlying primitive securities, the hedging and pricing
values can be characterized by a nonlinear version of the Black-Scholes partial
differential equation (PDE). However, general exotic derivatives exhibit a path-
dependency in their defining payoff. This is precisely the place where backward
SDEs are useful as they offer a substitute to the PDE characterization.

11.3.1 The BSDE point of view for the Black-Scholes model

In this subsection, we modify the standard notations in order to adapt to the
BSDE framework. We return to the problem of pricing and hedging a derivative
security defined by the payoff ξ at the maturity T . As in our previous analysis,
ξ is an FT−measurable random variable, and in order to fit into the BSDE
framework, we assume in addition that ξ ∈ L2(Q,FT ) is square integrable under
the risk-neutral measure Q.

The financial market contains a nonrisky asset, defined by the F−adapted
bounded process of interest rates {rt, t ≥ 0}, and d risky primitive assets S =
(S1, . . . , Sd) defined by the dynamics

dSt = diag[St]
(
rt1dt+ σtdBt

)
, (11.17)

where B is a Brownian motion under the risk-neutral measure Q, σ is an
F−adapted bounded process of volatility with values in the set of d × d in-
vertible symmetric matrices satisfying the uniform ellipticity condition∣∣σtx∣∣ ≥ ε‖x‖ for all x ∈ Rd, t ≥ 0, ω ∈ Ω,

for some ε > 0. We also recall that 1 := (1, . . . , 1) ∈ Rd, and that diag[s]
is the diagonal d × d symmetric matrix with i−th diagonal entry si for all
s = (s1, . . . , sd) ∈ Rd.
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A portfolio strategy is an F−adapted process θ with values in Rd. For the
sake of excluding doubling strategies, we restrict the portfolio process θ the setA
of admissible strategies, as introduced in Definition 7.11 CHECK REFERENCE.
For all t ≥ 0, the scalar process θit represents the amount invested in the i−th
risky asset. Then, denoting by Xθ the corresponding induced value process, it
follows that the amount invested in the non-risky asset, i.e. the cash investment,
is given by

ηθt := Xθ
t − θt · 1 for all t ∈ [0, T ]. (11.18)

In the standard frictionless Black-Scholes model, the last cash amount η is
invested in the non-risky asset whose return is defined by the interest rate r.
Therefore, the self-financing condition determines the dynamics of the value
process X:

dXθ
t = ηθt rtdt+ θt · diag[St]

−1dSt, t ∈ [0, T ]. (11.19)

Substituting the value of the cash investment η, we recover the dynamics of the
value process

dXθ
t = rtX

θ
t dt+ σtθt · dBt, t ∈ [0, T ]. (11.20)

Under this form, we now see that the problem of perfect hedging the derivative
security ξ is reduced to the problem of backward SDE:

dYt = rtYtdt+ Zt · dBt, t ∈ [0, T ], YT = ξ, (11.21)

with Y = Z and Z = σθ.
Applying the previous existence and uniqueness results, we obtain immedi-

ately the following connection between the problem of hedging/pricing and the
BSDE.

Proposition 11.10. Let r, σ be bounded F−progressively measurable processes,
and ξ ∈ L2(Q).
(i) There is a unique solution (Y, Z) ∈ H2(Q) × S2(Q) of the backward SDE
(11.21), with

Yt = EQ
t

[
ξe−

∫ T
t
rudu

]
, t ∈ [0, T ].

(ii) For all t ∈ [0, T ], Yt = Xθ
t , where θ := σ−1Z ∈ A, and Yt is the no-arbitrage

price of the derivative security with T−maturity payoff ξ.

11.3.2 Funding Value Adjustment (FVA)

The traditional derivatives valuation reviewed in the previous subsection starts
by assuming the existence of a risk-free rate r, which serves as a discounting
rate for all cash instruments.
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Since the recent financial crisis, the existence of such a risk-free rate is
not relevant anymore. Nothing in the current financial market looks like a
theoretically-classic money market account. It is now necessary to distinguish
between cash, in positive amount, lended to the bank, or in negative amount
borrowed from the bank. Moreover, financial transactions are subject to a col-
lateral which serves to secure the deal throughout its duration.

The subsequent model ignores deliberately further market realities related
to the potential possible default of both parties of the transaction, and also
the potential default of the funding entities holding the cash component of the
portfolio, or lending it if negative.

Recall from the previous subsection that the cash component of the portfolio
η is defined in (11.18). We denote by Ct the collateral deposited at time t.
The precise definition of Ct is specified in the derivative contract, and we shall
consider different specifications which are practiced in real financial markets. In
order to capture the funding aspect of the hedging strategy, we decompose η
into three components:

ηθt := Xθ
t − θt · 1 = Ct + (ηθt − Ct)+ − (ηθt − Ct)−. (11.22)

Now, each one of these three components are subject to a specific interest rate.
The positive deposits in cash gain interest at the rate rt, while the negative
deposits correspond to a borrowing transaction from the bank are subject to
the interest rate rt. Of course, r ≤ r. The collateral part C is also deposited
in cash and gains interest at the rate rCt . All interest rate processes r, r and rC

are F−adapted and bounded.
As a consequence of this modeling, the dynamics of the cash component of

the portfolio is given by:

dηθt = φt(η
θ
t , Ct)dt, with φt(α, β) := rCt β + (α− β)+rt − (α− β)−rt. (11.23)

This determines the dynamics of the value process X induced by the portfolio
strategy θ:

dXθ
t = dηt + θtdiag[St]

−1dSt

=
[
rtθt · 1 + φt(Ct, X

θ
t − θt · 1)

]
dt+ σtθt · dBt, t ∈ [0, T ].(11.24)

In the remaining part of this chapter, we distinguish different cases of collaterals.

Non-collaterized transaction

We first consider the case C ≡ 0, where no collateral is involved in the transac-
tion. Then, the above dynamics reduces to

dXθ
t =

[
rtθt·1+rt(X

θ
t −θt·1)+−rt(Xθ

t −θt·1)−
]
dt+σtθt·dBt, t ∈ [0, T ]. (11.25)

In order to solve the hedging problem in the present context, we introduce the
BSDE

dY 0
t =

[
rtσ
−1
t Z0

t · 1 + rt(Y
0
t − σ−1

t Z0
t · 1)+ − rt(Y 0

t − σ−1
t Z0

t · 1)−
]
dt+ Z0

t · dBt,
Y 0
T = ξ.

(11.26)
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Under our conditions on the coefficients, it is immediately seen that the genera-
tor of the last BSDE satisfies the wellposedness conditions required in Theorem
11.3. We may then deduce that, for all ξ ∈ L2(Q), there is a unique solution
(Y 0, Z0) to the BSDE (11.30). Consequently, the value of the non-collaterized
contract at time t is Y 0

t , and the corresponding perfect hedging strategy is given
by:

θ̂0
t := σ−1

t Z0
t , t ∈ [0, T ]. (11.27)

Fully collaterized transaction

The next relevant case is when the collateral is given by the value of the deriva-
tive security. Then, the problem reduces to the BSDE

dY 1
t =

[
rtσ
−1
t Z1

t · 1 + φt(Y
1
t , Y

1
t − σ−1

t Z1
t · 1)

]
dt+ Z1

t · dBt
Y 1
T = ξ. (11.28)

We again verify immediately that the generator of the last BSDE satisfies the
wellposedness conditions of Theorem 11.3, and we deduce that there is a unique
solution (Y 1, Z1) for all ξ ∈ L2(Q). Consequently, the value of the fully-
collaterized contract at time t is Y 1

t , and the corresponding perfect hedging
strategy is given by:

θ̂1
t := σ−1

t Z1
t , t ∈ [0, T ]. (11.29)

Partially collaterized transaction

We finally consider the case where the collateral is fixed to some given proportion
α ∈ [0, 1] of the value of the derivative security. Then, the problem reduces to
the BSDE

dY αt =
[
rtσ
−1
t Zαt · 1 + φt(αY

α
t , Y

α
t − σ−1

t Zαt · 1)
]
dt+ Zαt · dBt

Y αT = ξ. (11.30)

By the same argument as for the cases α ∈ {0, 1}, there is a unique solution
(Y α, Zα) for all ξ ∈ L2(Q), and we may conclude that the value of the par-
tially collaterized contract at time t is Y αt , with corresponding perfect hedging
strategy:

θ̂αt := σ−1
t Zαt , t ∈ [0, T ]. (11.31)

PDE characterization in the Markov case

Suppose that the diffusion coefficient σ of the SDE (11.17) driving the dynamics
of the underlying risky assets is a deterministic function, i.e. σt = σ(t, St). This
is the so-called local volatility model. As usual, the function σ is needed to be
continuous in (t, s), and Lipschitz in s uniformly in t. Assume further that the
various interest rates r, r, r, rC are all constant.
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Then, it follows from Proposition 11.7 that Y αt = uα(t, St) for some function
uα : [0, T ] × Rd −→ R. Moreover, assuming that uα ∈ C1,2([0, T ),Rd+), we
deduce from Proposition 11.8 that the function uα is a solution of the semilinear
PDE

−∂tuα −
1

2
Tr
[
diag[s]σ(t, s)2diag[s]D2uα

]
+ φ(αuα, uα − s ·Duα) = 0,

where

φ(α, β) := rCβ + (α− β)+r − (α− β)−r.

Finally, the perfect hedging strategy is given by

θ̂αt = diag[St]Du
α(t, St), t ∈ [0, T ].



Chapter 12

Doob-Meyer decomposition,
optimal stopping and
American options

In contrast with European call and put options, American options can be ex-
ercised at any time before the maturity. The holder of the American contract
chooses the exercise time depending on his information set, so his exercising de-
cision is adapted to his information. This leads to the notion of stopping times.
At the exercise time, the payoff received by the holder is the current intrinsic
value of the option. The problem of optimal choice of such an exercise time is
the so-called optimal stopping problem, which we also review the main theory
in this section.

Another important ingredient for our application to American options is the
Doob-Meyer decomposition of submartingales, a crucial result for many ques-
tions in stochastic analysis. The first section of this chapter is dedicated to
the proof of this result. The next section provides an overview of the theory of
optimal stopping. The final section focuses on the application to the valuation
and hedging of American derivatives. In the Markov case, we derive the val-
uation equation. This turns out to be an obstacle partial differential equation
which has no explicit solution, in general. Finally, we specialize the discussion
the perpetual American puts. Although these contract are not traded on real
financial markets, their analysis is interesting as we will be able to obtain a
closed-form pricing formula.

12.1 The Doob-Meyer decomposition

In this section, we prove a decomposition result for submartingales which plays
a central role in the theory of stochastic processes. The discrete-time decompo-
sition was introduced by Doob. The corresponding continuous-time result was
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later obtained by Meyer and is proved by technically involved limiting argu-
ments.

The following statement uses the following notion. A process is said to be
F−predictable if it is measurable with respect to the filtration generated by all
F−adapted left-continuous processes.

Theorem 12.1. Let X be a càd-làg submartingale. Then:
(i) there is a unique decomposition X = M + A for some càdlàg local martin-
gale M , and a predictable nondecreasing process A with A0 = 0; moreover, A is
integrable whenever limt→∞ E[Xt] <∞.
(ii) Assume further that X is of class D, i.e. the family {Xτ , τ ∈ T T } is uni-
formly integrable.Then, the component M of the decomposition is a martingale.

By a classical localization argument, we may obtain Claim (i) of the last
theorem as a direct consequence of Claim (ii). Therefore, we shall only focus
on the proof of Claim (ii) which is restated in Theorem 12.6 below. The proof
reported in this section follows the simplified arguments in [6].

Remark 12.2. Our use of the Doob-Meyer decomposition in the application to
the pricing and hedging of American options does not require the predictability
of the process A.

12.1.1 The discrete-time Doob decomposition

We first recall the Doob decomposition of submartingales in discrete-time, which
is a simple calculation.

Proposition 12.3. Let (Xn)n≥1 be a discrete-time process. Then, there exists
a unique decomposition X = M + A, where M is a martingale, and A is a
predictable process (i.e. An is Fn−1−measurable), with A0 = 0.

Moreover, X is a submartingale if and only if A is nondecreasing.

Proof. To prove uniqueness, we consider another decomposition X = M ′ + V ′,
and we observe that M − M ′ = V − V ′ is predictable. Then Mn − M ′n =
Mn−1 −M ′n−1 = . . . = M0 −M ′0 = 0 and Vn = V ′n. Next, denote ∆Xn :=
Xn − Xn−1, ∆Mn := Mn −Mn−1, ∆An := An − An−1, and notice that the
desired decomposition satisfies ∆Xn = ∆Mn + ∆An. Since A is predictable
and M is a martingale, this determines ∆An = E[∆Xn|Fn−1], and suggests the
following pair (A,M):

An :=

n∑
i=1

E[∆Xi|Fi−1] and Mn := Xn −An, n ≥ 1.

Immediate verification shows that the pair (M,A) satisfies all requirements. ♦
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12.1.2 Convergence of uniformly integrable sequences

In order to extend the previous decomposition to the continuous-time case, we
shall sample the process on a discrete-time grid, and pass to the limit with the
discrete-time decomposition. This requires some techniques which are isolated
in the present subsection.

The space of random variable being of infinite dimension, the structure of
compact subsets requires an important care as the unit ball is not compact.
Since the space L2 is a Hilbert reflexive space, we shall use the following well-
known result in functional analysis.

Lemma 12.4. Let (Xn)n≥1 be a bounded sequence in L2. Then, there exist a

family (λni , i = n, . . . , Nn)n≥1, with λni ≥ 0 and
∑Nn
i=1 λ

n
i = 1, such that

X̂n :=

Nn∑
i=n

λni Xi converges in L2.

Our convergence result will make use of the following more refined conver-
gence result.

Lemma 12.5. Let (Xn)n≥1 be a uniformly integrable sequence in L1. Then,

there exist a family (λni , i = n, . . . , Nn)n≥1, with λni ≥ 0 and
∑Nn
i=1 λ

n
i = 1, such

that

X̂n :=

Nn∑
i=n

λni Xi converges in L1.

Proof. Define the truncated sequences
(
Xk
n := Xn1{|Xn|≤k}, n ≥ 1

)
, k ≥ 1. By

Lemma 12.4, we may find (µni , n ≤ i ≤ Nn)n≥1, with µni ≥ 0 and
∑Nn
i=1 µ

n
i = 1,

such that
∑Nn
i=n µ

n
i X

1
i converges in L2 to some X1 ∈ L2.

We next consider the sequence X̂2
n :=

∑Nn
i=n µ

n
i X

2
i , which inherits from the

sequence (X2
n)n≥1 its L2−bound. Applying again Lemma 12.4, we may find

(µ̂ni , n ≤ i ≤ Nn)n≥1, with µ̂ni ≥ 0 and
∑Nn
i=1 µ̂

n
i = 1, such that

∑Nn
i=n µ̂

n
i X̂

2
i

converges in L2 to someX2 ∈ L2. Notice that
∑Nn
i=n µ̂

n
i X̂

2
i =

∑Nn
i=n µ̃

n
i X

2
i , where

(µ̃ni )i are the coefficients of a convex combination defined as the composition

of the two convex combinations, and that both
∑Nn
i=n µ̃

n
i X

1
i and

∑Nn
i=n µ̃

n
i X

2
i

converge in L2.
Iterating this procedure, and applying a diagonalization argument, we obtain

sequences of convex combinations (λni )n≤i≤Nn such that all sequences
∑Nn
i=n λ

n
i X

k
i ,

k ≥ 1, converge in L2.
We finally use the uniform integrability of the sequence (Xn)n≥1 which en-

sures that Xk
n −→ Xn in L1, as k →∞, uniformly in n. This implies that

Nn∑
i=1

λni X
k
i −→

Nn∑
i=1

λni Xi in L1 as k →∞, uniformly in n,
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and we conclude that
(∑Nn

i=1 λ
n
i Xi

)
n≥1

is a Cauchy sequence in L1. Since L1 is

complete, this provides the required result. ♦

12.1.3 The continuous-time Doob-Meyer decomposition

We now proceed to the continuous-time setting of Theorem 12.1. We recall that
Claim (i) therein follows from (ii) by a localization technique. The following
statement corresponds to Claim (ii) which we shall prove in this section.

Theorem 12.6. Let X be a càd-làg submartingale of class D. Then:
(i) X = M+A for some martingale càdlàg martingale M , and integrable càd-làg
nondecreasing adapted process A with A0 = 0;
(ii) moreover, A can be chosen to be predictable and, under this additional re-
striction, the decomposition is unique.

Proof. We only prove (i). We first observe that we may assume without gener-
ality that

XT = 0 and Xt ≤ 0 for all t ∈ [0, T ]. (12.1)

Indeed, these restrictions are satisfied by the process X̃t := Xt − E[XT |Ft],
t ∈ [0, T ]. Moreover X̃ is clearly of class D, and inherits the submartingale
property of X. Finally, if we prove that the process X̃ has the decomposition
X̃ = M̃ + Ã as in the statement of the theorem, then X = M +A with A := Ã
and Mt := Mt + E[XT |Ft], t ∈ [0, T ], so that M is a càd-làg martingale.

In view of this, we now proceed to the proof of the theorem under the
additional restriction (12.1).
1. For all n ≥ 1, denote tnj := j2−nT , j = 0, . . . , 2n, and define the discrete-
time submartingale Xn := {Xtnj

, 1 ≤ j ≤ 2n}. By Proposition 12.3, we have the
decomposition Xn = Mn+An where Mn is a martingale and An is a predictable
nondecreasing process. Moreover, it follows from (12.1) that

Mn
T = −AnT and Xtnj

= Antnj − E[AnT |Ftnj ], j = 0, . . . , 2n. (12.2)

Also, in preparation for the next step, we introduce for all c > 0 the sequence

τ cn := 1 ∧ inf
{
tnj−1 : Antnj > c

}
so that {τ cn < 1} = {AnT > c}, n ≥ 1.

Since An is predictable, it follows that τ cn is a stopping time, and it follows from
the Chebychev inequality and (12.2) that

P
[
τ cn<1

]
= P

[
AnT >c

]
≤

E
[
AnT
]

c
=
−E
[
Mn
T

]
c

=
E
[
X0

]
c

−→ 0, uniformly in n.

(12.3)
2. We now prove that the sequence (AnT )n≥1 and (Mn

T )n≥1 are uniformly
integrable. Since XT = Mn

T +AnT is integrable, it suffices to prove that (AnT )n≥1

is uniformly integrable.



185

First, by(12.2) and the definition of τ cn, we have

Xτcn
= Anτcn − E

[
AnT |Fτcn

]
≤ c− E

[
AnT |Fτcn

]
.

We then estimate

E
[
AnT1{AnT>c}

]
= E

{
1{τcn<1}E

[
AnT |Fτcn

]}
≤ E

[
1{τcn<1}

(
c−Xτcn

)]
= cP

[
τ cn < 1

]
− E

[
Xτcn1{τcn<1}

]
. (12.4)

Moreover, since {τ cn < 1} ⊂ {τ c/2n < 1}, it follows from (12.2) and the non
decrease of An that

−E
[
X
τ
c/2
n

1{τc/2
n <1}

]
= E

[(
AnT −Anτc/2

n

)
1{τc/2

n <1}

]
≥ E

[(
AnT −Anτc/2

n

)
1{τcn<1}

]
≥ c

2
P
[
τ cn < 1

]
.

Plugging this in (12.4) provides the inequality

E
[
AnT1{AnT>c}

]
≤ −E

[
Xτcn

1{τcn<1}
]
− 2E

[
X
τ
c/2
n

1{τc/2
n <1}

]
.

In view of (12.3), this implies that (AnT )n≥1 is uniformly integrable.
3. By the uniform integrability of (Mn

T )n≥1 established in the previous step,
we deduce from Lemma 12.5 that there is a sequence {λnk , 1 ≤ k ≤ Nn}n≥1 with

λnk ≥ 0 and
∑Nn
k=n λ

n
k = 1, such that

∑Nn
k=n λ

n
kM

n
T converges in L1 to some r.v.

MT ∈ L1. Then, it follows from the Jensen inequality that

M̂n
t := E

[
Mn
T |Ft

]
−→Mt := E

[
MT |Ft

]
in L1 for all t ∈ [0, T ].

Clearly, M is a càd-làg martingale. We also define

Ant :=

n∑
j=1

Antnj 1(tnj−1,t
n
j ](t), t ∈ [0, T ], and Ân :=

Nn∑
k=n

λnkA
n.

Then Ân
tkj

= Xtkj
− M̂n

tkj
converges in L1 to some r.v. Atkj ∈ L1

(
Ftkj
)
, for all k, j.

Therefore, after possibly passing to a subsequence, Ân
tkj
−→ Atkj , P−a.s. for all

k, j and we obtain that the process Atkj inherits a.s. the nondecrease of Ân.

By right-continuity, the convergence and the nondecrease extend to the interval
[0, T ]. ♦

12.2 Optimal stopping

Throughout this section, we consider an F−adapted pathwise continuous process
X : [0, T ]× Ω −→ R satisfying the condition.

E
[

sup
t∈[0,T ]

|Xt|
]

< ∞. (12.5)
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Our main interest is on the optimal stopping problem

V0 := sup
τ∈T T

E[Xτ ]. (12.6)

In order to solve this problem, we shall use the dynamic programming approach,
which requires to introduce the dynamic version of the optimal stopping prob-
lem, i.e. move the time origin from zero to an arbitrary point in the time
interval [0, T ]. The natural definition of such a dynamic version would be
Vt := sup{E[Xτ |Ft] : τ ∈ T T , τ ≥ t}. However, we are then faced to the
problem of measurability of Vt as the supremum of an infinite uncountable fam-
ily of measurable functions.

Therefore, we need to introduce a measurable substitute. Our starting point
is the Snell envelop process:

Yt := ess sup
τ∈T Tt

E[Xτ |Ft], t ∈ [0, T ],

where T Tt is the collection of all stopping times τ with t ≤ τ ≤ T . We refer to
the Appendix section 12.4 for the definition of the essential supremum.

Under this definition, we clearly have that Y is an F−adapted process. In
this section, we prove the following characterization of the optimal stopping
problem (12.6).

Theorem 12.7. Let X be an F−adapted pathwise continuous process satisfying
the integrability condition (12.5). Then
(i) the Snell envelop has a càd-làg version, still denoted by Y ,
(ii) Y is a supermartingale
(iii) τ∗ := inf{t ≥ 0 : Yt = Xt} is an optimal stopping rule, and Y.∧τ∗ is a
martingale.

Claims (i) is proved in Lemma 12.11 below, while (ii) is proved in Lemma
12.9 below. Finally Claim (iii) is proved in Corollary 12.13 below.

12.2.1 The dynamic programming principle

We start by a property of the objective function in (12.6).

Lemma 12.8. For any t ∈ [0, T ), the family
{
E[Xτ |Ft]; τ ∈ T Tt

}
satisfies

the lattice property, i.e. for all τ1, τ2 ∈ T Tt , there exists τ̄ ∈ T Tt such that
E[Xτ̄ |Ft] ≥ E[Xτ1 |Ft] ∨ E[Xτ2 |Ft], P−a.s.

Proof. Let A :=
{
E[Xτ1 |Ft] ≥ E[Xτ2 |Ft]

}
, and define τ̄ := τ11A + τ21Ac .

Clearly, A ∈ Ft, and τ̄ ∈ T Tt , and we immediately verify that it satisfies the
claim in the statement of the lemma. ♦

As a consequence of this property, we deduce from Theorem 12.20 (ii) that
for all t ∈ [0, T ), we may find a sequence (τn)n≥1 ⊂ T Tt such that

Yt = lim ↑n→∞ E
[
Xτn |Ft

]
. (12.7)
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A first crucial property of the Snell envelop is the following.

Lemma 12.9. Y is a supermartingale with supt∈[0,T ] E|Yt| < ∞ and E[Yt] =
supτ∈T Tt E[Xτ ] for all t ∈ [0, T ].

Proof. Denote |X|∗T := supt∈[0,T ] |Xt|. By the definition of Y , we have

sup
t∈[0,T ]

E
[
|Yt|
]
≤ E

[
|X|∗T

]
< ∞.

For s ≤ t, it follows from Lemma 12.8 and its consequence in (12.7), together
with the monotone convergence theorem and the tower property, that:

E[Yt|Fs] = E
{

lim ↑n→∞ E
[
Xτn |Ft

]∣∣Fs} = lim ↑n→∞ E
[
Xτn |Fs

]
≤ Ys,

which proves that Y is a supermartingale.
Next, for τ ∈ T Tt , we have Yt ≥ E[Xτ |Ft], a.s. By the tower property,

this implies that E[Yt] ≥ E[Xτ ]. The reverse inequality follows from the lattice
property of Lemma 12.8 and its consequence in (12.7). ♦

We now prove the main property for the dynamic programming approach.

Proposition 12.10. (Dynamic programming principle) For all t ∈ [0, T ) and
θ ∈ T Tt :

Yt = ess sup
τ∈T Tt

E
[
Xτ1{τ<θ} + Yθ1{τ≥θ}

∣∣Ft], P− a.s.

Proof. Since X ≤ Y , we have for all θ ∈ T Tt
Yt ≤ ess sup

τ∈T Tt
EP[Xτ1{τ<θ}+Yτ1{τ≥θ}|Ft] ≤ ess sup

τ∈T Tt
E[Xτ1{τ<θ}+Yθ1{τ≥θ}|Ft],

P−a.s., where the last inequality is due to the supermartingale property of Y
established in Lemma 12.9. On the other hand, since Y is a supermartingale,
we have for all τ ∈ T Tt :

Yt ≥ E[Yθ∧τ |Ft] = E[Yθ1{τ≥θ} + Yτ1{τ<θ}|Ft] ≥ E[Yθ1{τ≥θ} +Xτ1{τ<θ}|Ft],

P−a.s. The proof is completed by taking ess sup over τ ∈ T Tt . ♦

Lemma 12.11. Y has a càd-làg supermartingale version.

Proof. Since Y is a martingale, it follows from Chapter 3, Theorem 3.17, that
the statement of the lemma is equivalent to the right-continuity of the map
t 7−→ E[Yt].

Let {tn} ⊂ [0, T ] be such that tn ↘ t. By Lemma 12.9, we know that
E[Ytn ] = supτ∈T Ttn

E[Xτ ] ≤ supτ∈T Tt E[Xτ ] ≤ E[Yt]. On the other hand, for any

τ ∈ T Tt , denoting τn := τ ∨ tn, it follows from the continuity of X and the
uniform integrability of X that E[Xτ ] = limn→∞ E[Xτn ] ≤ lim infn→∞ E[Ytn ].
Using again Lemma 12.9, we obtain that E[Yt] ≤ lim infn→∞ E[Ytn ]. Hence,

E[Yt] = lim
s↓t

E[Ys].

♦



188 CHAPTER 12. OPTIMAL STOPPING AND AMERICAN OPTIONS

12.2.2 Optimal stopping rule

We now introduce for all ε ≥ 0 the stopping times:

Dε := inf
{
t ≥ 0 : Yt ≤ Xt + ε

}
.

Lemma 12.12. For all ε > 0, the stopped process Y.∧Dε is a martingale.

Proof. By the dynamic programming principle of Proposition 12.10, we know
that Y.∧Dε is a supermartingale. So, in order to prove the required result it
remains to show that Y0 ≤ E[YDε ].

By the dynamic programming principle of Proposition 12.10, we may find a
sequence of stopping times (τn)n≥1 ⊂ T T such that

Y0 ≤ 1

n
+ E

[
Xτn1{τn<Dε} + YDε1{τn<Dε}

]
(12.8)

≤ 1

n
+ E

[
(Yτn − ε)1{τn<Dε} + YDε1{τn<Dε}

]
≤ 1

n
+ Y0 − εP

[
τn < Dε

]
,

where the last inequality follows from the supermartingale property of Y . This
implies that

nε P
[
τn < Dε

]
≤ 1. (12.9)

Returning to (12.8), we then see that

Y0 ≤ 1

n
+ E

[
(Xτn − YDε)1{τn<Dε}

]
+ E

[
YDε

]
≤ 1

n
+ E

[
2|X|∗T1{τn<Dε}

]
+ E

[
YDε

]
.

Sending n → ∞, and using (12.9) together with our integrability condition on
|X|∗T , this provides the required inequality Y0 ≤ E

[
YDε

]
. ♦

We are now ready for the characterization of the optimal stopping rule.

Corollary 12.13. Let τ∗ := D0. Then the process Y.∧τ∗ is a martingale, and
τ∗ is an optimal stopping rule, i.e. Y0 = E

[
Xτ∗

]
.

Proof. By Lemma 12.12 together with the definition of Dε, we have for all ε > 0:

Y0 = E
[
YDε

]
≤ ε+ E

[
XDε

]
.

From our condition |X|∗T ∈ L1, it follows that the family {Xτ , τ ∈ T T } is
uniformly integrable. We then obtain by sending ε→ 0, and using the inequality
X ≤ Y and the supermartingale property of Y :

Y0 ≤ E
[
Xτ∗

]
≤ E

[
Yτ∗
]
≤ Y0.

♦
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12.3 Pricing and hedging American derivatives

12.3.1 Definition and first properties

Definition 12.14. An American derivative security is defined by an adapted
process {Gt, t ∈ [0, T ]}, where for all t ∈ [0, T ], Gt is the (random) payoff
received by the holder upon choosing to exercise the contract at time t.

Gt is called the intrinsic value of the American option.

The most popular examples are those of American calls and puts on an un-
derlying asset with price process {St, t ≥ 0}. The intrinsic value of an American
call with strike K is (St −K)+, while the intrinsic value of an American put is
(K − St)+.

We recall from Chapter 1, Section 1.4, that the early exercise of American
calls written on non-dividend paying assets is not optimal and, therefore, such
a contract is equivalent to the European counterpart.

12.3.2 No-arbitrage valuation and hedging

Similar to European derivatives, we define the price of the American security
by the costs of perfect hedging. Let T be the maturity of the American option,
and let G = {Gt, t ∈ [0, T ]} be the corresponding process of intrinsic values. We
would like to define the superhedging cost of the American derivative security
as the minimal initial capital which allows the seller of the option to face the
payoff defined by the intrinsic value at any possible exercise time. Since such
possible exercise times are defined by all stopping times, we are reduced to the
following definition of the super-hedging cost:

V0(G) := inf
{
X0 : Xθ

τ ≥ Gτ , P− a.s. for all τ ∈ T T , for some θ ∈ A
}
,

Here, we have used the notations introduced in Chapter 7, Section 7.4. In
particular, we recall that the value of the portfolio θ is the solution of the
budget constraint equation implied by the self-financing condition:

dXθ
t = θu · diag[St]

−1dSt + (Xθ
t − θt)rtdt,

and {rt, t ∈ [0, T ]} is the adapted process of interest rates.
By adapting the approach used for European securities, and using some

advanced result from the theory of optimal stopping and the Doob-Meyer de-
composition of supermartingales, we can prove the following characterization of
the superhedging cost in terms of risk-neutral valuation under the risk-neutral
measure Q.

Theorem 12.15. Assume that the reward process {Gt, t ∈ [0, T ]} is pathwise
continuous, and supt∈[0,1] G̃t ∈ L1(Q). Then

V0(G) = sup
τ∈T T

EQ[G̃τ ],

where T T is the collection of all stopping times with values in [0, T ).
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Proof. First, let X0 ∈ R and θ ∈ A be such that Xθ
τ ≥ Gτ , P−a.s. for all

τ ∈ T T . Then, since X̃θ is a Q−supermartingale, it follows from the optional
sampling theorem that X0 ≥ EQ[G̃τ ]. By the arbitrariness of τ ∈ T T , this
shows that V0(G) ≥ supτ∈T T EQ[G̃τ ].

To prove the converse inequality, we introduce the Snell envelop

Yt := ess sup
τ∈T Tt

EQ[G̃τ |Ft],

and we notice that the process {G̃t, t ∈ [0, T ]} inherits the pathwise continuity of
the process {Gt, t ∈ [0, T ]}. Then, it follows from Theorem 12.7 that {Yt, t ≥ 0}
may be considered in its càd-làg version, and is a Q−supermatringale. We now
apply the Doob-Meyer decomposition of Theorem 12.1 to obtain Y = M − A,
where M is a Q−local martingale, A is a nondecreasing process, and A0 = 0.

