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Abstract

We consider the problem of optimal investment when agents take into account their
relative performance by comparison to their peers. Given N interacting agents, we
consider the following optimization problem for agent i, 1 < ¢ < N:

sup IEUi((l _ /\i)Xéli n /\i(X;i _ )—(;lﬂ)>’
TFiE.Ai

where U; is the utility function of agent 4, 7 his portfolio, X" his wealth, X*™ the
average wealth of his peers and A; is the parameter of relative interest for agent 1.
Together with some mild technical conditions, we assume that the portfolio of each
agent 7 is restricted in some subset A;.

We show existence and uniqueness of a Nash equilibrium in the following situations:

- unconstrained agents,

- constrained agents with exponential utilities and Black-Scholes financial market.

We also investigate the limit when the number of agents IV goes to infinity. Finally,
when the constraints sets are vector spaces, we study the impact of the A;’s on the risk
of the market.

1 Introduction

The seminal papers of Merton [34, 35] generated a huge literature extending the optimal
investment problem in various directions and using different techniques. We refer to Pliska
[36], Cox and Huang [7] or Karatzas, Lehoczky and Shreve [24] for the complete market
situation, to Cvitanic and Karatzas [8] or Zariphopoulou [39] for constrained portfolios,
to Constantinides and Magill [6], Davis and Norman [10], Shreve and Soner [37], Duffie
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and Sun [13] or Akian, Menaldi and Sulem [2] for transactions costs, to Constantinides
[5], Jouini, Koehl and Touzi [22, 23], Damon, Spatt and Zhang [9] or Ben Tahar, Soner
and Touzi [3, 4] for taxes, and to He and Pearson [19, 20], Karatzas, Lehoczky, Shreve
and Xu [25], Kramkov and Schachermayer [28, 29] or Kramkov and Sirbu [30] for general
incomplete markets.

However, in all of these works, no interaction between agents is taken into account.
The most natural framework to model such interaction would be a general equilibrium
model where the behaviour of the investors are coupled through the market equilibrium
conditions. But this typically leads to untractable calculations. Instead, we shall model
the interactions based on some simplified context of comparison of the performance to that
of the competitors or to some benchmark. A return of 5% during a crisis is not equivalent
to the same return during a financial bubble. Moreover, human beings tend to compare
themselves to their peers. In fact, economic and sociological studies have emphasized the
importance of relative concerns in human behaviors, see Veblen [38] for the sociological
part, and Abel [1], Gali [17], Gomez, Priestley and Zapatero [18] or DeMarzo, Kaniel and
Kremer [11] for economic works, considering simple models in discrete-time frameworks.

In this paper, we study the optimal investment problem under relative performance con-
cerns, in a continuous-time framework. More precisely, there are N particular investors that
compare themselves to each other. Agents are heterogeneous (different utility functions and
different constraints sets) and instead of considering only his absolute wealth, each agent
takes into account a convex combination of his wealth (with weight 1—X, A € [0,1]) and the
difference between his wealth and the average wealth of the other investors (with weight
A). This creates interactions between agents and therefore leads to a differential game with
N players. We also consider that each agent’s portfolio must stay in a set of constraints.

In the context of a complete market situation where all agents have access to the entire
financial market, we prove existence and uniqueness of a Nash equilibrium for general utility
functions. The optimal performances at equilibrium are explicit, and therefore allow for
many interesting qualitative results.

We next turn to the case where the agents have different access to the financial market,
i.e. their portfolio constraints sets are different. Our solution approach requires to restrict
the utility functions to the exponential framework, Then, assuming mainly that the agents
positions are constrained to lie in closed convex subsets, and that the drift and volatility of
the log prices are deterministic, we show the existence and uniqueness of a Nash equilibrium,
using the BSDE techniques introduced by El Karoui and Rouge [14] and further developed
by Hu, Imkeller and Muller [21]. The Nash equilibrium optimal positions are more explicit
in the case of constraints defined by linear subspaces. In this setting, we analyze the limit
when the number of players N goes to infinity where the situation considerably simplifies
in the spirit of mean field games, see Lasry and Lions [31]. Notice that our problem does
not fit in the framework of [31] for the two following reasons. First, in [31] the authors
consider similar agents, which is not the case in the present paper, as the utility functions,
the parameters \;’s and the sets of constraint can be specific. More importantly, in [31],
the sources of randomness of two different agents are independent.

We finally investigate the impact of the interaction coefficient A. Under some additional



assumptions, which are satisfied in many examples, we show that the local volatility of the
wealth of each agent is nondecreasing with respect to A. In other words, the more investors
are concerned about each other (A large), the more risky is the (equilibrium) portfolio of
each investor. However in general, this can fail to hold. But in the limit N goes to infinity,
the same phenomenon holds for the average portfolio of the market, without any additional
assumption. Roughly speaking, this means that the global risk of the market increases with
A, although it can fail for the portfolio of some specific agent.

Finally, let us mention that an earlier version of this paper contained in the PhD thesis
of the first author [15] motivated a very interesting work by Dos Reis and Frei [12]. In
particular, [12] highlights the difficulty in the existence and uniqueness of the quadratic
multidimensional backward SDE of the present paper, and established the existence of a
sequentially delayed Nash equilibrium in the general case.

This paper is organized as follows. Section 2 introduces the problem. In section 3, we
solve the complete market situation, for general utility functions. In section 4, we deal with
the general case with exponential utility functions and portfolios that are constrained to
remain inside closed convex sets. In section 5, we restrict the sets of constraints to linear

spaces which allows us in particular to derive some interesting economic implications.

Notations H?(R™) denotes the space of all predictable processes o, with values in R™, and

satisfying E fOT li|?dt < oo. The corresponding localized space is denoted by HZ (R™).
2

When there is no risk of confusion, we simply write H? and Hy ...

2 Problem formulation

Let W be a d-dimensional Brownian motion on the complete probability space (2, F,P),
and denote by F = {F;,t > 0} the corresponding completed canonical filtration. We assume
that F is generated by W. Let T' > 0 be the investment horizon, so that ¢ € [0,7]. Given
two F-predictable processes 6 taking values in R? and o taking values in R%*?, satisfying:

o symmetric, definite positive, fOT lo¢|?dt < 00 a.s, (2.1)
and 6 is bounded, dt ® dP-a.e, (2.2)

we consider a market with a non risky asset with interest rate r = 0 and a d-dimensional
risky asset S = (S, ...,.5%) given by the following dynamics:

ClSt == dlag(St)at(tht + th), (23)

where for z € R?, diag(z) is the diagonal matrix with i-th diagonal term equal to z’.

A portfolio is an F-predictable process {m;, t € [0,T]} taking values in R%. Here 775 is the
amount invested in the j-th risky asset at time ¢. Under the self-financing condition, the
associated wealth process X[ is defined by:

¢
X[ =Xo —1—/ . - diag(S,)"*dS,, t € [0,T).
0



Given an integer N > 2, we consider N portfolio managers whose preferences are charac-
terized by a utility function U; : R — R, for each i = 1,..., N. We assume that U; is C?,
increasing, strictly concave and satisfies Inada conditions:

Uj(—o0) = +o0, Ul(+oc) = 0. (2.4)

In addition, we assume that each investor is concerned about the average performance of
his peers. Given the portfolio strategies 7, i = 1, ..., N, of the managers, we introduce the
average performance viewed by agent 4 as:

X6 = T > i X, (2.5)
The portfolio optimization problem of the i—th agent is then defined by:
Vi (7)) = Vi = sup E [0 (1= M)XF + 0(XF - X.7)] (26)
mie Al

— sup E [Ui (X;ff - )\i)_(;(”j)#’ﬂ L 1<i<N,
mie Al

where \; € [0, 1] measures the sensitivity of agent 7 to the performance of his peers, and
the set of admissible portfolios A’ will be defined later. Roughly speaking, we impose
integrability conditions as well as the constraints 7° takes values in A;, a given closed
convex subset of RY.

Our main interest is to find a Nash equilibrium in the context where each agent is ”small”
in the sense that his actions do not impact the market prices S.

Definition 2.1 A Nash equilibrium for the N portfolio managers is an N—uple (7', ...,7V) €
AL x L AN such that, for every i =1,...,N, given (#7),4, the portfolio strategy 7 is a
solution of the portfolio optimization problem Vi ((ﬁ'j)j#).

If in addition, for each i = 1,...,N, @' is a deterministic and continuous function of
t €10,7T), we say that (7',...,7N) is a deterministic Nash equilibrium.

Our main result is the following:

Main Theorem: Assume that 0 and o are deterministic and continuous functions of
t € [0,T], and that for each i = 1,...,N, U;j(x) = —e " for some constant n; > 0, the
portfolio constraints sets A; are closed convex, and Hf\il Ai < 1. Then, there exists a

unique deterministic Nash equilibrium.

In order to simplify notations, from now on, we will write
Xi=X" and Xi:=X"7% teo,1].

In section 3, we shall consider the complete market situation in which the portfolios will
be free of constraints (in other words, 4; = R? for each i). This will be solved for general
utility functions. In the next sections, we will derive results for more general types of
constraints, but we will focus on the case of exponential utility functions: U;(x) = —e .
We will first consider the general case in section 4, and then in section 5 we will focus on

the case of linear constraints, where the A;’s are (vector) subspaces of R?.



3 The complete market situation

In this section, we consider the case where there are no constraints on the portfolios:
A;=R? foralli=1,.., N.
In the present situation, the density of the unique equivalent martingale measure is:

dQ - - od =g 0 P, (3.1)
dP
We shall denote by E? the expectation under Q.

