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HOMOGENIZATION AND ASYMPTOTICS FOR SMALL
TRANSACTION COSTS∗

H. METE SONER† AND NIZAR TOUZI‡

Abstract. We consider the classical Merton problem of lifetime consumption-portfolio optimiza-
tion with small proportional transaction costs. The first order term in the asymptotic expansion is
explicitly calculated through a singular ergodic control problem which can be solved in closed form
in the one-dimensional case. Unlike the existing literature, we consider a general utility function and
general dynamics for the underlying assets. Our arguments are based on ideas from homogeniza-
tion theory and use convergence tools from the theory of viscosity solutions. The multidimensional
case is studied in our companion paper [D. Possamäı, H. M. Soner, and N. Touzi, Homogeniza-
tion and Asymptotics for Small Transaction Costs: The Multidimensional Case, arXiv:1212.6275v2
[math.AP], preprint, 2012] using the same approach.
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1. Introduction. The problem of investment and consumption in a market with
transaction costs was first studied by Magill and Constantinides [26] and later by Con-
stantinides [9]. Since then, starting with the classical paper of Davis and Norman [11],
an impressive understanding of this problem has been achieved. In these papers and
in [12, 35] the dynamic programming approach in one space dimension has been de-
veloped. The problem of proportional transaction costs is a special case of a singular
stochastic control problem in which the state process can have controlled discontinu-
ities. The related PDE for this class of optimal control problems is a quasi-variational
inequality which contains a gradient constraint. Technically, the multidimensional
setting presents intriguing free boundary problems, and the only regularity results to
date are [37] and [34]. For the financial problem, we refer the reader to the recent
book by Kabanov and Safarian [24]. It provides an excellent exposition to the later
developments and the solutions in multidimensions.

It is well known that in practice the proportional transaction costs are small, and
in the limiting case of zero costs, one recovers the classical problem of Merton [28].
Then, a natural approach to simplify the problem is to obtain an asymptotic expansion
in terms of the small transaction costs. This was initiated in the pioneering paper of
Constantinides [9]. The first proof in this direction was obtained in the appendix of
[35]. Since then, several rigorous results [5, 20, 22, 32] and formal asymptotic results
[1, 21, 38] have been obtained. The rigorous results have been restricted to one space
dimension with the exception of the recent manuscript by Bichuch and Shreve [6].
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In this paper and its companion paper [31], we consider this classical problem of
small proportional transaction costs and develop a unified approach to the problem
of asymptotic analysis. We also relate the first order asymptotic expansion in ε to an
ergodic singular control problem.

Although our formal derivation in section 3 and the analysis of [31] are multi-
dimensional, to simplify the presentation, in this introduction we restrict ourselves
to a single risky asset with a price process {St, t ≥ 0}. We assume St is given by a
time homogeneous stochastic differential equation together with S0 = s and volatility
function σ(·). For an initial capital z, the value function of the Merton infinite horizon
optimal consumption-portfolio problem (with zero transaction costs) is denoted by
v(s, z). On the other hand, the value function for the problem with transaction costs
is a function of s and the pair (x, y) representing the wealth in the saving and in the
stock accounts, respectively. Then, the total wealth is simply given by z = x + y.
For a small proportional transaction cost ε3 > 0, we let vε(s, x, y) be the maximum
expected discounted utility from consumption. It is clear that vε(s, x, y) converges to
v(s, x+ y) as ε tends to zero. Our main analytical objective is to obtain an expansion
for vε in the small parameter ε.

To achieve such an expansion, we assume that v is smooth and let

η(s, z) := − vz(s, z)

vzz(s, z)
(1.1)

be the corresponding risk tolerance. The solution of the Merton problem also provides
us an optimal feedback portfolio strategy y(s, z) and an optimal feedback consumption
function c(s, z). Then, the first term in the asymptotic expansion is given through an
ergodic singular control problem defined for every fixed point (s, z) by

ā(s, z) := inf
M
J(s, z,M),

where M is a control process of bounded variation with variation norm ‖M‖,

J(s, z,M) := lim sup
T→∞

1

T
E

[∫ T

0

|σ(s)ξt|2
2

+ ‖M‖T
]
,

and the controlled process ξ satisfies the dynamics driven by a Brownian motion B
and parameterized by the fixed data (s, z):

dξt = α(s, z)dBt + dMt, where α := σ[y(1 − yz)− sys].

The above problem is defined more generally in Remark 3.3 and solved explicitly in
subsection 4.1 in terms of the zero transaction cost value function v.

Let {Ẑs,z
t , t ≥ 0} be the optimal wealth process using the feedback strategies y, c,

and starting from the initial conditions S0 = s and Ẑs,z
0 = z. Our main result is on

the convergence of the function

ūε(x, y) :=
v(s, x+ y)− vε(s, x, y)

ε2
.