Following the argument in the proof of Theorem 7.17, we next use the mar-
tingale representation theorem to identify the local martingale M = Xθ for
some θ ∈ A. Then, for all stopping time τ , we see that Gτ ≤ Vτ = Mτ − Aτ =
Xθ
τ − Aτ ≤ Xθ

τ , P−a.s. and therefore Xθ
0 = M0 = Y0 ≥ V0 by the definition of

V0. ♦

Notice that, in general:

V 0(G) > sup
t≤T

EQ[G̃t]. (12.10)

Here EQ[G̃t] is the no-arbitrage price of the t−maturity European derivative
with payoff Gt at maturity. So, the value supt≤T EQ[G̃t] is the maximum value
over all possible exercise times. The reason for the inequality (12.10) is that
the amount supt≤T EQ[G̃t] only account for the deterministic exercise strategies
of the holder of the option. In particular, it does not account for all exercise
strategies of the contract holder which would depend on the information. For
instance, the rational holder may decide the exercise an American put option
whenever the price of the underlying assets hits some level below K. Such a
barrier exercise strategy is the typical example of a stopping time, i.e. a random
time which can be perceived by the investor.

12.3.3 The valuation equation

In this section, we specialize the discussion to the one-dimensional (d = 1)
Markovian case. We assume that the underlying asset price process pays no
dividends and is generated by the stochastic differential equation:

dSt
St

= rdt+ σ(t, St)dBt.

Here, B is a Brownian motion under the risk-neutral measure Q, r ≥ 0 is the
(constant) instantaneous interest rate, and σ is a volatility function satisfying
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the required condition for existence of a unique solution to the above stochastic
differential equation.

The American derivative intrinsic value process is Gt := g(t, St), for some
continuous function g : [0, T ]× [0,∞) −→ R. Then, the American option price
is:

V (t, s) = sup
τ∈T Tt

Et,s
[
e−rτg(τ, Sτ )

]
, t ∈ [0, T ], s ∈ [0,∞).

The following result provides the valuation partial differential equation of the
American derivative.

Theorem 12.16. Assume that the function V ∈ C1,2([0, T ),R+). Then V is a
solution of:

min{−∂tV − rsVs −
1

2
σ2s2Vss + rV, V − g} = 0, t < T, s > 0.

Proof. In the first part of this proof, we show that V is a supersolution of the
valuation equation, i.e.

min{−∂tV − rsVs −
1

2
σ2s2Vss + rV, V − g} ≥ 0, t < T, s > 0. (12.11)

Then, in the second part, we show that V is a subsolution of the valuation
equation:

min{−∂tV − rsVs −
1

2
σ2s2Vss + rV, V − g} ≤ 0, t < T, s > 0. (12.12)

(i) Since immediate exercise is always possible (although not always optimal),
we have V ≥ g. To prove (12.11), it remains to prove that −∂tV − rsVs −
1
2σ

2s2Vss + rV ≥ 0, i.e. V is a supersolution of the Black-Scholes valuation
equation. To see this, we observe from the suermartingale property of the
process {V (t, St)}t∈[0,T ] that for all sufficiently small h > 0, we have:

V (t, s) ≥ Et,s
[
e−r(τh−t)V (τh, Sτh)

]
,

where

τh := (t+ h) ∧ inf{u > t : | ln (Su/s)| ≥ 1}.

A simple alternative justification of the last inequality is that the right hand-
side expresses the price of the American contract with no possible exercise on
[t, τh]. Since V is assumed to be C1,2, it follows from Itô’s formula that:

0 ≤ −Et,s
∫ τh

t

d{e−r(t−u)V (u, Su)}

= −Et,s
[ ∫ τh

t

e−r(t−u)(−rV + ∂tV + rsVs +
1

2
σ2s2Vss)(u, Su)du

]
.
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By dividing by h, and sending h to zero, we obtain the required inequality.
(ii) We next prove (12.12) by showing that the following equivaent claim holds:

(V − g)(t, s) > 0 implies that {−∂tV − rsVs −
1

2
σ2s2Vss + rV }(t, s) = 0.

Indeed, if (V − g)(t, s) > 0, then, for some sufficiently small h > 0, V − g > 0
on Br(t, s), the ball centered at (t, s) with radius r. We then introduce

τh := (t+ h) ∧ inf{u > t : (u, Su) 6∈ Br(t, s)}

By the definition of r > 0, it is not optimal to exercise the American contrat
before the stopping time τh for all h > 0. Then

V (t, s) = Et,s
[
e−r(τh−t)V (τh, Sτh)

]
.

We next apply Itô’s formula, as in the part (i), divide by h, and send h to zero
to conclude that:

{−∂tV − rsVs −
1

2
σ2s2Vss + rV }(t, s) = 0.

♦
Our last result provides conditions for the solution of the valuation equation

to coincide with the price of the American option, and is the American counter-
part of the corresponding European option result of Chapter 6 Proposition 6.13.
Recall the collection of functions with generalized derivatives W 2 introduced in
Chapter 6, Remark 6.3, and define similarly the set W 1,2 of function of the
variables (t, s) with generalized partial derivatives in t and s.

Proposition 12.17. Let v ∈ W 1,2([0, T ),R+) ∩ C0([0, T ] × R+) be a solution
of the valuation equation

min
{
− ∂tv − rsvs −

1

2
σ2s2vss + rv, v − g

}
= 0, (t, s) ∈ [0, T )× (0,∞),

with v(T, s) = g(T, s) for all s ≥ 0. Assume further that v has polynomial
growth. Then v(t, s) = V (t, s) = EQ

t,s

[
e−rτ

∗
g
(
τ∗, Sτ∗

)]
, where

τ∗ := inf{u ≥ t : v(u, Su) = g(u, Su)},

i.e. τ∗ is an optimal exercise rule.

Proof. By Remark 6.3, Itô’s formula still holds with the function v under the
present regularity. Then, for all stopping time τ ∈ T Tt , we set τn := τ ∧ (T −
n−1) ∧ inf{u ≥ t : | ln (Su/s)| ≥ n for ε > 0 sufficiently small, and we compute
by Itô’s formula that:

v(t, s) = v
(
τn, Sτn

)
−
∫ τn

t

e−r(u−t)
[
Lv(u, Su)du+ vs(u, Su)σ(u, Su)SudBu

]
,
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where Lv := ∂tv+rsvs+ 1
2σ

2s2vss−rv. Since v satisfies the valuation equation,
we have v ≥ g and Lv ≤ 0. Then, taking conditional expectations under Q,

v(t, s) = EQ
t,s

[
v
(
τn, Sτn

)
−
∫ τn

t

e−r(u−t)Lv(u, Su)du
]
≥ EQ

t,s

[
g
(
τn, Sτn

)]
Since g has polynomial growth, we may send n→∞ and get v(t, s) ≥ EQ

t,s[g(τ, Sτ )]

by the dominated convergence theorem. By the arbitrariness of τ ∈ T Tt , this
shows that v ≥ V .

We next review the previous calculation with τ = τ∗ as defined in the state-
ment of the proposition. Since v > g on [t, τ∗), it follows from the valua-
tion equation that Lv(u, Su) = 0 on [0, τ∗). This restores the first equality
v(t, s) = EQ

t,s

[
v
(
τ∗n, Sτ∗n

)]
. By the polynomial growth condition, we may use the

dominated convergence theorem to pass to the limit n→∞. This provides

v(t, s) = EQ
t,s

[
v
(
τ∗, Sτ∗

)]
= EQ

t,s

[
g
(
τ∗, Sτ∗

)]
,

where the last equality follows from the definition of τ∗. ♦

12.3.4 The exercise boundary

In this subsection, we specialize further the model by considering a constant
volatility model

dSt
St

= r dt+ σ dBt.

Given an initial condition S0 = s, we denote the corresponding solution by

Sst = se(r−σ2

2 )t+σBt , t ≥ 0, s ≥ 0.

Moreover, we focus on the American put option price

P (t, s) := sup
τ∈T Tt

EQ[e−r(τ−t)(K − Sτ )+
∣∣St = s

]
.

By the time homogeneity of the problem, we have

P (t, s) = sup
τ∈T T−t

EQ[e−rτ (K − Ssτ )+
]
.

The exercise boundary is defined by

E :=
{

(t, s) ∈ [0, T ]× R+ : P (t, s) = (K − s)+
}
,

and represents the location of the time-space domain where it is optimal to
exercise the American put option. Similarly, the remaining region

S :=
{

(t, s) ∈ [0, T ]× R+ : P (t, s) > (K − s)+
}

indicates the region where the contract is worth strictly more than its exercise
value, and therefore exercising the option at such a point is strictly sub-optimal.
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Proposition 12.18. There exists a function t 7−→ s∗(t) such that E = {(t, s) ∈
[0, T ]× R+ : s ≤ s∗(t)}.

Proof. First, one easily proves that P is uniformly Lipschitz in s, see Exercise
12.22. We next show that

P (t, s0) = (K − s0)+ =⇒ P (t, s1) = (K − s1)+ for all s1 ≤ s0,(12.13)

which implies the required result, given the continuity of the function P in s.
We first observe that E ∩ [0, T )×R+ ⊂ [0, T )∩ [0,K). Indeed, the inequality

EQ[e−r(T−t)(K −SsT−t)+] > 0 = (K − s)+, for all (t, s) ∈ E ∩ [0, T )×R+, shows
that immediate exercise at any point s ≥ K is not optimal.

Next, by the convexity of the function s 7−→ (K − s)+, we see that for all

s1 < s0, we have (K − Ss1τ )
+ ≤ K

(
1− s1

s0

)
+ s1

s0
(K − Ss0τ )

+
. This implies that

P (t, s1) ≤ K
(

1− s1

s0

)
+
s1

s0
P (t, s0),

which provides (12.13). ♦

12.3.5 Perpetual American derivatives

In this section, we consider the one dimensional Black-Scholes model:

dSt
St

= rdt+ σdBt,

where the interest rate r ≥ 0 and the volatility σ > 0 are constant parameters.
A perpetual American put option has infinite maturity, i.e. the holder of

the option has an exercise right which he may defer forever. Due to the time
homogeneity of the problem, the value of the infinite maturity American put
does not depend on the time variable:

P (s) := sup
τ∈T∞

E
[
e−rτ (K − Sτ )+

]
,

where T∞ is the collection of all finite stopping times.

The PDE approach

The valuation equation reduces to the following ordinary differential equation
(ODE):

min{−rsvs −
1

2
σ2s2vss + rv, v − g} = 0, s > 0.

We now provide a closed-form solution for this nonlinear ordinary differential
equation (ODE). We start by guessing that there exists an exercise boundary
s∗ < K such that

v(s) = K − s, s ≤ s∗
−rsvs − 1

2σ
2s2vss + rv = 0, s > s∗.
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We know that the general solution of an ODE is defined by a two-dimensional
space determined by two independent solutions. In the present case, it is im-
mediately seen that:

v(s) =

{
K − s, s ≤ s∗

As+Bs−2r/σ2

, s > s∗,

for some constants A and B. Cearly, the American put option price decreases to
0 as s↗∞. Then A = 0. We next impose that v is continuous and continuously
differentiable at the point s∗:

K − s∗ = B(s∗)−2r/σ2

and −1 = − 2r

σ2
B(s∗)−1−(2r/σ2).

This is a linear system of two equations for the unknowns s∗ and B, which
immediately implies the unique parameters:

s∗ =
K

1 + σ2

2r

and B =
σ2

2r
(s∗)1+(2r/σ2).

It is now immediately checked that the function v induced by these parameters
satisfy the conditions of Proposition 12.17. Hence v = V , and the first hitting
time of the barrier s∗ is an optimal exercise rule.

The probabilistic approach

By Proposition 12.18, the optimal exercise rule of the American put option is
defined by some barrier s∗(t). In the present infinite horizon context, it follows
from the homogeneity of the problem that:

P (s) := sup
τ∈T

EQ[e−rτ (K − Ssτ )
]

= sup
b<K

EQ[e−rT sb (K − SsT sb )+
]
,

where

Sst = se(r−σ2

2 )t+σBt , and T sb := inf{t > 0 : Sst ≤ b}.

Then, in preparation for the derivation of P (s) in closed form, we start by
studying the Laplace transform of hitting times of barriers.

Lemma 12.19. Let B be a scalar Brownian motion on (Ω,F ,Q), and

Xt := θt+Bt, t ≥ 0, Ha := inf{t > 0 : Xt = a}.

Then, the distribution of the hitting time Ha is characterized by its Laplace
transform:

EQ[e−λHa] = e−(θ+
√
θ2+2λ)|a| for all λ > 0. (12.14)
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Proof. By the symmetry of the Brownian motion, it is sufficient to consider the
case a ≥ 0. By the Girsanov theorem, the process X is a Brownian motion
under the probability measure Q̂ defined by the density:

dQ̂
dQ

∣∣∣∣∣
Ft

= e−θBt−
1
2 θ

2t = e−θXt+
1
2 θ

2t, t ≥ 0.

Noting that XHa = a, by the continuity of X, we rewrite the Laplace transform
as

EQ[e−λHa] = e−θ
−aEQ[eθ−XHa−λHa]

= e−θ
−a lim

n→∞
EQ[eθ−Xn∧Ha−λ(n∧Ha)

]
by the dominated convergence theorem, due to the fact that λ ≥ 0 and 0 ≤
eθ
−Xn∧Ha ≤ eθ

−a. By changing to the measure Q̂, it follows from another
application of the dominated convergence theorem that

EQ[e−λHa] = e−θ
−a lim

n→∞
EQ̂[e(θ−+θ)Xn∧Ha− 1

2 θ
2(n∧Ha)e−λ(n∧Ha)

]
= e−θ

−a lim
n→∞

EQ̂[eθ+Xn∧Ha− 1
2γ

2(n∧Ha)
]

= e−θaEQ̂[e− 1
2γ

2Ha
]
,

where γ :=
√

2λ+ θ2. We are then reduced to the calculation of the Laplace
transform of Ha under the probability measure Q̂. Consider the Q̂−martingale
Mt := eγXt−

1
2γ

2t, t ≥ 0. Then, for all n ∈ N, it follows from the optional
sampling theorem that

EQ̂[Mn∧Ha
]

= EQ̂
[
eγXHa∧n−

1
2γ

2(Ha∧n)
]

= 1.

Since 0 ≤ MHa∧n ≤ eγa is uniformly bounded, it follows from the dominated
convergence theorem that

1 = EQ̂
[
eγXHa−

1
2γ

2Ha
]

= eγaEQ̂
[
e−

1
2γ

2Ha
]
.

We then deduce that

EQ[e−λHa] = e−(θ+γ)a = e−(θ+
√

2λ+θ2)a.

♦

We now proceed to the explicit calculation of the perpetual American put
price. For b < K, let

a :=
1

σ
ln (b/s), θ :=

r

σ
− σ

2
, and Ha := inf

{
t ≥ 0 : Bt + θt = a

}
.
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We first observe that

T sb = 1{s≥b}Ha and SsT sb = s ∧ b.

By Proposition 12.18, we have

P (s) = sup
b<K

(K − s ∧ b)+EQ
[
e−rHb1{s≥b}

]
= sup
b<K

(K − s ∧ b)EQ
[
e−rHb1{s≥b}

]
.

By considering the two alternative cases s < K and s ≥ K, we see that

P (s) = sup
b<s∧K

(K − b)EQ
[
e−rHb

]
= sup
b<s∧K

(K − b)eγ ln b
s = sup

b<s∧K
(K − b)

( b
s

)γ
.

where γ := θ+
√
θ2+2r
σ = 2r

σ2 . The last optimization problem is easily solved, and
we obtain the following explicit formula for the perpetual American put price
P (s) and the corresponding optimal stopping barrier s∗:

P (s) = (K − s)1{s≤s∗} +
( K

1 + γ

)1+γ(γ
s

)γ
1{s≥s∗}, with s∗ :=

γ

1 + γ
K.

12.4 Appendix: essential supremum

The notion of essential supremum has been introduced in probability in order
to face the problem of maximizing random variables over an infinite family Z.
The problem arises when Z is not countable because then the supremum is not
measurable, in general.

Theorem 12.20. Let Z be a family of r.v. Z : Ω −→ R∪{∞} on a probability
space (Ω,F ,P).
(i) Then there exists a unique (a.s.) r.v. Z̄ : Ω −→ R ∪ {∞} such that:

(a) Z̄ ≥ Z, a.s. for all Z ∈ Z,
(b) For all r.v. Z ′ satisfying (a), we have Z̄ ≤ Z ′, a.s.

The r.v. Z̄ is called the essential supremum of the family Z, and denoted by
ess supZ.
(ii) Moreover, there exists a sequence (Zn)n∈N ⊂ Z such that ess supZ =
supn∈N Zn. If the family Z has the lattice property, then such a sequence
(Zn)n∈N ⊂ Z may be chosen to be a.s. nondecreasing so that ess supZ =
lim ↑n→∞ Zn.

Proof. By possibly considering a one-to-one transformation of the elements of
Z to the interval [0, 1], we first observe that we may revert to the case where Z
only consists take values in the interval [0, 1].

The uniqueness of Z̄ is an immediate consequence of (b). To prove existence,
we consider the set D of all countable subsets of Z. For all D ∈ D, we define
ZD := sup{Z : Z ∈ D}, and we introduce the r.v. ζ := sup{E[ZD] : D ∈ D}.
1. We first prove that there exists D∗ ∈ D such that ζ = E[ZD∗ ]. To see this, let
(Dn)n ⊂ D be a maximizing sequence, i.e. E[ZDn ] −→ ζ, then D∗ := ∪nDn ∈ D
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satisfies E[ZD∗ ] = ζ. We denote Z̄ := ZD∗ .
2. It is clear that the r.v. Z̄ satisfies (b). To prove that property (a) holds
true, we consider an arbitrary Z ∈ Z together with the countable family D :=
D∗∪{Z} ⊂ D. Then ZD = Z ∨ Z̄, and ζ = E[Z̄] ≤ E[Z ∨ Z̄] ≤ ζ. Consequently,
Z ∨ Z̄ = Z̄, and Z ≤ Z̄, a.s.

Finally, the first part of the claim (ii) follows from the previous proof of
existence. The second part is trivial. ♦

12.5 Problems

Exercise 12.21. In the context of Theorem 12.1, develop a localization argu-
ment to prove Claim (i) as a consequence of Claim (ii).

Exercise 12.22. In the context of the Black-Scholes model with constant coef-
ficients, prove that the American put option price P (t, s) is uniformly Lipschitz

in s, and 1/2−H’́older-continuous in t.

Exercise 12.23. Consider a financial market with a risky security and a non-
risky asset with constant coefficients, i.e. Black and Scholes model for the
security, and constant interest rate. The risky security pays dividends at the
continuous rate proportional to the spot price so that the dividend is δStdt
during the time interval [t, t+ dt].

1. Provide the partial differential equation satisfied by the price of a perpet-
ual American call option on the above security with maturity T and strike
price K.

2. Recall the definition of the stopping region and the continuation region.
Guess a reasonable form of the stopping region with convincing justifica-
tion.

3. By guessing a solution to the valuation equation of the perpetual American
call price, prove that:

C(S0) =
1

γ1

(
γ

1

γ1 − 1
K

)1−γ
1

S
γ1
0

whereγ1 =
−( 2(r−δ)

σ2 −1)+
√

( 2(r−δ)
σ2 −1)

2
+ 8r
σ2

2 , and provide the optimal exercise
strategy.



Chapter 13

Gaussian interest rates
models

In this chapter, we provide an introduction to the modelling of the term struc-
ture of interest rates. We will develop a pricing theory for securities that depend
on default-free interest rates or bond prices. The general approach will exploit
the fact that bonds of many different maturities are driven by a few common
factors. Therefore, in contrast with the previous theory developed for a finite
securities markets, we will be in the context where the number of traded assets
is larger (in fact infinite) than the number of sources of randomness.

The first models introduced in the literature stipulate some given dynamics
of the instantaneous interest rate process under the risk neutral measure Q,
which is assumed to exist. The prices of bonds of all maturities are then deduced
by computing the expected values of the corresponding discounted payoff under
Q. We shall provide a detailed analysis of the most representative of this class,
namely the Vasicek model. An important limitation of this class of models is
that the yield curve predicted by the model does not match the observed yield
curve, i.e. the calibration to the spot yield curve is not possible.

The Heath-Jarrow-Morton approach (1992) solves this calibration problem
by taking the spot yield curve as the initial condition for the dynamics of the en-
tire yield curve. The dynamics of the yield curve is driven by a finite-dimensional
Broanian motion. In order to exclude all possible arbitrage opportunities, we
will assume the existence of a risk neutral probability measure, for all bonds
with all maturities. In the present context of a large financial market, This
condition leads to the so-called Heath-Jarrow-Morton restriction which states
that the dynamics of the yield curve is defined by the volatility process of zero-
coupon bonds together with a risk premia process which is common to all bonds
with all maturities.

Finally, a complete specification of an interest rates model requires the spec-
ification of the volatility of bonds. As in the context of finite securities markets,
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this is achieved by a calibration technique to the options markets. We therefore
provide an introduction to the main tools for the analysis of fixed income deriva-
tives. An important concept is the notion of forward neutral measure, which
turns the forward price processes with pre-specified maturity into martingales.
In the simplest models defined by deterministic volatilities of zero-coupon bonds,
this allows to express the prices of European options on zero-coupon bonds in
closed form by means of a Black-Scholes type of formula. The structure of im-
plied volatilities extracted from these prices provides a powerfull tool for the
calibration of the yield curve to spot interest rates and options.

13.1 Fixed income terminology

13.1.1 Zero-coupon bonds

Throughout this chapter, we will denote by Pt(T ) the price at time t of a pure
discount bond paying 1 at date T ≥ t. By definition, we have PT (T ) = 1.

In real financial markets, the prices Pt(Ti) are available, at each time t, for
various maturities Ti, i = 1, . . . , k. We shall see later that these data are directly
available for maturities shorter than one year, and can be extracted from bond
prices for larger maturities by the so-called boostrapping technique.

Since the integer k recording the number of maturities is typically large, the
models developed below allow for trading the zero-coupon bonds Pt(T ) for any
T > t. We are then in the context of infinitely many risky assets. This is a first
major difference with the theory of derivative securities on stocks developed in
previous chapters.

The second specificity is that the zero-coupon bond with price Pt(T ) today
will be a different asset at a later time u ∈ [t, T ] as its time to maturity is
shortened to T − u. This leads to important arbitrage restrictions.

Given the prices of all zero-coupon bonds, one can derive an un-ambiguous
price of any deterministic income stream: consider an asset which pays Fi at
each time ti, i = 1, . . . , n. Then the no-arbitrage price at time 0 of this asset is

n∑
i=1

Fi P0(ti).

If Fi is random, the above formula does not hold true, as the correlation between
Fi and interest rates enters into the picture.

Coupon-bearing bonds are quoted on financial markets. Their prices are
obviously related to the prices of zero-coupon bonds by

P0 =

n∑
i=1

c P0(Ti) + K P0(T ) =

n∑
i=1

ρK P0(Ti) + K P0(T )

where c = ρK is the coupon corresponding to the pre-assigned interest ρ > 0,
T1 ≤ . . . ≤ Tn ≤ T are the dates where the coupons are paid, and K is the
Principal (or face value) to be paid at the maturity T .
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The yield to maturity is defined as the (unique !) scalar Y0 such that

P0 =

n∑
i=1

ce−Y0Ti + Ke−Y0T

The bond is said to be priced

• at par if ρ = Y0,

• below par if ρ < Y0,

• above par if ρ > Y0.

Only short term zero-coupon bonds are quoted on the market (less than
one-year maturity). Zero-coupon bonds prices are inferred from coupon-bearing
bonds (or interest rates swaps introduced below).

On the US market, Government debt securities are called:

• Treasury bills (T-bills): zero-coupon bonds with maturity ≤ 1 year,

• Treasury notes (T-notes): coupon-bearing with maturity ≤ 10 years,

• Treasury bonds (T-bonds): coupon-bearing with maturity > 10 years.

A government bond is traded in terms of its price which is quoted in terms of
its face value.

13.1.2 Interest rates swaps

Let T0 > 0, δ > 0, Ti = T0 + iδ, i = 1 . . . , n, and denote by T := {T0 < T1 <
. . . < Tn} the set of such defined maturities. We denote by L (Tj−1) the LIBOR
rate at time Tj−1, i.e. the floating rate received at time Tj and set at time Tj−1

by reference to the price of the zero-coupon bond over that period:

PTj−1
(Tj) =

1

1 + δL (Tj−1)
.

The interest rate swap is defined by the comparison of the two following streams
of payments:

• the floating leg: consists of the payments δL (Tj−1) at each maturity Tj
for j = 1, . . . , n, and the unit payment (1) at the final maturity Tn,

• the fixed leg: consists of the payments δκ at each maturity Tj for j =
1, . . . , n, and the unit payment (1) at the final maturity Tn, for some
given constant rate κ.

The interest rate swap rate correponding to the set of maturities T is defined
as the constant rate κ which equates the value at time T0 of the above floating
and fixed leg. Direct calculation leads to the following expression of the swap
rate:

κT0
(δ, n) =

1− PT0
(Tn)

δ
∑n
j=1 PT0(Tj)

.

We leave the verification of this formula as an exercise.
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13.1.3 Yields from zero-coupon bonds

We define the yields corresponding to zero-coupon bonds by

Pt(T ) = e−(T−t)Rt(T ) , i.e. Rt(T ) :=
− lnPt(T )

T − t
.

The term structure of interest rates represents at each time t the curve T 7−→
Rt(T ) of yields on zero-coupon bonds for all maturities T > 0. It is also com-
monly called the yields curve.

In practice, there are many different term structures of interest rates, de-
pending on whether zero-coupon bonds are deduced

• from observed bonds prices

• from observed swaps prices

• from bonds issued by the government of some country, or by a firm with
some confidence on its liability (rating).

We conclude this section by the some stylized facts observed on real financial
markets data:
a- The term structure of interest rates exhibits different shapes: (almost) flat,
increasing (most frequently observed), decreasing, decreasing for short term
maturities then increasing, increasing for short term maturities then decreasing.
Examples of observed yield curves are displayed in Figure 13.1 below.
b- Interest rates are positive: we shall however make use of gaussian models
which offer more analytic solutions, although negative values are allowed by
such models (but with very small probability).
c- Interest rates exhibit mean reversion, i.e. oscillate around some average level
and tend to be attracted to it. See Figure 13.2 below.
d- Interest rates for various maturities are not perfectly correlated.
e- Short term interest rates are more volatile than long term interest rates. See
Figure 13.3

13.1.4 Forward Interest Rates

The forward rate Ft(T ) is the rate at which agents are willing, at date t, to
borrow or lend money over the period [T, T + h] for h ↘ 0. It can be de-
duced directly from the zero-coupon bonds {Pt(T ), T ≥ t} by the following
no-arbitrage argument:

• start from the initial capital Pt(T ), and lend it over the short periods
[t, t + h], [t + h, t + 2h], ..., at rates agreed now; for h ↘ 0, this strategy

yields the payoff Pt(T )e
∫ T
t
Ft(u)du.

• Since the alternative strategy of buying one discount bond costs Pt(T )
yields a certain unit payoff (1), it must be the case that

Pt(T ) = e−
∫ T
t
Ft(u)du .
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Figure 13.1: Various shapes of yield curves from real data

In terms of yields to maturity, the above relation can be rewritten in:

Rt(T ) =
1

T − t

∫ T

t

Ft(u)du .

So zero-coupon bonds and the corresponding yields can be defined from forward
rates. Conversely, forward rates can be obtained by

Ft(T ) =
∂

∂T
{(T − t)Rt(T )} and Ft(T ) =

−∂
∂T
{lnPt(T )}

13.1.5 Instantaneous interest rates

The instantaneous interest rate is given by

rt = Rt(t) = Ft(t) .

It does not correspond to any tradable asset, and is not directly observable.
However, assuming that the market admits a risk neutral measure Q, it follows
from the valuation theory developed in the previous chapter that:

Pt(T ) = EQ
[
e−
∫ T
t
rudu

∣∣∣Ft] .
Hence, given the dynamics of the instantaneous interest rates under Q, we may
deduce the prices of zero-coupon bonds.
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Figure 13.2: Mean reversion of interest rates

 

Figure 13.3: Volatility of interest rates is decreasing in terms of maturity

13.2 The Vasicek model

Consider the process ρ defined by:

ρt = ρ0 +mλ

∫ t

0

eλtdt+ σ

∫ t

0

eλtdBt

= ρ0 +m
(
eλt − 1

)
+ σ

∫ t

0

eλtdBt ,
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where B is a Brownian motion under the risk neutral measure Q. Observe that
the above stochastic integral is well-defined by Theorem 6.1. The Vasicek model
(1977) assumes that the the instantaneous interest rate is given by:

rt := ρte
−λt for t ≥ 0 .

An immediate application of Itô’s formula provides the following dynamics of
the interest rates process:

drt = λ(m− rt)dt+ σdBt .

this is the so-called Ornstein-Uhlenbeck process in the theory of stochastic pro-
cesses. Observe that this process satisfies the mean reversion property around
the level m with intensity λ:
• if rt < m, then the drift is positive, and the interest rate is pushed upward
with the intensity λ,
• if rt > m, then the drift is negative, and the interest rate is pushed downward
with the intensity λ.

The process {rt, t ≥ 0} is explicitly given by

rt = m+ (r0 −m) e−λt + σ

∫ t

0

e−λ(t−u)dBu . (13.1)

Using the Itô isometry, this shows that {rt, t ≥ 0} is a gaussian process with
mean

EQ[rt] = m+ (r0 −m) e−λt , t ≥ 0 ,

and covariance function

CovQ [rt, rs] = EQ
[∫ t

0

e−λ(t−u)dBu

∫ s

0

e−λ(s−u)dBu

]
=

σ2

2λ

(
e−λ|t−s| − e−λ(t+s)

)
, for s, t ≥ 0 .

In particular, this model allows for negative interest rates with positive (but
small) probability !

For fixed t > 0, the distribution under Q of rt is N
(
EQ[rt],VQ [rt]

)
, which

converges to the stationary distribution

N

(
m,

σ2

2λ

)
as t −→∞ .

13.3 Zero-coupon bonds prices

Recall that the price at time 0 of a zero-coupon bond with maturiyt T is given
by

P0(T ) = EQ
[
e−
∫ T
0
rtdt
]
.
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In order to develop the calculation of this expectation, we now provide the

distribution of the random variable
∫ T

0
rtdt by integrating (13.1):∫ T

0

rtdt = mT + (r0 −m)

∫ T

0

e−λtdt+ σ

∫ T

0

∫ t

0

e−λ(t−u)dBu (13.2)

= mT + (r0 −m)
1− e−λT

λ
+ σ

∫ T

0

∫ t

0

e−λ(t−u)dBu . (13.3)

In order to derive the distribution of the last double integral, we need to reverse
the order of integration. To do this, we introduce the process Yt :=

∫ t
0
eλudBu,

t ≥ 0, and we compute by Itô’s formula that

d
(
e−λtYt

)
= e−λtdYt − λe−λtYtdt = dBt − λe−λtYtdt .

Integrating between 0 and T and recalling the expression of Yt, this provides:∫ T

0

λe−λt
∫ t

0

eλudBudt = BT − e−λTYT =

∫ T

0

(
1− e−λ(T−t)

)
dBt .

Plugging this expression into (13.2), we obtain:∫ T

0

rtdt = mT + (r0 −m)λ(T ) + σ

∫ T

0

Λ(T − t)dBt

where

Λ(u) :=
1− e−λu

λ
.

This shows that∫ T

0

rtdt is distributed as N

(
EQ

[∫ T

0

rtdt

]
, VQ

[∫ T

0

rtdt

])
, (13.4)

where

EQ

[∫ T

0

rtdt

]
= mT + (r0 −m) Λ(T )

VQ

[∫ T

0

rtdt

]
= σ2

∫ T

0

Λ(u)2du .

Given this explicit distribution, we can now compute the prices at time zero of
the zero-coupon bonds:

P0(T ) = exp

[
−mT − (r0 −m) Λ(T ) +

σ2

2

∫ T

0

Λ(u)2du

]
for T ≥ 0 .
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Since the above Vasicek model is time-homogeneous, we can deduce the price
at any time t ≥ 0 of the zero-coupon bonds with all maturities:

Pt(T ) = exp

[
−m(T − t)− (rt −m) Λ(T − t) +

σ2

2

∫ T−t

0

Λ(u)2du

]
(13.5)

for T ≥ t ≥ 0. The term structure of interest rates is also immediately obtained:

Rt(T ) =
− lnPt(T )

T − t
= m+ (rt −m)

Λ(T − t)
T − t

− σ2

2(T − t)

∫ T

t

Λ(u)2du(13.6)

Exercise 13.1. Show that the joint distribution of the pair
(
rT ,

∫ T
0
rtdt

)
is

gaussian, and provide its characteristics in explicit form. Hint: compute its
Laplace transform.