In contrast with the general results in the subsequent sections, the complete market
situation can be solved for general utility functions. In this case, the set of admissible
strategies A = A; is the set of predictable processes 7 such that:

om € H (RY) and X™ is a Q-martingale. (3.2)

To simplify the notations and presentation in this introductory example, we also assume
that all agents have the same relative performance coefficient \:

Ai=A€0,1), foralli=1,....N, (3.3)

see however Remark 3.1. Nevertheless, we allow the investors to have different utility
functions U; and different initial endowments z* € R. We denote:

1 . .
l.—mzj#xj, Z—l,...,N.

8

3.1 Single agent optimization

The first step is to find the optimal portfolio and wealth (if they exist) of each agent, while
the strategies of other agents are given. In other words, we try to find the best response
of agent i to the strategies of his peers. As in the classical case of optimal investment in
complete market, we will use the convex dual of —U;(—x). Since U; is strictly concave and
C!, we can define I; := (U])~! which is a bijection from R* onto R because of (2.4). The
main result of this section requires the following integrability conditions:

iz ()] <= @9

Lemma 3.1 For any i = 1,..., N, let the strategies 77 € A for j # i be given. Then,

>’<ooand

under (3.4), there exists a unique optimal portfolio for the optimization problem (2.6) of
agent 1 with optimal final wealth:

X& =1 < Z%) + AX%,  where y is defined by EVI; < fi%) =zt — 7' (3.5)

Proof. Using the convex dual of —U;(—z), we have for any y > 0:

()| o (=%t + (o))

The right-hand side is integrable under P by the admissibility conditions (3.2) and the
integrability assumptions (3.4). The rest of the proof is omitted as it follows the classical

|Ui(Xp = AX7p)| <

martingale approach in the simple complete market framework. O



3.2 Partial Nash equilibrium

The second step is to search for a Nash equilibrium between the N agents. Let Xn :=

(X#)1<i<n be the vector of terminal wealth of the investors associated to (7!, ..., 7).
From Lemma 3.1, (r',...,7"V) is a Nash equilibrium if and only if we have:
1 A
N-1 d@
ANXN:JN, where Ay = AN GMN(R>; JN = (Iz <yl>> .
_ﬁ 1 dP ) ) 1<i<n

Under the condition A # 1 in (3.3), it follows that Ay is invertible and we can compute
explicitly that:

A2 A

L+ =y TNV
Ay = AN 2 ,
A A
[(ESVI Ay L+ a=ytveon

thus providing the existence of a unique Nash equilibrium:

Theorem 3.1 There exists a unique Nash equilibrium, and the equilibrium terminal wealth
for each i =1,...,N 1is given by:

X = (14 v ) 1 (vV8) + ity S 5 (V8.

Remark 3.1 In the case of specific \;’s, the previous arguments can be adapted. In the
expression of Ay, A; appears on the i-th line instead of A\, Ay is invertible if and only if
Hfil Ai < 1 (for more details, see the proof of Lemma 4.3 below) and then its inverse is

given by:
AN AN
/\g\f Zk;ﬁi v N
— 1+ _ 14+A; S
(ANl)ii =1+ N k Ny and (ANl)Z'j = JN N for 1 75 7,
1- 3, s 1=y, 0D
kA 14N k#i 14N

where we denoted AY := \;/(N — 1). The equilibrium performances are given by

X = N ARNGL (PR) . i=1 N,

Remark 3.2 In the case A = 1, it turns out that there exist either an infinity of Nash
equilibria or no Nash equilibrium. Indeed, in this case, Ay is of rank N — 2. Therefore
if Jy belongs to the image of Ay, then there is an affine space of dimension one of Nash
equilibria, while if Jy is not in the image of Ay, then there is no Nash equilibrium.

In particular, in the exponential utility context (further developed below), we directly
compute that Jy = Ayz+ %77 fOT (t) - (0(t)dt+ dW;), where z is the vector of intial data 2’
and 7 is the vector of risk tolerances 7; of each agent. Therefore Jy belongs to the image
of Ay if and only if n belongs to it.



3.3 The exponential utility case

In order to push further the analysis of the complete market situation, we now consider the
exponential utility case:

Ui(r) =—e m, x€eR, (3.6)

where 7; > 0 is the risk tolerance parameter for agent ¢, i.e. the inverse of his absolute risk
aversion coefficient. We denote the average risk tolerance by:

IV = % S0y 1) (3.7)

In the present context, I;(y) = —n; In(n;y), so that the equilibrium wealth process is:

Xﬁ} =a' — iy ln% where o =z + %EQ In %.
We denote by 7%V the corresponding equilibrium portfolio strategy of agent i, where we
emphasize its dependence on the parameters N and A.

In order to have explicit formulas, we assume that the risk premium 6 is a (deterministic)
continuous function of ¢. Then, it is well-known that the classical portfolio optimization
problem with no interaction between managers leads to the optimal portfolios

70 = niot0(t), te0,T).

Proposition 3.1 In the above setting, the equilibrium portfolio for agent i is given by:

i N _ 0N A0, N _ 1 N AN iy
T =k T where Ky -—ﬁ[(l N+A—1>+N+A_1ﬁ :

Remark 3.3 Assume further that ny — 1 > 0 as N — oco. Then ki’N — 14 ﬁ% In
particular, if all agents have the same risk aversion coefficient n; = n > 0, then:

A= A0 for all .

=T ‘_ﬁﬂ-

Remark 3.4 In the case of similar agents, i.e. for any i = 1,..., N, ; = n and \; = A, we
can find the equilibrium portfolio very easily. Indeed, by symmetry considerations, all the
X?%s must be equal, X* = X, and the optimization problem reduces to:

1)y
sup—Ee » 77T
™

This is the classical case with 7 replaced by 17, so that the optimal portfolio is given by

7y = no; 10(t)/(1 — N), in agreement with our results.

In the general case of the following sections, we will not always be able to conclude
anything on the behavior of every agent, therefore we introduce the following definition:

Definition 3.1 The market index and the corresponding market portfolio are defined by:

X, =+ Zivzl X} and T =+ Zfil mi, t€0,T).



We recall the definition of the Sharpe ratio SR and introduce the variance risk ratio VRR:

expected excess return expected excess return

SR =

, VRR =

(3.8)

volatility variance

For practical purposes, the VRR is a better criterion for the two following reasons:

e VRR is robust to the investment duration, while SR is not: for a time period L and
a scalar k£ > 0, we have SR(kKL) = kSR(L), while VRR(kKL) = VRR(L).

e VRR accounts for the illiquidity risk related to the size of the position, while SR
does not: for a portfolio X and a scalar & > 0, we have SR(kX) = SR(X) and
VRR(kX) = VRR(X)/k.

We have the following results for the impact of A:
Proposition 3.2 (i) For any linear form o, \go(ﬁf’N’)‘)] is increasing w.r.t \.
(ii) The dynamics of the market index and the corresponding market portfolio are given by:

dX, = 0(t) - [0(t)dt + dWy] and Ty = 20, 0(t).

In particular, for any linear form ¢, |p(7)| is increasing w.r.t \.

Proof. (ii) is immediate, so we only prove (i). By Proposition 3.1, 74V = ki’Nfr?’i, and
we ditectly compute that:

i, N B
e = [N+ A=1+NA+(N-1)(1-N) (77” _ 1)} '

By definition of iy in (3.7) and the fact that n; > 0 for all j, we have %’ -1> %

Therefore:

(1= NN+ —1)2% N(N+A—=1)= AN —1) = (N =121 - ))

>
> (N=1)(1 =X +AXN?*=N+1)>0.

a

In words, Proposition 3.2 states that the more investors are concerned about each other,
the more risk they will undertake. In each investment direction, the global position of
agents, described by |p(7)|, will increase with A and in the limit A — 1, we even have
a limit of infinite positions |¢(7;)| — oo a.s. Furthermore, the drift and volatility of the
market index are both increasing w.r.t A. The corresponding Sharpe ratio is SR = [0(t)|,
independent of A, while the variance risk ratio is VRR = 177’_7)\’ a decreasing function of .
This is a perverse aspect of the present financial markets which may provide an explanation
of the emergence of financial bubbles, when managers use the Sharpe ratio as a reliable

indicator.



3.4 General equilibrium

In the previous sections, the price process S was given exogeneously. We now analyze the
effect of the relative performance coefficient A when the price process S is determined at
the equilibrium.

For each fixed price process S, defined as in Section 2, there exists a unique Nash equi-
librium in the sense of Definition 2.1. Similar to Karatzas and Shreve [27], our objective
is to search for a market equilibrium price S which is consistent with market equilibrium
conditions:

SN abd = KIS/ forall j=1,...,d and t € [0,T], (3.9)
Siat = Y1 KIS, (3.10)

where K7 is a constant such that K7 Sg is the market capitalization of the j-th firm. Equa-
tion (3.9) says that the total amount invested in the stocks of the j-th firm is equal to the
market capitalization of this firm. Equation (3.10) says that the initial endowment of the
investors equals the initial market capitalizations. With 1 := (1,...,1)T € R%, we observe
that (3.9) and (3.10) imply that

Y X = NN (o4 fy i diag(S)7dS)

; d ftoigad
= 2%1 xl + Z&:l Jo KJng . J o N
it 2 KIS - Sp) = Y KIS = 3o w1,

i.e. the total amount invested in the non-risky asset is zero at any time ¢ € [0, T].

Definition 3.2 We say that a process S is an equilibrium market if there exists a Nash
equilibrium 7 = (&1, ..., #N) associated to the price dynamics S, in the sense of Definition

2.1, such that S and 7 satisfy (3.9) and (3.10).
In order to simplify notations, we set K/ = K/ N, and k := (k',... k).