Main Theorem. Let ā be as above, and set a := ηvz ā. Then, as ε tends to zero,

ūε(x, y) → u(s, z) := E

[∫ ∞

0

e−βta(St, Ẑ
s,z
t )dt

]
, locally uniformly.(1.2)
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Naturally, the above result requires assumptions, and we refer the reader to The-
orem 6.1 for a precise statement. Moreover, the definition and the convergence of uε

are equivalent to the expansion

(1.3) vε(s, x, y) = v(z)− ε2u(z) + ◦(ε2),
where as before z = x + y and ◦(εk) is any function such that ◦(εk)/εk converges to
zero locally uniformly.

A formal multidimensional derivation of this result is provided in section 3. Our
approach is similar to all formal studies starting from the initial paper by Whalley
and Wilmott [38]. These formal calculations also provide the connection with another
important class of asymptotic problems, namely homogenization problems. Indeed,
the dynamic programming equation of the ergodic problem described above is the
corrector (or cell) equation in the homogenization terminology. This identification
allows us to construct a rigorous proof similar to the ones in homogenization. These
assertions are formulated into a formal theorem at the end of section 3. The analysis
of section 3 is very general and can easily extend to other similar problems. Moreover,
the above ergodic problem is a singular one, and we show in [31] that its continuation
region also describes the asymptotic shape of the no-trade region in the transaction
cost problem.

The connection between homogenization and asymptotic problems in finance has
already played an important role in several other problems. Fouque, Papanicolaou,
and Sircar [18] use this approach for stochastic volatility models. We refer to the recent
book [19] for information on this problem and also extensions to multidimensions. In
the stochastic volatility context the homogenizing (or the so-called fast variable) is
the volatility and is given exogenously. Indeed, for homogenization problems, the
fast variable is almost always given. In the transaction cost problem, however, this
is not the case, and the main difficulty is to identify the “fast” variable. A similar
difficulty is also apparent in a problem with an illiquid financial market which becomes
asymptotically liquid. The expansions for that problem were obtained in [30]. We use
their techniques in an essential way.

The later sections of the paper are concerned with the rigorous proof. The main
technique is the viscosity approach of Evans to homogenization [13, 14]. This powerful
method combined with the relaxed limits of Barles and Perthame [2] provides the
necessary tools. As is well known, this approach has the advantage of using only a
simple local L∞ bound which is described in section 5. In addition to [2, 13, 14], the
rigorous proof utilizes several other techniques from the theory of viscosity solutions
developed in the papers [2, 3, 9, 15, 16, 17, 25, 33, 36] for asymptotic analysis.

For the rigorous proof, we concentrate on the simpler one-dimensional setting.
This simpler setting allows us to highlight the technique with the least possible tech-
nicalities. The more general multidimensional problem is considered in [31].

The paper is organized as follows. The problem is introduced in the next section,
and the approach is formally introduced in section 3. In one dimension, the corrector
equation is solved in the next section. We state the general assumptions in section 5
and prove the convergence result in section 6. In section 7 we discuss the assumptions.
Finally, a short summary for the power utility is given in section 8.

2. The general setting. The structure we adopt is the one developed and
studied in the recent book by Kabanov and Safarian [24]. We briefly recall it here.

We assume a financial market consisting of a nonrisky asset S0 and d risky assets
with price process {St = (S1

t , . . . , S
d
t ), t ≥ 0} given by the stochastic differential
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equations

dS0
t

S0
t

= r(St)dt,
dSi

t

Si
t

= μi(St)dt+

d∑
j=1

σi,j(St)dW
j
t , 1 ≤ i ≤ d,

where r : Rd → R+ is the instantaneous interest rate and μ : Rd → R
d, σ : Rd →

Md(R) are the coefficients of instantaneous mean return and volatility. We use the
notation Md(R) to denote d× d matrices with real entries. The standing assumption
on the coefficients, i.e.,

r, μ, σ are bounded and Lipschitz, and (σσT )−1 is bounded,

will be in force throughout the paper (although not recalled in our statements). In
particular, the above stochastic differential equation has a unique strong solution.

The portfolio of an investor is represented by the dollar value X invested in the
nonrisky asset and the vector process Y = (Y 1, . . . , Y d) of the value of the positions
in each risky asset. The portfolio position is allowed to change in continuous time
by transfers from any asset to any other one. However, such transfers are subject to
proportional transaction costs.

We continue by describing the portfolio rebalancing in the present setting. For
all i, j = 0, . . . , d, let Li,j

t be the total amount of transfers (in dollars) from the ith
to the jth asset cumulated up to time t. Naturally, the processes {Li,j

t , t ≥ 0} are
defined as càd-làg, nondecreasing, adapted processes with L0− = 0 and Li,i ≡ 0. The
proportional transaction cost induced by a transfer from the ith to the jth stock is
given by ε3λi,j , where ε > 0 is a small parameter and

λi,j ≥ 0, λi,i = 0, i, j = 0, . . . , d.