We conclude this section by deducing from (13.5) the dynamics of the price
process of the zero-coupon bonds, by a direct application of Itô’s formula. An
important observation for this calculation is that the drift term in this differ-
ential representaion is already known to be dPt(T ) = Pt(T )rtdt+ · · · dBt, since
{Pt(T ), 0 ≤ t ≤ T} is the price of a security traded on the financial market.
Therefore, we only need to compute the volatility coefficient of the zero-coupon
price process. This is immediately obtained from (13.5):

dPt(T )

Pt(T )
= rtdt− σΛ(T − t)dBt , t < T .

13.4 Calibration to the spot yield curve and the
generalized Vasicek model

An important requirement that the interest rate must satisfy is to reproduce
the observed market data for the zero-coupon bond prices

B∗0(T ) , T ≥ 0 ,

or equivalently, the spot yield curve at time zero

R∗0(T ) , T ≥ 0 ,

or equivalently the spot forward rates curve

F ∗0 (T ) , T ≥ 0 ,

In practice, the prices of the zero-coupon bonds for some given maturities are
either observed (for maturities shorter than one year), or extracted from coupon-
bearing bonds or interest rates swaps; the yield curve is then constructed by an
interpollation method.
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Since the Vasicek model is completely determined by the choice of the four
parameters r0, λ, m, σ, there is no hope for the yield curve (13.6) predicted by
this model to match some given observe spot yield curve R∗0(T ) for every T ≥ 0.
In other words, the Vasicek model can not be calibrated to the spot yield curve.

Hull and White (1992) suggested a slight extension of the Vasicek model
which solves this calibration problem. In order to meet the infinite number
of constraints imposed by the calibration problem, they suggest to model the
instantaneous interest rates by

rt := ρte
−λt where ρt = ρ0 + λ

∫ t

0

m(t)eλtdt+ σ

∫ t

0

eλtdBt ,

which provides the dynamics of the instantaneous interest rates:

drt = λ (m(t)− rt) dt+ σdBt , (13.7)

Here, the keypoint is that m(.) is a deterministic function to be determined by
the calibration procedure. This extension increases the number of parameters
of the model, while keeping the main features of the model: mean reversion,
gaussian distribution, etc...

All the calculations of the previous section can be reproduced in this context.

1. We first explicitly integrate the stochastic differential equation (13.7):

rt = r0e
−λt + λ

∫ t

0

m(s)e−λ(t−s)ds+ σ

∫ t

0

e−λ(t−s)dBs.

Integrating this expression between t and T , and exchanging the order of
the integration as in the context of the Vasicek model, this provides:∫ T

0

rtdt = r0

∫ T

0

e−λtdt+ λ

∫ T

0

∫ t

0

m(s)e−λ(t−s)dsdt+ σ

∫ T

0

∫ t

0

e−λ(t−s)dBsdt

= r0Γ(T ) + λ

∫ T

0

m(s)Γ(T − s)ds+ σ

∫ T

0

Γ(T − s)dBs,

where Γ(u) :=
(
1− e−λu

)
/λ.

2. By the previous calculation, we deduce that:

P0(T ) = EQ
[
e−
∫ T
0
rtdt
]

= e−r0Γ(T )+λ
∫ T
0
m(t)Γ(T−t)dt+ 1

2σ
2
∫ T
0

Γ(T−t)2dt.

Since Γ(0) = 0, this shows that:

F0(T ) = r0Γ(T ) + λ

∫ T

0

m(t)Γ′(T − t)dt− 1

2
σ2

∫ T

0

(2ΓΓ′)(T − t)dt

= r0e
−λT + λ

∫ T

0

m(t)e−λ(T−t)dt− 1

2
σ2Γ(T )2.
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3. We now impose that F0(T ) = F ∗0 (T ) for all T ≥ 0, where F ∗0 is the
observed market forward rate curve. Then:∫ T

0

λeλtm(t)dt = r0 + eλT
[
F0(T ) +

1

2
σ2Γ(T )2

]
, T ≥ 0.

Then, the calibration to the spot forward curve is possible by chosing:

m(T ) =
e−λT

λ

∂

∂T

{
eλT
[
F ∗0 (T ) +

1

2
σ2Γ(T )2

]}
.

Of course, such a calibration must be updated at every time instant. This means
that the coefficient m(.) which is supposed to be deterministic, will typically be
fixed at every time instant by the calibration procedure. Hence, similarly to
the implied volatility parameter in the case of European options on stocks, the
Hull-White model is based on a gaussian model, but its practical implementation
violates its founding assumptions by allowing for a stochastic evolution of the
mean reversion level m(.).

13.5 Multiple Gaussian factors models

In the one factor Vasicek model and its Hull-White extension, all the yields-to-
maturity Rt(T ) are linear in the spot interest rate rt, see (13.6). An immediate
consequence of this model is that yields corresponding to different maturities
are perfectly correlated:

CorQ [Rt(T ), Rt(T
′)| Ft] = 1

which is not consistent with empirical observation. The purpose of this section is
to introduce a simple model which avoids this perfect correlation, while keeping
the analytical tractability: the two-factor Hull-White model.

Let X and Y be two factors driven by the centred Vasicek model:

dXt = −λXtdt+ σdBt

dYt = −θYtdt+ ξdB′t

Here λ, σ, µ, and ξ are given parameters, and B,B′ are two independent Brow-
nian motions under the risk neutral measure Q. The instantaneous interest rate
is modelled as an affine function of the factors X,Y :

rt = a(t) + Xt + Yt

This two-factor model is then defined by four parameters and one deterministic
function a(t) to be determined by calibration on the market data.

Exploiting the independence of the factors X and Y , we immediately com-
pute that

Pt(T ) = EQ
[
e−
∫ T
t
rudu

∣∣∣Ft]
= e−

∫ T
0
a(t)dtEQ

[
e−
∫ T
t
Xudu

∣∣∣Ft]EQ
[
e−
∫ T
t
Yudu

∣∣∣Ft]
= exp [−A(t, T )− Λ(T − t)Xt −Θ(T − t)Yt]
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where

A(t, T ) :=

∫ T

t

a(u)du− σ2

2

∫ T

t

Λ(u)2du− ξ2

2

∫ T

t

Θ(u)2du

and

Λ(u) :=
1− e−λu

λ
, Θ(u) :=

1− e−θu

θ
.

The latter explicit expression is derived by analogy with the previous computa-
tion in (13.5). The term structure of interest rates is now given by

Rt(T ) =
1

T − t
[A(t, T ) + Λ(T − t)Xt + Θ(T − t)Yt]

and the yields with different maturities are not perfectly correlated. Further
explicit calculation can be performed in order to calibrate this model to the
spot yield curve by fixing the function a(.). We leave this calculation as an
exercise for the reader.

We finally comment on the interpretation of the factors. It is usually de-
sirable to write the above model in terms of factors which can be identified on
the financial market. A possible parameterization is obtained by projecting the
model on the short and long rates. This is achieved as follows:

• By direct calculation, we find the expression of the short rate in terms of
the factors:

rt = λXt + θYt +AT (t, t) ,

where

AT (t, t) =
∂A

∂T

∣∣∣∣
T=t

= a(t)− σ2

2
Λ(t)2 − ξ2

2
Θ(t)2 .

• Fix some positive time-to-maturity τ̄ (say, 30 years), and let

`t = Rt(t+ τ̄) ,

represent the long rate at time t. In the above two-factors model, we have

`t =
1

τ̄
[A(t, t+ τ̄) + Λ(τ̄)Xt + Θ(τ̄)Yt]

• In order to express the factors in terms of the short and the long rates,
we now solve the linear system(

rt
`t

)
= D

(
Xt

Yt

)
+

(
AT (t, t)
A(t,t+τ̄)

τ̄

)
(13.8)
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where

D :=

(
λ θ

Λ(τ̄)
τ̄

Θ(τ̄)
τ̄

)
.

Assuming that λ 6= θ and λθ 6= 0, it follows that the matrix D is invertible,
and the above system allows to express the factors in terms of the short
and long rates:(

Xt

Yt

)
= D−1

[(
rt
`t

)
−
(

AT (t, t)
A(t, t+ τ̄)/τ

)]
. (13.9)

Finally, using the dynamics of the factor (X,Y ), it follows from (13.8) and
(13.9) that the dynamics of the short and long rates are given by:(

drt
d`t

)
= K

[
b(t, τ̄)−

(
rt
`t

)]
dt+D

(
σdBt
ξdB′t

)
where

K := D

(
λ 0
0 θ

)
D−1,

and

b(t, τ̄) := K−1

(
(At +AT )(t, t)
(AtT+ATT )(t,t+τ̄)

τ̄

)
+

(
AT (t, t)
A(t,t+τ̄)

τ̄

)
.

Notice from the above dynamics that the pair (rt, `t) is a two-dimensional
Hull-While model with mean reversion towrd b(t, t+ τ̄).

Exercise 13.2. Repeat the calculations of this section in the case where E[BtB
′
t] =

ρt, t ≥ 0, for some ρ ∈ (−1, 1).

13.6 Introduction to the Heath-Jarrow-Morton
model

13.6.1 Dynamics of the forward rates curve

These models were introduced in 1992 in order to overcome the two following
shortcomings of factor models:
• Factor models ignore completely the distribution under the statistical measure,
and take the existence of the risk neutral measure as granted. In particular, this
implies an inconsistency between these models and those built by economists
for a predictability purpose.
• The calibration of factor models to the spot yield curve is artificial. First,
the structure of the yield curve implied by the model has to be computed, then
the parameters of the model have to be fixed so as to match the observed yield
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curve. Furthermore, the calibration must be repeated at any instant in time
leading to an inconsistency of the model.

Heath-Jarrow-Morton suggest to directly model the dynamics of the observ-
able yield curve. Given the spot forward rate curve, F0(T ) for all maturities
0 ≤ T ≤ T̄ , the dynamics of the forward rate curve is defined by:

Ft(T ) = F0(T ) +

∫ t

0

αu(T )du+

∫ t

0

σu(T ) · dWu

= F0(T ) +

∫ t

0

αu(T )du+

n∑
i=1

∫ t

0

σiu(T )dW i
u

where W is a Brownian motion under the statistical measure P with values in
Rn, and {αt(T ), t ≤ T̄}, {σit(T ), t ≤ T̄}, i = 1, . . . , n, are adapted processes
for every fixed maturity T . Throughout this section, we will assume that all
stochastic integrals are well-defined, and we will ignore all technical conditions
needed for the subsequent analysis.

13.6.2 The Heath-Jarrow-Morton drift condition

The first important question is whether such a model allows for arbitrage. In-
deed, one may take advantage of the infinite number of assets available for
trading in order to build an arbitrage opportunity. To answer the question, we
shall derive the dynamics of the price process of zero-coupon bonds, and impose
the existence of a risk neutral measure for these tradable securities. This is a
sufficient condition for the absence of arbitrage opportunities, as the discounted
wealth process corresponding to any portfolio strategy would be turned into a
local martingale under the risk neutral measure, hence to a supermartingale
thanks to the finite credit line condition. The latter supermartingale property
garantees that no admissible portfolio of zero-coupon bonds would lead to an
arbitrage opportunity.

We first observe that

d

∫ T

t

Ft(u)du = −Ft(t)dt+

∫ T

t

dFt(u)du

= −rtdt+

∫ T

t

αt(u)dudt+

∫ T

t

σt(u)du · dWt

= −rtdt+ γt(T )dt+ Γt(T )dWt

where we introduced the adapted processes:

γt(T ) =

∫ T

t

αt(u)du and Γt(T ) =

∫ T

t

σt(u)du

Since Pt(T ) = e−
∫ T
t
Ft(u)du, it follows from Itô’s formula that

dPt(T ) = Pt(T )

[(
rt − γt(T ) +

1

2
|Γt(T )|2

)
dt− Γt(T ) · dWt

]
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We next impose that the zero-coupon bond price satisfies the risk neutral dy-
namics:

dPt(T )

Pt(T )
= rt dt − Γt(T ) · dBt

where

Bt := Wt +

∫ t

0

λudu , t ≥ 0 ,

defines a Brownian motion under some risk neutral measure Q, and the so-
called risk premium adapted Rn−valued process {λt, t ≥ 0} is independent of
the maturity variable T . This leads to the Heath-Jarrow-Morton drift condition:

Γt(T ) · λt = γt(T )− 1

2
|Γt(T )|2 . (13.10)

Recall that

∂γ

∂T
(t, T ) = α(t, T ) and

∂Γ

∂T
(t, T ) = σ(t, T ) .

Then, differentiating with respect to the maturity T , we see that

σt(T ) · λt = αt(T )− σt(T ) · Γt(T ) ,

and therefore

dFt(T ) = αt(T )dt+ σt(T ) · dWt = σt(T ) · Γt(T )dt+ σt(T ) · dBt

We finally derive the risk neutral dynamics of the instantaneous interest rate
under the HJM drift restriction (13.10). Recall that:

rT = FT (T ) = F0(T ) +

∫ T

0

αu(T )du+

∫ T

0

σu(T ) · dWu

Then:

drT =
∂

∂T
F0(T ) dT + αT (T ) dT +

∫ T

0

∂

∂T
αu(T )du dT

+

∫ T

0

∂

∂T
σu(T ) · dWu dT + σT (T ) · dWT .

Organizing the terms, we get:

drt = βt dt + σt(t) dWt

where

βt =
∂

∂T
F0(t) + αt(t) +

∫ t

0

∂

∂T
αu(t)du+

∫ t

0

∂

∂T
σu(t) · dWu
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or, in terms of the Q−Brownian motion:

drt = β0
t dt + σt(t) dBt

where

β0
t =

∂

∂T
F0(t) + σt(t)Γt(t) +

∫ t

0

∂

∂T
(σu(t) · Γu(t)) du+

∫ t

0

∂

∂T
σu(t) · dWu

=
∂

∂T
F0(t) +

∫ t

0

∂

∂T
(σu(t) · Γu(t)) du+

∫ t

0

∂

∂T
σu(t) · dWu .

13.6.3 The Ho-Lee model

The Ho and Lee model corresponds to the one factor case (n = 1) with a
constant volatility of the forward rate:

dFt(T ) = αt(T )dt+ σdWt = σ2(T − t)dt+ σdBt

The dynamics of the zero-coupon bond price is given by:

dPt(T )

Pt(T )
= rtdt− σ(T − t)dBt with rt = F0(t) +

1

2
σ2t+ σBt

By the dynamics of the forward rates, we see that the only possible movements
in the yield curve are parallel shifts, i.e. all rates along the yield curve fluctuate
in the same way.

13.6.4 The Hull-White model

The Hull and White model corresponds to one-factor case (n = 1) with the
following dynamics of the forward rates

dFt(T ) = σ2e−λ(T−t) 1− e−λ(T−t)

k
dt+ σe−λ(T−t)dBt

The dynamics of the zero-coupon bond price is given by:

dPt(T )

Pt(T )
= rtdt−

σ

λ

(
1− e−λ(T−t)

)
dBt

with

rt = a(t) +

∫ t

0

σe−λ(t−u)dBu ,

and

a(t) := F0(t) +
σ2

2λ2

(
e−2λt − 1

)
+

1− e−λt

λ
.

This implies that the dynamics of the short rate are:

drt = λ (m(t)− rt) dt+ σdBt where λa(t) = λm(t) +m′(t)
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13.7 The forward neutral measure

Let T0 > 0 be some fixed maturity. The T0−forward neutral measure QT0 is
defined by the density with respect to the risk neutral measure Q

dQT0

dQ
=

e
−

∫ T0

0

rtdt

P0(T0)
,

and will be shown in the next section to be a powerful tool for the calculation
of prices of derivative securities in a stochastic interest rates framework.

Proposition 13.3. Let M = {Mt, 0 ≤ t ≤ T0} be an F−adapted process, and
assume that M̃ is a Q−martingale. Then the process

φt :=
Mt

Pt(T0)
, 0 ≤ t ≤ T0 ,

is a martingale under the T0−forward neutral measure QT0 .

Proof. We first verify that φ is QT0−integrable. Indeed:

EQT0
[|φt|] = P0(T0)−1EQ

[
e−
∫ T0
0 rudu

|Mt|
Pt(T0)

]
= P0(T0)−1EQ

[
e−
∫ t
0
rudu|Mt|

]
= P0(T0)−1EQ

[
|M̃t|

]
< ∞ ,

where the second equality follows from the tower property of conditional expec-
tations. We next compute for 0 ≤ s < t that

EQT0
[φt|Fs] =

EQ
[
e−
∫ T0
0 rudu Mt

Pt(T0)

∣∣∣Fs]
EQ
[
e−
∫ T0
0 rudu

∣∣∣Fs]
=

EQ
[
e−
∫ T0
s

rudu Mt

Pt(T0)

∣∣∣Fs]
EQ
[
e−
∫ T0
s

rudu
∣∣∣Fs]

=
EQ
[
e−
∫ t
s
ruduMt

∣∣∣Fs]
EQ
[
e−
∫ T0
s

rudu
∣∣∣Fs]

=
EQ
[
M̃t

∣∣∣Fs]
Ps(T0)

= φs ,

where we used the Bayes rule for the first equality and the tower property of
conditional expectation in the third equality. ♦

The above result has an important financial interpretation. Let S be the
price process of any tradable security. Then, the no-arbitrage condition ensure
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that M = S̃ is a martingale under some risk neutral measure Q. By definition
φ is the price process of the T0−forward contract on the security S. Hence
Proposition 13.3 states that

The price process of the T0−forward contract on any tradable security
is a martingale under the T0−forward measure QT0 .

We continue our discussion of the T0−forward measure in the context of the
gaussian Heath-Jarrow-Morton model for the zero-coupon bond prices:

dPt(T )

Pt(T )
= rtdt− Λ(T − t)σdBt where Λ(u) =

1− e−λ(u)

u
,

which corresponds to the solution

Pt(T ) = P0(T )e
∫ t
0 (ru− 1

2σ
2Λ(T−u)2)du−

∫ t
0
σΛ(T−u)dBu , 0 ≤ t ≤ T .(13.11)

Recall that this model corresponds also to the Hull-White extension of the
Vasicek model, up to the calibration to the spot yield curve. Since PT (T ) = 1,
it follows from (13.11) that

dQT0

dQ
=

e−
∫ T0
0 rudu

P0(T0)
= exp

(
−1

2

∫ T0

0

σ2Λ(T0 − u)2du−
∫ T0

0

σΛ(T0 − u)dBu

)
,

and by the Cameron-Martin formula, we deduce that the process

WT0
t := Bt +

∫ t

0

σΛ(T0 − u)du , 0 ≤ t ≤ T0 , (13.12)

is a Brownian motion under the T 0−forward neutral measure QT0 .

13.8 Derivatives pricing under stochastic inter-
est rates and volatility calibration

13.8.1 European options on zero-coupon bonds

The objective of this section is to derive a closed formula for the price of a
European call option on a zero-coupon bond defined by the payoff at time T0 >
0:

G := (PT0
(T )−K)

+
for some T ≥ T0

in the context of the above gaussian Heath-Jarrow-Morton model.
We first show how the use of the forward measure leads to a substantial

reduction of the problem. By definition of the T0−forward neutral measure, the
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no-arbitrage price at time zero of the European call option defined by the above
payoff is given by

p0(G) = EQ
[
e−
∫ T0
0 rtdt (PT0(T )−K)

+
]

= P0(T0)EQT0
[
(PT0(T )−K)

+
]
.

Notice that, while firt expectation requires the knowledge of the joint distri-

bution of the pair
(
e−
∫ T0
0 rtdt, PT0

(T )
)

under Q, the second expectation only

requires the distribution of PT0
(T ) under QT0 . But, in view of Proposition

13.3, an additional simplification can be gained by passing to the price of the
T0−forward contract on the zero-coupon bond with maturity T :

φt =
Pt(T )

Pt(T0)
, 0 ≤ t ≤ T0 .

Since PT0
(T0) = 1, it follows that φT0

= PT0
(T ), and therefore:

p0(G) = P0(T0)EQT0
[
(φT0

−K)
+
]
.

Since the process φ is a QT0−martingale by Proposition 13.3, we only need to
compute the volatility of this process. An immediate calculation by means of
Itô’s formula shows that

dφt
φt

= σ (Λ(T − t)− Λ(T0 − t)) dWT0
t .

By analogy with the previously derived Black-Scholes formula with deterministic
coefficients (9.8), this provides:

p0(G) = P0(T0) [φ0N (d+(φ0,K, v(T0)))−KN (d−(φ0,K, v(T0)))]

= P0(T )N
(
d+(P0(T ), K̃, v(T0))

)
− K̃N

(
d−(P0(T ), K̃, v(T0))

)
,

(13.13)
where

K̃ := KP0(T0) , v(T0) := σ2

∫ T0

0

(Λ(T − t)− Λ(T0 − t))2
dt . (13.14)

Given this simple formula for the prices of options on zero-coupon bonds, one
can fix the parameters σ and λ so as to obtain the best fit to the observed
options prices or, equivalently, the corresponding implied volatilities. Of course
with only two free parameters (σ and λ) there is no hope to perfectly calibrate
the model to the whole strucrue of the implied volatility surface. However, this
can be done by a further extension of this model.

13.8.2 The Black-Scholes formula under stochastic inter-
est rates

In this section, we provide an extension of the Black-Scholes formula for the
price of a European call option defined by the payoff at some maturity T > 0:

G := (ST −K)+ for some exercise price K > 0 ,
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to the context of a stochastic interest rate. Namely, the underlying asset price
process is defined by

St = S0e
∫ T
0 (ru− 1

2 |Σ(u)|2)du+
∫ T
0

Σ(u)·dBu , t ≥ 0 ,

where B is a Brownian motion in R2 under the risk neutral measure Q, and
Σ = (Σ1,Σ2) : R+ −→ R is a deterministic C1 function. The interest rates
process is defined by the Heath-Jarrow-Morton model for the prices of zero-
coupon bonds:

Pt(T ) = P0(T )e
∫ T
0 (ru− 1

2σ
2Λ(T−u)2)du−

∫ T
0
σΛ(T−u)dW 01

u ,

where

Λ(t) :=
1− e−λt

λ
,

for some parameters σ, λ > 0. This models allows for a possible correlation
between the dynamics of the underlying asset and the zero-coupon bonds.

Using the concept of formard measure, we re-write the no-arbitrage price of
the European call option in:

p0(G) = EQ
[
e−
∫ T
0
rtdt (ST −K)

+
]

= P0(T )EQT
[
(ST −K)

+
]

= P0(T )EQT
[
(φT −K)

+
]
,

where φt := Pt(T )−1St is the price of the T−forward contract on the security S.
By Proposition 13.3, the process {φt, t ≥ 0} is a QT−martingale measure, so its
dynamics has zero drift when expressed in terms of the QT−Brownian motion
WT . We then calculate the volatility component in its dynamics by means of
Itô’s formula, and we obtain:

dφt
φt

= (Σ1(t) + σΛ(T − t)) dWT 1

+ Σ2(t)dWT 2

.

Hence, under the T−forward neutral measure QT , the process φ follows a time-
dependent Black-Scholes model with zero interest rate and time dependent
squared volatility (Σ1(t) + σΛ(T − t))2

+ Σ2(t)2. We can now take advantage
of the calculation performed previously in (9.8), and conclude that

p0(G) = P0(T ) [φ0 N (d+(φ0,K, v(T )))−K N (d−(φ0,K, v(T )))]

= S0 N
(
d+(S0, K̃, v(T ))

)
− K̃ N

(
d−(S0, K̃, v(T ))

)
,

where

K̃ := KP0(T ) and v(T ) :=

∫ T

0

(
(Σ1(t) + σΛ(T − t))2

+ Σ2(t)2
)
dt .



Chapter 14

Introduction to financial
risk management

The publication by Harry Markowitz in 1953 of his dissertation on the theory
of risk and return, has led to the understanding that financial institutions take
risks as part of their everyday activities, and that these risks must therefore
be measured and actively managed. The importance of risk managers within
banks and investment funds has been growing ever since, and now the chief risk
officer (CRO) is often a member of the top management committee. The job
of a risk manager now requires sophisticated technical skills, and risk control
departments of major banks employ many mathematicians and engineers.

The role of risk management in a financial institution has several important
aspects. The first objective is to identify the risk exposures, that is the different
types of risk (see below) which affect the company. These exposures should then
be quantified, and measured. It is generally not possible to quantify the risk
exposure with a single number, or even associate a probability distribution to
it, since some uncertain outcomes cannot be assigned a probability in a reliable
manner. Modern risk management usually combines a probabilistic approach
(e.g. Value at Risk) with worst-case scenario analysis. These quantitative and
qualitative assessments of risk exposures form the basis of reports to senior man-
agement, which must convey the global picture in a concise and non-technical
way.

More importantly, the risk management must then design a risk mitigation
strategy, that is, decide, taking into account the global constraints imposed by
the senior management, which risk exposures are deemed acceptable, and which
must be reduced, either by hedges or by limiting the size of the positions. In
a trading environment, this strategy will result in precise exposure limits for
each trading desk, in terms of the Value at Risk, the sensitivities to different
risk factors, and the notional amounts for different products. For acceptable
exposures, provisions will be made, in order to ensure the solvency of the bank
if the corresponding risky scenarios are realized.
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Finally, it is the role of risk management to monitor the implementation and
performance of the chosen risk mitigation strategy, by validating the models and
algorithms used by the front office for pricing and computing hedge ratios, and
by double-checking various parameter estimates using independent data sources.
This part in particular requires extensive technical skills.

With the globalization of the financial system, the bank risk management
is increasingly becoming an international affair, since, as we have recently wit-
nessed, the bankruptcy of a single bank or even a hedge fund can trigger financial
turmoil around the world and bring the entire financial system to the edge of
a collapse. This was the main reason for introducing the successive Basel Cap-
ital Accords, which define the best practices for risk management of financial
institutions, determine the interaction between the risk management and the
financial regulatory authorities and formalize the computation of the regulatory
capital, a liquidity reserve designed to ensure the solvency of a bank under un-
favorable risk scenarios. These agreements will be discussed in more detail in
the last section of this chapter.

14.1 Classification of risk exposures

The different risk exposures faced by a bank are usually categorized into several
major classes. Of course this classification is somewhat arbitrary: some risk
types are difficult to assign a category and others may well belong to several
categories. Still, some classification is important since it gives a better idea
about the scope of possible risk sources, which is important for effective risk
managemet.

14.1.1 Market risk

Market risk is probably the best studied risk type, which does not mean that it
is always the easiest to quantify. It refers to the risk associated with movements
of market prices of securities and rates, such as interest rate or exchange rate.

Different types of market risk are naturally classified by product class: inter-
est rate risk, where one distinguishes the risk of overall movements of interest
rates and the risk of the change in the shape of the yield curve; equity price
risk, with a distinction between global market risk and idiosyncratic risk of in-
dividual stocks; foreign exchange risk etc. Many products will be sensitive to
several kinds of market risk at the same time.

One can also distinguish the risk associated to the underlying prices and
rates themselves, and the risk associated to other quantities which influence asset
prices, such as volatility, implied volatility smile, correlation, etc. If the volatility
risk is taken into accout by the modeling framework, such as, in a stochastic
volatility model, it is best viewed as market risk, however if it is ignored by
the model, such as in the Black-Scholes framework, then it will contribute to
model risk. Note that volatility and correlation are initially interpreted as model
parameters or non-observable risk factors, however, nowadays these parameters
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may be directly observable and interpretable via the quoted market prices of
volatility / correlation swaps and the implied volatilities of vanilla options.

Tail risk Yet another type of market risk, the tail risk, or gap risk, is associ-
ated to large sudden moves (gaps) in asset prices, and is related to the fat tails
of return distributions. A distribution is said to have fat tails if it assigns to very
large or very small outcomes higher probability than the Gaussian distribution
with the same variance. For a Gaussian random variable, the probability of a
downside move greater than 3 standard deviations is 3 × 10−7 but such moves
do happen in practice, causing painful losses to financial institutions. These
deviations from Gaussianity can be quantified using the skewness s(X) and the
kurtosis κ(X):

s(X) =
E(X − EX)3

(VarX)3/2
, κ(X) =

E(X − EX)4

(VarX)2
.

The skewness measures the asymmetry of a distribution and the kurtosis mea-
sures the ’fatness of tails’. For a Gaussian random variable X, s(X) = 0 and
κ(X) = 3, while for stock returns typically s(X) < 0 and κ(X) > 3. In a recent
study, κ was found to be close to 16 for 5-minute returns of S&P index futures.

Assume that conditionnally on the value of a random variable V , X is cen-
tered Guassian with variance f(V ). Jensen’s inequality then yields

κ(X) =
E[X4]

E[X2]2
=

3E[f2(V )]

E[f(V )]2
> 3.

Therefore, all conditionnally Gaussian models such as GARCH and stochastic
volatility, produce fat-tailed distributions.

The tail risk is related to correlation risk, since large downward moves are
usually more strongly correlated than small regular movements: during a sys-
temic crisis all stocks fall together.

Managing the tail risk In a static framework (one-period model), the tail
risk can be accounted for using fat-tailed distributions (Pareto). In a dynamic
approach this is usually accomplished by adding stochastic volatility and/or
jumps to the model, e.g. in the Merton model

dSt
St−

= µdt+ σtdWt + dJt,

where Jt is the process of log-normal jumps.

To take into account even more extreme events, to which it is difficult to
assign a probability, one can add stress scenarios to models by using extreme
values of volatility / correlations or taking historical data from crisis periods.
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Brazil BBB- Japan AA
China A+ Russia BBB
France AAA Tunisia BBB
India BBB- United States AAA

Table 14.1: Examples of credit ratings (source: Standard & Poor’s, data from
November 2009).

14.1.2 Credit risk

Credit risk is the risk that a default, or a change in credit quality of an entity
(individual, company, or a sovereign country) will negative affect the value of the
bank’s portfolio. The portfolio may contain bonds or other products issued by
that entity, or credit derivative products linked to that entity. One distinguishes
the default risk from the spread1 risk, i.e., risk of the depreciation of bonds due
to a deterioration of the creditworthiness of their issuer, without default.

Credit rating The credit quality is measured by the credit rating : an evalu-
ation of the creditworthiness of the borrower computed internally by the bank
or externally by a rating agency. The credit ratings for sovereign countries
and large corporations are computed by international rating agencies (the best
known ones are Standard & Poor’s, Moody’s and Fitch ratings) and have letter
designations. The rating scale of Standard and Poor’s is AAA, AA, A, BBB,
BB, B, CCC, CC, C, D, where AAA is the best possible rating and D corre-
sponds to default. Ratings from AA to CCC may be further refined by the
addition of a plus (+) or minus (-). Bonds with ratings above and including
BBB- are considered ’investment grade’ or suitable for long-term investment,
whereas all others are considered ’speculative’. Table 14.1 reproduces the S&P
credit ratings for several countries as of November 2009.

Credit derivatives The growing desire of the banks and other financial in-
stitutions to remove credit risk from their books to reduce regulatory capital,
and more generally, to transfer credit risk to investors willing to bear it, has led
to the appearance, in the late 90s of several classes of credit derivative products.
The most widely used ones are Credit Default Swaps (CDS) and Collateralized
Debt Obligations (CDO). The structure, the complexity and the role of these
two types of instruments is entirely different. The credit default swap is de-
signed to offer protection against the default of a single entity (let us call it
Risky Inc.). The buyer of the protection (and the buyer of the CDS) makes
regular premium payments to the seller of the CDS until the default of Risky
Inc. or the maturity of the CDS. In exchange, when and if Risky Inc. defaults,
the seller of the CDS makes a one-time payment to the seller to cover the losses
from the default.