Proposition 3.3 Let 0 be a deterministic and continuous function of t € [0,T]. Then
there exists an equilibrium market whose risk premium is 0. Moreover, in this equilibrium
market, the market index is given by:

Xp =7+ {5 [10t) - (0(t)dt +dWy), telo,T].
Proof. By Proposition 3.2 (ii), it follows that
Sy = {2 diag(k)o(t)10(t).

Notice that the previous equation does not define o uniquely for d > 1.
Conversely, let # be some given continuous function. Then we can choose a diagonal
matrix o, = o(t, St), with diagonal elements



Notice that o satisfies the conditions for S to be a strong solution of (2.3). Then, it follows
from Proposition 3.1 that:

dX; = LN dX] = £ N 7 - diag(Se) "1dSy = 250(t) - (0(t)dt + dW).

O
We next analyze the impact of A on the drift and the volatility of the market index.
Despite the multiplicity of market equilibria, they all lead to the similar conclusions. Let
us for example assume that the risk premium is independent of A. Then the drift of the
market index is 7|6(¢)|2/(1 — ) and the volatility is 1|6(¢)|/(1— ), thus both are increasing
w.r.t A\, and with the same order. We may interpret this equilibrium as a financial bubble,
where the return and the volatility are both increased by the agents interactions. An
alternative interpretation for a fund manager is that, for the same given return, the agents
interaction coefficient increases the volatility of the optimal portfolio.
Notice that in the present setting, the variance risk ratio VRR = (1 — \)/n is decreasing
in A and tends to zero as A — 1. This indicates that, according to this criterion, the agents
interactions lead to market inefficiency.

4 General constraints with exponential utility
In the rest of this paper, we consider a general case with constrained portfolios. We assume:

A; is a closed convex set of RY, for all i = 1,..., N. (4.1)

We denote by P} the orthogonal projection on o;4;, which is well-defined by (4.1). For
r € R? we denote dist(z,0¢A4;) := |z — Pjz| the Euclidean distance from z to the closed
convex subset o;A4;.

Remark 4.1 Recall that for a closed convex set A in a Euclidean space, the orthogonal
projection on A, denoted P, is well-defined, is a contraction, and satisfies for any z, y € R%:
|P(z) — P(y)|> < (x —y) - (P(x) — P(y)) < |z — y|?>. Moreover, P(x) is the only point
satisfying (x — P(x)) - (a — P(z)) <0 for all a € A.

For technical reasons, we restrict our analysis to exponential utility functions (3.6).

Definition 4.1 The set of admissible strategies A; is the collection of all predictable pro-
cesses m with values in A;, dt ® dP—a.e., such that om € H2 (R?) and such that the family

loc
{ei(X:_XJ); v, T stopping times on [0,T] with v < T a.s} (4.2)
is uniformly bounded in ILP(P) for all p > 0.

In comparison with the admissibility conditions of section 3, the previous definition re-
quires the uniform boundedness condition of the above family, which is needed in order to
prove a dynamic programming principle similar to Lim and Quenez [32].

10



4.1 A formal argument

In this section, we provide a formal argument which helps to understand the construction
of Nash equilibrium of the subsequent section. For fixed i = 1, ..., N, we rewrite (2.6) as:

Vj == sup E [Ui (X%i - fzﬂ , where & := \XET = \NF 4 & (4.3)
WiEAi
Then, following El Karoui and Rouge [14] or Hu, Imkeller and Miiller [21], we expect that
the value function V¢ and the corresponding optimal solution be given by:
Vi = _6_(:62'_)\@1'_95)/%’ opl = Pi(CE 4 mi0;) for all t e [0,T],
and (Y7, @) is the solution of the quadratic BSDE:

. ~. T ~. 7774 ~. ~. T~.
Vo= bt [ (G0 B + G no0)du— [ G, e T (4

where the generator f is given by:

o 1 : ,
fi(z") = Tdist(z’,crtAi)Q, 2t € RY (4.5)

i

This suggests that one can search for a Nash equilibrium by solving the BSDEs (4.4) for
all t =1,..., N. However, this raises the following difficulties:

- the final data &) does not have to be bounded as it is defined in (4.3) through the
performance of the other portfolio managers;

- the situation is even worse because the final data 55 induces a coupling of the BSDEs
(4.4) for i = 1,...,N. To express this coupling in a more transparent way, we substitute
the expressions of & and rewrite (4.4) for t = 0 into:

Yy = mé + /0 - /0 ) (¢ = A D Pich)) -aB.
J#

where B := W + fo 0,-dr is the Brownian motion under the equivalent martingale measure,

P

T T ﬁv Cz = é:; +77i9ta te [OvT]) (46)

and the final data is expressed in terms of the unbounded r.v.

T 1 T
£ = / 9u-dBu—/ 10, |*du. (4.7)
0 2 0

Then Yy = Yy, where (Y, () is defined by the BSDE
Yi—me+ [ R [ (G- A Y Pi) - db. (18)
! ¢ j#i
In order to sketch (4.8) into the BSDEs framework, we further introduce the mapping
@i : RN4 5 RN defined by the components:

0y(¢h s CN) = = AN P for all ¢ Y e RY (4.9)
J#i

11



It turns out that the mapping ¢y is invertible under fairly general conditions. We shall
prove this result in Lemma 4.3 for general convex constraints and in Lemma 5.1 in the case
of linear constraints. We denote 1; := ¢; * and v¢(z) the i-th block component of size d of
©; '(2). Then one can rewrite (4.8) as:

T T
Y =& +/ fu(Zy)du — / Z, - dBy, (4.10)
¢ t
where the generator f? is now given by:
fi(2) = fi(bi(z)) forall z=(z'..,2") e RN (4.11)
A Nash equilibrium should then satisfy for each i:

4.2 Auxiliary results

Our first objective is to verify that the map ¢ introduced in (4.9) is invertible. The crucial
condition for the rest of this section is:

[Ticien A < 1. (4.13)
Recall the notation A from (4.6).

Lemma 4.1 Under (4.1) and (4.13), for any t € [0,T], the map I + )\éthj is a bijection
on R% and its inverse is a contraction, for all j =1,...,N.

Proof. Let ¢t € [0,T] be fixed, for ease of notation, we omit all ¢ subscripts. Since 0yA4; is
a closed convex set, from Remark 4.1, (z —y) - (P (x) — Pi(y)) > |P’(x) — Pi(y)|?> > 0, for
any z,y € R% Notice that I + )\§ij is a bijection if and only if, for all y € R?, the map

fy(@) =y = AV PI() (4.14)

has a unique fixed point. Since P7 is a contraction, we compute, for any z,z’ in R%:

[fy(2) = fy(2")| = AV |PI(2) — PI(a")| < Mo — /| = gl — /).

Case 1: It N > 3 or \; < 1, then f, is a strict contraction of R?. We prove now that the
inverse of I + )\§V PJ is a contraction. Indeed if x # y, we have:

| =y + X7 (P () = PI)|” = |z —yl* + (\}) [P (2) = P (y)]?
N . .
+20 (x —y) - (P(z) = P(y))
> |z —y[> >0, (4.15)
where we used the fact that (z —y) - (P/(x) — P’(y)) > 0, see Remark 4.1.
Case 2: If N = 2 and \; = 1, f, fails to be a strict contraction. However, (4.15) still
holds, and implies that I + P/ is one-to-one. Using Lemma 4.2 below, we get the bijection

property of I + PJ and the contraction property of the inverse function follows from (4.15).
O
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Lemma 4.2 Let A be a closed convex set of R?. Then (I + P4)(RY) = R?,

Proof. Let B :=2A = {y € R%; 3z € A, y = 2z}, and let us prove that

1 1
Pa(y — 5]DB(y)) = 5PB(y) for all y € R%. (4.16)

This implies that y = (I + Pa)(y — 3Pp(y)) € (I + Pa)(R?) for all y € R, which gives the
required result.

To prove (4.16), define z := $Pp(y) and z := y — 22. By Remark 4.1, Pp(y) is the only
point in B satisfying (y — Pp(y)) - (b — Pp(y)) < 0 for all b € B. In other words, we have
for any b € B, z- (b—2x) < 0, or by definition of B, for any a € A, z-(2a —2z) < 0. hence:

(x4+z—z) - (a—z) <0 forall ae€A,

which means that = P4(z + z) and therefore (I + Pa)(z +2) =+ z+z =y. O

Recall the definition of ¢ in (4.9).

Lemma 4.3 Under (4.1) and (4.13), we have for t € [0,T]:
(i) @ is a bijection of RN, and we write ¢y := got_l.
(ii) Yy is Lipschitz continuous with a constant depending only on N and the \;’s.

Proof. For ease of notation, we omit all ¢ subscripts. For arbitrary z = (2, ..., 2IV) in RNV¢,
we want to find a solution ¢ € RV to the following system:
QO = =AY, PI(I) =2 1<i<N. (4.17)

Substracting \; times equation ¢ to \; times equation j in (4.17), we see that:
i (T+AYP) () =X (T+ AP (¢ + N2 = Njz's i,j=1,...,N.  (4.18)
1. From Lemma 4.1, we know that I + )\é-VPj is a bijection, thus from (4.18), we compute:
L , N —1 . , : :
i PUC) =5, 2 Pl o (I + Aéyp]) (NI + AP + Nzl — N2,
so that, from (4.17):

i i 1 j i1 N j i iz
('==z +mZPjo(I+>\§VPJ) (NI HANPH(CH + Nizd = Xj28) = g™ (¢h). (4.19)
j#i

2. We next show that, under Condition (4.13), g%* has a unique fixed point. We have:

[(T+AYPI) (@) — (T+ AN P) ()° = J& =y + 22N (@ — ) - (PY () — Pi(y))
+ (AN Pl () — P(y)?
> (1022 + (1)) 1P @) - PGP

> (1+ M) [P () — PI(y).