The scaling ε3 is chosen to state the expansion results in a simpler way. We refer the
reader to the recent book of Kabanov and Safarian [24] for a thorough discussion of
the model.

The solvency region Kε is defined as the set of all portfolio positions which can be
transferred into portfolio positions with nonnegative entries through an appropriate
portfolio rebalancing. We use the notation � = (�i,j)i,j=0,...,d to denote this appropri-
ate instantaneous transfer of size �i,j . We directly compute that the induced change
in each entry, after subtracting the corresponding transaction costs, is given by the
linear operator R : Md+1(R+) → R

d+1,

Ri(�) :=
d∑

j=0

(
�j,i − (1 + ε3λi,j)�i,j

)
, i = 0, . . . , d, ∀ � ∈ Md+1(R+),

where �i,j > 0 and �j,i > 0 for some i, j would clearly be suboptimal. Then, Kε is
given by

Kε :=
{
(x, y) ∈ R× R

d : (x, y) +R(�) ∈ R
1+d
+ for some � ∈ Md+1(R+)

}
.

For later use, we denote by (e0, . . . , ed) the canonical basis of Rd+1 and set

Λε
i,j := ei − ej + ε3λi,j ei, i, j = 0, . . . , d.
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In addition to the trading activity, the investor consumes at a rate determined
by a nonnegative progressively measurable process {ct, t ≥ 0}. Here ct represents
the rate of consumption in terms of the nonrisky asset S0. Such a pair ν := (c, L)
is called a consumption-investment strategy. For any initial position (X0− , Y0−) =
(x, y) ∈ R× R

d, the portfolio position of the investor is given by the state equation

dXt =
(
r(St)Xt − ct

)
dt+R0(dLt), and dY i

t = Y i
t

dSi
t

Si
t

+Ri(dLt), i = 1, . . . , d.

The above solution depends on the initial condition (x, y), the control ν, and also on
the initial condition of the stock process s. Let (X,Y )ν,s,x,y be the solution of the
above equation. Then, a consumption-investment strategy ν is said to be admissible
for the initial position (s, x, y) if

(X,Y )ν,s,x,yt ∈ Kε ∀ t ≥ 0, P-a.s.

The set of admissible strategies is denoted by Θε(s, x, y). For given initial positions
S0 = s ∈ R

d
+, X0− = x ∈ R, Y0− = y ∈ R

d, the investment-consumption problem is
the maximization problem

vε(s, x, y) := sup
(c,L)∈Θε(s,x,y)

E

[∫ ∞

0

e−βt U(ct)dt

]
,

where U : (0,∞) �→ R is a utility function. We assume that U is C2, increasing, and
strictly concave, and we denote its convex conjugate by

Ũ(c̃) := sup
c>0

{
U(c)− cc̃

}
, c̃ ∈ R.

Then Ũ is a C2 convex function. It is well known that the value function is a viscosity
solution of the corresponding dynamic programming equation. In one dimension, it
was proved in [35]. In the generality that is considered in this paper, we refer to [24].
To state the equation, we first need to introduce some additional notation. We define
a second order linear partial differential operator by

L := μ · (Ds +Dy) + rDx +
1

2
Tr

[
σσT (Dyy +Dss + 2Dsy)

]
,(2.1)

where T denotes the transpose and, for i, j = 1, . . . , d,

Dx := x
∂

∂x
, Di

s := si
∂

∂si
, Di

y := yi
∂

∂yi
,

Di,j
ss := sisj

∂2

∂si∂sj
, Di,j

yy := yiyj
∂2

∂yi∂yj
, Di,j

sy := siyj
∂2

∂si∂yj
,

Ds = (Di
s)1≤i≤d, Dy = (Di

y)1≤i≤d, Dyy := (Di,j
yy)1≤i,j≤d, Dss := (Di,j

ss )1≤i,j≤d,

Dsy := (Di,j
sy )1≤i,j≤d. Moreover, for a smooth scalar function (s, x, y) ∈ R

d
+×R×R

d �→
ϕ(x, y), we set

ϕx :=
∂ϕ

∂x
∈ R, ϕy :=

∂ϕ

∂y
∈ R

d.
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Theorem 2.1. Assume that the value function vε is locally bounded. Then, vε is
a viscosity solution of the dynamic programming equation in R

d
+ ×Kε,

min
0≤i,j≤d

{
βvε − Lvε − Ũ(vεx), Λε

i,j · (vεx, vεy)
}
= 0.(2.2)

Moreover, vε is concave in (x, y) and converges to the Merton value function v := v0

as ε > 0 tends to zero.
Under further conditions the uniqueness in the above statement is proved in [24].