1The credit spread of an entity is defined as the difference between the yield to maturity
of the bonds issued by the entity and the yield to maturity of the risk-free sovereign bonds.
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The CDO is designed to transfer credit risk from the books of a bank to the
investors looking for extra premium. Suppose that a bank owns a portfolio of
defaultable loans (P). To reduce the regulatory capital charge, the bank creates a
separate company called Special Purpose Vehicle (SPV), and sells the portfolio
P to this company. The company, in turn, issues bonds (CDOs) which are
then sold to investors. This process of converting illiquid loans into more liquid
securities is known as securitization. The bonds issued by the SPV are divided
onto several categories, or tranches, which are reimbursed in different order from
the cash flows of the inital portfolio P. The bonds from the Senior tranche are
reimbursed first, followed by Mezzanine, Junior and Equity tranches (in this
order). The senior tranche thus (in theory) has a much lower default risk than
the bonds in the original portfolio P, since it is only affected by defaults in P after
all other tranches are destroyed. The tranches of a CDO are evaluated separately
by rating agencies, and before the start of the 2008 subprime crisis, senior
tranches received the highest ratings, similar to the bonds of the most financially
solid corporations and sovereign states. This explained the spectacular growth
of the CDO market with the global notional of CDOs issued in 2007 totalling
to almost 500 billion US dollars. However, senior CDO tranches are much more
sensitive to systemic risk and tend to have lower recovery rates2 than corporate
bonds in the same rating class. As a typical example, consider the situation
when the portfolio P mainly consists of residential mortgages. If the defaults
are due to individual circumstances of each borrower, the senior tranche will
be protected by diversification effects. However, in case of a global downturn
of housing prices, such as the one that happened in the US in 2007–2008, a
large proportion of borrowers may default, leading to a severe depreciation of
the senior tranche.

Counterparty risk The counterparty risk is associated to a default or a
downgrade of a counterparty as opposed to the entity underlying a credit deriva-
tive product which may not necessarily be the counterparty. Consider a situation
where a bank B holds bonds issued by company C, partially protected with a
credit default swap issued by another bank A. In this case, the portfolio of B is
sensitive not only to the credit quality of C but also to the credit quality of A,
since in case of a default of C, A may not be able to meet its obligations on the
CDS bought by B.

14.1.3 Liquidity risk

Liquidity risk may refer to asset liquidity risk, that is, the risk of not being able
to liquidate the assets at the prevailing market price, because of an insufficient
depth of the market, and funding liquidity risk, that is, the risk of not being
able to raise capital for current operations. The standard practice of marking to
market a portfolio of derivatives refers to determining the price of this portfolio

2The recovery rate of a bond is the proportion of the notional recovered by the lender after
default.
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for accounting purposes using the prevailing market price of its components.
However, even for relatively liquid markets, where many buyers and sellers are
present, and there is a well-defined market price, the number of buy orders
close to this price is relatively small. To liquidate a large number of assets the
seller will need to dig deep into the order book3, obtaining therefore a much
lower average price than if he only wanted to sell a single share (see fig. 14.1).
This type of risk is even more important for illiquid assets, where the ballance-
sheet price is computed using an internal model (marking to model). The model
price may be very far from the actual price which can be obtained in the market,
especially in the periods of high volatility. This is also related to the issue of
model risk discussed below. The 2008 financial crisis started essentially as an
asset liquidity crisis, when the market for CDOs suddenly shrunk, leading to
massive depreciation of these products in the banks’ ballance sheets. The fear of
imminent default of major banks, created by these massive depreciations, made
it difficult for them to raise money and created a funding liquidity crisis.

14.1.4 Operational risk

Operational risk refers to losses resulting from inadequate or failed internal pro-
cesses, people and systems or from external events. This includes deliberate
fraud by employees, several spectacular examples of which we have witnessed in
the recent years. The Basel II agreement provides a framework for measuring
operational risk and making capital provisions for it, but the implementation of
these quantitative approaches faces major problems due to the lack of historical
data and extreme heavy-tailedness of some types of operational risk (when a sin-
gle event may destroy the entire institution). No provisions for operational risk
can be substituted for strict and frequent internal controls, up-to-date computer
security and expert judgement.

14.1.5 Model risk

Model risk is especially important for determining the prices of complex deriva-
tive products which are not readily quoted in the market. Consider a simple
European call option. Even if it is not quoted, its price in the balance sheet
may be determined using the Black-Scholes formula. This is the basis of a
widely used technique known as marking to model, as opposed to marking to
market. However, the validity of this method is conditionned by the validity of
the Black-Scholes model assumptions, such as, for example, constant volatility.
If the volatility changes, the price of the option will also change. More gener-
ally, model risk can be caused by an inadequate choice of the pricing model,
parameter errors (due to statistical estimation errors or nonstationary param-
eters) and inadequate implementation (not necessarily programming bugs but
perhaps an unstable algorithm which amplifies data errors). While the effect
of parameter estimation errors may be quantified by varying the parameters

3The order book contains all outstanding limit orders at a given time.
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within confidence bounds, and inadequate implementations can be singled out
by scrupulous expert analysis, the first type of model risk (inadequate models)
is much more difficult to analyze and quantify. The financial environment is an
extremely complex system, and no single model can be used to price all prod-
ucts in a bank’s portfolio. Therefore, a specific model is usually chosen for each
class of products, and it is extremely important to choose the model which takes
into account the risk factors, relevant for a given product class. For example:
stochastic volatility may not be really necessary for pricing short-dated Euro-
pean options, but it is essential for long-dated forward start options or cliquets.
The selected model will then be fitted to a set of calibration instruments, and
here it is essential on one hand that the model is rich enough to match the
prices of all instruments in the calibration set (for instance it is impossible to
calibrate the constant volatility Black-Scholes model to the entire smile), and on
the other hand that the model parameters are identifiable in a unique and stable
way from the prices of calibration instruments (it is impossible to calibrate a
complex stochastic volatility model using a single option price).

Finally, the calibrated model is used for pricing the non-quoted exotic prod-
ucts. The final price is always explained to some extent by the model used and
to some extent by the calibration instruments. Ideally, it should be completely
determined by the calibration instruments: we want every model, fitted to the
prices of calibration instruments, to yield more or less the same price of the
exotic. If this is not the case, then one is speaking of model risk. To have an
idea of this risk, one can therefore price the exotic option with a set of different
models calibrated to the same instruments. See [38] for an example of possible
bounds obtained that way and [10] for more details on model risk.

The notion of model risk is closely linked to model validation: one of the
roles of a risk manager in a bank which consists in scrutinizing and determining
validity limits for models used by the front office. The above arguments show
that, for sensible results, models must be validated in conjunction with the set
of calibration instruments that will be used to fit the model, and with the class
of products which the model will be used to price.

Other risk types which we do not discuss here due to the lack of space include
legal and regulatory risk, business risk, strategic risk and reputation risk [13].

14.2 Risk exposures and risk limits: sensitivity
approach to risk management

A traditional way to control the risk of a trading desk is to identify the risk
factors relevant for this desk and impose limits on the sensitivities to these
risk factors. The sensitivity approach is an important element of the risk man-
ager’s toolbox, and it is therefore important to understand the strengths and
weaknesses of this methodology.

The sensitivity is defined as the variation of the price of a financial product
which corresponds to a small change in the value of a given risk factor, when
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Figure 14.1: Illustration of asset liquidity risk: a sell order for a single share
would be executed at a price of 10 euros, while a market sell order for 20 shares
would be executed at a weighted average price of 8.05 euros per share.

all other risk factors are kept constant. In mathematical terms, sensitivity is
very close to a partial derivative. For example, the standard measure of the
interest rate risk of a bond is called DV01, that is, the dollar value of one basis
point, or, in other words, the change of the value of a bond corresponding to
a 1-bp decrease of its yield to maturity. For an option, whose price will be
denoted by C, the basic sensitivities are the delta ∂C

∂S , the vega ∂C
∂σ , where σ is

the volatility, the theta ∂C
∂t and the rho ∂C

∂r , where r is the interest rate of the

zero-coupon bond with the same maturity as the option. The gamma ∂2C
∂S2 is

the price sensitivity of delta, and can be also used to quantify the sensitivity of
the option price itself to larger price moves (as the second term in the Taylor
expansion).

An option trading desk typically has a limit on its delta and vega exposure
(for each underlying), and other sensitivities are also monitored. The vega is
typically interpreted as the exposure to Black-Scholes implied volatility, and
since the implied volatility depends on the strike and maturity of the option,
the sensitivity to the implied volatility surface is a natural extension. This is
typically taken into account by bucketing the smile, that is computing sensi-
tivities to perturbations of specific sections of the smile (for a certain range of
strikes and maturities). The same approach is usually applied to compute the
sensitivities to the yield curve.

When working with sensitivities it is important to understand the following
features and limitations of this approach:

• Sensitivities do not provide information about the actual risk faced by a
bank, but only relate changes in the values of derivative products to the
changes of basic risk factors.

• Sensitivities cannot be aggregated across different underlyings and across
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different types of sensitivities (delta plus gamma): they are therefore local
measures and do not provide global information about the entire portfolio
of a bank.

• Sensitivities are meaningful only for small changes of risk factors: they
do not provide accurate information about the reaction of the portfolio to
larger moves (jumps).

• The notion of a sensitivity to a given risk factor is associated to a very
specific scenario of market evolution, when only this risk factor changes
while others are kept constant. The relevance of a particular sensitivity
depends on whether this specific scenario is plausible. As an example, con-
sider the delta of an option, which is often defined as the partial derivative
of the Black-Scholes price of this option computed using its actual implied
volatility: ∆imp

t (T,K) = ∂BS
∂s (St, σ

imp,K, T ) (see chapter 8). The implicit
assumption is that when the underlying changes, the implied volatility
of an option with a given strike remains constant. This is the so-called
sticky strike behavior, and it is usually not observed in the markets, which
tend to have the sticky moneyness behavior, where the implied volatility
of an option with a given moneyness level m = K/St is close to constant:
σimp = σimp(K/St). Therefore, the true sensitivity of the option price to
changes in the underlying is

∆t =
d

ds
BS(St, σ

imp(K/St),K, T )

= ∆imp
t (T,K)− K

S2
t

∂BS(St, σ
imp,K, T )

∂σ

dσimp

dm
.

In equity markets, the implied volatility is usually decreasing as function
of the moneyness value (skew effect), and the Black-Scholes delta there-
fore undervalues the sensitivity of option price to the movements of the
underlying.

When computing the sensitivities to the implied volatility smile or the
yield curve, the “bucketing” approach assumes that one small section of
the smile/curve moves while the other ones remain constant, which is
clearly unrealistic. A more satisfactory approach is to identify possible
orthogonal deformation patterns, such as level changes, twists, convex-
ity changes, from historical data (via principal component analysis), and
compute sensitivities to such realistic deformations.

14.3 Value at Risk and the global approach

The need to define a global measure of the amount of capital that the bank
is actually risking, has led to the appearance of the Value at Risk (VaR). The
VaR belongs to the class of Monetary risk measures which quantify the risk as a
dollar amount and can therefore be interpreted as regulatory capital required to
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Figure 14.2: Definition of the Value at Risk

cover the risk. The VaR of a position is associated to a time horizon T (usually
1 or 10 days) and confidence level α (usually 99% or 95%), and is defined as the
opposite of the (1− α)-quantile of the profit and loss of this position in T days
(see Fig. 14.2):

VaRα(X) := − inf{x ∈ R : P [X ≤ x] ≥ 1− α}.

The advantages of the VaR include its simplicity (the risk is summarized in
a single number, whose meaning is easy to explain to people without technical
knowledge) and the fact that it is a portfolio risk measure, that is, it summarizes
all risk factors affecting a large portfolio, taking into account correlations and
dependencies.

Computing Value at Risk The first step in implementing a VaR compu-
tation engine is to identify a reasonable number of risk factors, which span
sufficiently well the universe of risks faced by the bank. This is mainly done to
reduce the dimension of the problem compared to the total number of products
in the portfolio. For example, for a bond portfolio on the same yield curve, three
risk factors (short-term, medium-term and long-term yield) may be sufficient.
The next step is to identify the dependency of each product in the portfolio on
the different risk factors (via a pricing model). Finally, scenarios or probabil-
ity laws for the evolution of risk factors are identified and a specific method is
applied to compute the VaR.

In local valuation methods, the portfolio value and its sensitivities are com-
puted at the current values of risk factors only. In full valuation methods, all
products in the portfolio must be repriced with perturbed values of risk factors.
A particularly simple method is the Gaussian or normal VaR, where the risk fac-
tors are assumed Gaussian, which makes it possible to compute the VaR without
simulation. In historical VaR method, the historically observed changes of risk
factors are used, and in Monte Carlo VaR method the variations of risk factors
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are sampled from a fully calibrated model and the VaR value is estimated by
Monte Carlo.

We now discuss the three most popular methods for computing VaR using
the example of a portfolio of N options written on d different underlyings with
values S1

t , . . . , S
d
t . We denote by P it the price of i-th option at time t: P it =

Pi(t, S
1
t , . . . , S

d
t ). Let wi be the quantity of i-th option in the portfolio, so that

the portfolio value is Vt =
∑
i wiP

i
t .

• The delta-normal approach only takes into accout the first-order sensitiv-
ities (deltas) of option prices, and assumes that the daily increments of
risk factors follow a normal distribution: ∆St ∼ N(0,Ωt). The means are
usually ignored in this approach, and the covariance matrix is estimated
from the historical time series using a moving window. The variation of
the portfolio is approximated by

∆V ≈
∑
i

∑
j

wi
∂P i

∂Sj
∆Sj .

Therefore, the variance of ∆V is given by

Var [∆V ] ≈
∑
ijkl

wi
∂P i

∂Sj
wk

∂P k

∂Sl
Ωjl,

and the daily Value at Risk for a given confidence level α may be estimated
via

VaRα = N(α)
√
Var [∆V ],

where N is the standard normal distribution function.

This method is extremely fast, but not so popular in practice due to its
imporant drawbacks: it may be very inaccurate for non-linear derivatives
and does not allow for fat tails in the distributions of risk factors.

• The historical approach is a full valuation method which relies on historical
data for obtaining risk factor scenarios. Most often, one uses one year of
daily increments of risk factor values: (∆Sji )

j=1...d
i=1...250. These increments

are used to obtain 250 possible values for the portfolio price on the next
day:

∆Vi =

N∑
k=1

wk{Pk(t+ 1, S1
t + ∆S1

i , . . . , S
d
t + ∆Sdi )− Pk(t, S1

t , . . . , S
d
t )}

The Value at Risk is then estimated as the corresponding empirical quan-
tile of ∆V .

This method preserves the dependency structure and the distributional
properties of the data, and applies to some extent to nonlinear products,
however it also has a number of drawbacks. All intertemporal dependen-
cies which may be present in the data, such as stochastic volatility, are
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destroyed. Some dependency on the current volatility may be preserved by
taking a relatively short time window, but in this case important scenar-
ios which have occured in not-so-recent past may be lost. Also, important
no-arbitrage relations between risk factors (such as, between stock and
option prices) may be violated.

• The Monte Carlo VaR, used by most major banks, is the most flexible
approach, but it is also the most time consuming. It is a full valuation
method where the increments ∆Si are simulated using a full-fledged sta-
tistical model, which may include fat tails, intertemporal dependencies
such as stochastic volatility, correlations or copula-based cross-sectional
dependencies, and so on. The Monte Carlo computation of a global VaR
estimate for the entire bank’s portfolio is probably the most time consum-
ing single computation that a bank needs to perform, and may take an
entire night of computing on a cluster of processors.

Independently of the chosen method of computation, the VaR engine must
be systematically back-tested, that is, the number of daily losses exceeding the
previous day’s VaR in absolute value must be carefully monitored. For a 95%
VaR, these losses should be observed roughly on five days out of 100 (with both
a larger and a smaller number being an indication of a poor VaR computation),
and they must be uniformly distributed over time, rather than appear in clusters.

Shortcomings of the VaR approach The Value at Risk takes into account
the probability of loss but not the actual loss amount above the qualtile level:
as long as the probability of loss is smaller than α, the VaR does not distinguish
between losing $1000 and $1 billion. More generally, VaR is only suitable for
everyday activities and loss sizes, it does not accout for extreme losses which
happen with small probability. A sound risk management system cannot there-
fore be based exclusively on the VaR and must include extensive stress testing
and scenario analysis.

Because the VaR lacks the crucial subadditivity property (see next section),
in some situations, it may penalize diversification: VaR (A + B) > VaR (A) +
VaR (B). For example, let A and B be two independent portfolios with distri-
bution

P [A = −1000$] = P [B = −1000$] = 0.04

P [A = 0] = P [B = 0] = 0.96.

Then VaR0.95(A) = VaR0.95(B) = 0 but P [A + B ≤ −1000$] = 0.0784 and
VaR0.95(A+B) = 1000$ > 0. Such situations are not uncommon in the domain
of credit derivatives where the distributions are strongly non-Gaussian.

More dangerously, this lack of convexity makes it possible for unscrupulous
traders to introduce bias into risk estimates, by putting all risk in the tail of the
distribution which the VaR does not see, as illustrated in the following example.
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Portfolio composition n stocks n stocks + n put options
Initial value nS0 n(S0 + P0)
Terminal value nST n(ST + P0 − (K − ST )+)
Portfolio P&L n(ST − S0) n(ST − S0 − (K − ST )+)
Portfolio VaR −nq1−α −nq1−α.

Table 14.2: The sale of an out of the money put option with exercise probability
less than α allows to generate immediate profits but has no effect on VaRα

although the risk of the position is increased (see example 14.1 for details).

Example 14.1. Consider a portfolio containing n units of stock (St), and let qα
denote the (1−α)-quantile of the stock return distribution (assumed continuous)
for the time horizon T :

qα := inf{x ∈ R : P [ST − S0 ≤ x] ≥ α}.

The value at risk of this portfolio for the time horizon T and confidence level
α is given by −nq1−α (see table 14.2). Assume now that the trader sells n put
options on ST with strike K satisfying K ≤ S0 − q1−α, maturity T and initial
price P0. The initial value of the portfolio becomes equal to n(S0 + P0) and the
terminal value is n(ST + P0 − (K − ST )+). Since

P [n(ST − S0 − (K − ST )+) ≤ nq1−α]

= P [n(ST − S0) ≤ nq1−α; S ≥ K] + P [ST < K] = 1− α,

the VaR of the portfolio is unchanged by this transaction, although the risk is
increased.

14.4 Convex and coherent risk measures

In the seminal paper [1], Artzner et al. defined a set of properties that a risk
measure must possess if it is to be used for computing regulatory capital in a
sensible risk management system. Let X be the linear space of possible pay-offs,
containing the constants

Definition 14.2. A mapping ρ : X → R ∪ {+∞} is called a coherent risk
measure if it possesses the following properties:

• Monotonicity: X ≤ Y implies ρ(X) ≥ ρ(Y ).

• Cash invariance: for all m ∈ R, ρ(X +m) = ρ(X)−m.

• Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

• Positive homogeneity: ρ(λX) = λρ(X) for λ ≥ 0.
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While the first three conditions seem quite natural (in particular, the subad-
ditivity is linked to the ability of the risk measure to encourage diversification),
the positive homogeneity property has been questioned by many authors. In
particular, a risk measure with this property does not take into account the
liquidity risk associated with liquidation costs of large portfolios.

Under the positive homogeneity property, the subadditivity is equivalent to
convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), for 0 ≤ λ ≤ 1. The Value
at Risk possesses the monotonicity, the cash invariance and the positive homo-
geneity properties, but we have seen that it is not subadditive, and therefore it
is not a coherent risk measure.

The smallest coherent risk measure which dominates the VaR is known as
the Conditional VaR or expected shortfall, and is defined as the average VaR
with confidence levels between α and 1:

ESα(X) =
1

1− α

∫ 1

α

VaRα(X)dα (14.1)

The following proposition clarifies the interpretation of ESα as “the expec-
tation of losses in excess of VaR”.

Proposition 14.3. The Expected Shortfall admits the probabilistic representa-
tion

ESα(X) = VaRα(X) +
1

1− α
E[(−VaRα(X)−X)+]

If the distribution function of X, denoted by F (x), is continuous then in addition

ESα(X) = −E[X|X < −VaRα(X)].

Proof. Let F−1(u) := inf{x ∈ R : F (x) ≥ u} be the left-continuous generalized
inverse of F , such that VaRα(X) = −F−1(1 − α). It is well known that if U
is a random variable, uniformly distributed on [0, 1] then F−1(U) has the same
law as X. Then

VaRα(X) +
1

1− α
E[(−VaRα(X)−X)+]

=
1

1− α
E[(F−1(1− α)− F−1(U))+]− F−1(1− α)

=
1

1− α

∫ 1−α

0

(F−1(1− α)− F−1(u))du− F−1(1− α) =
1

1− α

∫ 1−α

0

F−1(u)du,

which finishes the proof of the first part. The second observation follows from
the fact that if F is contunuous, P [X ≤ −VaRα(X)] = 1− α. ♦

The monotonicity, cash invariance and positive homogeneity properties of the
expected shortfall are clear from the definition (14.1). The following proposition
establishes a dual representation, which shows that unlike the VaR, the expected
shortfall is convex (as the upper bound of a family of linear functions). It is
therefore, the simplest example of a coherent risk measure.
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Proposition 14.4. The expected shortfall admits the representation

ESα(X) = sup{EQ[−X] : Q ∈ Q1−α},

where Q1−α is the set of probability measures on X satisfying dQ
dP ≤

1
1−α .

Proof. Let Q ∈ Q1−α with Z = dQ
dP , and let x = −VaRα(X). Then, using the

representation of Proposition 14.3,

ESα(X) + E[ZX] =
1

1− α
E[(x−X)1x≥X + (1− α)Z(X − x)]

=
1

1− α
E[(x−X)1x≥X(1− (1− α)Z)]

+
1

1− α
E[(X − x)1x<X(1− α)Z] ≥ 0, (14.2)

which shows that ESα(X) ≥ sup{EQ[−X] : Q ∈ Q1−α}. On the other hand,
there exists c ∈ [0, 1] such that P [X < x] + cP [X = x] = 1 − α. Taking
Z = 1X<x

1−α + c1X=x

1−α , we get equality in (14.2). ♦
The expected shortfall presents all the advantages of the Value at Risk and

avoids many of its drawbacks: it encourages diversification, presents computa-
tional advantages compared to VaR and does not allow for regulatory arbitrage.
Yet to this day, although certain major banks use the expected shortfall for
internal monitoring purposes, the VaR remains by far the most widely used
measure for the computation of regulatory capital, and the Expected Shortfall
is not even mentioned in the Basel capital accords on banking supervision. In
addition to a certain conservatism of the banking environment, a possible reason
for that is that the Expected Shortfall is a more conservative risk measure, and
would therefore imply higher costs for the bank in terms of regulatory capital.

14.5 Regulatory capital and the Basel frame-
work

Starting from the early 80s, the banking regulators of the developed nations
became increasingly aware of the necessity to rethink and standardize the reg-
ulatory practices, in order to avoid the dangers of the growing exposure to
derivative products and loans to emerging markets on one hand, and ensure fair
competition between internationally operating banks on the other hand. The
work of the Basel committee for banking supervision, created for the purpose of
developping a set of recommendations for regulators, resulted in the publication
of the 1988 Basel Accord (Basel I) [3]. The Accord concerned exclusively credit
risk, and contained simple rules for computing minimal capital requirements
depending on the credit exposures of a bank. More precisely, the Accord defines
two minimal capital requirements, to be met by a bank at all times: the assets
to capital multiple, and the risk based capital ratio (the Cooke ratio). The
assets to capital multiple is the ratio of the total notional amount of the bank’s
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assets to the bank’s capital (meaning equity capital, that is, difference between
assets and debt, plus some additions). The maximum allowed multiple is 20:

Total assets

Capital
≤ 20.

The risk-based capital ratio is the ratio of the capital to the sum of all assets,
weighted by their respective risk factors. This ratio must not be less that 8 per
cent:

Capital

Risk-weighted assets
≥ 8%.

The risk weights reflect relative riskiness of very broad asset classes: for example,
cash, gold and OECD government bonds are considered risk-free and have risk
weight zero; claims on OECD banks and public agencies have risk weight 0.20;
uninsured residential mortgages have weight 0.50 and all other claims such as
corporate bonds have risk weight 1.00. The credit ratings of bond issuers are
not explicitly taken into account under the Basel I accord.

The rapid growth of banks’ trading activity, especially in the derivative prod-
ucts, has prompted the Basel Committee to develop a set of recommendations
for the computation of regulatory capital needed for protection agains market
risk, known as the 1996 market risk amendment [4]. This amendment allows
the banks to choose between a standard model proposed by the regulator (the
standardized approach) and internally developed VaR model (internal models
approach). To be eligible for the internal models approach, the banks must have
a strong risk management team, reporting only to the senior management, im-
plement a robust back-testing scheme and meet a number of other requirements.
This creates an incentive for banks to develop strong risk management, since
using internal models allows to reduce the regulatory capital by 20–50 per cent,
thanks to the correlations and diversification effects. The capital requirements
are computed using the 10-day VaR at the 99% confidence level, multiplied
by an adjustment factor imposed by the regulator and reflecting provisions for
model risk, quality of ex-post performance etc.

Already in the late 90s, it was clear that the Basel I accord needed replace-
ment, because of such notorious problems as rating-independent risk weights
and possibility of regulatory arbitrage via securitization. In 2004, the Basel
Committe published a new capital adequacy framework known as Basel II [5].
This framework describes capital provisions for credit, market and newly intro-
duced operational risk. In addition to describing the computation of minimum
regulatory requirements (Pillar I of the framework), it also describes different
aspects of interaction between banks and their regulators (Pillar II) and the
requiremens for disclosure of risk information to encourage market discipline
(Pillar III). The basic Cooke Ratio formula remains the same, but the method
for computing the risk-weighted assets is considerably modified. For different
risk types, the banks have the choice between several approaches, depending on
the strengh of their risk management teams. For credit risk, these approaches
are the Standardized approach, the Foundation internal ratings based approach
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(IRBA) and the Advanced IRBA. Under the standardized approach, the banks
use supervisory formulas and the ratings provided by an external rating agency.
Under the Foundation IRBA the banks are allowed to estimate their own default
probability, and under Advanced IRBA other parameters such as loss given de-
fault (LGD) and exposure at default (EAD) are also estimated internally. These
inputs are then plugged into the supervisor-provided general formula to compute
the capital requirements.
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Appendix A

Préliminaires de la théorie
des mesures

A.1 Espaces mesurables et mesures

Dans toute cette section, Ω désigne un ensemble quelconque, et P(Ω) est l’ensemble
des toutes ses parties.

A.1.1 Algèbres, σ−algèbres

Definition A.1. Soit A ⊂ P(Ω). On dit que
(i) A0 est une algèbre sur Ω si A0 contient Ω et est stable par passage au
complémentaire et par réunion.
(ii) A est une σ−algèbre si c’est une algèbre stable par union dénombrable. On
dit alors que (Ω,A) est un espace mesurable.

Notons qu’une algèbre doit aussi contenir ∅, et est stable par intersection et
par différence symétrique, i.e.

A ∩B et A∆B := (A ∪B) \ (A ∩B) ∈ A pour tous A,B ∈ A0,

et qu’une σ−algèbre est stable par intersection dénombrable. P(Ω) est la plus
grande σ−algèbre sur Ω. Il s’avère cependant que cette σ−algèbre est souvent
trop grande pour qu’on puisse y développer les outils mathématiques nécessaires.

En dehors des cas très simples, il est souvent impossible de lister les éléments
d’une algèbre ou d’une σ−algèbre. Il est alors commode de les caractériser par
des sous-ensemble “assez riches”.

Ainsi, on définit pour tout C ⊂ P(Ω) la σ−algèbre σ(C) engendrée par C.
C’est la plus petite σ−algèbre sur Ω contenant C, définie comme intersection de
toutes les σ−algèbre sur Ω contenant C.

Example A.2. Si Ω est un espace topologique, la σ−algèbre Borelienne, notée
par BΩ, est la σ−algèbre engendrée par les ouverts de Ω. Pour la droite réelle,

237
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on peut même simplifier la compréhension de BR:

BR = σ (π(R)) où π(R) := {]−∞, x] : x ∈ R}

(Exercice !)

L’exemple précédent se généralise par la notion suivante:

Definition A.3. Soit I ⊂ P(Ω). On dit que I est un π−système s’il est stable
par intersection finie.

Ainsi l’ensemble π(R) de l’exemple ci-dessus est un π−système. L’importance
de cette notion apparâıtra dans la proposition A.5 ci-dessous ainsi que dans le
théorème des classes monotones A.18 de la section A.2.

A.1.2 Mesures

Definition A.4. Soit A0 une algèbre sur Ω, et µ0 : A0 −→ R+ une fonction
positive.
(i) µ0 est dite additive si µ0(∅) = 0 et pour tous A,B ∈ A0:

µ0(A ∪B) = µ0(A) + µ0(B) dès que A ∩B = ∅.

(ii) µ0 est dite σ−additive si µ0(∅) = 0 et pour toute suite (An)n≥0 ⊂ A0:

A = ∪n≥0An ∈ A0 et les An disjoints =⇒ µ0(A) =
∑
n≥0

µ0(An).

(iii) Une fonction σ−additive µ : A −→ R+ sur un espace mesurable (Ω,A)
est appelée mesure, et on dit que (Ω,A, µ) est un espace mesuré.
(iv) Un espace mesuré (Ω,A, µ) est dit fini si µ(Ω) <∞, et σ−fini s’il existe
une suite (Ωn)n≥0 ⊂ A telle que µ(Ωn) <∞ et ∪n≥0Ωn = Ω.

Proposition A.5. Soient I un π−système, et µ, ν deux mesures finies sur
l’espace mesurable (Ω, σ(I)). Si µ = ν sur I alors µ = ν sur σ(I).

La démonstration est reportée, à titre de complément, dans l’annexe de ce
chapitre. Le résultat suivant est essentiel pour construire des mesures “intéressantes”.

Theorem A.6. (extension de Carathéodory) Soient A0 une algèbre sur Ω, et
µ0 : A0 −→ R+ une fonction σ−additive. Alors il existe une mesure µ sur
A := σ(A0) telle que µ = µ0 sur A0. Si de plus µ0(Ω) < ∞, alors une telle
extension µ est unique.

La démonstration est reportée, à titre de complément, dans l’annexe de ce
chapitre. Avec ce résultat, on peut maintenant construire une mesure impor-
tante sur l’espace mesurable (]0, 1],B]0,1]).
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Example A.7. (Mesure de Lebesgue) Nous allons définir une mesure sur B]0,1]

qui mesure les longueurs.
1- On remarque tout d’abord que A0 constitué des parties A ⊂]0, 1] de la forme

A = ∪1≤i≤n(ai, bi] pour n ∈ N et 0 ≤ a1 ≤ b1 ≤ . . . ≤ an ≤ bn ≤ 1,(A.1)

est une σalgèbre telle que B]0,1] = σ(A0). Pour tout A ∈ A0 de la forme (A.1),
on définit

λ0(A) :=

n∑
i=1

(bi − ai).

2- Alors λ0 : A0 −→ R+ est une application bien définie et est évidemment
additive. On peut montrer qu’elle est σ−additive (c’est moins évident, voir
cours de première année). Comme λ0(]0, 1]) < ∞, on déduit du théorème de
Carathédory l’existence d’une unique extension λ définie sur B]0,1].
Cette mesure fini λ est appelée mesure de Lebesgue sur ]0, 1]. La mesure de
Lebesgue sur [0, 1] est obtenue par une modification triviale puisque le singleton
{0} est de mesure de Lebesgue nulle.
3- Par le même raisonnement, on peut construite la mesure de Lebesgue sur BR
comme extension d’une application d’ensembles sur l’algèbre des unions finies
d’intervalles semi-ouverts disjoints. Dans ce cas, la mesure de Lebesgue est
seulement σ−finie.

Definition A.8. (i) Sur un espace mesuré (Ω,A, µ), un ensemble N ∈ A est
dit négligeable si µ(N) = 0.
(ii) Soit P (ω) une propriété qui ne dépend que d’un élément ω ∈ Ω. On dit
que P est vraie µ−presque partout, et on note µ−p.p., si l’ensemble {ω ∈ Ω :
P (ω) est fausse} est inclus dans un ensemble négligeable.

Remark A.9. D’après la propriété de σ−additivité de la mesure, on voit
aisément que toute union dénombrable de négligeables est négligeable.

A.1.3 Propriétés élémentaires des mesures

Nous commençons par des propriétés mettant en jeu un nombre fini d’ensembles.