13



Therefore, P/o(I+XAYP7)~! is i-Lipschitz. Then, since (I+AYP?) is 1+ A)-Lipschitz:
J

’91’2(55) - gz’z(y)‘ < Nl_l Zj#‘ 1+f\§v (1+ )‘zN)|x —yl.

Aj
LAY

Condition (4.13) implies that K := 1~ >t 1?7;\;\, (1+AN) < 1, where K* depends only

Notice that (1+AN) < max(\;, A;), with equality if and only if A; = A;. Therefore,

on N and the A;’s. Then, g% is a strict contraction and admits a unique fixed point that
we write {t)(2)}. Tt is then immediate that ¢ = t(2) is the unique solution of (4.17).

3. Finally we prove that v is Lipschitz with a constant depending only on N and the A;’s.
Let 21, 20 € RN, from (4.19), we compute:

[W(21)" — (22)'] < |2} — 25| + K'|op(21)" — 9b(22)| +2 sup |2] — 2.
1<5<N

Since K := sup;j<y K7 < 1, we get sup;<j<n [¢(21)7 — ¥(22)7| < 2% supije 2] — 2],
which completes the proof since K depends only on N and the A;’s. O
4.3 The main results

Similar to the classical literature on portfolio optimization with exponential utility (El
Karoui and Rouge [14], Hu, Imkeller and Muller [21], Mania and Schweizer [33]), we first
establish a connection between Nash equilibria and a quadratic multi-dimensional BSDE.

Theorem 4.1 Under (4.1) and (4.13), let (7',...,7#N) be a Nash equilibrium. Then:
ﬁ_z :Ut_lPtl(T/}z(Zt)) and VZ - ¢ Th'( i Yo),

where (Y,Z) € H2(RYN) x H?

loc

(RN is a solution of the following N-dimensional BSDE:

. 1 [T 4 4 9 T
Vo= werg [ 10-Povif au- [ Zi-ab. (4.20)
i Jt t

and & is defined by (4.7).

Proof. See Section 4.5. O

Unfortunately, the wellposedness of the BSDE (4.20) is an open problem in the present
literature, thus preventing Theorem 4.1 from providing a characterization of Nash equilib-
ria, see also [12]. Our second main result focuses on the multi-dimensional Black-Scholes
financial market, where we can guess an explicit solution to the BSDE (4.20). Although no
uniqueness result is available for the BSDE (4.20) in this context, the following complete
characterization is obtained by means of a PDE verification argument.

In view of Lemma 4.3, under Condition (4.13), the maps

Yi(x) == Yi(mz,...,qnx) forall zeRY i=1,.,N, tel0,T], (4.21)

are well-defined and Lipschitz continuous on R%.
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Theorem 4.2 Under (4.1) and (4.13), assume that o and 6 are deterministic continuous
functions. Then there exists a unique deterministic Nash equilibrium.:

7t =o(t) Pl opl(0(t)) for all t€0,T), (4.22)

Moreover, the value function for agent i at equilibrium is given by:

T

. i 1 T 7 K
== [epace o [ |- P G
2 0 27]2 0

— k@A)

Vi=—e
Proof. See Section 4.6. O

We conclude this section by two simple examples. More interesting situations will be
obtained later under the additional condition that the constraints sets are linear.

Example 4.1 (Common investment) Let o = Iy, \j = A\, n; =1, and A; = B(x,r) for
some r € R* and 7 > 0, i = 1,..., N. Here B(x,r) is the closed ball centered at x with
radius 7 > 0 for the canonical euclidean norm of R¢. Using Theorem 4.2, we compute the
following equilibrium portfolio:

n0) qef(t) € B(z,r)

i p(md)y — ) 1A A
Tt (T=3) T+ T (Zef(f\) — ) otherwise.
e
Notice in particular that, as one could expect, #i —  is colinear to %(f\) —x and that 7} is in

the boundary of B(x,r) whenever qef(t)\) ¢ B(z,r). One can prove that |7| is nondecreasing
w.r.t A and 7. Notice also that this expression is independent of V.

Example 4.2 (Specific independent investments) Let o = Ig, Ay =\, m; = n, and A; =
la;, bile;, for some a; < b;, i = 1,...,N. Here (ej,1 < j < d) is the canonical basis of RA.
Using Theorem 4.2, we compute the following equilibrium portfolio for agent i:

7= Pi(ne(t)) = a;V (n0(t)) Ab;.

This is exactly the same expression as in the classical case with no interaction between
managers. Hence, The equilibrium portfolio is not affected by A and N.

Remark 4.2 Suppose that the portfolio constraints sets A; are not convex. Then, we
have to face two major problems. First, the projection operators A; are not well-defined.
Second, and more importantly, the map ¢ may fail to be one-to-one or surjective onto RV,
The failure of the one-to-one property means that there could exist more than one Nash

RN as illustrated by Examples

equilibrium. However the failure of the surjectivity onto
6.1 and 6.2 in the Appendix section, would lead to a constrained (N-dimensional) BSDE
with no additional nondecreasing penalization process. Such BSDEs do not have solutions
even in the case of Lipschitz generators, meaning that there is no Nash equilibrium in this

context.
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4.4 Infinite managers asymptotics

In the spirit of the theory of mean-field games, see Lasry and Lions [31], we examine the
situation when the number of mangers N increases to infinity with the hope of getting some
more explicit qualitative results with behavioral implications. In this section, we assume
that the number of assets d is not affected by the increase of the number of managers, see
however the examples of section 5.3. We also specialize the discussion to the case where
the agents have similar preferences and only differ by their specific access to market.

The following result is similar to Proposition 5.1 in [16]. Therefore the proof is omitted.

Proposition 4.1 Let \; = A € [0,1) andn; =1 > 0 for all j > 1. Assume + SN P —
U} uniformly on any compact subsets, for all t € [0,T] (resp. uniformly on [0,T] x K, for
any compact subset K of R?). Then:

i s 7 = o(t) Lo Pl o (I Ut o (A1) ™ (mf(t) + UL(0))

for all t € [0,T] (resp. uniformly in t € [0,T]).

4.5 Proof of Theorem 4.1

Assume that (7', ..., #V) is a Nash equilibrium for our problem. First, by Holder’s inequal-
_ 1 i __)\. X%

ity, the admissibility conditions for all ¢ = 1,..., N imply that e (Xp=AiXr) belongs to

P, for any p > 0. Let T be the set of all stopping times with values in [0, T], we define the

following family of random variables:

T i gt
Jim (1) = E[ - o (7 oumudBu=i (X, ))‘E}, (4.23)

1 wi—)\ii‘i)

V(1) :=esssupyrey, Jo7(7) forall 7 € T so that V(0) = et Vi, (4.24)

1. By Lemma 4.4 below, the family {V!(7); 7 € T} satisfies a supermartingale property.

. 1 t
Indeed, let 3" :=e JoowmedBu ¢ ol 7 e A;, we have:
BETVE > E( é’”Vé]}}) for all stopping times 7 < 6.

Then, we can extract a process (V) which is cadlag and consistent with the family defined
previously in the sense that V2 = V() a.s (see Karatzas and Shreve [26], Proposition 1.3.14
p.16, for more details). Moreover, this process also satisfies the dynamic programming prin-
ciple stated in Lemma 4.4, so that for any 7 € A;, the process 37V is a P-supermartingale.
The definition of a Nash equilibrium implies that 7 is optimal for agent 1, i.e.
Vé = sup E — e_"%(X%_zi_’\i(X%_fi)) =E - e_%(X%l_xi_/\i(X%_ii)X (4.25)
TEA;

which implies that the process Bi”?i V' is a square integrable martingale, as the conditional
expectation of a r.v. in L2.
2. We now show that the adapted and continuous process:

W= XF -t In(=B0T V), te[0,T], (4.26)
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solves the required BSDE.
2.a. First, by Jensen’s inequality, and the fact that Inx < x for any « > 0, we have:

1 i ) . ) L 1 (xR i (i
—— B[ X}~ - X(Xf—7)|F| < In(-87 V) <E|-e (XF o' Au(Xpa

. ) ‘ft} . (4.27)

By the admissibility conditions, both sides of (4.27) belong to H?, as conditional expecta-
tions of random variables in 2. Since X7 is also in H?, we see that 4* is in H2. Then, for
all m € A;, we have that:

. _ 1 XT_ i~ ~. _ 1 X‘/r__x?ri
Mtl:ﬂ' = _e 771'( 7=z =) — Mtle "i( t t ), tG[O,T],

where M? = Bi’ﬁ_ivi is a square integrable martingale. By Holder’s inequality, it follows

_A(xr_ .
that e m CF ¢ ) ¢ 1P for all p > 0. Then M*™ is integrable.
2.b. In this step, we prove that M*™ is a supermartingale for all 7 € A;. Assume to the
contrary that there exists m € A;, ¢ > s and A € Fy, with P(A) > 0 and such that:

E (_e—ﬁi(XZT—wi—%)u_—s) > _e mXimat-) o A,
and let us work towards a contradiction. Define:
Tu(w) = (W)L xay (U, w) + Tu(w)L(s 1% a)e) (us w).
Since A € Fs, using Hoélder’s inequality, we see that & € A; and we have:

F}] =B e T

by the fact that # = 7 on [¢,T]. Since P[A] > 0, this implies that:

v(z) >TF— efn%.(X;‘:fxi*’Yé«) _ E[E{ . e*n%_(X?fxi*’Y%)

1 Xf—xi—'yti)

Vi > IE[IE{ i ]—“H SE—e wXT 0 by

which provides the required contradiction.