Proposition A.10. Soit (Ω,A, µ) un espace mesuré, et (Ai)i≤n ⊂ A. Alors:
(i) µ(∪i≤nAi) ≤

∑
i≤n µ(Ai),

(ii) Si de plus µ(Ω) <∞, on a

µ(∪i≤nAi) =
∑
k≤n

(−1)k−1
∑

i1<...<ik≤n

µ(Ai1 ∩ . . . Aik).

La preuve de ce résultat est une conséquence immédiate de la définition de
mesure. La partie (ii), spécifique aux mesures finies, donne une formule pour
la mesure de l’union finie d’ensemble qui alterne entre sur-estimation et sous
estimation. Pour n = 2 cette formule n’est autre que la propriété bien connue
µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B) pour A,B ∈ A.
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Le résultat (simple) suivant est fondamental en théorie de la mesure. Pour
une suite d’ensembles (An)n, nous notons simplement An ↑ A pour indiquer que
la suite est croissante (An ⊂ An+1) et ∪nAn = A. La notation An ↓ A a un
sens similaire dans le cas où la suite est décroissante.

Proposition A.11. Soit (Ω,A, µ) un espace mesuré, et (An)n une suite de A.
Alors
(i) An ↑ A =⇒ µ(An) ↑ µ(A),
(ii) An ↓ A et µ(Ak) <∞ pour un certain entier k =⇒ µ(An) ↓ µ(A),

La démonstration simple de ce résultat est laissée comme exercice. Faisons
juste deux remarques:

• Une conséquence de la proposition A.11 est que l’union dénombrable
d’ensembles de mesure nulle est de mesure nulle.

• l’exemple An =]n,∞[ dans l’espace mesuré (R,BR, λ), λ étant la mesure
de Lebesgue sur R, montre que la condition supplémentaire dans (ii) est
nécessaire.

Ces résultats permettent de montrer les outils important pour l’analyse de
la convergence des mesures des ensembles. On rappelle les notions de liminf et
limsup pour une suite d’ensembles (An)n:

lim supEn := ∩n ∪k≥n Ek = {ω ∈ Ω : ω ∈ En pour une infinité de n},
lim inf En := ∪n ∩k≥n Ek = {ω ∈ Ω : ω ∈ En à partir d’un rang n0(ω)}.

Le résultat suivant est très utile.

Lemma A.12. (de Fatou pour les ensembles) Soit (Ω,A, µ) un espace mesuré,
et (An)n une suite dans A. Alors

µ[lim inf An] ≤ lim inf µ[An].

Proof. Par définition, nous avons Bn := ∩k≥nAk ↑ B := lim inf An, et on déduit
de la proposition A.11 (i) que µ[B] = lim ↑ µ[Bn]. Pour conclure, il suffit de
remarquer que Bn ⊂ An et par suite µ[Bn] ≤ µ[An], impliquant que lim ↑
µ[Bn] ≤ lim inf µ[An]. ♦

Si la mesure est finie, le résultat suivant montre que l’inégalité inverse dans
le lemme de Fatou pour les ensembles a lieu en échangeant lim inf et lim sup.
Nous verrons plus tard que la situation est plus compliquée pour les fonctions...

Lemma A.13. (inverse Fatou pour les ensembles) Soit (Ω,A, µ) un espace
mesuré fini, et (An)n une suite dans A. Alors

µ[lim supAn] ≥ lim supµ[An].
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Proof. Par définition, nous avons Cn := ∪k≥nAk ↓ C := lim supAn. La propo-
sition A.11 (ii), qui requiert que la mesure soit finie, donne µ[C] = lim ↓ µ[Cn].
Pour conclure, il suffit de remarquer que Cn ⊃ An et par suite µ[Cn] ≥ µ[An],
impliquant que lim ↓ µ[Cn] ≥ lim supµ[An]. ♦

Enfin, nous énonçons le résultat suivant qui sera utilisé à plusieur reprises, et
qui sera complété dans la suite quand nous aurons abordé les notions d’indépendance.

Lemma A.14. (Premier lemme de Borel-Cantelli) Soit (Ω,A, µ) un espace
mesuré, et (An)n ⊂ A. Alors∑

n

µ[An] <∞ =⇒ µ[lim supAn] = 0.

Proof. Avec les notations de la démonstration du lemme A.13, on a lim supAn ⊂
Cn = ∪k≥nAk, et donc µ(lim supAn) ≤ µ(Cn) ≤

∑
k≥n µ(An). Le résultat est

obtenu en envoyant n vers l’infini. ♦

A.2 L’intégrale de Lebesgue

Dans cette section, on considère un espace mesuré (Ω,A, µ), et nous développons
la théorie d’intégration d’une fonction par rapport à la mesure µ. Si Ω est
dénombrable, A = µ(Ω), et µ({ω}) = 1 pour tout ω ∈ Ω, une fonction est
identifiée à une suite (an)n, et elle est intégrable si et seulement si

∑
n |an| <∞,

et l’intégrale est donnée par la valeur de la série
∑
n an. La réelle difficulté est

donc pour les espaces non dénombrables.

A.2.1 Fonction mesurable

L’objet central en topologie est la structure des ouverts, et les fonctions contin-
ues sont caracrtérisées par la propriété que les images réciproques des ouvert de
l’ensemble d’arrivée sont des ouverts de l’ensemble de départ. Dans la théorie
de la mesure, les ouverts sont remplacés par les ensembles mesurables, et les
fonctions mesurables remplacent les fonctions continues.

Definition A.15. On dit qu’une fonction f : (Ω,A) −→ (R,BR) est mesurable
si l’image réciproque de tout ensemble borélien est dans A. On note par L0(A)
l’ensemble des fonctions mesurables. Les sous-ensembles des fonctions mesurables
positives (resp. bornées) seront notés L0

+(A) (resp. L∞(A)).

De manière équivalente f ∈ L0(A) si et seulement l’inverse f−1 est bien
définie comme une application de BR dans A, i.e. f−1 : BR −→ A. Si C ⊂ BR
est tel que σ(C) = BR, alors il suffit de vérifier f−1 : C −→ A.

Remark A.16. (i) En prenant C = π(R) le π−système des intervalles de la
forme ]−∞, c], c ∈ R, on voit que

f ∈ L0(A) ssi {f ≤ c} ∈ A pour tout c ∈ R.
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(ii) Sopposons que Ω est un espace topologique, et que f : Ω −→ R est con-
tinue. Alors f est BΩ−mesurable. En effet, avec C = {ouverts de R}, la conti-
nuité s’écrit f−1 : BR −→ A. On dit que f est une fonction borelienne.
(iii) Soit X une application de Ω dans un ensemble dénombrable X(Ω) =
{xn, n ∈ N}. On munit X(Ω) de la plus grande σ−algèbre P(X(Ω)) et on
remarque que P(X(Ω)) = σ({{ω} : ω ∈ Ω}). Ceci permet de conclure que X
est mesurable si et seulement si {X = xn} ∈ A pour tout n ∈ N.

La mesurabilité est conservée par les opérations usuelles pour les fonctions.

Proposition A.17. (i) Pour f, g ∈ L0(A), h ∈ L0(BR), et λ ∈ R, on a f + g,
λf , fg, f ◦ h et λf ∈ L0(A).
(ii) Pour une suite (fn)n ⊂ L0(A), on a inf hn, lim inf hn, suphn et lim suphn
∈ L0(A).

La preuve est simple et est laissée en exercice. Avant d’aborder l’objet
central de ce chapitre, à savoir la construction de l’intégrale de Lebesgue, nous
reportons une version simple du théorème des classes monotones, qui ne sera
utilisé que plus tard dans la construction d’espaces mesurés produits.

Theorem A.18. (classes monotones) Soit H une classes de fonctions réelles
bornées sur Ω vérifiant les conditions suivantes:
(H1) H est un espace vectoriel contenant la fonction constante 1,
(H2) pour toute suite croissante (fn)n ⊂ H de fonctions positives telle que
f := lim ↑ fn est bornée, on a f ∈ H.
Soit I un π−système tel que {1A : A ∈ I} ⊂ H. Alors L∞(σ(I)) ⊂ H.

La démonstration est reportée à titre de complément dans l’annexe de ce
chapitre.

A.2.2 Intégration des fonctions positives

Le but de ce paragraphe est de définir pour toute fonction mesurable positive f
une notion d’intégrale par rapport à la mesure µ:∫

fdµ que l’on note aussi µ(f),

qui est un abus de notation comunément accepté (µ : A −→ R !) du fait que
notre définition doit vérifier∫

1A = µ(A) pour tout A ∈ A.

Plus généralement, soit S+ l’ensemble des fonctions de Ω dans R+ de la forme

g =

n∑
i=1

ai1Ai , (A.2)
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pour un certain entier n ≥ 1, des ensembles Ai ∈ A, et des scalaires ai ∈ [0,∞],
1 ≤ i ≤ n. Ici, il est commode d’autoriser la valeur +∞, et on utilisera les règles
de calcul 0×∞ =∞× 0 = 0. l’intégrale sur S+ est définie par:

µ(g) =

n∑
i=1

aiµ0(Ai). (A.3)

Il est clair que µ(g) est bien défini, i.e. deux représentations différentes (A.2)
d’un élément f ∈ S+ donnent la même valeur. Nous étendons à présent la
définition de µ à l’ensemble L0

+(A) des fonctions A−mesurables positives.

Definition A.19. Pour f ∈ L0
+(A), l’intégrale de f par rapport à µ est définie

par

µ(f) := sup
{
µ(g) : g ∈ S+ et g ≤ f

}
.

L’ensemble {g ∈ S+ : g ≤ f}, dont la borne supérieure définit l’intégrale,
contient la fonction nulle. On peut aussi construire des éléments non triviaux
en introduisant la fonction

αn(x) := n1]n,∞[(x) +
∑
i≥1

(i− 1)2−n1Bni (x), Bni := [0, n]∩](i− 1)2−n, i2−n].

En effet, pour tout f ∈ L0(A):

(αn ◦ f)n ⊂ S+ est une suite croissante qui converge vers f. (A.4)

La définition de l’intégrale implique immédiatement que

µ(cf) = cµ(f) pour tous c ∈ R+ et f ∈ L0
+(A), (A.5)

ainsi que la propriété de monotonie suivante.

Lemma A.20. Pour f1, f2 ∈ L0
+(A) avec f1 ≤ f2, on a 0 ≤ µ(f1) ≤ µ(f2). De

plus µ(f1) = 0 si et seulement si f1 = 0, µ−p.p.

Proof. Pour la première partie, il suffit de remarquer que {g ∈ S+ : g ≤ f1} ⊂
{g ∈ S+ : g ≤ f2}. Pour la deuxième partie de l’énoncé, rappelons que µ({f >
0}) = lim ↑ µ({f > n−1}) d’après la proposition A.11. Si µ({f > 0}) > 0, on a
µ({f > n−1}) > 0 pour n assez grand. Alors f ≥ g := n−11{f > n−1} ∈ S+, et
on déduit de la définition de l’intégrale que µ(f) ≥ µ(g) = n−1µ({f > n−1}) >
0. ♦

Le résultat à la base de la théorie de l’intégration est l’extension suivante de
la propriété de convergence monotone des mesures d’ensembles énoncée dans la
proposition A.11 (i).

Theorem A.21. (convergence monotone) Soit (fn)n ⊂ L0
+(A) une suite crois-

sante µ−p.p., i.e. pour tout n ≥ 1, fn ≤ fn+1 µ−p.p. Alors

µ (lim ↑ fn) = lim ↑ µ(fn).
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Proof. On procède en trois étapes.
Etape 1 On commence par supposer que fn ≤ fn+1 sur Ω. On note f :=
lim ↑ fn. D’après le lemme A.20, la suite des intégrales (µ(fn))n hérite la
croissance de la suite (fn)n et est majorée par µ(f). Ceci montre l’inégalité
lim ↑ µ(fn) ≤ µ (lim ↑ fn).

Pour établir l’inégalité inverse, nous devons montrer que lim ↑ µ(fn) ≥ µ (g)

pour tout g =
∑k
i=1 ai1Ai ∈ S+ vérifiant g ≤ f . Pour tout c ∈ [0, 1[, on déduit

du lemme A.20 et de (A.5) que:

µ(fn) ≥ µ(fn1{fn≥cg}) ≥ cµ(g1{fn≥cg}) = c

k∑
i=1

aiµ(Ai ∩ {fn ≥ cai}).

En utilisant la propriété de convergence monotone des mesures d’ensembles
énoncée dans la proposition A.11 (i), on obtient alors:

lim ↑ µ(fn) ≥ c

l∑
i=1

aiµ(Ai) = cµ(g) −→ µ(g) quand c→ 1.

Etape 2 Dans le reste de la preuve, on veut passer de la monotonie de la suite
(fn)n sur Ω à la monotonie µ−p.p. Pour celà, introduisons Ω0 = {ω ∈ Ω :
(fn(ω))n croissante}, la suite croissante (sur Ω) f̃n := fn1Ω0

, et les appapproxi-

mations croissantes (sur Ω) par des fonctions simples
(
αk ◦ fn

)
k
,
(
αk ◦ f̃n

)
k

de

fn, f̃n, comme dans (A.4). La définition de l’intégrale pour les fonctions simples
donne trivialement µ(αk ◦ fn) = µ(αk ◦ f̃n), et par suite µ(fn) = µ(f̃n) d’après
l’étape 1. Le résultat du théorème est enfin obtenu en appliquant le résultat de
l’étape 1 à la suite (f̃n)n. ♦

Remark A.22. Par le même argument que l’étape 2 ci-dessus (approximation
par les fonctions simples (A.4) et utilisation du théorème de convergence mono-
tone), on montre facilement que:
(i) Pour f1, f2 ∈ L0

+(A) telles que f1 = f2 µ−p.p., on a µ(f1) = µ(f2).
(ii) Pour f1, f2 ∈ L0

+(A), on a f1 + f2 ∈ L0
+(A) et µ(f1 + f2) = µ(f1) + µ(f2).

Voici une conséquence simple et très utile du théorème de convergence mono-
tone.

Lemma A.23. (Fatou) Pour une suite de fonctions (fn)n de L0
+(A), on a

µ(lim inf fn) ≤ lim inf µ(fn).

Proof. D’après la monotonie de l’intégrale, infk≥n µ(fn) ≥ µ (infk≥n fk) pour
tout n ≥ 1, et on obtient le résultat par application du théorème de convergence
monotone. ♦
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A.2.3 Intégration des fonctions réelles

Pour une fonction f ∈ L0(A), on note f+ := max{f, 0} et f− := max{−f, 0} si
bien que |f | = f+ − f−. Ces deux fonctions héritent la A−mesurabilité de f .

Definition A.24. Une fonction f ∈ L0(A) est dite µ−intégrable si µ(|f |) =
µ(f+) + µ(f−) <∞, et son intégrale est définie par

µ(f) := µ(f+)− µ(f−).

On note par L1(A, µ) l’ensemble des fonctions µ−intégrables.

On voit immédiatement que L1(A, µ) est un espace vectoriel dont on donnera
d’autres propriétés topologiques dans la suite.

Avant de continuer, levons tout de suite une source d’ambiguité concernant
l’intégration d’une fonction f ∈ L1(A, µ) sur une partie A ∈ A. En effet celle-ci
peut se faire soit en intégrant la fonction intégrable f1A, soit en intégrant la
restriction f |A par rapport à la restriction µA de µ à l’espace mesurable (A,AA),
où AA est la σ−algèbre définie par AA := P(A) ∩ A.

Proposition A.25. Pour tout f ∈ L1(A, µ) et A ∈ A, on a µ(f1A) = µA (f |A).

Proof. Tout d’abord, cette propriété est vraie pour les fonctions f = 1B , B ∈ A,
puisque dans ce cas µ(1B1A) = µ(A ∩ B) = µA (1B |A). Par linéarité, cette
égalité reste vraie pour les fonctions simples, puis par convergence monotone
pour les fonctions mesurables positives. Enfin, pour f ∈ L1(A, µ), on décompose
f = f+− f−, et on obtient le résultat voulu en appliquant l’égalité à f+ et f−.

♦
Voici un résultat qui rappelle une propriété classique sur les intégrales de

Riemann, éventuellement impropres.

Lemma A.26. Soit f ∈ L1(A, µ) et ε > 0. Alors, il existe δ > 0 tel que pour
tout A ∈ A vérifiant µ(A) < δ, on a µ(|f |1A) < ε.

Proof. Supposons, au contraire, qu’il existe ε0 et une suite (An)n ⊂ A tels que
µ(An) < 2−n et µ(|f |1An) ≥ ε0. D’après le premier lemme de Borel-Cantelli,
lemme A.14, on déduit que A := lim supAn est négligeable. En particulier
µ(|f |1A) = 0, et on obtient une contradiction en remarquant que µ(|f |1A) =
µ(|f |)− µ(|f |1Ac) ≥ µ(|f |)− lim inf µ(|f |1Acn) = lim supµ(|f |1An) ≥ ε0, où on
a utilisé le lemme de Fatou. ♦

A.2.4 De la convergence p.p. à la convergence L1

Theorem A.27. (convergence dominée) Soient (fn)n ⊂ L0(A) une suite telle
que fn −→ f µ−a.e. pour une certaine fonction f ∈ L0(A). Si supn |fn| ∈
L1(A, µ), alors

fn −→ f dans L1(A, µ) i.e. µ(|fn − f |) −→ 0.

En particulier, µ(fn) −→ µ(f).
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Proof. On note g := supn fn, hn := fn−f . Alors, les fonctions 2g+hn et 2g−hn
sont positives, on obtient par le lemme de Fatou que lim inf µ(g−fn) ≥ µ(g−f)
et lim inf µ(g + fn) ≥ µ(g + f). Du fait que g est intégrable, on peut utiliser
la linéarité de l’intégrale, et on arrive à µ(f) ≤ lim inf µ(fn) ≤ lim supµ(fn) ≤
µ(f). ♦

Le résultat suivant donne une condition nécessaire et suffisante pour qu’une
suite convergente µ−p.p. soit convergente dans L1(A).

Lemma A.28. (Scheffé) Soit (fn)n ⊂ L1(A, µ) telle que fn −→ f µ−p.p. pour
une certaine fonction f ∈ L1(A, µ). Alors:

fn −→ f dans L1(A, µ) ssi µ(|fn|) −→ µ(|f |).

Proof. L’implication “=⇒” est triviale. Pour l’inégalité inverse, on procède en
deux étapes.
Etape 1 Supposons que fn, f ≥ 0, µ−p.p. Alors (fn − f)− ≤ f ∈ L1(A), et
on déduit du théorème de convergence dominée que µ ((fn − f)−) −→ 0. Pour
conclure, on écrit que µ(|fn − f |) = µ(fn)− µ(f) + 2µ ((fn − f)−) −→ 0.
Etape 2 Pour fn et f de signe quelconque, on utilise le lemme de Fatou pour
obtenir µ(|f |) = lim{µ(f+

n ) + µ(f−n )} ≥ µ(f+) + µ(f−) = µ(|f |) et par suite
toutes les inégalit{es sont des égalité, i.e. limµ(f+

n ) = µ(f+) et limµ(f−n ) =
µ(f−). On est alors ramené au contexte de l’étape 1, qui permet d’obtenir
f+
n −→ f+ and f−n −→ f− dans L1(A), et on conclut en écrivant |fn − f | ≤
|f+
n − f+|+ |f−n − f−| et en utilisant la monotonie de l’intégrale. ♦

Exercise A.29. Soient (Ω,A, µ) un espace mesuré, I un intervalle ouvert de
R, et f : I × Ω −→ R une fonction telle que f(x, .) ∈ L0(A) pour tout x ∈ I.

1. On suppose qu’il existe une fonction g ∈ L1
+(A, µ) telle que |f(x, .)| ≤ g,

µ−p.p. Montrer alors que, si f(., ω) est continue en en un point x0 ∈ I,
µ−p.p., la fonction φ : I −→ R définie par

φ(x) :=

∫
f(x, ω)dµ(ω); x ∈ I,

est bien définie, et qu’elle est continue au point x0.

2. On suppose que la dérivée partielle fx := (∂f/∂x) existe pour tout x ∈ I,
µ−p.p. et qu’il existe une fonction h ∈ L1

+(A, µ) telle que |fx(x, .)| ≤ h,
µ−p.p. Montrer alors que φ est dérivable sur I, et

φ′(x) =

∫
∂f

∂x
(x, ω)dµ(ω); x ∈ I.

3. Donner des conditions qui assurent que φ soit continuement dérivable sur
I.
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A.2.5 Intégrale de Lebesgue et intégrale de Riemann

Dans ce paragraphe, nous donnons quelques éléments qui expliquent l’avantage
de l’intégrale de Lebesgue par rapport à celle de Riemann. Pour être plus
concret, on considère le problème d’intégration sur R.

(a) L’intégrale de Riemann est construite sur un intervalle [a, b] compact de
R. Il y a bien une extension par les intégrales impropres, mais celà conduit à
un cadre assez restrictif.

(b) L’intégrale de Riemann est construite en approximant la fonction par des
fonctions en escalier, i.e. constantes sur des sous-intervalles de [a, b] de longueur
petite. Sur un dessin, il s’agit d’une approximation verticale. Par contre,
l’intégrale de Lebesgue est construite en découpant l’intervalle image et en ap-
proximant f sur les images réciproques de ces intervalles. Il s’agit dans ce cas
d’une approximation horizontale de la fonction à intégrer.

(c) Les fonctions Riemann intégrables sont Lebesgue intégrables. Montrons
ceci dans [0, 1]. Soit f une fonction Riemann integrable bornée sur Ω = [0, 1]

d’intégrale (au sens de Riemann)
∫ 1

0
f(x)dx. Alors f est Lebesgue intégrable

d’intégrale λ(f) =
∫ 1

0
f(x)dx. Si f est une fonction en escalier, ce résultat est

trivial. Pour une fonction Rieman intégrable f arbitraire, on peut trouver deux
suites de fonctions en escalier (gn)n et (hn)n croissante et décroissante, respec-

tivement, telles que gn ≤ f ≤ hn et infn
∫ 1

0
(gn − hn)(x)dx = limn→∞

∫ 1

0
(gn −

hn)(x)dx = 0. Sans perte de généralité, on peut supposer hn ≤ 2‖f‖∞. Les
fonctions f∗ := supn gn et f∗ := infn hn = 2M − supn(−2M + hn) sont boreli-
ennes, et on a f∗ ≤ f ≤ f∗. D’après la monotonie de l’intégrale:

0 ≤ µ(f∗ − f∗) = µ (inf(hn − gn)) ≤ inf
n
µ(hn − gn) = 0,

et par suite f = f∗ = f∗. Enfin:

µ(f∗) = lim ↑ µ(gn) = lim ↑
∫ 1

0

gn(x)dx =

∫ 1

0

f(x)dx

La réciproque n’est pas vraie. Par exemple, la fonction f = 1{Q∩[0,1]} est
λ−intégrable, mais n’est pas Riemann-intégrable.

(d) Le théorème de convergence dominée n’a pas son équivalent dans le cadre
de l’intégrale de Riemann, et permet d’obtenir un espace de fonctions intégrables
complet (on verra ce résultat plus tard). Par contre, on peut construire des
exemples de suites de Cauchy de fonctions Riemann intégrables dont la limite
n’est pas Riemann intégrable.

(e) Pour les fonctions définies par des intégrales, les résultats de continuité
et de dérivabilité sont simplement obtenus grâce au théorème de convergence
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dominée. Leur analogue dans le cadre des intégrales de Riemann conduit à des
résultats assez restrictifs.

(f) L’intégrale de Lebesgue se définit naturellement dans Rn, alors que la sit-
uation est un peu plus compliquée pour l’intégrale de Riemann. En particulier,
le théorème de Fubini est d’une grande simplicité dans le cadre de l’intégrale de
Lebesgue.

A.3 Transformées de mesures

A.3.1 Mesure image

Soit (Ω1,A1, µ1) un espace mesuré, (Ω2,A2) un espace mesurable et f : Ω1 −→
Ω2 une fonction mesurable, i.e. f−1 : A2 −→ A1. On vérifie immédiatement
que l’application:

µ2(A2) := µ1

(
f−1(A2)

)
pour tout A2 ∈ Ω2,

définit une mesure sur (Ω2,A2).

Definition A.30. µ2 est appelée mesure image de µ1 par f , et est notée µ1f
−1.

Theorem A.31. (transfert) Soient µ2 := µ1f
−1, la mesure image de µ1 par

f , et h ∈ L0(A2). Alors h ∈ L1(A2, µ2) si et seulement si h ◦ f ∈ L1(A1, µ1).
dans ces conditions, on a∫

Ω2

hd(µ1f
−1) =

∫
Ω1

(h ◦ f)dµ1. (A.6)

Proof. On commence par vérifier la formule de transfert (A.6) pour les fonctions
positives. La formule est vraie pour les fonctions 1A2 , A2 ∈ A2, puis oar linéarité
pour les fonctions simples positives, et on conclut par le biais du théorème de
convergence monotone. Pour h de signe arbitraire intégrable, on applique le
résultat précédente à h+ et h−. Enfin, la formule de transfert montre que
h ∈ L1(A2, µ2) ssi h+ ◦ f et h− ◦ f ∈ L1(A1, µ1), et l’équivalence découle du
fait que h+ ◦ f = (h ◦ f)+ et h− ◦ f = (h ◦ f)−. ♦

A.3.2 Mesures définies par des densités

Soit (Ω,A, µ) un espace mesuré, et soit f ∈ L0
+(A) une fonction mesurable

positive finie. On définit

ν(A) := µ(f1A) =

∫
A

fdµ pour tout A ∈ A.

Exercise A.32. Vérifier que ν est une mesure sur (Ω,A).
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Definition A.33. (i) La mesure ν est appelée mesure de densité f par rapport
à µ, et on note ν = f · µ.
(ii) Soient µ1, µ2 deux mesures sur un espace mesurable (Ω,A). On dit que
µ2 est absoluement continue par rapport à µ1, et on note µ2 ≺ µ1, si µ2(A) =
0 =⇒ µ1(A) pour tout A ∈ A. Sinon, on dit que µ2 est étrangère à µ1. Si
µ2 ≺ µ1 et µ1 ≺ µ2, on dit que µ1 et µ2 sont équivalentes, et on note µ1 ∼ µ2.
Enfin, si µ2 6≺ µ1 et µ1 6≺ µ2, on dit que µ1 et µ2 sont singulières.

Ainsi, la mesure f · µ est absoluement continue par rapport à µ.

Theorem A.34. (i) Pour g : Ω −→ [0,∞] A−mesurable positive, on a (f ·
µ)(g) = µ(fg).
(ii) Pour g ∈ L0

+(A), on a g ∈ L1(A, f · µ) ssi fg ∈ L1(A, µ), et alors (f ·
µ)(g) = µ(fg).

Exercise A.35. Prouver le théorème A.34 (en utilisant le shémas de démonstration
habituel).

A.4 Inégalités remarquables

Dans ce paragraphe, nous énonçons trois inégalités qui sont très utiles. Afin
d’habituer le lecteur à la manipulation des mesures et de l’intégration, nous
formulons les résultats sous forme d’exercices.

Exercise A.36. (Inégalité de Markov) Soit f une fonction A−mesurable, et
g : R −→ R+ une fonction borelienne croissante positive.

1. Justifier que g ◦ f est une fonction mesurable, et pour tout c ∈ R:

µ(g ◦ f) ≥ g(c)µ({f ≥ c}). (A.7)

2. Montrer que

cµ({f ≥ c}) ≤ µ(f) pour tout f ∈ L0
+(A) et c > 0,

cµ[|f | ≥ c] ≤ µ(|f |) pour tout f ∈ L1(A, µ) et c > 0.

3. Montrer l’inégalité de Chebychev:

c2µ[|f | ≥ c] ≤ µ(f2) pour tout f2 ∈ L1(A, µ) et c > 0.

4. Montrer que

µ({f ≥ c}) ≤ inf
τ>0

e−τcE[eτf ] pour tout f ∈ L0(A) et c ∈ R.

Exercise A.37. (Inégalité de Schwarz) Soient (Ω,A, µ) un espace mesuré, et
f, g : A −→ R+ deux fonctions mesurables positives telle que µ(f2)+µ(g2) <∞.

1. Montrer que µ(fg) <∞.
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2. Montrer que µ(fg)2 ≤ µ(f2)µ(g2) (Indication: considérer la fonction xf+
g, x ∈ R).

3. Montrer que l’inégalité de Schwarz dans la question 2 est valable sans la
condition de positivité de f et g.

Exercise A.38. (Inégalité de Hölder, inégalité de Minkowski) On admet l’inéglité
de Jensen, valable pour une mesure ν sur (R,BR) telle que ν(R) = 1:

ν(c(f)) ≥ c(ν(f)) pour f, c(f) ∈ L1(BR, ν) et c(.) convexe,

qui sera démontrée dans le chapitre B, theéorème B.6.
Soient (Ω,A, µ) un espace mesuré et f, g : Ω −→ R deux fonctions mesurables

avec

µ(|fp|) <∞ µ(|g|q) <∞ où p > 1,
1

p
+

1

q
= 1. (A.8)

1. On suppose f, g ≥ 0 et µ(fp) > 0. Montrer l’inégalité de Hölder:

µ(|fg|) ≤ µ(|f |p)1/pµ(|g|q)1/q pour p > 1,
1

p
+

1

q
= 1 et µ(|f |p) + µ(|g|q) <∞,

(Indication: introduire la mesure ν := fp

µ(fp) · µ.)

2. Montrer que l’inégalité de Hölder de la question 1 est valable sous les con-
ditions (A.8) sans les conditions supplémentaires de la question précédente.

3. En déduire l’inégalité de Minkowski:

µ(|f + g|p)1/p ≤ µ(|f |p)1/p + µ(|g|p)1/p pour p > 1 et µ(|f |p) + µ(|g|p) <∞.

(Indication: décomposer |f + g|p = (f + g)|f + g|p−1.)

A.5 Espaces produits

A.5.1 Construction et intégration

Dans ce paragraphe, nous faisons la construction de la mesure produit sur le
produit de deux espaces mesurés.

Soient (Ω1,A1, µ1), (Ω2,A2, µ2) deux espaces mesurés. Sur l’espace produit
Ω1 × Ω2, on vérifie immédiatement que A1 ×A2 est un π−système. On définit
alors la σ−algèbre qu’il engendre

A1 ⊗A2 := σ (A1 ×A2) .

Sur cette structure d’espace mesurable (Ω1 ×Ω2,A1 ⊗A2), on veut définir une
mesure µ telle que

µ(A×A2) = µ1(A1)µ2(A2) pour tous (A1, A2) ∈ A1 ×A2, (A.9)
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puis définir l’intégrale d’une fonction f : Ω1 × Ω2 −→ R intégrable:∫
Ω1×Ω2

fdµ.

Une question importante est de relier cette quantité aux intégrales doubles∫
Ω2

(∫
Ω1

fdµ1

)
dµ2 et

∫
Ω1

(∫
Ω2

fdµ2

)
dµ1,

qui pose tout d’abord les questions de
(1a) la µ1−mesurabilité de la fonctionfω2

2 : ω1 7−→ f(ω1, ω2),
(2a) la µ2−mesurabilité de la fonction fω1

1 : ω2 7−→ f(ω1, ω2),
puis, une fois ces questions règlées,

(1b) la A1−mesurabilité de la fonction If1 : ω1 7−→
∫
f(ω1, ω2)dµ2(ω2),

(2b) la A2−mesurabilité de la fonction If2 : ω2 7−→
∫
f(ω1, ω2)dµ1(ω1).

Ces deux problèmes sont résolus aisément grâce au théorème des classes
monotones:

Lemma A.39. (a) Soit f ∈ L∞(A1⊗A2). Alors, pour tous ω1 ∈ Ω1, ω2 ∈ Ω2:

fω1
1 ∈ L∞(A2) et fω2

2 ∈ L∞(A1).

(b) Supposons de plus que µ1 et µ2 soient finies. Alors Ifi ∈ L1(Ai, µi) pour
i = 1, 2 et ∫

Ω1

If1 dµ1 =

∫
Ω2

If2 dµ2.

Proof. (a) Soit H := {f ∈ L∞(Ω1 × Ω2,A1 ⊗A2) : fωii ∈ L∞(Ωi,Ai), i = 1, 2}.
Les condition H1 et H2 sont trivialement satisfaites par H. De plus, rappelons
que A1×A2 est un π−système engendrant A1⊗A2, par définition. Il est claire
que H ⊃ {1A : A ∈ A1 × A2}. Le théorème des classes monotones permet de
conclure que H = L1(Ω1 × Ω2,A1 ⊗A2).
(b) Il suffit de refaire le même type d’argument que pour (a). ♦

Grâce au dernier résultat, nous pouvons maintenant définir un candidat pour
la mesure sur l’espace produit Ω1 × Ω2 par:

µ(A) :=

∫ (∫
1Adµ1

)
dµ2 =

∫ (∫
1Adµ2

)
dµ1 pour tout A ∈ A1 ⊗A2.

Theorem A.40. (Fubini) L’application µ est une mesure sur (Ω1 × Ω2,A1 ⊗
A2), appelée mesure produit de µ1 et µ2, et notée µ1⊗µ2. C’est l’unique mesure

sur Ω1 × Ω2 vérifiant (A.9). De plus, pour tout f ∈ L0
+(A1 ⊗A2),∫

fdµ1 ⊗ µ2 =

∫ (∫
fdµ1

)
dµ2 =

∫ (∫
fdµ2

)
dµ1 ∈ [0,∞].(A.10)

Enfin, si f ∈ L1(A1 ⊗A2, µ1 ⊗ µ2), les égalités (A.10) sont valides.
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Proof. On vérifie que µ1 ⊗ µ2 est une mesure grâce aux propriétés élémentaires
de l’intégrale de Lebesgue. L’unicité est une conséquence immédiate de la propo-
sition A.5. Les égalités (A.10) ont déjà été établies dans le lemme A.39 (b) pour
f bornée et des mesures finies. Pour généraliser à des fonctions f mesurables
positives, on introduit des approximations croissantes, et utilise le théorème de
convergence monotone. Enfin, pour des fonctions f ∈ L1(A1 ⊗A2, µ1 ⊗ µ2), on
applique le résultat précédent à f+ et f−. ♦

Remark A.41. (i) La construction de ce paragraphe, ainsi que les résultats
d’intégration ci-dessous, s’étendent sans difficulté pour la construction du pro-
duit de n espaces mesurés au prix de notations plus encombrantes.
(ii) Soit maintenant (Ωi,Ai)i≥1 une famille dénombrable d’espaces mesurés, et
Ω :=

∏
i≥1 Ωi. Pour tout sous-ensemble fini I ⊂ N, et pour tous Ai ∈ Ai, i ∈ I,

on définit le cylindre

C(Ai, i ∈ I) := {ω ∈ Ω : ωi ∈ Ai pour i ∈ I} .

La σ−algèbre produit est alors définie par

A := ⊗n≥1Ai := σ (C(Ai, i ∈ I) : I ⊂ N, card(I) <∞} .

A.5.2 Mesure image et changement de variable

Soit O = Rn, ou d’un espace de dimension n. Les outils développés dans les
paragraphes précédents permettent de définir la mesure de Lebesgue sur Rn à
partir de notre construction de la mesure de Lebesgue sur R.

Dans ce paragraphe, on considère une fonction

g : Ω1 −→ Ω2 où Ω1,Ω2 ouverts de Rn.

On note g = (g1, . . . , gn). Si g est différentiable en un point x ∈ Ω1, on note par

Dg(x) :=

(
∂gi
∂xj

)
1≤i,j≤n

et det[Dg(x)]

la matrice jacobienne de f en x et son déterminant. Rappelons enfin que g est
un C1−difféomorphisme si g est une bijection telle g et g−1 sont de classe C1,
et que dans ce cas

det[Dg−1(y)] =
1

det[Dg ◦ g−1(y)]
.

Theorem A.42. Soit µ1 une mesure sur (Ω1,BΩ1
) de densité par rapport à la

mesure de Lebesgue f1 ∈ L0
+(BΩ1

), i.e. µ1(dx) = 1Ω1
f1(x) · dx. Si g est un

C1−difféomorphisme, la mesure image µ2 := µg−1 est absolument continue par
rapport à la mesure de Lebesgue de densité

f2(y) = 1Ω2
(y)f

(
g−1

)
|det[Dg−1(y)]| et

∫
Ω1

h ◦ g(x)f1(x)dx =

∫
Ω2

h(y)f2(y)dy

pour toute fonction h : Ω2 −→ R positive ou µ2−intégrable.

Pour la démonstration, on renvoit au cours de première année.
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A.6 Annexe du chapitre A

A.6.1 π−système, d−système et unicité des mesures

Commençons par introduire une notion supplémentaire de classes d’ensembles.

Definition A.43. Une classe D ⊂ P(Ω) est appelée d−système si Ω ⊂ D,
B \ A ∈ D pour tous A,B ∈ D avec A ⊂ B, et ∪nAn ∈ D pour toute suite
croissante (An)n ⊂ Ω.

Lemma A.44. Une classe C ⊂ P(Ω) est une σ−algèbre si et seulement si C est
un π−système et un d−système.

La preuve facile de ce résultat est laissée en exercice. Pour toute classe C,
on définit l’ensemble

d(C) := ∩{D ⊃ C : D est un d− système} ,

qui est le plus petit d−système contenant C. L’inclusion d(C) ⊂ σ(C) est
évidente.

Lemma A.45. Pour un π−système I, on a d(I) = σ(I).

Proof. D’après le lemme A.44, il suffit de montrer que d(I) est un π−system,
i.e. que d(I) est stable par intersection finie. On définit l’ensemble D′ := {A ∈
d(I) : A ∩ B ∈ d(I) pour tout B ∈ d(I)}, et on va montrer que D′ = d(I) ce
qui termine la démonstration.
1- On commence par montrer que l’ensemble D0 := {B ∈ d(I) : B ∩ C ∈
d(I) pour tout C ∈ Ic} est un d−système. En effet:

- Ω ∈ D;

- soient A,B ∈ D0 tels que A ⊂ B, et C ∈ I; comme A,B ∈ D0, on a
(A ∩ C) et (B ∩ C) ∈ d(I), et du fait que d(I) est un d−système, on voit que
(B \A) ∩ C = (B ∩ C) \ (A ∩ C) ∈ d(I);

- enfin, si D0 3 An ↑ A et C ∈ I, on a An∩C ∈ d(I) et donc lim ↑ (An∩C) =
A ∩ C ∈ d(I) du fait que d(I) est un d−système;
2- par définition D0 ⊂ d(I), et comme on vient de montrer que c’est un
d−système contenant I, on voit qu’on a en fait D0 = d(I); on vérifie main-
tenant que ceci implique que I ∈ D′;
3- enfin, en procédant comme dans les étapes précédentes, on voit que D′ est
un d−système. ♦

Preuve de la proposition A.5 On vérifie aisément que l’ensemble D :=
{A ∈ σ(I) : µ(A) = ν(A)} est un d−système (c’est à ce niveau qu’on utilise que
les mesures sont finies afin d’éviter des formes indéterminées du type ∞−∞).
Or, par hypothèse, D contient le π−système I. On déduit alors du lemme A.45
que D contient σ(I) et par suite D = σ(I). ♦
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A.6.2 Mesure extérieure et extension des mesures

Le but de ce paragraphe est de démonrer du théorème de Caracthéodory A.6
dont nous rappeleons l’énoncé.

Théorème A.6 Soient A0 une algèbre sur Ω, et µ0 : A0 −→ R+ une fonction
σ−additive. Alors il existe une mesure µ sur A := σ(A0) telle que µ = µ0 sur
A0. Si de plus µ0(Ω) <∞, alors une telle extension µ est unique.

Pour préparer la démonstration, nous considérons une σ−algèbreA′ ⊂ P(Ω),
et une application λ : A′ −→ [0,∞] vérifiant λ(∅) = 0.

Definition A.46. On dit que λ est une mesure extérieure sur (Ω,A′) si
(i) λ(∅) = 0,
(ii) λ est croissante: pour A1, A2 ∈ A′, λ(A1) ≤ λ(A2) dès que A1 ⊂ A2,
(iii) λ est σ−sous-additive: pour (An)n ⊂ A′, on a λ (∩nAn) ≤

∑
n λ(An).

Definition A.47. On dit qu’un élément A ∈ A′ est un λ−ensemble si

λ(A ∩B) + λ(Ac ∩B) = λ(B) pour tout B ∈ A0,

(en particulier, λ(∅) = 0). On note par A′λ l’ensemble de tous les λ−ensembles
de A′.

Le résultat suivant utilise uniquement le fait que A′ est une algèbre.

Lemma A.48. L’ensemble A′λ est une algèbre, et la restriction de λ à A′λ est
additive et vérifie pour tout B ∈ A′:

λ (∪ni=1(Ai ∩B)) =

n∑
i=1

λ(Ai ∩B) dès A1, . . . , An ∈ A′λ sont disjoints.

Ce lemme, dont la démonstration (facile) est reportée pour la fin du para-
graphe, permet de montrer le résultat suivant:

Lemma A.49. (Carathéodory) Soit λ une mesure extérieure sur (Ω,A′). Alors
A′λ est une σ−algèbre, et la restriction de λ à A′λ est σ−additive, et par suite
λ est une mesure sur (Ω,A′λ).

Proof. En vue du lemme A.48, il reste à montrer que pour une suite d’ensembles
disjoints (An)n ⊂ A′λ, on a

L := ∪nAn ∈ A′0(λ) et λ(∪nAn) =
∑
n

λ(An). (A.11)

Notons Ān := ∪i≤nAi, Ā := ∪nAn, et remarquons que Āc ⊂ Ācn. D’après le
lemme A.48, Ān ∈ A′λ et pour tout B ∈ A′:

λ(B) = λ(Ācn∩B)+λ(Ān∩B) ≥ λ(Āc∩B)+λ(Ān∩B) = λ(Āc∩B)+
∑
i≤n

λ(Ai∩B).
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On continue en faisant tendre n vers l’infini, et en utilisant (deux fois) la sous-
additivité de λ:

λ(B) ≥ λ(Āc ∩B) +
∑
n

λ(Ai ∩B) ≥ λ(Āc ∩B + λ(A ∩B) ≥ λ(B).

On déduit que toutes les inégalités sont des égalités, prouvant que Ā ∈ A′λ, et
pour B = Ā on obtient la propriété de sous-additivité de λ, finissant la preuve
de (A.11). ♦

Nous avons maintenant tous les ingrédients pour montrer le théorème d’extension
de Carathéodory.

Preuve du théorème A.6 On considère la σ−algèbre A′ := P(Ω), et on
définit l’application sur Ω:

λ(A) := inf

{∑
n

µ0(Bn) : (Bn)n ⊂ A0, Bn disjoints et A ⊂ ∪nBn

}
.

Etape 1 Montrons que λ est une mesure extérieure sur (Ω,P), ce qui implique
par le lemme A.49 que

λ est une mesure sur (Ω,A′λ). (A.12)

Il est clair que λ(∅) = 0, et que λ est croissante, il reste donc à vérifier que λ est
σ−sous-additive. Soit une suite (An)n ⊂ P telle que λ(An) < ∞ pour tout n,
et soit A := ∪nAn. Pour tout ε > 0 et n ≥ 1, on considère une suite ε−optimale
(Bn,εi )i ⊂ A0 du problème de minimisation λ(An), i.e. Bn,εi ∩Bn,εj = ∅,

An ⊂ ∪kBn,εk et λ(An) >
∑
k

µ0(Bn,εk )− ε2−n.

Alors, λ(A) ≤
∑
n,k µ0(Bn,εk ) < ε+

∑
n λ(An) −→

∑
n λ(An) quand ε→ 0.

Etape 2 Rappelons que σ(A0) ⊂ A′λ. Alors, pour finir la démonstration de
l’existence d’une extension, il nous reste à montrer que

A0 ⊂ A′λ et λ = µ0 sur A0, (A.13)

pour ainsi définir µ comme la restriction de λ à σ(A0).
1- Commençons par montrer que λ = µ0 sur A0. L’inégalité λ ≤ µ0 sur A0 est
triviale. Pour l’inégalité inverse, on considère A ∈ A0 et une suite (Bn)n ⊂ A0

d’éléments disjoints telle A ⊂ ∪nBn. Alors, en utilisant la σ−additivité de µ0

sur A0:

µ0(A) = µ0 (∪nA ∩Bn) =
∑
n

µ0(A ∩Bn) ≤
∑
n

µ0(Bn) = λ(A).
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2- Montrons maintenant que A0 ⊂ A′λ. Soient A ∈ A′, ε > 0 et (Bn)n ⊂ A0

une suite ε−optimale pour le problème de minimsation λ(A). Alors, pour tout
A0 ∈ A0, on a

λ(A) + ε ≥
∑
n

µ0(Bn) =
∑
n

µ0(A0 ∩Bn) +
∑
n

µ0(Ac0 ∩Bn)

≥ λ((A0 ∩A) + λ((Ac0 ∩A)

≥ λ(A),

où les deux dernières inégalités découlent respectivement de la monotonie et la
sous-linéarité de λ. Comme ε > 0 est arbitraire, ceci montre que A0 est un
λ−ensemble, i.e. A0 ∈ A′λ. ♦

Preuve du lemme A.48 1- Commençons par montrer queA′λ est une algèbre.
Il est clair que Ω ∈ A′λ et que A′λ est stable par passage au complémentaire. Il
reste à montrer que A = A1 ∩ A2 ∈ A0(λ) pour tous A1, A2 ∈ A0(λ). En util-
isant successivement le fait que A2 ∈ A′λ et que A2∩Ac = Ac1∩A2, Ac2∩Ac = Ac2,
on calcule directement:

λ(Ac ∩B) = λ(A2 ∩Ac ∩B) + λ(Ac2 ∩Ac ∩B) = λ(Ac1 ∩A2 ∩B) + λ(Ac2 ∩B).

On continue en utilisant le fait que A1, A2 ∈ A′λ:

λ(Ac ∩B) = λ(A2 ∩B)− λ(A ∩B) + λ(Ac2 ∩B) = λ(B)− λ(A ∩B).

2- Pour des ensembles disjoints A1, A2 ∈ A′λ, on a (A1 ∪ A2) ∩ A1 = A1 et
(A1 ∪ A2) ∩ Ac1 = A2, et on utilise le fait que A1 ∈ A′λ pour voir que λ((A1 ∪
A2) ∩ B) = λ(A1 ∩ B) + λ(A2 ∩ B), ce qui est l’égalité annoncée pour n = 2.
L’extension pour un n plus grand est triviale, et la σ−addditivité de λ en est
une conséquence immédiate. ♦

A.6.3 Démonstration du théorème des classes monotones

Rappelons l’énoncé.

Théorème A.18 Soit H une classes de fonctions réelles bornées sur Ω vérifiant
les conditions suivantes:
(H1) H est un espace vectoriel contenant la fonction constante 1,
(H2) pour toute suite croissante (fn)n ⊂ H de fonctions positives telle que
f := lim ↑ fn est bornée, on a f ∈ H.
Soit I un π−système tel que {1A : A ∈ I} ⊂ H. Alors L∞(σ(I)) ⊂ H.

Proof. D’après les conditions H1 et H2, on voit immédiatement que l’ensemble
D := {F ⊂ Ω : 1F ∈ H} est un d−système. De plus, comme D contient le
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π−système I, on déduit que σ(I) ⊂ D. Soit maintenant f ∈ L∞( σ(I)) bornée
par M > 0, et

φn(ω) :=

M2−n∑
i=0

i2−n1Ani (ω), où Ani := {ω ∈ Ω : i2−n ≤ f+(ω) < (i+ 1)2−n}.

Comme Ani ∈ σ(I), on déduit de la structure d’espace vectoriel (condition H1)
deH que φn ∈ H. De plus (φn)n étant une suite croissante de fonctions positives
convergeant vers la fonction bornée f+, la condition H2 assure que f+ ∈ H. On
montre de même que f− ∈ H et, par suite, f = f+ − f− ∈ H d’après H1. ♦
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Appendix B

Préliminaires de la théorie
des probabilités

Dans ce chapitre, on spécialise l’analyse aux cas d’une mesure de probabilité,
i.e. une mesure P : A −→ R+ telle que P[Ω] = 1. On dit alors que (Ω,F ,P) est
un espace probabilisé.

Bien évidemment, tous les résultats du chapitre précédent sont valables dans
le cas présent. En plus de ces résultats, nous allons exploiter l’intuition proba-
biliste pour introduire de nouveaux concepts et obtenir de nouveaux résultats.

Ainsi, l’ensemble Ω s’interprète comme l’ensemble des événements élémentaires,
et tout point ω ∈ Ω est un événement élémentaire. La s−algèbreA est l’ensemble
de tous les événements réalisables.

On remplacera systématiquement la terminologie P−p.p. par P−presque
surement, notée P−p.s. ou plus simplement p.s. s’il n’y a pas de risque de
confusion.

Les fonctions P−mesurables sont appelées variables aléatoires (on écrira v.a.),
et on les notera, le plus souvent, par des lettres majuscules, typiquement X. La
loi image PX−1 est appelée distribution de la v.a. X, et sera notée LX s’il n’y
a pas besoin de rappeler la probabilité P.

B.1 Variables aléatoires

B.1.1 σ−algèbre engendrée par une v.a.

Nous commençons par donner un sens précis à l’information révélée par une
famille de variables aléatoires.

Definition B.1. Soient T un ensemble, et {Xτ , τ ∈ T} une famille quelconque
de v.a. La σ−algèbre engendrée par cette famille X := σ(Xτ : τ ∈ T) est la plus
petite σ−algèbre sur Ω telle que Xτ est X−mesurable pour tout τ ∈ T, i.e.

σ(Xτ : τ ∈ T) = σ
(
{X−1

τ (A) : τ ∈ T et A ∈ BR}
)
. (B.1)

259



260 APPENDIX B. ESSENTIALS OF PROBABILITY THEORY

Il est clair que si les Xτ sont A−mesurables, alors σ(Xτ : τ ∈ T) ⊂ A.

Lemma B.2. Soient X et Y deux v.a. sur (Ω,A,P) prenant valeurs respec-
tivement dans R et dans Rn. Alors X est σ(Y )−mesurable si et seulement si il
existe une fonction borélienne f : Rn −→ R telle que X = f(Y ).

Proof. Seule la condition nécessaire est non triviale. Par ailleurs quitte à trans-
former X par une fonction bijective bornée, on peut se limiter au cas où X est
bornée. On définit

H := {f(Y ) : f ∈ L∞(Rn,BRn)},

et on remarque que {1A : A ∈ σ(Y )} ⊂ H: d’après (B.1), pour tout A ∈ σ(Y ),
il existe B ∈ A tel que A = Y −1(B), et par suite 1A = 1B(Y ).

Pour conclure, il nous suffit de montrer que H vérifie les conditions du
théorème des classes monotones. Il est cair que H est un espace vectoriel
contenant la v.a. constante 1. Soient X ∈ L∞+ (A,P) et (fn(Y ))n une suite
croissante de H telle que fn(Y ) ↑ X. Alors X = f(Y ), où f = lim sup fn est
BRn−mesurable bornée (puisque X l’est). ♦

B.1.2 Distribution d’une v.a.

La distribution, ou la loi, d’une v.a. X sur (Ω,A,P) est définie par la mesure
image LX := PX−1. En utilisant le π−système π(R) = {]−∞, c]) : c ∈ R}, on
déduit de la proposition A.5 que la loi LX est caractérisée par la fonction

FX(c) := LX(]−∞, c]) = P[X ≤ c], c ∈ R. (B.2)

La fonction FX est appelée fonction de répartition.

Proposition B.3. (i) La fonction FX est croissante continue à droite, et
FX(−∞) = 0, FX(∞) = 1,
(ii) Soit F une fonction croissante continue à droite, et F (−∞) = 0, F (∞) =
1. Alors il existe une variable aléatoire X̃ sur un espace de probabilité (Ω̃, Ã, P̃)
telle que F = FX̃ .

Proof. (i) est triviale. Pour (ii), une première approche consiste à construire
une loi L̃ en suivant le schémas de construction de la mesure de Lebesgue dans
l’exemple A.7 qui utilise le théorème d’extension de Carathéodory; on prend
alors (Ω̃, Ã, P̃) = (R,BR, L̃) et X(ω) = ω. La remarque suivante donne une
approche alternative. ♦

Remark B.4. Etant donnée une fonction de répartition, ou une loi, voici une
construction explicite d’une v.a. lui correspondant. Cette construction est utile,
par exemple, pour la simulation de v.a. Sur l’espace de probabilité (Ω̃, Ã, P̃) :=
([0, 1],B[0,1], λ), λ étant la mesure de Lebesgue, on définit

X(ω) := inf{u : F (u) > ω} et X(ω) := inf{u : F (u) ≥ ω}
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1- FX = F : nous allons montrer que

ω ≤ F (c) ⇐⇒ X(ω) ≤ c, (B.3)

et par suite P[X ≤ c] = F (c).
L’implication =⇒ découle de la définition. Pour l’inclusion inverse, on ob-

serve que F (X(ω)) ≥ ω. En effet, si ce n’était pas le cas, on déduirait de la
continuité à droite de F que F (X(ω)+ε) < ω pour ε > 0 assez petit, impliquant
l’absurdité X(ω) + ε ≤ X(ω) !

Avec cette observation et la croissance de F , on voit que X(ω) ≤ c implique
ω ≤ F (X(ω)) ≤ F (c) implique ω ≤ F (c).

2- FX = F : par définition de X, on a ω < F (c) implique X(ω) ≤ c. Mais

X(ω) ≤ c implique X(ω) ≤ c puisque X ≤ X. On en déduit que F (c) ≤ P[X ≤
c] ≤ P[X ≤ c] = F (c).

B.2 Espérance de variables aléatoires

Pour une v.a. X ∈ L1(Ω,A,P), l’espérance dans le vocabulaire probabiliste est
l’intégrale de X par rapport à P:

E[X] := P(X) =

∫
Ω

XdP.

Pour une v.a. positive, E[X] ∈ [0,∞] est toujours bien définie. Bien sûr, toutes
les propriétés du chapitre A sont valides. Nous allons en obtenir d’autres comme
conséquence de P[Ω] = 1.

B.2.1 Variables aléatoires à densité

Revenons à présente à la loi LX sur (R,BR) d’une v.a. X sur (Ω,A,P). Par
définition, on a:

LX(B) = P[X ∈ B] pour tout B ∈ BR.

Par linéarité de l’intégrale (par rapport à LX), on obtient E[g(X)] = LX(g) =∫
R hdLX pour toute fonction simple g ∈ S+. On étend alors cette relation aux

fonction g mesurables positives, par le théorème de convergence monotone, puis
à L1 en décomposant g = g+ − g−. Ceci montre que g(X) ∈ L1(Ω,A,P) ssi
g ∈ L1(R,BR,LX) et

E[g(X)] = LX(g) =

∫
R
hdLX . (B.4)

Definition B.5. On dit que X a une densité de probabilité fX si LX est ab-
soluement continue par rapport à la mesure de Lebesgue sur R et:

P[X ∈ B] =

∫
B

fX(x)dx pour tout B ∈ BR.
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Le lien entre la densité de probabilité, si elle existe, et la fonction de répartition
(qui existe toujours) est facilement établie en considérant B =]−∞, c]:

FX(c) =

∫
]−∞,c]

fX(x)dx pour tout c ∈ R.

qui exprime “fX est la dérivée de FX” aux points de continuité de f . Enfin,
pour une v.a. X à densité fX , on peut reformuler (B.4) sous la forme:

g(X) ∈ L1(Ω,A,P) ssi

∫
R
|g(x)|fX(x)dx <∞

et

E[g(X)] =

∫
R
g(x)fX(x)dx.

B.2.2 Inégalités de Jensen

Une fonction convexe g : Rn −→ R est au dessus de son hyperplan tangeant en
tout point de l’intérieur du domaine. Si on admet ce résultat, alors, on peut
écrire pour une v.a. intégrable X que

g(X) ≥ g(E[X]) + 〈pE[X], X − E[X]〉,

où pE[X] est le gradient de g au point E[X], si g est dérivable en ce point. si g
n’est pas dérivable ce résultat est encore valable en remplaçant le gradient par
la notion de sous-gradient... Dans la démonstration qui va suivre, nous allons
éviter de passer par cette notion d’analyse convexe, et utiliser un argument
d’approximation. En prenant l’espérance dans la dernière inégalité, on obtient
l’inégalité de Jensen:

Theorem B.6. Soit X ∈ L1(Ω,A,P) et g : Rn −→ R ∪ {∞} une fonction
convexe telle que E[|g(X)|] <∞. Alors E[g(X)] ≥ g (E[X]).

Proof. Si g est dérivable sur l’intérieur du domaine, le résultat découle de la
discussion qui précéde l’énoncé.

Dans le cas général, on commence par supposer que X est bornée, et on
considère une approximation de g par une suite de fonctions (gn)n telle que
gn est différentiable, convexe, −∞ < − supn ‖g−n ‖∞ ≤ gn ≤ g pour tout n, et
gn −→ g.1 On écrit alors que gn(X) est au dessus de son hyperplan tangeant
au point E[X], et on obtient en prenant l’espérance E[gn(X)] ≥ gn(E[X]). Le
théorème de convergence dominée permet de conclure.

Pour une variable aléatoire X intégrable, on applique le résultat précédent
à Xn := (−n) ∨X ∧ n, et on passe à la limite par un argument de convergence
dominée. ♦

1Un exemple d’une telle fonction est donné par l’inf-convolution gn(x) :=
infy∈Rn

{
f(y) + n|y − x|2

}
, voir Aubin [2].
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B.2.3 Fonction caractéristique

Dans tout ce paragraphe X désigne un vecteur aléatoire sur l’espace probabilisé
(Ω,A,P), à valeurs dans Rn.

Definition B.7. On appelle fonction caractéristique de X la fonction ΦX :
Rn −→ C définie par

ΦX(u) := E
[
ei〈u,X〉

]
pour tout u ∈ Rn.

La fonction caractéristique dépend uniquement de la loi de X:

ΦX(u) =

∫
Rn
ei〈u,x〉dLX(x),

est n’est rien d’autre que la transformée de Fourier de PX au point −u/2π.
L’intégrale de Lebesgue d’une fonction à valeurs complexes est définie de manière
naturelle en séparant partie réelle et partie imaginaire. La fonction caractéristique
est bien définie pour tout u ∈ R comme intégrale d’une fonction de module 1.
Enfin, pour deux v.a. X et Y , on a

ΦX(u) = Φ−X(u) et ΦaX+b(u) = eibΦX(au) pour tous u ∈ Rn, a, b ∈ R.

Les propriés suivantes des fonctions caractéristiques peuvent être démontrés
facilement grâce au théorème de convergence dominée.

Lemma B.8. Soit ΦX la fonction caractéristique d’une v.a. X. Alors ΦX(0) =
1, et ΦX est continue bornée (par 1) sur Rn.

Proof. ΦX(0) = 1 et |ΦX | ≤ 1 sont des propriétés évidentes, la continuité est
une conséquence immédiate du théorème de convergence dominée. ♦

Exercise B.9. 1. Pour un vecteur gaussien X de moyenne b et de matrice
de variance V , montrer que

ΦX(u) = e〈u,b〉−
1
2 〈u,V u〉.

(Il s’agit d’une formule utile à retenir.)

2. Si LX est symétrique par rapport à l’origine, i.e. LX = L−X , montrer
que ΦX est à valeurs réelles.

3. Pour une v.a. réelle, supposons que E[|X|p] < ∞ pour un certain entier
p ≥ 1. Montrer que ΦX est p fois dérivable et

Φ
(k)
X (0) = ikE[Xk] pour k = 1, . . . , p.

Le but de ce paragraphe est de montrer que la fonction caractéristique per-
met, comme son nom l’indique, de caractériser la loi LX de X. Ceci donne un
moyen alternatif d’aborder les vecteurs aléatoires pour lesquels la fonction de
répartition est difficile à manipuler. Cependant, l’intérêt de cette notion ne se
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limite pas à la dimension n = 1. Par exemple, la manipulation de sommes de
v.a. est souvent plus simple par le biais des fonctions caractéristiques.

Dans ces notes, nous nous limitons à montrer ce résultat dans le cas unidi-
mensionnel.

Theorem B.10. Pour une v.a. rélle, la fonction ΦX caractérise la loi LX .
Plus précisément

1

2
LX({a}) +

1

2
LX({b}) + LX(]a, b[) =

1

2π
lim
T→∞

∫ T

−T
ΦX(u)

e−iua − e−iub

iu
du

pour tous a < b. De plus, si ΦX est inégrable, LX est absoluement continue par
rapport à la mesure de Lebesgue, de densité

fX(x) =
1

2π

∫
R
e−iuxΦX(u)du, x ∈ R.

Proof. Nous nous limitons au cas unidimensionnel n = 1 pour simplifier la
présentation. Pour a < b, on vérifie sans peine que la condition d’application
du théorème de Fubini est satisfaite, et on calcule que:

1

2π

∫ T

−T

e−iua − e−iub

iu
ΦX(u)du =

1

2π

∫ T

−T

e−iua − e−iub

iu

(∫
R
eiuvdLX(v)dv

)
du

=
1

2π

∫
R

(∫ T

−T

eiu(v−a) − eiu(v−b)

iu
du

)
dLX(v).

Puis, on calcule directement que

1

2π

∫ T

−T

eiu(v−a) − eiu(v−b)

iu
du =

S((v − a)T )− S((v − b)T )

πT
, (B.5)

où S(x) := sgn(x)
∫ |x|

0
sin t
t dt, t > 0, et sgn(x) = 1{x>0} − 1{x<0}. On peut

vérifier que limx→∞ S(x) = π
2 , que l’expression (B.5) est uniformément bornée

en x et T , et qu’elle converge vers

0 si x 6∈ [a, b], 1
2 si x ∈ {a, b}, et 1 si x 6∈]a, b[.

On obtient alors le résultat annoncé par le théorème de convergence dominée.
Supposons de plus que

∫
R |φX(u)|du < ∞. Alors, en prenant la limite T →

∞ dans l’expression du théorème, et en supposant dans un premier temps que
LX n’a pas d’atomes, on obtient:

LX(]a, b] = FX(b)− FX(a) =
1

2

∫
R

e−iua − e−iub

iu
du

par le théorème de convergence dominée. On réalise alors que le membre de
droite est continu en a et b et, par suite, LX n’a pas d’atomes et l’expression ci-
dessus est vraie. Pour trouver l’expression de la densité fX , il suffit de prendre
la limite b → a après normalisation par b − a, et d’utiliser le théorème de
convergence dominée. ♦
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B.3 Espaces Lp et convergences
fonctionnelles des variables aléatoires

B.3.1 Géométrie de l’espace L2

On désigne par L2 = L2(Ω,A,P) l’espace vectoriel des variables aléatoires rélles
de carré P−intégrable. Une application simple de l’inégalité de Jensen montre
montre que L2 ⊂ L1 = L1(Ω,A,P).

L’application (X,Y ) 7−→ E[XY ] définit un produit scalaire sur L2 si on
identifie les v.a.égales p.s. On note la norme correspondantes par ‖X‖2 :=
E[X2]1/2. En particulier, ceci garantit l’inégalité de Schwarz (valable pour les
mesures, voir exercice A.37):

|E[XY ]| ≤ E[|XY |] ≤ ‖X‖2‖Y ‖2 pour tous X,Y ∈ L2,

ainsi que l’inégalité triangulaire

‖X + Y ‖2 ≤ ‖X‖2 + ‖Y ‖2 pour tous X,Y ∈ L2.

(On peut vérifier que les preuves de ces résultats ne sont pas perturbées par le
problème d’identification des v.a. égales p.s.)

En probabilité, l’espérance quantifie la moyenne de la v.a. Il est aussi im-
portant, au moins intuitivement, d’avoir une mesure de la dispersion de la loi.
ceci est quantifié par la notion de variance et de covariance:

V[X] := E[(X − EX)2] = E[X2]− E[X]2

et

Cov[X,Y ] := E[(X − EX)(Y − EY )] = E[XY ]− E[X]E[Y ].

Si X est à valeurs dans Rn, ces notions sont étendus de manière naturelle. Dans
ce cadre V[X] est une matrice symétrique positive de taille n.