2.c. Since M’ = /;’ifriw‘ is a martingale, it follows from the martingale representation
theorem that M? is an Ito process. Therefore (4.26) implies that 4 is also an Itd process
defined by some coefficients b* and (*:

dyi = =bidt + ¢} -dW; with (v, ¢%) € H3(R) x HZ,.(RY). (4.28)

Moreover, by Jensen’s inequality, In(—M ”?Z) is a supermartingale, and by (4.27) it is
bounded in L2. Therefore it admits a Doob-Meyer decomposition In(—M™) = N + A,
where N is a (uniformly integrable) martingale and A a decreasing process. The martin-
gale representation theorem then implies that there exists a process § € H, C(Rd) such that
Ny = fot 8y - dW,,. Using (4.27) and (4.28), we get ¢} = oyt + 1;0;.

2.d. We next compute the drift of M*™. From the previous supermartingale and martin-
gale properties of M®™ and M?, respectively, together with (4.28), we get:

b < gy lovm = (G4 mib)| = $10:> = - 0, for all 7€ A,

. s . 2 . .
and b} = 5 |ovit — (¢ +mibe)|” — F10:* — ¢ - br.
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This implies that:
To= oy PG+ i)
. o 1 . ; ;
o= SG) = 5 (G e oA = S0P - G0,
and therefore (7%, (%) € H3(R) x H2 (R?) is a solution of the BSDE:

772|'9t|

i = (G0 T = o (= PG ) )+ G-

A= XX —3) =AY Z/ 7l oy (dWy + Oudu).
JF#i

Recalling that dBy = dW, + 6,dt, we can write it:
i i104]2 i iy (i 2 i
dyi = (%—% (I = PG+ mifh))| )dt+(t-dBt
'y% = )\Z(Xfllw—i‘z) :)‘ﬁvzj#ifo ﬁ'{L'O'udBu.

(4.29)

(4.30)

3. We finally put together the N BSDEs obtained in Step 2. Since (7', ...,#") is a Nash
equilibrium, equation (4.30) holds for each i = 1, ..., N. Replacing the value of 7/ by (4.29)
in the expression of 7¢ and writing I'" := ¢* + 1,6, we see that (7%, ') must satisfy for each

t€0,T7:

T T T
1 iy (T i
A —)\NZ/ PI(T%)-dB,— / yeu\zdwm/t y(I—Pu)(ru)deu—/t (T8 —1,0,)-dB,,,

JFi

so that the adapted process Y} := i — ]0 du+% fo Ou-dBy =AY Y4 fo PI(T),)-dBu,

t € [0, T, satisfies:

, 1 T o T, o
Vi—ng g [ 0P P~ [ (V=AY S Pir)) B
1 Jt t

i
with (Y, I'") € H?(R) x HZ (R). We finally define:

Zj = i) =Ti — XV 3 P/ (1)),
J#i

Under (4.13), using Lemma 4.3, we know that ; is invertible. As a consequence, (Y, Z) €

H2(RY) x HZ _(RV9) is a solution of the following system of BSDEs:

i e Y 2 Ti
o= werg | l0-P)wi@fa- | ziab.

Moreover, for each i, the equilibrium portfolio is given by:

a

The following dynamic programming principle was used in Step 1 of the previous proof.
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Lemma 4.4 (Dynamic Programming) For any stopping times T < v in T, we have:

) 1 v ) )
V(1) = ess sup E[e mi dr oum ’dB“VZ(V)’]:T], i=1,..,N.
TeA;

Proof. Let 7 <v < T a.s. We first obtain by the tower property that:

. _1(rT . N (XE —Rt _1 (v .
VZ(T) = ess sup E |:E|: —e M (le OuTy -dBy )\z(XT x ))’]:,,]e m fT U(u)ﬂ'u dBy, ‘FT:|
TeA;
_L, fyo'uﬂ'u'dBu 7
< ess sup ]E{e i T 1% (V)‘]:-,-].
TEA;

To prove the converse inequality, we fix 70 € A; and we observe that J"(v) defined by
(4.23) depends on 7 only through its values on [, T]. Therefore we have the identity:

Viv) =ess sup J"™(v), where A;(v):={n € A; 7 =7"on [0,v], dt ® dP-a.e}.
meA; (V)

We next observe that the family {J*™(v), m € A;(v)} is closed under pairwise maximiza-
tion. Indeed, let 71, mo in A;(v), 4 = {w € Q; J*™(v)(w) > J*™(v)(w)} and define the
process 7 := 14 + 1\ 4m2. Since 7l =72 =7%0n [0,7], and A € F,, it is immediate that

(XT=XD) _ poEuls atﬂ'tl-dBtlA 4 Bt Js ovni-dBy

P
m € T. We compute Ee~ i Loy 4, so that

1 T_ YT

since m!, w2 € A;(v), the family {ei’Ti(XT Xﬂ); ¥ < 7 € T} is uniformly bounded in any
P, p > 1. Therefore, 7 € A;(v) and it is immediate that J*™(v) = max(J™ (v), J4™2(v)).
Then it follows from Theorem A.3, p.324 in Karatzas and Shreve [27], that there exists a

sequence (7,) satisfying:

e Vn, w, =" on [0,]

e (J%™(v)) is non-decreasing and converges to V'(v).

Then we have: L
Jin (1) = E {Ji,frn<y)e—n7 [Y ound-dBu

7.

Since J%™(v) is non-decreasing and converges to V(v), it follows from the monotone
convergence theorem that:

_1 v 0,
o fT Oy, -dBy

Vi(r) > E e Vi) ||

and the required inequality follows from the arbitrariness of 7. O

4.6 Proof of Theorem 4.2

1. We first prove that the portfolio (4.22) is indeed a Nash equilibrium. The idea is to
show that we can make the formal computations of Section 4.1 in the reverse sense.
l.a. Let

= tU —1 ! 'LLZU
@.Aemd& QA\WNd,teMﬂ, (4.31)
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Since § and o are deterministic and continuous functions, the functions P%’s are also de-
terministic and continuous w.r.t. (t,z) € [0,T] x R% Let us prove that the same holds
for 1, and therefore for that 7% := o (t) "' P} 0 1{(Z;) is deterministic and continuous w.r.t.

€ [0,7]. Indeed, it is immediate that ¢ is deterministic and continuous w.r.t. (¢,(), so
that v is a deterministic function of (¢, z). Then, from Lemma 4.3, under Condition (4.13),
¢ is Lipschitz in z, uniformly in ¢, so that there exists a constant K > 0 such that for all
t €10,T], and all z, 2" € RY, [hy(2) — ()| < |z —2|. Let t, —t, 2 € RN9 and ¢ := o4(2).
We define z,, := ¢, (¢) for each n. Since ¢ is continuous w.r.t ¢, z,, — z, and we have, for
all n, Yy, (2n) = ¢, so that |1, (2) — (| = ¢, (2) — ¥4, (20)| < K|z — 2z,| — 0. Therefore
¢ is continuous w.r.t. ¢. Then if z, — z and ¢, — ¢, we compute |1y, (2,) — Pi(2)| <
[P, (2n) — Ve, (2)| + |¥r, (2) — Ye(z)] — 0, since 1 is continuous w.r.t. ¢ and Lipschitz in
z uniformly in ¢. As a consequence, we can define the following adapted and continuous
processes:

. . 1 T . .
Z{=mn0(t) and Y} :=mn& + 277/ |(I —P))o @bZ(Zu)’zdu, t € [0,T].
i Jt

)

Then, we directly verify that (Y, Z) satisfies the following N-dimensional BSDE:

, 1 [T , T
Y1£z = Ui§+$/ ‘(I—Pé)(l/}u )‘ du—/ Z;-dBu.
i Jt t

Set:

t
i i,
i =iy |9<u>|2du—m/0< B, ANZ/ Pi((Z

JFi
G = lZ) —mib(t) = (b —ml) (0(1)).

By the same computations as in Section 4.1, we see that for all i = 1,..., N, (v*,¢%) is a
solution of the 1-dimensional BSDE:

i = (G0 + ’7‘2“” — 5 = PG+ (@) )+ G- aws
= )\NZ/ # - o (u) (AW, + 0(w)du).

J#i

Then using the definition of ¢ and v we can rewrite 7' as:

/|9 |du+/ (I — P o ¢l (0(u |du+ANZ/PJ¢u W) - dBy

J#i
3 1 i z
:—Z/O |9(u)|2du+2m/t (I — P) ot (0(u) |du+/ ¢t - dB,

0 ¢ 1 T i Ti Ti i )
= /0 o)+ 5 / (I — Py o i (0(us))[Pdu + /0 (i, — :T) (6(w)) - dB,.