Enfin, la corrélation entre les v.a. X et Y est définie par

Cor[X,Y ] :=
Cov[X,Y ]

‖X‖2‖Y ‖2
=
〈X,Y 〉2
‖X‖2‖Y ‖2

,

i.e. le cosinus de l’angle formé par les vecteurs X et Y . L’inégalité de Schwarz
garantit que la corrélation est un réel dans l’intervalle [−1, 1]. Le théorème de
Pythagore s’écrit

E[(X + Y )2] = E[X2] + E[Y 2] dès que E[XY ] = 0,

ou, en termes de variances,

V[X + Y ] = V[X] + V[Y ] dès que Cov[X,Y ] = 0.

Attention,la variance n’est pas un opérateur linéaire, la formule ci-dessus est
uniquement valable si Cov[X,Y ] = 0. Enfin, la loi du parallélogramme s’écrit

‖X + Y ‖22 + ‖X − Y ‖22 = 2‖X‖22 + 2‖Y ‖22 pour tous X,Y ∈ L2.
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B.3.2 Espaces Lp et Lp

Pour p ∈ [1,∞[, on note par Lp := Lp(Ω,A,P) l’espace vectoriel des variables

aléatoires X telles que E[|X|p] < ∞. On note ‖X‖p := (E[|X|p])1/p
. Remar-

quons que ‖X‖p = 0 implique seulement que X = 0 p.s. donc ‖.‖p ne définit
pas une norme sur Lp.

Definition B.11. L’espace Lp est l’ensemble des classes d’équivalence de Lp
pour la relation définie par l’égalité p.s.

Ainsi l’espace Lp identifie les variables aléatoires égales p.s. et ‖.‖ définit
bien une norme sur Lp.

Nous continuerons tout de même à travailler sur l’espace Lp et nous ne
passerons à Lp que si nécessaire.

Par une application directe de l’inégalité de Jensen, on voit que

‖X‖p ≤ ‖X‖r si 1 ≤ p ≤ r <∞ pour tout X ∈ Lr, (B.6)

en particulier, X ∈ Lp. Ceci montre que Lp ⊃ Lr dès que 1 ≤ p ≤ r <∞.

Nous allons montrer que l’espace Lp peut être transformé (toujours par quo-
tionnement par la classe des v.a. nulles p.s.) en un espace de Banach.

Theorem B.12. Pour p ≥ 1, l’espace Lp est un espace de Banach, et L2 est
espace de Hilbert. Plus précisément, soit (Xn)n une suite de Cauchy dans Lp,
i.e. ‖Xn −Xm‖p −→ 0 pour n,m → ∞. Alors il existe une v.a. X ∈ Lp telle
que ‖Xn −X‖p −→ 0.

Proof. Si (Xn)n est une suite de Cauchy, on peut trouver une suite croissante
(kn)n ⊂ N, kn ↑ ∞, telle que

‖Xm −Xn‖p ≤ 2−n pour tous m,n ≥ kn. (B.7)

Alors, on déduit de l’inégalité (B.6) que

E[|Xkn+1
−Xkn |] ≤ ‖Xkn+1

−Xkn‖p ≤ λ2−n,

et que E[
∑
n |Xkn+1

−Xkn |] <∞. Alors la série
∑
n(Xkn+1

−Xkn) est absolue-
ment convergente p.s. Comme il s’agit d’une série télescopique, ceci montre
que

lim
n
Xkn = X p.s. où X := lim sup

n
Xkn .

Revenant à (B.7), on voit que pour n ≥ kn et m ≥ n, on a E|Xn − Xkm |p] =
‖Xn − Xkm‖pp ≤ 2−np. Pour m → ∞, on déduit du lemme de Fatou que
E[|Xn −X|p] ≤ 2−np. ♦
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B.3.3 Espaces L0 et L0

On note par L0 := L0(A) l’espace vectoriel des variables aléatoiresA−mesurables
sur l’espace probabilisé (Ω,A,P), et on introduit l’espace quotient L0 constitué
des classes d’équivalence de L0 pour la relation définie par l’égalité p.s.

Definition B.13. (Convergence en probabilité) Soient (Xn)n et X des v.a.
dans L0. On dit que (Xn)n converge en probabilité vers X si

lim
n→∞

P [|Xn −X| ≥ ε] = 0 pour tout ε > 0.

Cette notion de convergence est plus faible que la convergence p.s. et que la
convergence dans Lp dans le sens suivant.

Lemma B.14. (i) La convergence p.s. implique la convergence en probabilité,
(ii) Soit p ≥ 1. La convergence en norme dans Lp implique la convergence en
probabilité.

Proof. (i) découle d’une application immédiate du théorème de la convergence
dominée. Pour (ii), il suffit d’utiliser l’inégalité de Markov de l’exercice A.36.
♦

Le but de ce paragraphe est de montrer que la convergence en probabilité
est métrisable et qu’elle confère à L0 une structure d’espace métrique complet.
Pour cela, on introduit la fonction D : L0 × L0 −→ R+ définit par:

D(X,Y ) = E[|X − Y | ∧ 1] pour tous X,Y ∈ L0. (B.8)

On vérifie imédiatement que D est une distance sur L0, mais ne l’est pas sur
L0, pour les mêmes raisons que celles du paragraphe précédent.

Lemma B.15. La convergence en probabilité est équivalente à la convergence
au sens de la distance D.

Proof. Pour X ∈ L0, on obtient par l’inégalité de Markov de l’exercice A.36:

P[|X| ≥ ε] = P[|X| ∧ 1 ≥ ε] ≤ E[|X| ∧ 1]

ε
,

qui permet de déduire que au sens de D implique la convergence en probabilité.
Pour l’implication inverse, on estime:

E[|X| ∧ 1] = E[(|X| ∧ 1)1|X|≥ε] + E[(|X| ∧ 1)1|X|<ε] ≤ P[|X| ≥ ε] + ε,

d’où on tire que la convergence en probabilité implique la convergence au sens
de D. ♦

Theorem B.16. (L0, D) est un espace métrique complet.
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Proof. Soit (Xn)n une suite de Cauchy pour D. Alors c’est une suite de Cauchy
pour la convergence en probabilité d’après le lemme B.15, et on peut construire
une suite (nk)k ↑ ∞ telle que

P
[
|Xnk+1

−Xnk | ≥ 2−k
]
≤ 2−k pour tout k ≥ 1,

et par suite
∑
k P
[
|Xnk+1

−Xnk | ≥ 2−k
]
< ∞. Le premier lemme de Borel-

Cantelli (lemme A.14) implique alors que P
[
∪n ∩m≥n {|Xnk+1

−Xnk | ≥ 2−k}
]

=
1 et, par suite, pour presque tout ω ∈ Ω, (Xnk(ω))n est une suite de Cauchy
dans R. Ainsi, la v.a. X := lim supnXkn vérifie Xnk −→ X p.s. donc en
probabilité, et on termine comme dans la démonstration du théorème B.12. ♦

B.3.4 Lien entre les convergences Lp, en proba et p.s.

Nous avons vu que la convergence en probabilité est plus faible que la conver-
gence p.s. Le résultat suivant établit un lien précis entre ces deux notions de
convergence.

Theorem B.17. Soient {Xn, n ≥ 1} et X des v.a. dans L0.
(i) Xn −→ X p.s. ssi supm≥n |Xm −X| −→ 0 en probabilité.
(ii) Xn −→ X en probabilité ssi de toute suite croissante d’entiers (nk)k, on
peut extraire une sous-suite (nkj )j telle que Xnkj

−→ X p.s.

La démonstration est reportée à la fin de ce paragraphe. On continue par
une conséquence immédiate du téorème B.17 (ii).

Corollary B.18. (Slutsky) Soient (Xn)n une suite à valeur dans Rd, et φ :
Rn −→ Rd une fonction continue. Si Xn −→ X en probabilité, alors φ(Xn) −→
φ(X) en probabilité.

Ceci est une conséquence immédiate du théorème B.17 (ii). En particulier, il
montre que la convergence en probabilité est stable pour les opérations usuelles
d’addition, de multiplication, de min, de max, etc...

Avant de démontrer le théorème B.17, énonçons le résultat établissant le lien
précis entre la convergence en probabilité et la convergence dans L1.

Definition B.19. Une famille C de v.a. est dite uniformément intégrable, et
on note U.I. si

lim
c→∞

sup
X∈C

E[|X|1{|X|≥c} = 0.

Theorem B.20. Soient {Xn, n ≥ 1} et X des v.a. dans L1. Alors Xn −→ X
dans L1 si et seulement si

(a) Xn −→ X en probabilité,
(b) (Xn)n est U.I.

La démonstration de ce résultat est reportée à la fin de ce paragraphe.
L’exercice suivant regroupe les résultats essentiels qui concernent l’uniforme
intégrabilité.
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Exercise B.21. Soit (Xn)n une suite de v.a. à valeurs réelles.

1. Supposons que (Xn)n est U.I.

(a) Montrer que (Xn)n est bornée dans L1, i.e. supn E[|Xn|] <∞.

(b) Sur l’espace probabilisé ([0, 1],B[0,1], λ), λ étant la mesure de Lebesgue,
on considère la suite Yn := n1[0,1/n]. Montrer que (Yn)n est bornée
dans L1, mais n’est pas U.I.

2. Supposons que E[supn |Xn|] <∞. Montrer que (Xn) est U.I. (Indication:
utiliser la croissance de la fonction x 7−→ x1{x≥c} R+).

3. Supposons qu’il existe p > 1 tel que (Xn)n est bornée dans Lp.

(a) Montrer que E[|Xn|1{|Xn|≥c}] ≤ ‖Xn‖pP[|Xn ≥ c]1−1/p

(b) En déduire que (Xn) est U.I.

Nous allons maintenons passer aux démonstrations des théorèmes de ce para-
graphe.

Preuve du théorème B.17 (i) Remarquons que

C := {Xn −→ X} = ∩k ∪n ∩m≥n{|Xm −X| ≤ k−1} = lim ↓k ∪nAn

où An := ∩m≥n{|Xm −X| ≤ k−1}. La convergence p.s. de Xn vers X s’écrit
P[C] = 1, et est équivalente à P[∪nAn] = 1 pour tout k ≥ 1. Comme la suite
(An)n est croissante, ceci est équivalent à lim ↑n P[An] = 1 pour tout k ≥ 1, ce
qui exprime exactement la convergence en probabilité de supm≥n |Xm−X| vers
0.
(ii) Supposons d’abord que Xn −→ X en probabilité. Soit (nk) une suite crois-
sante d’indices, et X̄k := Xnk . On définit

kj := inf
{
i : P[|X̄i −X| ≥ 2−j ] ≤ 2−j

}
.

Alors,
∑
j P[|X̄kj − X| ≥ 2−j ] < ∞, et on déduit du premier lemme de Borel

Cantelli, lemme A.14 que |X̄kj −X| < 2−j pour j assez grand, p.s. En partic-
ulier, ceci montre que X̄kj −→ X, p.s.

Pour la condition suffisante, supposons au contraire que Xn 6−→ X en prob-
abilité. Alors, d’après le lemme B.15, il existe une sous-suite (nk) croissante
et ε > 0 tels que D(Xnk , X) ≥ ε. On arrive à une contradiction en extrayant
une sous-suite (Xnkj

)j qui converge p.s. vers X, et en évoquant le théorème de

convergence dominée pour le passage à la limite. ♦

Preuve du théorème B.20 Supposons d’abord que les conditions (a) et (b)
sont satisfaites. La fonction ϕc(x) := −c ∨ x ∧ c, x ∈ R est lipschitzienne, et
vérifie |ϕc(x)− x| ≤ |x|1|x|≥c. On déduit alors
- de l’U.I. de (Xn)n et l’intégrabilité de X que, quand c→∞:

E[|ϕc(Xn)−Xn|] −→ 0 pour tout n et E[|ϕc(X)−X|] −→ 0,
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- et de la convergence en probabilité de Xn vers X, et du corollaire B.18, que

ϕc(Xn) −→ ϕc(X) en probabilité.

On peut maintenant conclure que Xn −→ X dans L1 en décomposant

E[|Xn −X|] ≤ E[|Xn − ϕc(Xn)|] + E[|ϕc(Xn)− ϕc(X)|] + E[|ϕc(X)−X|.

Réciproquement, supposons que Xn −→ X dans L1, alors la convergence en
probabilité (a) est une conséquence immédiate de l’inégalité de Markov (A.7)
(exercice A.36). Pour montrer (b), on se donne ε > 0. La convergence L1 de
(Xn)n montre l’existence d’un rang N à partir duquel

E|Xn −X| < ε pour tout n > N. (B.9)

Par ailleurs, d’après le lemme A.26, il existe δ > 0 tel que pour tout A ∈ A:

sup
n≤N

E[|Xn|1A] < ε et E[|X|1A] < ε dès que P[A] < δ. (B.10)

Nous allons utiliser cette inégalité avec les ensembles An := {|Xn| > c} qui
vérifient bien

sup
n

P[An] ≤ c−1 sup
n

E[|Xn|] < δ pour c assez grand, (B.11)

où nous avons utilisé l’inégalité de Markov (A.7) (exercice A.36), ainsi que la
bornitude dans L1 de la suite (Xn)n du fait de sa convergence dans L1. Ainsi,
on déduit de (B.10) et (B.11) que

sup
n

E[|Xn|1{|Xn|>c}] = max

{
sup
n≤N

E[|Xn|1{|Xn|>c}] , sup
n>N

E[|Xn|1{|Xn|>c}]
}

≤ max

{
ε , sup

n>N
E[|Xn|1{|Xn|>c}]

}
≤ max

{
ε , sup

n>N
E[|X|1{|Xn|>c} + E[|X −Xn|1{|Xn|>c}]

}
≤ max

{
ε , sup

n>N
E[|X|1An + E[|X −Xn|]

}
< 2ε,

où la dernière inégalité est due à (B.9), (B.10) et (B.11). ♦

B.4 Convergence en loi

Dans ce paragraphe, nous nous intéressons à la convergence des loi. Remarquons
immédiatement qu’il ne peut s’agir que d’un sens de convergence plus faible que
les convergences fonctionnelles étudiées dans le paragraphe précédent puis qu’on
ne pourra en général rien dire sur les variables aléatoires sous-jacentes. A titre
d’exemple, si X est une v.a. de loi gaussienne centrée, alors −X a la même loi
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que X (on écrit X
L
= −X). Pire encore, on peut avoir deux v.a. réelles X et

Y sur des espaces probabilisés différents (Ω2A1,P1) et (Ω2,A2,P2) qui ont la
même distribution.

Dans ce paragraphe, on désignera par Cb(R) l’ensemble des fonctions con-
tinues bornées sur R et Σ(R) l’ensemble des mesures de probabilité sur R.

B.4.1 Définitions

Soient µ et µn, n ∈ N ∈ Σ(R). On dit que (µn)n converge faiblement, ou
étroitement, vers µ si: µn(f) −→ µ(f) pour toute fonction f ∈ Cb(R).

Soient X et Xn, n ∈ N des v.a. dans L0(A,P). On dit que (Xn)n converge
en loi vers X si (LXn)n converge faiblement vers LX , i.e.

E[f(Xn)] −→ E[f(X)] pour tout f ∈ Cb(R).

Dans la dernière définition, il n’est pas nécessaire que les v.a. X,Xn, n ∈ N
soient définies sur le même espace probabilisé. Montrons maintenant que les
convergences intrduites dans les chapitres précédents sont plus fortes que la
convergence en loi.

Proposition B.22. La convergence en probabilité implique la convergence en
loi.

Proof. Supposons que Xn −→ X en probabilité, et soient g ∈ Cb(R). La suite
réelles un := E[g(Xn)], n ∈ N, est bornée. Pour montrer la convergence en
loi, il suffit de vérifier que toute sous-suite convergente (unk)k converge vers
E[g(X)]. Pour celà, il suffit d’utiliser le lemme B.17 et le théorème de conver-
gence dominée. ♦

Comme la convergence en probabilité est plus faible que la convergence L1 et
la convergence p.s. on le schémas suivant expliquant les liens entre les différents
types de convergence rencontrés:

Lp =⇒ L1

⇓
p.s. =⇒ P =⇒ Loi

B.4.2 Caractérisation de la convergence en loi par les fonc-
tions de répartition

Toute loi µ ∈ Σ(R) est caractérisée par la fonction de répartition correspondante
F (x) :=

∫
xdµ(x). Ainsi, si F, Fn, n ∈ N des fonctions de répartition sur R, on

dira que (Fn)n converge en loi vers F si la convergence en loi a lieu pour les
mesures correspondantes.

Dans ce paragraphe, nous allons exprimer la définition de la convergence
faible de manière équivalente en terme des fonctions de répartition.
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Remark B.23. Les points de discontinuité de F , s’il y en a, jouent un role
particulier: Sur ([0, 1],B[0,1], λ), soit µn := δ1/n la masse de Dirac au point 1/n
(c’est la loi de la v.a. déterministe Xn = 1/n). Alors (µn) converge en loi vers
δ0, la masse de Dirac au point 0. Maisn pour tout n ≥ 1, Fn(0) = 0 6−→ Fδ0(0).

Theorem B.24. Soient F, Fn, n ∈ N des fonctions de répartition sur R. Alors,
(Fn) converge en loi vers F si et seulement si

Pour tout x ∈ R, F (x−) = F (x) =⇒ Fn(x) −→ F (x).

Proof. 1- Pour η > 0 et x ∈ R, on définit les fonctions

g1(y) := 1]−∞, x+ η]− y − x
η

1]x, x+ η] et g2(y) := g1(y + η), y ∈ R,

et on observe que 1]−∞,x] ≤ g1 ≤ 1]−∞,x+η], 1]−∞,x−η] ≤ g2 ≤ 1]−∞,x] et, par
suite

Fn(x) ≤ µn(g1), µ(g1) ≤ F (x+ η), et Fn(x) ≥ µn(g2), µ(g2) ≤ F (x− η)

Comme g1, g2 ∈ Cb(R), on déduit de a convergence faible de (Fn)n vers F que
µn(g1) −→ µ(g1), µn(g2) −→ µ(g2), et

F (x− η) ≤ lim inf
n

Fn(x) ≤ lim sup
n

Fn(x) ≤ F (x+ δ) pour tout η > 0,

qui implique bien que Fn(x) −→ F (x) si x est un point de continuité de F .
2- Pour la condition suffisante, on définit comme dans la remarque B.4 les v.a.
X,X,Xn, Xn qui ont pour fonction de répartition F et Fn. Par définition de X,
pour tout x > X(ω) on a F (x) > ω. Si x est un point de continuité de F , ceci
implique que Fn(x) > ω pour n assez grand et, par suite, x ≥ Xn(ω). Comme F
est croissante, l’ensemble de ses points de discontinuité est au plus dénombrable.
On peut donc faire tendre x vers X(ω) lelong de points de continuité de F , et
on tire l’inégalité X(ω) ≥ Xn(ω) pour n assez grand. On obtient le résultat
symétrique en raisonnant sur X et Xn. D’où:

X(ω) ≥ Xn(ω) ≥ Xn(ω) ≥ X pour n assez grand.

Comme P[X = X] = 1, ceci montrer que Xn −→ X p.s. et donc en loi. ♦

B.4.3 Convergence des fonctions de répartition

L’importance de la convergence en loi provient de la facilité d’obtenir des théorèmes
limites. En effet, les suites de mesures convergent en loi “à peu de frais”’, lelong
d’une sous-suite, vers une limite qui n’est cependant pas nécessairement une loi.
Si la limite n’est pas une loi, on dit qu’il y a perte de masse.

Avant d’énoncer un résultat précis, expliquons les idées qu’il y a derrière ces
résultats profonds. Les fonctions de répartition ont une structure très spéciale:
on regardant le graphe d’une fonction de répartition dans les coordonnée (x +
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y,−x + y) (obtenu par rotation des coordonnées initiale de 45◦), le graphe
devient celui d’une fonction dont la valeur absolue de la pente est majorée par
1: les pentes −1 et 1 correspondent respectivement aux ”plats” et aux sauts de
la fonction de répartition. Ainsi dans ce système de coordonnées le graphe perd
la proprié de croissance, mais devient 1−Lipschitzien. Le théorème d’Ascoli
nous garantit alors l’existence d’une sous-suite convergente. La démonstration
ci-dessous utilise un argument encore plus élémentaire.

Lemma B.25. Soit (Fn)n une suite de fonctions de répartition sur R. Alors,
il existe une fonction croissante continue à droite F : R −→ [0, 1], et une sous-
suite (nk) telles que Fnk −→ F simplement en tout point de continuité de F .

Proof. On dénombre les éléments de l’ensemble des rationnels Q = {qi, i ∈ N}.
La suite (Fn(q1))n est bornée, donc converge le long d’une sous-suite Fn1

k
(q1) −→

G(q1) quand k →∞. De même la suite
(
Fn1

k
(q2)

)
n

est bornée, donc converge le

long d’une sous-suite Fn2
k
(q2) −→ G(q2) quand k → ∞, etc... Alors, en posant

kj := njj , on obtient

Fkj (q) −→ G(q) pour tout q ∈ Q.

Il est clair que G est croissante sur Q et à valeurs dans [0, 1]. On définit alors
la fonction F par

F (x) := lim
Q3q↘x

G(q) pour tout x ∈ R,

qui vérifie les propriétés annoncées dans le lemme. ♦

Afin d’éviter la perte de masse à la limite, on introduit une nouvelle notion.

Definition B.26. Une suite (Fn)n≥1 de fonctions de répartition sur R est dite
tendue si pour tout ε > 0, il existe K > 0 tel que

µn([−K,K]) := Fn(K)− Fn(−K) > 1− ε pour tout n ≥ 1.

Le résultat suivant est une conséquence directe du lemme précédent.

Lemma B.27. Soit (Fn)n une suite de fonctions de répartition sur R.
(i) Si Fn −→ F en loi, alors (Fn)n est tendue.
(ii) Si (Fn)n est tendue, alors il existe une fonction de répartition F sur R, et
une sous-suite (nk) telles que Fnk −→ F en loi.

B.4.4 Convergence en loi et fonctions caractéristiques

La fonction caractéristique caractérise une loi de distribution tout aussi bien
que la fonction de répartition. Le résultat suivant donne la caractérisation de
la convergence en loi en termes de fonctions caractéristiques.
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Theorem B.28. (convergence de Lévy) Soit (Fn)n une suite de fonctions de
répartitions sur R, et (φn)n la suite de fonctions caractéristiques correspon-
dantes. Supposons qu’il existe une fonction φ sur R telle que

φn −→ φ simplement sur R et φ continue en 0.

Alors φ est une fonction caractéristique correspondant à une fonction de répartition
F , et Fn −→ F en loi.

Proof. 1- Montrons d’abord que

(Fn)n est tendue. (B.12)

Soit ε > 0. D’après la continuité de φ en 0, il existe α > 0 tel que |1 − φ| < ε
sur [−α, α]. Il est clair que 2 − φn(u) − φn(−u) ∈ R+ et que cette propriété
est héritée par φ à la limite. Alors 0 ≤

∫ α
0

[2 − φ(u) − φ(−u)]du ≤ 2εα, et on
déduit de la convergence de φn vers φ et du théorème de convergence dominée
qu’à partir d’un certain rang n ≥ N :

4ε ≥ 1

α

∫ α

0

[2− φn(u)− φn(−u)]du

=
1

α

∫ α

−α

∫
R

(
1− eiuω

)
dFn(ω)du

=
1

α

∫
R

∫ α

−α

(
1− eiuω

)
dudFn(ω) = 2

∫
R

(
1− sin (αω)

αω

)
dFn(ω)

par le théorème de Fubini. Comme sinx ≤ x pour tout x ∈ R, on déduit alors
que pour tout ε > 0, il existe α > 0 tel que:

4ε ≥ 2

∫
|ω|≥2α−1

(
1− sin (αω)

αω

)
dFn(ω) ≥

∫
|ω|≥2α−1

dFn(ω),

prouvant (B.12).
2- Comme (Fn)n est tendue, on déduit du lemme B.27 que Fnk −→ F en loi
lelong d’une sous-suite (nk)k, où F est une foncion de répartition. D’après la
définition de la convergence en loi, on a aussi convergence des fonctions car-
actéristiques correspondantes φnk −→ ΦF . Alors φ = ΦF .
3- Il reste à monter que Fn −→ F en loi. Supposons au contraire qu’il existe
un point de continuité x tel que Fn(x) 6−→ F (x). Alors, il existe une sous-suite
(nk)k telle que

F (x−) = F (x) et |Fnk(x)− F (x)| ≥ ε pour tout k. (B.13)

Comme (Fnk)k est tendue d’après l’étape 1, on a Fnkj −→ F̃ en loi lelong d’une

sous-suite (nkj )j , où F̃ est une foncion de répartition. Raisonnant comme dans

l’étape précédente, on voit que φnkj −→ ΦF̃ = φ = ΦF , et on déduit que F̃ = F

par injectivité. Ainsi Fnkj −→ F en loi, contredisant (B.13). ♦
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B.5 Indépendance

B.5.1 σ−algèbres indépendantes

Soient (Ω,A,P) un espace probabilisé, et (An)n ⊂ A une suite de σ−algèbres.
On dit que les (An)n sont indépendantes (sous P) si pour tous entiers n ≥ 1 et
1 ≤ i1 < . . . < in:

P [∩nk=1Aik ] =

n∏
k=1

P [Aik ] pour tous Aik ∈ Aik , 1 ≤ k ≤ n. (B.14)

Remarquons que le théorème de convergence monotone permet d’affirmer que
(B.14) est aussi valide pour n =∞, i.e.

P [∩k≥1Aik ] =
∏
k≥1

P [Aik ] pour tous Aik ∈ Aik , k ≥ 1. (B.15)

A partir de cette définition générale pour les σ−algèbres, on étend l’indépendance
à des sous-familles arbitraires de A et aux v.a.

Definition B.29. On dit que les événements (An)n ⊂ A sont indépendants
si (σ(An))n sont indépendantes ou, de manière équivalente, si les v.a. (1Xn)n
sont indépendantes.

Dans la partie (ii) de la définition précédentes, il est inutile de vérifier (B.14)
pour tous les choix possibles dans les σ−algèbres σ(An) = {Ω, ∅, An, Anc}. En
effet, on peut facilement montrer qu’il suffit de vérifier que

P [∩nk=1Aik ] =

n∏
k=1

P [Aik ] pour n ≥ 1 et 1 ≤ i1 < . . . < in.

Voici une formulation plus générale de ce résultat.

Lemma B.30. Soit (In)n ⊂ A une suite de π−systèmes. Alors les sous-
σ−algèbres (σ(In))n sont indépendantes si et seulement si (B.14) est vraie pour
les événements des In, i.e. si pour tous entiers n ≥ 1 et 1 ≤ i1 < . . . < in, on
a:

P [∩nk=1Iik ] =

n∏
k=1

P [Iik ] pour tous Iik ∈ Iik , 1 ≤ k ≤ n.

Proof. il suffit de vérifier le résultat pour deux π−systèmes I1, I2. Fixons un
événement I1 ∈ I1, et introduisons les applications de σ(I2) dans [0,P[I1]]
définies par µ(I2) := µ(I1 ∩ I2) et ν(I2) := ν(I1)ν(I2). Il est clair que µ et ν
sont des mesures sur σ(I2) égales sur le π−système I2. Alors elles sont égales sur
σ(I2) d’après la proposition A.5. Il suffit maintenant d’évoquer le rôle arbitraire
de I1 ∈ I1, et de répéter exactement le même argument en inversant I1 et I2.
♦
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B.5.2 variables aléatoires indépendantes

Definition B.31. On dit que des v.a. (Xn)n sont indépendantes si les sous-
σ−algèbres correspondantes (σ(Xn))n sont indépendantes.

Une application directe du lemme B.30 et du théorème de Fubini permet
d’établir le critère suivant d’indépendance de v.a.

Proposition B.32. Les v.a. (Xn)n sont indépendantes si et seulement si pour
tous n ≥ 1 et 1 ≤ i1 < . . . < in, l’une des assertions suivantes est vérifiée:
(a) P [Xik ≤ xk pour 1 ≤ k ≤ n] =

∏n
k=1 P [Xik ≤ xk] pour tous x1, . . . , xk ∈

R,
(b) E [

∏n
k=1 fik(Xik)] =

∏n
k=1 E [fik(Xik)] pour toutes fik : R −→ R, 1 ≤ k ≤

n, mesurables bornées.
(c) L(Xi1 ,...,Xin ) = LXi1 ⊗ . . .⊗ LXin

Exercise B.33. Montrer la proposition B.32.

Remark B.34. Si X,Y sont deux v.a. rélles indépendantes, la proposition
B.32 implique que la fonction caractéristique du couple se factorise:

Φ(X,Y )(u, v) = ΦX(u)ΦY (v) pour tous u, v ∈ R.

Remark B.35. Soient X,Y deux v.a. rélles indépendantes intégrables, alors
d’après la proposition B.32, on a

E[XY ] = E[X]E[Y ], Cov[X,Y ] = 0 et V[X + Y ] = V[X] + V[Y ].

Observons que la nullité de la covariance n’implique pas l’indépendance, en
général. Dans le cas très particulier où le couple (X,Y ) est un vecteur gaussien,
on a cependant équivalence entre l’indépendance et la nullité de la covariance.

Si les (Xn)n sont des v.a. indépendantes à densité, alors on déduit de
l’assertion (a) ci-dessus que le vecteur aléatoire (Xi1 , . . . , Xin) est absoluement
continu par rapport à la mesure de Lebesgue sur Rn de densité

f(Xi1 ,...,Xin )(x1, . . . , xn) := fXi1 (x1) . . . fXin (xn). (B.16)

Réciproquement si le vecteur aléatoire (Xi1 , . . . , Xin) est absoluement continu
par rapport à la mesure de Lebesgue sur Rn de densité séparable, comme dans
(B.16) f(Xi1 ,...,Xin )(x1, . . . , xn) = ϕ1(x1) . . . ϕn(xn) alors, les v.a. Xik sont
indépendantes à densité fXik = ϕk.

B.5.3 Asymptotique des suites d’événements indépendants

Le résultat suivant joue un rôle central en probabilités. Remarquons tout de
suite que la partie (i) reprend le résultat établi plus généralement pour les
mesures dans le lemme A.14.
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Lemma B.36. (Borel-Cantelli) Soit (An)n une suite dévénements d’un espace
probabilisé (Ω,A,P).
(i) Si

∑
n P[An] <∞, alors P[lim supnAn] = 0,

(ii) Si
∑
n P[An] <∞ et (An)n sont indépendants, alors P[lim supnAn] = 1.

(iii) Si (An)n sont indépendants, alors soit lim supnAn est négligeable, soit
(lim supnAn)c est négligeable.

Proof. Il reste à montrer (ii). Par définition de l’indépendance et (B.15), on a

P [∩m≥nAcm] =
∏
m≥n

(1− P[Am]) ≤
∏
m≥n

e−P[Am] = e−
∑
m≥n P[Am] = 0.

Ainsi, pour tout n ≥ 1, l’événement ∩m≥nAcm est négligeable. L’union dénombrable
de négligeables (lim supnAn)c = ∪n≥1 ∩m≥n Acm est alors négligeable. ♦

Le résultat suivant est assez frappant, et est une conséquence du Lemma de
Borel-Cantelli.

Theorem B.37. Soient (Xn)n une suite de v.a. indépendantes, et T :=
∩nσ(Xm,m > n) la σ−algèbre de queue associée. Alors T est triviale, c’est
à dire:

(i) Pour tout événement A ∈ T , on a P[A]P[Ac] = 0,
(ii) Toute v.a. T −mesurable est déterministe p.s.

Proof. (i) De l’indépendance des (Xn)n, on déduit que pour tout n ≥ 1, les
σ−algèbres An := σ(X1, . . . , Xn) et Tn := σ(Xm,m > n) sont indépendantes.
Comme T ⊂ Tn, on voit que An et T sont indépendantes, et par suite ∪nAn
et T sont indépendantes. En observant que ∪nAn est un π−système, on déduit
du lemme B.30 que A∞ := σ(∪nAn) et T sont indépendants.

Or, T ⊂ A∞, donc l’indépendance entre T et A∞ implique que T est
indépendant de lui même, et pour tout A ∈ T , P[A] = P[A ∩A] = P[A]2.
(ii) Pour tout x ∈ R, l’événement P[ξ ≤ x] ∈ {0, 1} d’après (i). Soit c := sup{x :
P[ξ ≤ x] = 0}. Si c = −∞, ou c = +∞, on voit immédiatement que ξ = c
(déterministe), p.s. Si |c| < ∞, la définition de c implique que P[ξ ≤ c − ε] =
P[ξ > c+ε] = 0 pour tout ε > 0. Alors 1 ≥ E[1]c−ε,c+ε](ξ)] = P[< ξ ≤ c+ε] = 1,
i.e. 1]c−ε,c+ε](ξ) = 1 p.s. et on termine la preuve en envoyanty ε vers 0. ♦

La σ−algèbre de queue introduite dans le théorème B.37 contient de nom-
breux événements intéressants comme par exemple

{lim
n
Xn existe}, {

∑
n

Xn converge}, {lim
n

1

n

n∑
i=1

Xi existe}

Un exemple de v.a. T −mesurable est lim sup
∑
nXn, lim inf 1

n

∑n
i=1Xi, ...
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B.5.4 Asymptotique des moyennes de v.a. indépendantes

Dans ce paragraphe, nous manipulerons des suites de v.a. indépendantes et
identiquement distribuées, on écrira plus simplement iid.

On commencera par énoncer la loi des grands nombres pour les suites de v.a.
iid intégrables, la démonstration par l’approche des martingales est disponible
dans le polycopié de MAP 432 [41]. Puis, nous montrerons le théorème central
limite.

Theorem B.38. (Loi forte des grands nombres) Soit (Xn)n une suite de v.a.
iid intégrables. Alors

1

n

n∑
i=1

Xi −→ E[X1] p.s.

Si les v.a. iid sont de carré intégrable, le théorème central limite donne une
information précise sur le taux de convergence de la moyenne empirique vers
l’espérance, ou la moyenne théorique.

Theorem B.39. Soit (Xn)n une suite de v.a. iid de carré intégrable. Alors

√
n

(
1

n

n∑
i=1

Xi − E[X1]

)
−→ N (0,V[X1]) en loi,

où N (0,V[X1]) désigne la loi normale centrée de variance V[X1].

Proof. On note X̄i = Xi − E[X1] et Gn :=
√
n 1
n

∑n
i=1 X̄i. En utilisant les

propriétés de la fonction caractéristique pour les variables iid (Xi)i, on obtient
que

ΦGn(u) = Φ∑n
i=1

X̄i√
n

(u) =

n∏
i=1

Φ X̄i√
n

(u) =

(
ΦX̄i

(
u√
n

))n
.

D’après 2.7 et le fait que E[X̄1 = 0] et E[X̄2
1 ] = V[X1] < ∞, on peut écrire le

développement au second ordre suivant:

ΦGn(u) =

(
1− 1

2

u2

n
V[X1] + ◦

(
1

n

))n
−→ φ(u) := e−

u2

2 V[X1].

On reconnait alors que φ = ΦN (0,V[X1]), voir question 1 de l’exercice B.9, et on
conclut grâce au théorème B.28 de convergence de Lévy. ♦
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Conditional expectation

C.1 Premières intuitions

C.1.1 Espérance conditionnelle en espace d’états fini

Soit (Ω,F ,P) un espace probabilisé et X,Y deux v.a. réelles. Dans ce para-
graphe, on suppose que X et Y prennent un nombre fini de valeurs respective-
ment dans les ensembles {xi, 1 ≤ i ≤ n} et {yj , 1 ≤ j ≤ m}. Il est alors naturel
de définir la distribution conditionnelle de X sachant Y = yj par

P[X = xi|Y = yj ] :=
P[(X,Y ) = (xi, yj)]

P[Y = yj ]
, 1 ≤ i ≤ n, 1 ≤ j ≤ m,(C.1)

i.e. parmi tous les événements où la modalité yj de Y s’est réalisée, la quantité
P[X = xi|Y = yj ] exprime la fréquence de réalisation de la modalité xi de X.
En notant PY=yj := P[X = xi|Y = yj ], on vérifie immédiatement que pour tout
j, PY=yj définit une mesure de probabilité sur Ω. L’espérance conditionnelle est
alors naturellement définie par :

E[X|Y = yj ] =

n∑
i=1

xiP[X = xi|Y = yj ], 1 ≤ j ≤ m.

Nous pouvons ainsi définir une v.a. ξ := E[X|Y ] par ξ(ω) = E[X|Y = Y (ω)],
appelée espérance conditionnelle de X sachant Y . Notons que E[X|Y ] est
complètement déterminée par la réalisation de Y . On retrouve la notion de
mesurabilité puisque ceci peut s’écrire mathématiquement ξ est σ(Y )−mesurable,
ou de manière équivalente ξ = ϕ(Y ) pour une certaine fonction déterministe ϕ,
voir le lemme B.2.

279
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Par aileurs, un calcul direct montre que pour toute fonction déterministe ϕ :

E [E[X|Y ]ϕ(Y )] =

m∑
j=1

P[Y = yj ]ϕ(yj)E[X|Y = yj ]

=

m∑
j=1

P[Y = yj ]ϕ(yj)

n∑
i=1

xi
P[X = xi, Y = yj ]

P[Y = yj ]

=

m∑
j=1

n∑
i=1

P[X = xi, Y = yj ]ϕ(yj)xi = E [Xϕ(Y )] .

Notons 〈, 〉2 le produit scalaire dans L2, et écrivons ce dernier résultat sous la
forme

〈X − E[X|Y ], ϕ(Y )〉2 = 0 pour tout fonction ϕ : R −→ R.

Il s’agit de la condition d’orthogonalité de X − E[X|Y ] à l’espace vectoriel
de toutes les fonctions de Y ou, de manière équivalente, l’espace vectoriel de
toutes les v.a. σ(Y )−mesurable. Ainsi, E[X|Y ] s’interprète géométriquement
comme la projection orthogonale, au sens de L2, de X sur l’e.v. des v.a.
σ(Y )−mesurable, et est la solution du problème variationnel :

min
f
‖X − f(Y )‖2.

Cette interprétation géométrique montre que E[X|Y ] est la meilleure approxi-
mation, au sens de L2, de X par une fonction de Y .

C.1.2 Cas des variables à densités

Supposons maintenant que le couple (X,Y ) est à valeurs dans R2 et admet une
distribution absoluement continue par rapport à la mesure de Lebesgue dans
R2, de densité

f(X,Y )(x, y)dxdy

La loi marginale de Y est obtenue par intégration par rapport à la variable x :

fY (y) =

∫
f(X,Y )(x, y)dx.

Dans ce cas, la probabilité conditionnelle est naturellement définie par :

fX|Y=y(x) =
f(X,Y )(x, y)

fY (y)
=

f(X,Y )(x, y)∫
f(X,Y )(x, y)dx

,

qui est l’analogue de (C.1) dans le contexte présent. Il est clair que pour tout y
fixé, la fonction fX|Y=y(x) définit une densité sur R, et qu’on peut lui associer
l’opérateur d’espérance :

E[X|Y = y] =

∫
xfX|Y=y(x)dx
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qui définit encore une variable aléatoire E[X|Y ], appelée espérance condition-
nelle de X sachant Y . Comme dans le cas fini, E[X|Y ] est une fonction
déterministe de Y , elle est donc σ(Y )−mesurable. La condition d’orthogonalité
de la section précédente se vérifie aussi par un calcul direct : pour toute fonction
φ : R −→ R bornée

〈E[X|Y ], φ(Y )〉L2 = E [E[X|Y ]φ(Y )]

=

∫
φ(y)fY (y)

∫
xfX|Y=y(x)dxdy

=

∫ ∫
xφ(y)f(X,Y )(x, y)dxdy = E[Xφ(Y )].

On retrouve alors l’interprétation géométrique de l’espérance conditionnelle
comme projection orthogonale, au sens de L2, de la v.a. X sur l’e.v. des
v.a. σ(Y )−mesurables.

C.2 Définition et premières propriétés

Considérons maintenant le cadre général d’un espace probabilisé (Ω,A,P), et
soit F une sous-σ−algèbre de A.

Les arguments intuitifs du paragraphe précédent suggèrent d’introduire la
notion d’espérance conditionnelle par la projection orthogonale au sens du pro-
duit scalaire de L2

PF (X) := Argmin
{
‖X − Y ‖2 : Y ∈ L2(F ,P)

}
, X ∈ L2(A,P).

Ceci est en effet rendu possible grâce à la structure d’espace de Hilbert de
l’espace quotient L2 muni de la norme ‖.‖2.

Lemma C.1. L’opérateur de projection orthogonale PF est bien défini sur
L2(A,P), et vérifie

E[X1F ] = E[PF (X)1F ] pour tout F ∈ F et X ∈ L2(A,P).

De plus, on a les propriétés suivantes :
(i) X ≥ 0 p.s. =⇒ PF (X) ≥ 0 p.s.
(ii) E [PF (X)] = E[X].

Proof. On travaille avec l’espace quotient L2(A,P) identifiant ainsi les v.a.
égales p.s. La projection orthogonale PF est bien définie car l’e.v. L2(A,P)
et le s.e.v. L2(F ,P) sont complets. Alors, on sait que pour tout X, il existe une
(unique) v.a. Z := PF (X) ∈ L2(F ,P) vérifiant les conditions d’orthogonalité

E[(X − Z)Y ] = 0 pour tout Y ∈ L2(F ,P).

En particulier, pour tout F ∈ F , la v.a. Y = 1F ∈ L2(F ,P) induit la condition
d’orthogonalité E[X1F ] = E[Z1F ].
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Supposons maintenant que X ≥ 0 p.s., notons Z := PF (X), et prenons F :=
{Z ≤ 0} ∈ F . Alors 0 ≤ E[X1F ] = E[Z1F ] = −E[Z−] ≤ 0, et Z− = 0 p.s.
montrant la propriété (i).
Pour la propriété (ii), il suffit de remarquer que F = Ω ∈ F du fait que F est
une σ−algèbre. Alors (i) donne le résultat voulu. ♦

Theorem C.2. Pour toute v.a. X ∈ L1(A,P), il existe une v.a. Z telles que
(a) Z est F−mesurable,
(b) E[|Z|] <∞,
(c) Pour tout événement F ∈ F , on a E[X1F ] = E[Z1F ].

De plus, si Z̃ est une autre v.a. vérifiant (a,b,c), alors Z = Z̃ p.s.

Definition C.3. Une v.a. vérifiant les propriétés (a)-(b)-(c) est appelée version
de l’espérance conditionnelle de X sachant F , notée E[X|F ], et est unique à
l’égalité p.s. près.

Si F = σ(Y1, . . . , Yn), on écrit simplement E[X|Y1, . . . , Yn].

Preuve du théorème C.2 Commençons par montrer l’unicité. Si Z et Z̃
vérifient (a,b,c), alors E[(Z − Z̃)1F ] = 0 pour tout F ∈ F . Mais Z et Z̃ étant
F−mesurable, on peut choisir F = {Z − Z̃ ≥ 0} ∈ F , et l’égalité précédente
implique que (Z − Z̃)+ = 0 p.s. Le choix F = {Z − Z̃ ≤ 0} ∈ F conduit à
(Z − Z̃)− = 0 p.s. et par suite Z = Z̃ p.s.

Pour l’existence, il suffit de traiter le cas X ≥ 0 et d’utiliser la décomposition
X = X+ −X− pour conclure le cas où X a un signe arbitraire (ou plutôt n’a
pas de signe !). La v.a. Xn := X ∧ n est bornée, donc dans L2(A,P). La
v.a. Zn := PF (Xn) est alors bien définie d’après le lemme C.1 et vérifie par
définition les conditions (a,b,c). Observons que la suite (Zn)n est croissante,
comme conséquence de la propriété (i) du lemme C.1 et de la linéarité de la
projection PF . On introduit alors la v.a.

Z := lim ↑n Zn.

Il est clair que Z hérite la F−mesurabilité des Zn, et que E[Z1F ] = E[X1F ]
pour tout F ∈ F par le théorème de convergence monotone. Pour la condition
(b), remarquons par que E[Z] = limn→∞ ↑ lim infn E[Zn] = E[X ∧ n] ≤ E[X],
où on a utilisé les propriétés (i) et (ii) du lemme C.1. ♦

Remark C.4. Regardons deux cas extrèmes pour la σ−algèbre F .
- Soit F = {∅,Ω} la plus petite σ−algèbre correspondant à l’absence totale
d’information. Alors la condition (a) dit que Z est déterministe, i.e. Z =
E[Z], et la condition d’orthogonalité (c) permet d’identifier cette constante
E[X] = E[Z] = Z. Ainsi l’espérance conditionnelle dans ce cas se confond
avec l’espérance.
- Soit F = σ(X). Alors la condition d’orthogonalité (c) avec F+ := {X − Z ≥
0} ∈ σ(X) donne E[(X − Z)1{X−Z≥0}] = 0, soit (Y − Z)+ = 0 p.s., et avec
F− = {X − Z ≤ 0} ∈ σ(X) donne (X − Z)− = 0 p.s. Ainsi E[X|σ(X)] = X
qui vérifie bien les autres conditions (a) et (b).
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C.3 Propriétés de l’espérance conditionnelle

Commençons par les propriétés déjà esquissées dans le paragraphe précédent.

Proposition C.5. L’opérateur d’espérance conditionnelle E[.|F ] est linéaire,
et pour tout X ∈ L1(A,P), on a :
(i) E [E[X|F ]] = E[X],
(ii) si X est F−mesurable, E[X|F ] = X p.s.
(iii) si X ≥ 0, E[X|F ] ≥ 0 p.s.

Exercise C.6. Prouver la proposition C.5.

Nous montrons maintenant que l’espérance conditionnelle jouit des mêmes
propriétés de passage à la limite que l’espérance.

Proposition C.7. Pour X,Xn ∈ L1(A,P), n ∈ N, on a :
(1- Convergence monotone) si 0 ≤ Xn ↑ X, alors E[Xn|F ] ↑ E[X|F ],
(2- Fatou) si Xn ≥ 0, alors E[lim infnXn|F ] ≤ lim infn E[Xn|F ],
(3- Convergence dominée) si supn |Xn| ∈ L1(A,P) et Xn −→ X, p.s. alors
E[Xn|F ] −→ E[X|F ] p.s.

Proof. 1- la suite Zn := E[Xn|F ] est croissante d’après la proposition C.5 (iii).
On définit alors la variable Z = lim ↑ Zn qui est par définition F−mesurable
positive et, par Fatou, E[Z] ≤ lim infn E[Zn] = lim infn E[Xn] ≤ E[X] < ∞.
Enfin, pour tout F ∈ F , on a E[Xn1F ] = E[Zn1F ] et on déduit du théorème
de convergence monotone que E[X1F ] = E[Z1F ]. Ainsi Z vérifie les propriétés
(a,b,c) du théorème C.2 et Z = E[X|F ], p.s.
2- D’après la monotonie de l’opérateur d’espérance conditionnelle due à (iii) de
la proposition C.5, on a

inf
k≥n

E[Xn|F ] ≥ E
[

inf
k≥n

Xn|F
]

pour tout n ≥ 1,

et on conclut en utilisant le résultat de convergence monotone démontré en
première partie de cette preuve.
3- Avec Yn := |Xn − X| et Ȳ := supn Yn, on vérifie que Ȳ ∈ L1(A,P), et on
applique le lemme de Fatou conditionnel, qu’on vient de démontrer, à la v.a.
Ȳ − Yn. Le résultat s’en déduit immédiatement. ♦

L’inégalité de Jensen s’étend ausi aux espérances conditionnelles :

Proposition C.8. Soit X ∈ L1(A,P), et g : Rn −→ R ∪ {∞} une fonction
convexe telle que E[|g(X)|] <∞. Alors E[g(X)|F ] ≥ g (E[X|F ]).

Proof. Il suffit de répéter les arguments de la preuve de l’inégalité de Jensen
dans le cas non conditionnel, théorème B.6... ♦

La propriété suivante est très utile, et est une conséquence de la propriété
des projections itérées en algèbre linéaire.
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Proposition C.9. (Projections itérées) Pour X ∈ L1(A,P) et F ,G des sous-
σ−algèbre de A :

F ⊂ G =⇒ E
[
E{X|G}|F

]
= E[X|F ].

Proof. 1-On observe que L2(F ,P) ⊂ L2(G,P), et que par suite le résultat dans
le cas X ∈ L2(A,P) est une conséquence immédiate du théorème de projections
itérées en algèbre linéaire. Puis, le théorème de convergence monotone permet
de l’étendre aux variables X ∈ L1(A,P). ♦

La propriété suivante généralise celle de la proposition C.5 (i).

Proposition C.10. Soient F une sous-σ−algèbre de A, X ∈ L0(A) et Y ∈
L0(F). On suppose E[|X|] <∞ et E[|XY |] <∞. Alors

E[XY |F ] = Y E[X|F ].

Proof. On commence par le cas Y = 1A, A ∈ F . Alors pour tout F ∈ F ,
on a E [Y E[X|F ]1F ] = E [E[X|F ]1A∩F ] = E[X1A∩F ] = E[XY 1F ] d’après la
définition de E[X|F ] et du fait que A ∩ F ∈ F . Ainsi, la proposition est vraie
pour les indicatrices d’événements de F .

Si X est une v.a. positive, la propriété précédente s’étend par linéarité à
S+, l’ensemble des v.a. simples positives, et par le théorème de convergence
monotone à l’ensemble des v.a. positives telles que E[|XY |] <∞ et E[|X|] <∞
(pour que l’espérance conditionnelle ait un sens).

Enfin, pour des variables X,Y générales, on décompose X = X+ − X−,
Y = Y + − Y −, et on applique le résultat établi pour les v.a. positives. ♦

Les deux dernières propriétés donnent des résultats utiles sur l’éspérance
conditionnelle en présence d’indépendance.

Proposition C.11. Soient X ∈ L1(A,P) et F ,G des sous-σ−algèbres de A
telles que G est indépendante de σ(σ(X),F). Alors

E[X|σ(F ,G)] = E[X|F ].

Proof. Il suffit de vérifier pour X ∈ L1
+(A,P) que

E[X1A] = E [E[X|F ]1A] pour tout A ∈ σ(F ,G).

En remarquant que A 7−→ E[X1A] et A 7−→ E [E[X|F ]1A] sont des mesures sur
Ω, on déduit de la proposition A.5 qu’il suffit de vérifier l’égalité ci-dessus pour
les événements A dans le π−système F ∩ G. Soient alors F ∈ F et G ∈ G.
En utilisant l’indépendance entre G et σ(σ(X),F), la proposition B.32, et la
définition de E[X|F ], on voit que :

E [E[X|F ]1F∩G] = E [E[X|F ]1F ]E[1G] = E[X1F ]E[1G] = E [X1F∩G] .

♦
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Proposition C.12. Soient (X,Y ) deux v.a. à valeurs dans Rn et Rm, respec-
tivement, et g : Rn ×Rm −→ R une fonction telle que E[|g(X,Y )|] <∞. Si X
et Y sont indépendantes, alors

E[g(X,Y )|X] = G(X) où G(x) := E[g(x, Y )] pour tout x ∈ Rn.

Proof. Pour tout A ∈ σ(X), on doit vérifier que E[g(X,Y )1A] = E[G(X)1A].
Comme X et Y sont indépendantes, la loi du couple (X,Y ) est la loi produit
PX ⊗ PY , et on obtient immédiatement par le théorème de Fubini que

E[g(X,Y )1A] =

∫
g(x, y)1A(x)PX ⊗ PY (dx, dy)

=

∫ (∫
g(x, y)PY (dy)

)
1A(x)PX(dx) =

∫
G(x)1A(x)PX(dx),

ce qui est exactement le résultat recherché. ♦

C.4 Application au filtre de Kalman-Bucy

On considère une récurrence aléatoire définie par

Xk = FkXk−1 + fk + εk (C.2)

Yk = HkXk + hk + ηk, (C.3)

où Fk ∈ MR(n, n), fk ∈ Rn, Hk ∈ MR(m,n), hk ∈ Rm sont les paramètres du
système, connus par l’utilisateur, et (εk)k, (ηk)k sont des suites de v.a. que l’on
supposera indépendantes et même gaussiennes...

Les v.a. (Xk)k à valeurs dans Rn constituent l’objet d’intérêt, mais ne
sont pas observables. Les v.a. (Yk)k à valeurs dans Rm sont observées
par l’utilisateur. On dit que (C.2) est l’équation d’état, et (C.3) est l’équation
d’observation. Le problème de filtrage consiste à chercher, à partir des variables
observables (Yk)k, la meilleure approximation des variables inobservables (Xk)k.

L’indice k joue un rôle important. Il représente la date de l’observation,
et induit une structure de l’information naturelle et de sa progression. Ceci
représente une composante importante du problème : à chaque date k, on
cherche la meilleure approximation de Xk sur la base des observations {Yj , j ≤
k}. D’après la définition de l’espérance conditionnelle dans L2, comme projec-
tion orthogonale sur l’espace vectoriel engendré par les v.a. de L2 mesurables
par rapport au conditionnement, la meilleure approximation est donnée par

E[Xk|Y0, . . . , Yk],

qui est ainsi la quantité que l’utilisateur cherche à calculer à chaque date k.
Enfin, en vue d’une application réelle, l’aspect de l’implémentation est une

composante essentielle du problème. Quand la taille des observations croit,
l’effort numérique pour calculer l’espérance conditionnelle ci-dessus peut de-
venir rapidement gigantesque. Des méthodes de type mise à jour sont très
désirables pour l’utilisateur : utiliser l’observation la plus récente pour mettre à
jour l’approximation de la date précédente.
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C.4.1 Lois conditionnelles pour les vecteurs gaussiens

Dans ce paragraphe, nous isolons un résultat sur les vecteurs gaussiens qui sera
crucial pour la résolution du problème de filtrage de Kalman-Bucy. Rappelons
qu’un vecteur aléatoire Z, à valeurs dans Rn, est gaussien si a · Z =

∑n
i=1 aiZi

est gaussien sur R pour tout a ∈ Rn.

Proposition C.13. Soit (X,Y ) un vecteur gaussien à valeurs dans Rn × Rm
de moyenne et de matrice de variances-covariances

µ =

(
µX

µY

)
et V =

(
V X (V XY )T

V XY V Y

)
.

Supposons que la matrice V[Y ] = V Y est inversible. Alors, la loi conditionnelle
de X sachant Y = y est gaussienne de moyenne et variance :

E[X|Y = y] = µX+V XY (V Y )−1(y−µY ), et V[X|Y = y] = V X−V XY (V Y )−1(V XY )T

Proof. 1- On note Z = (X,Y ), et on suppose d’abord que V est inversible.
Alors, pour z = (x, y) ∈ Rn × Rm, on calcule la densité de la loi de X condi-
tionnellement à {Y = y} au point x par :

fX|Y=y(x) =
fZ(z)

fY (y)

= (2π)−n/2
√

det(V Y )
det(V ) e[−

1
2 (z−µ)TV −1(z−µ)+ 1

2 (y−µY )T(V Y )−1(y−µY )].

(C.4)
On note W := V X −V XY (V Y )−1(V XY )T, et on vérifie par un calcul direct que(

I −V XY (V Y )−1

0 I

)
V

(
I 0

−(V Y )−1(V XY )T I

)
=

(
W 0
0 V Y

)
,(C.5)

dont on tire que

det(V )

det(V Y )
= det(W ). (C.6)

On déduit aussi de (C.5) que

V −1 =

(
I 0

−(V Y )−1(V XY )T I

)(
W−1 0

0 (V Y )−1

)(
I −V XY (V Y )−1

0 I

)
qui implique que :

(z − µ)TV −1(z − µ) = (x−M(x))TW−1(x−M(x))

+(y − µY )T(V Y )−1(y − µY ), (C.7)

où M(x) := µX +V XY (V Y )−1(y−µY ). en injectant (C.6) et (C.7) dans (C.4),
on obtient une expression de la densité conditionnelle pX|Y=y qui correspond à
la loi annoncée dans la proposition.
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2- Pour une matrice V générale, on considère l’approximation Zn := Z + 1
nG,

où G est une v.a. indépendante de Z de loi gaussienne centrée réduite dans
Rn+m. Alors, on peut appliquer le résultat de la première étape et obtenir
l’expression de la densité fXn|Yn=y(y) qui converge vers la densité annoncée dans
la proposition, et par convergence dominéeles il y a convergence des fonctions de
répartition correspondantes en tout point. Ainsi, pour finir la démonstration,
il ne reste plus qu’à vérifier que Xn|Yn = y converge en loi vers X|Y = y, par
exemple en montrant que ΦXn|Yn=y −→ ΦX|Y=y simplement. Pour celà, on
calcule directement :

ΦXn|Yn=y(u) = E
[
eiu·Xn |Yn = y

]
= E

[
eiu·(X+Gn1 )|Y +Gn2 = y

]
,

oùGn = (Gn1 , G
n
2 ) := 1

nG. En remarquant queGn1 est indépendant de (X,Y,Gn2 ),
puis que Gn2 est indépendant de (X,Y ), on obtient alors :

ΦXn|Yn=y(u) = ΦGn1 (u)E
[
E
[
eiu·X |Y = y − g

]
g=Gn2

]
= ΦGn1 (u)E

[
{ΦX|Y=y−g(u)}g=Gn2

]
−→ ΦX|Y=y(u)

par utilisation du théorème de convergence dominée. ♦

C.4.2 Filtre de Kalman-Bucy

Précisions à présent les hypothèses sur les composantes aléatoires du système
d’état-observation (C.2)-(C.3) :

• l’état initial X0 est gaussien de moyenne µX0 := E[X0] et de variance
V X0 := V[X0],

• l’aléa générant l’état (εk)k est une suite de v.a. indépendantes gaussiennes
centrées de variances V εk ,

• le bruit d’observation (ηk)k est une suite de v.a. indépendantes gaussi-
ennes centrées de variances V ηk ,

• les bruits (εk)k, (ηk)k et l’état initial X0 sont mutuellement indépendants.

On modélise l’information en introduisant les σ−algèbres Fk := σ(Y0, . . . , Yk).
Pour tout N , le vecteur aléatoire (Xk, Yk)0≤k≤N est gaussien. La proposition
C.13 garantit que la loi conditionnelle de Xk sachant Fk est une gaussienne dont
il suffit de calculer la moyenne et la variance pour la caractériser :

X̂k := E[Xk|Fk], Vk := V[Xk|Fk].

Notons que, d’après la proposition C.13, la matrice de covariances conditionnelle
Vk est indépendante du conditionnement :

Vk := E
[
(Xk − X̂k)(Xk − X̂k)T

]
.
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Pour un calcul efficace des caractéristiques de la loi du filtre X̂k et Vk, on procède
en deux étapes :

1. Etape de prédiction : étant donnés (X̂k−1, Vk−1), on voit de l’équation
d’état (C.2) que la loi deXk sachant Fk−1 est gaussienne de caractéristiques :

X̂pr
k := E[Xk|Fk−1], V pr

k := V[Xk|Fk−1] = E
[
(Xk − X̂pr

k )(Xk − X̂pr
k )T

]
.

où on a encore utilisé que la matrice de variance est indépendante du
conditionnement, comme conséquence de la proposition C.13.

2. Etape de correction : on utilise l’information supplémentaire Yk de la date
k ou, plus précisément, l’innovation

Ik := Yk − E[Yk|Fk−1] = Hk(Xk − X̂pr
k ) + ηk,

où on a utilisé l’équation d’observation (C.3) et le fait que ηk est indépendant
de Fk−1. En particulier, on voit que

(Ik)k est gaussien et E[Ik] = E[Ik|Fk−1] = 0,
V[Ik] = V[Ik|Fk−1] = HkV

pr
k HT

k + V ηk .
(C.8)

Theorem C.14. (Kalman-Bucy) Supposons que la matrice de variance du bruit
d’observation V ηk est inversible pour tout k ≥ 0. Alors, les caractéristiques de

l’étape de prédiction sont données par X̂pr
0 = µX0 = E[X0], V pr

0 = V X0 = V[X0],

X̂pr
k = FkX̂k−1 + fk, V pr

k = FkVk−1F
T
k + V ηk , k ≥ 1, (C.9)

et celles de l’étape de correction :

X̂k = X̂pr
k +Kk[Yk − (HkX̂

pr
k + hk)], Vk = (I −KkHk)V pr

k , k ≥ 0, (C.10)

où Kk := V pr
k HT

k (HkV
pr
k HT

k + V ηk )−1 est appelée matrice de gain de Kalman.

Proof. On décompose en trois étapes :
1- Initialisation de la prédiction. Le vecteur aléatoire (X0, Y0) est gaussien de
moyenne et variance(

µX0
H0µ

X
0

)
,

(
V X0 V X0 HT

0

H0V
X
0 H0V

X
0 HT

0 + V η0

)
.

On déduit de la proposition C.13 que la loi de X0 conditionnellement à Y0 est
gaussienne de caractéristiques

X̂0 = µX0 + V X0 HT
0 (H0V

X
0 HT

0 + V η0 )−1[Y0 − (H0µ
X
0 + h0)],

V0 = V X0 − V X0 HT
0 (H0V

X
0 HT

0 + V η0 )−1H0V
X
0 .
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2- Prédiction. D’après la proposition C.13, la loi de Xk sachant Fk−1 est gaussi-
enne dont on calcule la moyenne et la variance à partir de l’équation d’état :

X̂pr
k = FkX̂k−1 + fk

V pr
k = E

[
(Xk − X̂pr

k )(Xk − X̂pr
k )T

]
= E

[
(Fk(Xk−1 − X̂k−1) + εk)(Fk(Xk−1 − X̂k−1) + εk)T

]
= FkVk−1F

T
k + V ηk ,

d’après nos hypthèses sur le bruit ηk.
3- Correction. D’après la proposition C.13, la loi de Xk sachant Fk est gaussi-
enne. D’après (C.8) et la proposition C.11, on calcule :

X̂k = X̂pr
k + E

[
Xk − X̂pr

k |Fk−1, Ik

]
= X̂pr

k + E
[
Xk − X̂pr

k |Ik
]
.(C.11)

Par suite, Xk − X̂k = (Xk − X̂pr
k )− E

[
Xk − X̂pr

k |Ik
]
, et

Vk = E
[
(Xk − X̂k)(Xk − X̂k)T

]
= E

[
V[Xk − X̂pr

k |Ik]
]
. (C.12)

Pour calculer (C.11) et (C.12), on observe que le vecteur aléatoire (Xk−X̂pr
k , Ik)

est gaussien centré de matrice de variance(
V pr
k V pr

k HT
k

HkV
pr
k HkV

pr
k HT

k + V ηk

)
.

La matrice HkV
pr
k HT

k + V ηk est inversible, du fait de l’hypothèse d’inversibilité
de V ηk , on déduit alors de la proposition C.11 que

X̂k = X̂pr
k + V pr

k HT
k (HkV

pr
k HT

k + V η)−1Ik,

Vk = V pr
k − V

pr
k HT

k (HkV
pr
k HT

k + V η)−1HkV
pr
k .

♦
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économiques, Masson.

[3] Basel Committee on Banking Supervision, International con-
vergence of capital measurement and capital standards, Bank of In-
ternational Settlements, 1988.

[4] Basel Committee on Banking Supervision, Amendment to the
capital accord to incorporate market risks, Bank of International Set-
tlements, 1996.

[5] Basel Committee on Banking Supervision, Basel II: Interna-
tional convergence of capital measurement and capital standards: A
revised framework, Bank of International Settlements, 2005.

[6] M. Beiglbock, M., Schachermayer, W. and Veliyev,

[7] Black F. and Scholes M. (1973), The pricing of options and corporate
liabilities, Journal of Political Economy, 81, 637-654.

[8] H. Berestycki, J. Busca, and I. Florent, Asymptotics and cal-
ibration of local volatility models, Quant. Finance, 2 (2002), pp. 61–
69.

[9] Carr P., Ellis K. and Gupta V. (1998), Static Hedging of Exotic
Options, Journal of Finance, June 1998, pp. 1165-90.

[10] R. Cont, Model uncertainty and its impact on the pricing of deriva-
tive instruments, Mathematical Finance, 16 (2006), pp. 519–542.

[11] Conze A. and Viswanathan R. (1991), Path dependent options : the
case of lookback options, Journal of Finance, 46, 1893-1907.

[12] J. C. Cox, The constant elasticity of variance option pricing model,
Journal of Portfolio Management, 22 (1996), pp. 15–17.

291



292 BIBLIOGRAPHY

[13] M. Crouhy, D. Galai, and R. Mark, The Essentials of Risk
Management, McGraw-Hill, 2005.

[14] Cox J.C., Ross S.A. and Rubinstein M. (1979), Option pricing : a
simplified approach, Journal of Financial Economics, 7, 229-263.
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