1.b. Throughout this step, we fix an integer i € {1,..., N}, and we define:
_ (X i
M == —e m (Xp™—a'=}) for all € A;.
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By Itd’s formula, it follows that M™ is a local supermartingale for each m € A;, and M #t
is a local martingale. Then, there exist increasing sequences of stopping times (77) in 7T,

such that for each 7, 77 — T a.s and for each n and any s < ¢:

E[M{),x|Fs] < MJp,- forall m € A; and IE[MZr #|Fs] = (4.32)

s/\T7r
We next introduce the measure Q?, equivalent to P, defined by its Radon-Nikodym density:

Q!
P |,

L= _ e (Eai-n) @y awa4 g (£ 1) o) du (4.33)

We denote by E’ the expectation operator under Q. Since @ is a deterministic and contin-
uous function on [0, 7], — \9( )[2du+ 2%)1 ftT |(I — P%) o)l (0(u))|?du is bounded. Then,
for any m € A;:

]EMTI’ —_
t/\Tn Lg\

1 & [_e—nli(X{’Am—wi)—l o \9(u)|2dqu2 p Sinen |I=Pi)ofi(0(w))[2du

. t/\‘r”( -l — )(G(U))g( du+ ft/\Tn

(seot-r) 0| ] (4.34)

where we simply denoted 7, := 7;7. In (4.34), all the terms inside the expectation other than
1

¢ 1" are bounded. We shall prove in Step 1.c below that the family {eiﬁ%X:; TeET}
is uniformly integrable under Q°. Hence, the sequence of processes inside the expectation
in (4.34) is uniformly integrable under Q¢, and we may apply the dominated convergence
theorem to pass to the limit n — oo, and we obtain lim,, ,. EM{,, = EM]. Together
with (4.32), this implies that:

L (xm i A 1 i X"—— 1
E—e ”i( £ %)S—e"z‘% forallme A; and E—e "L< * %>— e"ﬂo

Multiplying by e " L(@i-\z-Yy)

, we finally get V; = —e ™

is optimal for agent i. Hence (7!, ..., #%)

, since Y¢ = 1§, and 7°
is a Nash equilibrium.

l.c. In this step, we prove that the family {Y; := e_"%' " 7 € T} is Q'—uniformly
integrable for all 7 € A;. Fix some p > 1. Then by the admissibility condition, the family
{Y; : 7 € T} is uniformly bounded in LP(P). With r := (1 4 p)/2, it follows that the
family {Y" : 7 € T} is uniformly integrable. Then for all ¢ > 0 and 7 € T, it follows from

Hoélder’s inequality:
EY [Vrly,>d = E[L7Yrly,sd < L7l Y7 Ly selli-@)

where ¢ is defined by (1/q) + (1/r) = 1. Since {Y" : 7 € T} is uniformly integrable, the
last term uniformly goes to 0 as ¢ — oc.

2. We now prove uniqueness by using a verification argument.
2.a. Let (7!, ..., 7") be a deterministic Nash equilibrium, and define for alli = 1,..., N:

— L @=xy) -3 [T 10(w) Pdut 52 2 JE|@=Ph) (nib(w)+Xio(w)miy (w)) | *du

ul(t,z,y) = (4.35)
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where

ﬁfv(“) = ﬁzj';éi o (u).

Since 7/ is a continuous function for all j = 1,..., N, the functions u’ are C' in the ¢
variable. Direct calculation reveals that u’ is a classical solution of the equation:

—ow' — sup LPu' =0 and wu (T x,y) = e~ @=Xiy)/mi
pEA;

where for all p € A;, LP is the linear second order differential operator:
I = o(t)ri(t)- 69, +f}0 )7 ()\ 2,
+o(O)pO(t)d; + o(t)p - o ()T (835, + IU( )pI* 02,

and the supremum is attained at a unique point

mf = o) P (nf(t) + Nio(t)7N (D). (4.36)

2.b. In this step, we prove that u’(0, X}, X§) = V. First, by It6’s formula we have for
all m € A;:

u'(t,z,y) :ui(Tn,an,X’in)—/ L”ui(r,Xf,Xf;)dr—/ (m—7h)(r)-o(r)dW,, (4.37)
t t

where 7, := inf{r > t, | X7 — x| > n or | X! — 7| > n}. Taking conditional expectations in
(4.37), and using the fact that L™u’ < 0 for any 7 € A;, we get:

u'(t, 2, y) > B pyu' (1, X2, XL ) forall me A (4.38)

Since the 7;’s, o and 6 are continuous deterministic functions and ¢ € A;, it follows from

(Xi-X\;X1)

Holder’s inequality that {e 0 , T € T} is uniformly bounded in any ILP. By the

definition of U?, this property is immediately inherited by the family {u’(r, X T X1, T €
T}. Therefore, taking the limit n — oo in (4.38), we get u'(t,x,y) > E e ™ (X NN,
By the arbitrariness of 7 € A;, this implies that (0, X}, X§) > V¢.

We next observe that 7* € A; and the inequality in (4.38) is turned into an equality if 7*
is substituted to . By the dominated convergence theorem, this provides:

. _ 1 ™y ¥i
’UJZ(t,ZE,y) = Et,m,ye i (XT AZXT),

which, in view of (4.38), shows that u*(0, X§, X}) = V3.

2.c. To see that the continuous deterministic Nash equilibrium is unique, consider another

continuous deterministic Nash equilibrium (7!, ..., #V)

, and denote by @* the corresponding
value functions as in (4.35). It suffices to observe that L™4! < 0 on any non-empty open
subset B of [0, T] such that = # 7* on B, and the inequality (4.38) is strict. Therefore, any

Nash equilibrium must satisfy (4.36) for every i =1,..., N.
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Set 4¢ := o(t)7i, and let 4 be the matrix whose i-th line is 4’. From the previous

argument, (7!, ..., #V) is a Nash equilibrium if and only:
N5 = P(mo+AN Y 5) =4 =1 N te[0,T],  (439)
i

i.e. 4 is a fixed point of T'y for all ¢ € [0, T]. Using Lemma 4.5 below, we have the uniqueness
of a Nash equilibrium. Finally, the expression for V* at equilibrium follows from the last
statement of Lemma 4.5 together with (4.35). ]

Recall the function 1% defined in (4.21).

Lemma 4.5 Under (4.13), the function T'y defined in (4.39) has a unique fixed point 4, for
all t € [0, T, given by:
Vi = Pl owi(0) and satisfying ¥i(0) =m0 + AN >t fAyg.
Proof. 1. Since P} is a contraction, we compute:
N . N , ,
De(1) = Te(wa) = Yoy [Ti(w1) — Do) | < X5ty g 2oy 21 — 23| = |21 — a2y,
proving that I'; is a contraction.

2. We next show that (I';)2 := I'; o I' is a strict contraction. Indeed, under (4.13), we may
assume without loss of generality that A\; < 1. Then:

T} o Dy(a1) — Tj o Ty(wa)| < AY Ej;éi 0F(x1) = Tf (22)]| < AY Zj;éi )‘év Zk;ﬁj |z} — 5],

so that:

(C02(@1) = (T)2(@)l < S0 3 Yy AN ANk — ]
< i (SR = 2)lak - 2l + Sy It — o))
=2 — |+ DRI S ok —
< (AR + PR 0 — o)y,

(N-1)°

Observe that N =2+ N — 1+ (N —2)2 = (N — 1)2. Then )\; < 1 implies that (I';)? is a
strict contraction.

3. Therefore (I'y)" is a strict contraction as well for any n > 2. As a consequence, (I't)?,
(T'y)? and (Ty)° respectively admit a unique fixed point x3, r3 and z¢ resp. It is immediate
that xo and z3 are also fixed points for (Ft)ﬁ, therefore xo = x3 = wg, and finally xo =
(Ty)3(x2) = Ty o (Ty)%(z2) = Ty(w2), so that x5 is a fixed point of T'y. The uniqueness is
immediate since a fixed point of I'; is also a fixed point of (I';)?.

4. Let © € RN be defined by ©¢ = n;0. By definition of 1; in Lemma 4.3, iov;(0) = 1,0
for all i =1, ..., N. Using the definition of ¢; in (4.9), this implies that:

$i(©) =mif + AN D Pl o] (0). (4.40)

JFi
Applying P} and setting 4} = Pf o ¢{(0), this provides 4f = I';(%;), for each i = 1,..., N.
By the definition of 1) together with the expression of v, we have 1i(0) = 1{(0), so that
48 = P} oi(f). Plugging it into (4.40) provides the last statement of the Lemma. O
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5 Linear portfolio constraints

We now focus on the case where the sets of constraints are such that:
A; is a vector subspace of R, for all i =1, ..., N. (5.1)
Our main objective in this section is to exploit the linearity of the projection operators P?
in order to derive more explicit results.
5.1 Nash equilibrium under linear portfolio constraints
In the present context, we show that Condition (4.13) in Theorem 4.2 can be weakened to
MY, n<1 or NY, A = {0} (5.2)
In view of Lemma 4.1 (which is obvious in the present linear case), the map
Ry = Y NP+ AP (I +AVR) (5.3)
is well-defined. Moreover, for any 7 = 1, ..., IV, since Ptj is a projection, we compute that

(I+ANP5)_1 — 1= NP s that:
J 1+>‘j

N
Aj

R = Y. —H/\;_VPtJ (I+AVF).
The following statement is more precise than Lemma 4.3.

Lemma 5.1 Let (A;)1<;<n be vector subspaces of RY. Then for all t € [0,T):
(i) the linear operator ¢y is invertible if and only if (5.2) is satisfied,
(ii) this condition is equivalent to the invertibility of the linear operators [—Ri, i =1,...,N,

(iii) under (5.2), the i-th component of 1 = got_l is given by:

Ui = (= BT (5 S i PO - 02).

The proof of this lemma is reported in Section 5.4. We now proceed to the characterization
of Nash equilibria in the context of the multivariate Black-Scholes financial market. From
Lemma 5.1, if Condition (5.2) is satisfied, ¥’ defined by (4.21) is well-defined, is a linear
operator and has the following expression:

N
>\j

T Agi . j Npiy) A =AT i 4
Vi = M = (I—Z#iwpt(IJr)‘i Pt)) (nz‘erZ#iWPt) (5.4)

Theorem 5.1 Assume that o and 0 are deterministic, and that (5.2) is satisfied. Then
there exists a unique deterministic Nash equilibrium given by:

7 =o(t)'PIMO(t) for i=1,...,N, t€[0,T]

Moreover, the value function for agent i at equilibrium is given by:

T

, : 1 [T L
where Yy = _ |9(t)|2dt + / (I — PtZ)MtZH(t)Pdt'
2 Jo 21i Jo

Vim o xET)
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Proof. Follow the lines of the proof of Theorem 4.2, replacing Lemma 4.3 by Lemma 5.1
and Lemma 4.5 by the following Lemma 5.2. O

Lemma 5.2 Let 6 € R? be arbitrary and T : RNY — RN be defined for any v € RN? by:
I'(y) = P’ <77z'9 + AN D ki 'Yj)-
Then under (5.2), T admits a unique fized point 4 given by 4* = Pi1pi(0).

The proof of this lemma is reported in Section 5.4. We illustrate the previous Nash
equilibrium in the context of symmetric managers with different access to the financial
market.

Example 5.1 (Similar agents with different investment constraints) Assume that o and
6 are deterministic, and let A\; = A € [0,1) and n; =71 >0, j = 1,..., N. Then there exists
a unique deterministic Nash equilibrium given by:

. . 1
# = o) P (1= 255 Sy BT+ AVE) ) 0(1), i=1,...,N,

We conclude this section with the following qualitative resut which shows in particular
that the managers interactions induce an over-investment on the risky assets, and imply
that the market portfolio 7 of Definition 3.1 is nondecreasing in the interaction coeflicients
Ai, in agreement with Proposition 3.2. This result requires a quite restrictive condition
which however covers many examples, see also Remark 5.1 below.

Proposition 5.1 Assume that the projection operators P commute, i.e. P'PJ = PJip?
for alli,j =1,...,N. Then, under the conditions of Theorem 5.1, Agent i’s equilibrium

portfolio is such that |o(t)7}| is nondecreasing w.r.t A; and n;, for alli,j =1,...,N and
te0,T].

Proof. We fix an agent i = 1,..., N, and we omit all t—dependence. The assumption that
the P"’s commute is equivalent to the existence of an orthonormal basis {uy, k= 1,...,d}

such that, for all i, uy is an eigenvector of P; for all k. We write Plu;, = € kUk, and
we observe that gir € {0,1} by the fact that P’ is a projection. Then, by the explicit

expression of #° in Theorem 5.1, writing § = Zk 1 0%uy,, we directly compute that |o7¢|? =

Zk=1(9k) (4i x)* where:

by, = 5i,k( Z ]\l; +)\1N51k )7 <771 + Z )\sz_i__)\Nm i€m7k). (5.5)

T)’L 7 m

We now verify that ¢; is nondecreasing w.r.t A\; and 7;, for all j = 1,...,N and k =
.,d, which implies the required result by the orthogonality of the basis {ux,k =
., d}.

- That ¢; ;, is nondecreasing in 7; is obvious from (5.5).

- That ¢; ;, is nondecreasing in J\; is also obvious from (5.5).
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- Finally, for j # i, we directly differentiate (5.5), and see that the sign of 0¢; / (9)\?[ is
given by the sign of:

)‘iNnm - A%ni )‘mEm k
Ei,k€j,k<(1 + Afvé‘i,k)(m + E —1 VY 5m,k> ( § Tt )\N (1+ )\fvf:‘i,k)))
i m m#i

= 5zk53k<>\ T]Z—l-)\N(l—l-)\NZl_'_)\NEmk)) > 0.
Od

Remark 5.1 The statement of Proposition 5.1 is not valid for general portfolio constraints,
as illustrated by the following example. Let N = d = 2, A} = Rey, As = R(ey + e2) and
o = I. Then the projection operators P! and P? are defined by the following matrices in
the basis (eq, e2):

respectively. By direct calculation, |#!| = m |(2m1 + A1m2) 01 + Aimeb2|, which can be
inceasing or decreasing in 7; and A;, ¢ = 1,2 for appropriate choices of the risk premium 6.

5.2 Infinite managers asymptotics

We now investigate the limiting behavior when the number of agents N goes to infinity
with fixed number of assets d.

Recall that |.| denotes the canonical Euclidean norm on R?, and £(R?) is the space of linear
mappings on R? endowed with operator norm ||U|| = Sup|g—1 [U(x)] for all U € L(R%).

Proposition 5.2 Let d be fized and the sequence (1;);cy bounded in R. Assume that

LSV NP — U in LRY) and LN, PP — U in L(RY), (5.6)
for all (resp. uniformly in) t € [0,T]. Assume further that |U}|| < 1, t € [0,1]. Then:

(N — w = o () TP = UM (I = UR) + MU 0(1)
for all (resp. uniformly in) t € [0,T).
Proof. By Theorem 5.1, we have fri’N = o(t)" 1P} AL Bi0(t), where:
Al = (I — i 1+ANPJ(I + ANPt)> " and Bi =il + 3,4 Al fﬁM} " p.
Since ||P/|| < 1, we have:
Hﬁzﬂ'#ﬁﬂ P LA
| D Rt i L DR R R

1 3
< | ot S ﬁPgH + | AP + wen S M| < #
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Similarly, by the boundedness of the sequence (7;);>1:
1 n; 1NN j 3]0
HN—I 2 i 1+f\§v P - N 2j=1 ”thJH SN

Then as N — oo, we have in £(R%):

N pi 1 Aj j A 1 n; j
T+ANP =T, 2w 1+i§yPg—>Ut, NoT i H;;ypg—wg?,
and Al — (I — UM™Y, B — I + MU — ;U Under the condition ||U}|| < 1, the limit
is finite. Moreover the convergence is uniform in ¢ whenever the convergence (5.6) holds
uniformly in ¢. O

Example 5.2 (Symmetric agents with different access to the financial market) Let \; =
A€[0,1) and n; =n > 0, i > 1. Then the limiting Nash equilibrium portfolio reduces to

7o = o ()T PII — AUNTY®), te[0,T), i>1.
Example 5.3 (Symmetric agents with finite market access possibilities) In the context
of the previous example, suppose further that {4;,i > 1} = {4;,j = 1,...,p} for some
integer p > 1. We denote by k‘JN the number of agents with portfolio constraint A;, and we
assume that k'JN/N — k;j € [0,1] for all j =1,...,p. Then, an immediate application of
Proposition 5.2 provides the limit Nash equilibrium portfolio:

p _
7% = po(t) "1 P (1 =% mjpg') ().

i=1

Remark 5.2 We may also adopt the following probabilistic point of view to reformulate
Proposition 5.2. Assume that there is a continuum of independent players modeled through
a probability space (A, D, 1) independent from the space (€2, F,P) describing the financial
market uncertainty. In such a setting, the market interactions, the risk tolerance, and
the projection operators are defined by the random variables A, n and the process P =
{P,,t € [0,T]} taking values respectively in [0, 1], (0, +oc) and £L(R?). The limiting Nash
equilibrium portfolio is then given by:

7% = o ()1 pAB)) (n(I = pAP)) + Ma(nP) o).
provided that pu(A[|P[[) + pu(nl|Pl]) < oo, and [[u(AP)[| < 1.

Our next comment concerns the asymptotics of the market index X* and the market
portfolio 7 of Definition 3.1.

Remark 5.3 In the context of Remark 5.2, we further assume that the random variables
A, 1, and P; are independent, and we denote P; := u(P;), A := u(\), 7 := u(n). Then,
under the condition AP; < 1, the limit market portfolio and market index are given by

~\—1

t
0 =o(t) o, X =2z +/ oy - (dWy 4 0(t)dt) where v° := Uy (I — XUy)6(t).
0
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In particular, we have the following observations which are consistent with Proposition 3.2:
- the drift of the market index is non-negative,

- the drift and the volatility of the market index are nondecreasing in 77 and A,

- the VRR index of the market portfolio is given by

moo _ 0(t)-P(I-XP)~10(t)
L e (Bu-amy) o)

and is nonincreasing in 7 and .

5.3 Examples with linear constraints

For simplicity, except for Example 5.8, we assume that the agents are symmetric \; = A
and n; =n for i =1,..., N and only differ by their access to the financial market.

Except for the last Example 5.9, we shall consider a diagonal multi-dimensional Black-
Scholes model with volatility matrix o = I, i.e. the risky assets price processes are inde-

pendent.
Under the conditions of Theorem 5.1, the optimal Nash equilibrium is given by:
. . A . . -1
A= nPl(I— S P (I+ ﬁpl)) o(t) for i=1,....N,  (5.7)
N-—-1
see Example 5.1. Let (e1,...,eq) be the canonical basis of RY.

Example 5.4 Let d = N and A; = Re;, ¢ = 1,..., N. Notice that N?_; A; = {0}. Then
Theorem 5.1 applies for all A € [0,1]. The projection matrices P’ are all diagonal with
unique nonzero diagonal entry le = 1. The calculation of the Nash equilibrium is then
easy and provides

7t =no(t) '0;(t)e;, i=1,...,N.

Hence, in agreement with the economic intuition, the interaction has no impact in this
example, and the optimal Nash equilibrium portfolio coincides with the classical case with
no interactions (A = 0).

Example 5.5 Let d =3, N = 2 and A; = Re;+Rey, Ay = Reg+Res. Since A1NAs # {0},
Theorem 5.1 requires that A € [0,1). In the present context, the projection matrices are
diagonal with P1171 = P2172 =1, P3173 =0, and P12,1 =0, P2272 = P3273 = 1. An easy calculation
provides the optimal Nash equilibrium:

# =o' (t)er + &92@)62 and 77 = &92@)62 +n00%(t)es.

Notice that the optimal investment in the first and the third stock for Agent 1 and Agent
2, respectively, is the same as in the classical case (A = 0). However, the investment in
Stock 2, which both agents can trade, is dilated by the factor (1 — A\)~! € [1, +00).
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Example 5.6 Let d = N = 3 and A; = Rey + Rey, As = Rey + Res, A3 = Res. Since
A1 N Ay N Az = {0}, Theorem 5.1 applies for A € [0,1]. The projection matrices P! and
P? are the same as in the previous example, and we similarly see that P3 is diagonal with
P13,1 = P23’2 =0, Pg” 3 = 1. Direct calculation provides the optimal Nash equilibrium:

7"151 = 7791(15)6’1 + 11]A

2

0*(t)es, 7} = 507 (t)e2 + 7y

A
-3 2

03(t)es, 7} = 117A0i)’(7f)e;>).
2

Similar to the previous example, we see that the optimal investment in the first stock for
Agent 1 and Agent 2, respectively, is the same as in the classical case (A = 0), while the
investment in Stocks 2 and 3, which can both be traded by two agents, is dilated by the
factor (1—3)~! € [1,+00). Notice that the dilation factor in the present example is smaller
than that of the previous one.

Example 5.7 (Investment with respect to hyperplanes) Let d = N and A; = (Re;)*. In
words, each manager has access to the whole market except for its own stock or those of
the firms for which some private information is available to the manager. Direct calculation
from the expression of Theorem 5.1 provides the following unique Nash equilibrium:

AN = N e, i=1,...,N.
1—)\+N T

Example 5.8 (Groups of managers investing in independent sectors) We assume that
there are d groups of managers. The j—th group consists of k; symmetric agents with
risk tolerance coefficient 7;, interaction coefficient A;, and market access defined by the
constraints set A; = Re;. The total number of managers is N = Z;-lzl k;. Then, it follows
from Theorem 5.1 that the Nash equilibrium portfolio for an agent of the j—th group is:

N
~j m m N pj o J J Npjy)
i ( %:k 1+ANP (I + AN PI) — (k; 1)1+>‘§VP(I+/\jP))
m#j
(77] +Z 1+/\N )

N

- PJ( > Fm D pm_ (kj—l)Aﬁij) (ngIJrZANnm A

Pm>0
1+ AN 1+ AN
m#j

where we used that fact that P/P™ = 0 for m # j. The inverse matrix in the previous
expression can be computed explicitly, and we get

N

A= PJ( PJ+Z )( I+ZAN% Am Pm)a
R (k — DA m#j _kaAN v m#j LA |

Using again the fact that P/P™ = 0 for m # j, we see that

~F nj
™= ki1

—————0je; for each agent of Group j, j=1,...,d.
1 M )\
N N
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Example 5.9 (Correlated investments) Let d= N, A; =Re;,i=1,...,N, and
d
0:0NUZei, o? =o% (5.8)

for some Oy € R, p € (—1,1) and oy > 0.
Since o is invertible, (u; := o0e€;)1<i<q forms a basis of R?. We directly verify that for

j#iand x = Z?Zl T,
Pi(@) = (w5407 Ly ok Jtj, PP ()= p? (it 02 s w05 (5.9)

By (5.7), the Nash equilibrium portfolio for the i—th manager is given by @} = nP'x where
x satisfies:

A 3 .

Given the particular structure of the risk premium in (5.8), we search for a solution of this
linear system of the form x = x;u; + xg Zk# ug. By (5.9), this reduces the previous linear
system to:

A
A
= Tiu; + Z (330 - mpzxi - Nil,\(l +(N—2)p° + )\04)330>uja
j#i N-1

and provides the solution of the system

z;, =0y and xg=

and therefore, using again (5.9), the Nash equilibrium 7’ = nP’z is given by:

A N —1)p%(1 + 2=p?
frZ:naN(H (A )Pt ¥1r) wi, i=1,...,N.

1— =L (14 (N — 2)p% + Aph)

+ 1
We finally observe that 7% ~ UGNW as N — oo. Then,
o 1000 h by =2 as NS
~ ;  whenever =— .
e~ Ve U; enever Oy = as 00

This shows that the Nash equilibrium portfolio consists again of a dilation of the no-
interaction optimal portfolio. However in the present context, in addition to the dilation
due to the interaction coefficient A, there is an additional dilation caused by the correlation
coefficient p. The dilation factor is increasing both in A and p.

30



5.4 Proof of technical lemmas

N

Proof of Lemma 5.1 We omit all ¢ subscripts. For arbitrary z', ..., 2"V in R¢, we want

to find a unique solution to the system:

2= P =, 1<i<N. (5.10)
i

1. We reduce (5.10) to a simpler form. Substracting A; times equation j to A; times
equation ¢ in (5.10), we get for any i, j:

N (I+ MV PIY 27 = 2 (1 + AN PY) 2 4+ \g? = N

N -1 N
Since (I + A;VPJ) =1- liﬁPﬂ, we have:
o 1 . N i ) .
AiP72) = < vy PI(Xj (T4 XPY) 2"+ N — N¢).

J
Thus using (5.10) it follows that:

=2 =y P P NP 2 = 2 (T
#

and we can rewrite (5.10) equivalently as:

A i U 1 |
I — J PI(I NPZ i i pi i]_ i 11

so that the invertibility of ¢ is equivalent to the invertibility of the linear operators I — R?,
for i = 1,..., N, where the R"’s are introduced in the statement of the lemma.
2. We prove that the I — R"’s are all invertible iff (5.2) holds true.

2.a. First assume that \; = 1 for all j and that x € ﬂjvzl A; # {0} satisfies « # 0. Then
we have for any j, P’z = z and so:

A 1 1 . 1 )
Rz = P <I—|—P’>:L‘—— T.
E: 1
N 1j¢i1+m N -1

Therefore I — R is not invertible.
2.b. Conversely assume that (5.2) holds true. We consider two separate cases.
o If \;, < 1, for some ig € {1,..., N} then we estimate that:

N 1 N 1
Al N-1 and Aj N-1

< < for any j # ig.
(P TN S 1445 yJ#

Then, since 1 —l—/\fg <1+ ﬁ, for any 7 and any x # 0, |R'z| < |z|, proving that I — R’ is
invertible.
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elf \;=1,foralli=1,..., N and ﬂf\il A; ={0}. Let © € Ker(I — RY) for some i, using
the fact that the P7’s are contractions, we have:

4 1 1 4 1 .

g 4 = Y - Pt

|z| = |R"z| N—lg}1+ T P<I+N_1P>:1:
J#i N-1

1
< mZ!wl = ||,

J#i
so that equality holds in the above inequality, which can only happen if P/z = x for all

7 =1,...,N, which implies x € ﬂ;vzl A; and therefore x = 0, which completes the proof.
O

Proof of Lemma 5.2 We want to show that the system 1, P9 + AN Z#i Pl = ~F,
for all ¢+ = 1,..., N, has a unique solution, or equivalently that )\ZN Z#i Pini — 4t =0 is
satisfied for all ¢ = 1,...,N if and only if v = 0. Writing this linear system Ay = 0, we
have:
AV P =y =y = AN Y P,
J#i J#i

so that v € KerA implies that |y’| = |/| for any i,j. Having equality for i implies that
Pi~d = ~J for all j, the 49’s are all colinear (i included) and A; = 1. Therefore, if [], \; < 1
or N;A; = {0}, the previous inequality becomes strict if v € KerA # 0.

Then, as in the proof of Lemma 4.5, we have 4% = I''(4), for each i = 1, ..., N. O

6 Appendix

Example 6.1 Let N =2,0 =I5, \; = A\, and A; = A := {z € R% |z1| > 1}, i =1,2. The
projection is uniquely determined for z1 # 0, and we can take for example the following;:

x, ifreA
P(x) = ¢ (1,29, ...,2q)", if 21 €[0,1)
(=1, 29,....,2q), if 21 € (—1,0).

If » was surjective onto R??, then substracting the expressions of ¢! and p? we see that
I+ AP would be surjective onto R?. Let y € R?, we want to find = such that 2+ AP(z) = y.

-If 21 > 1, then (1 + A)x; = y1, so that y; > 1+ A;

-if 1 €]0,1), then z; + A = y1, so that y; € [\, 14+ \);

- if 1 € (—=1,0), then 1 — A = y1, so that y; € (=1 — X\, —A);

-if 1 < —1, then (14 A\)x; = y1, so that y; < —1—\.

Therefore {x € R%; x; € [-\, \)} is not attained by I + AP, so that as soon as A > 0, ¢
is not surjective. Moreover, the interior of the complementary of its image is non empty.
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Example 6.2 Let A, = B := {z € R% |z| > 1}, the complement of the unit (open) ball.
The projection is uniquely determined for = # 0, and we can for example take:

xz, ifreB
P(z) = El‘:z if |z] € (0,1)
lg, if 2 =0.

Similar to the previous example, in order to have ¢ surjective, we need I + AP surjective
onto RZ. If y € RY, and = + A\P(x) = 3, we compute:

- If |z| > 1, then (1 4+ M)z =y, so that |y| > 1+ A;

- if |z| € (0,1), then (1 + %‘) x =y, so that |y| € (\, 14+ \);

-if £ =0, then y = Aly.

Therefore {z € R?%; |z| < A} is not attained by I + AP, so again as soon as A > 0, ¢ is
not surjective. Moreover the interior of the complementary of its image is non empty.
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