However, this is not needed in our subsequent analysis.

2.1. Merton problem. The limiting case of ε = 0 corresponds to the classical
Merton portfolio-investment problem in a frictionless financial market. In this limit,
since the transfers from one asset to the other are costless, the value of the portfolio
can be measured in terms of the nonrisky asset S0. We then denote by Z := X +
Y 1 + · · · + Y d the total wealth obtained by the aggregation of the positions on all
assets. In the present setting, we denote by θi := Y i and θ := (θ1, . . . , θd) the vector
process representing the positions on the risky assets. The wealth equation for the
Merton problem is then given by

dZt =
(
r(St)Zt − ct

)
dt+

d∑
i=1

θit

(
dSi

t

Si
t

− r(St)dt

)
.(2.3)

An admissible consumption-investment strategy is now defined as a pair (c, θ) of
progressively measurable processes with values in R+ and R

d, respectively, and such
that the corresponding wealth process is well defined and a.s. nonnegative for all times.
The set of all admissible consumption-investment strategies is denoted by Θ(s, z).

The Merton optimal consumption-investment problem is defined by

v(s, z) := sup
(c,θ)∈Θ(s,z)

E

[∫ ∞

0

e−βt U(ct)dt

]
, s ∈ R

d
+, z ≥ 0.

Throughout this paper, we assume that the Merton value function v is strictly concave
in z and is a classical solution of the dynamic programming equation,

βv − rzvz − L0v − Ũ(vz)− sup
θ∈Rd

{
θ · ((μ− r1d)vz + σσTDszv

)
+

1

2
|σTθ|2vzz

}
= 0,

where 1d := (1, . . . , 1) ∈ R
d, Dsz := ∂

∂zDs, and

L0 := μ ·Ds +
1

2
Tr

[
σσTDss

]
.(2.4)

The optimal controls are smooth functions c(s, z) and y(s, z) obtained as the maxi-
mizers of the Hamiltonian. Hence,

(2.5) 0 = βv − L0v − Ũ(vz)− rzvz − y · (μ− r1d)vz − σσTy ·Dszv − 1

2
|σTy|2vzz,

the optimal consumption rate is given by

c(s, z) := −Ũ ′(vz(s, z)) = (
U ′)−1(

vz(s, z)
)

for s ∈ R
d
+, z ≥ 0,(2.6)
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and the optimal investment strategy y is obtained by solving the finite-dimensional
maximization problem,

max
θ∈Rd

{
1

2
|σTθ|2vzz + θ · ((μ− r1d)vz + σσTDszv

)}
.

Since v is strictly concave, the Merton optimal investment strategy y(s, z) satisfies

−vzz(s, z) σσT(s)y(s, z) = (μ− r1d)(s)vz(s, z) + σσT(s)Dszv(s, z).(2.7)

3. Formal asymptotics. In this section, we provide the formal derivation of the
expansion in any space dimension. In the subsequent sections, we prove this expansion
rigorously for the one-dimensional case. Convergence proof in higher dimensions is
carried out in a forthcoming paper [31]. In what follows we use the standard notation
O(εk) to denote any function which is less than a locally bounded function times εk,
and ◦(εk) is a function such that ◦(εk)/εk converges to zero locally uniformly.

Based on previous results [38, 1, 21, 22, 35], we postulate the expansion

(3.1) vε(s, x, y) = v(s, z)− ε2u(s, z)− ε4w(s, z, ξ) + ◦(ε2),
where (z, ξ) = (z, ξε) is a transformation of (x, y) ∈ Kε given by

z = x+ y1 + · · ·+ yd, ξi := ξiε(x, y) =
yi − yi(s, z)

ε
, i = 1, . . . , d,

and y =
(
y1, . . . ,yd

)
is the Merton optimal investment strategy of (2.7). In the

postulated expansion (3.1), we have also introduced two functions

u : Rd
+ × R+ �→ R and w : Rd

+ × R+ × R
d �→ R.

The main goal of this section is to formally derive equations for these two functions.
A rigorous proof will also be provided in the subsequent sections, and the precise
statement for this expansion is stated in section 6.

Notice that the expansion (3.1) is assumed to hold up to ε2, i.e., the ◦(ε2) term.
Therefore, the reason for having a higher term like ε4w(z, ξ) explicitly in the expansion
may not be clear. However, this term contains the fast variable ξ, and its second
derivative is of order ε2, which will then contribute to the asymptotics since vε solves
a second order PDE. This follows the intuition introduced in the pioneering work of
Papanicolaou and Varadhan [29] in the theory of homogenization.

Since (x, y) ∈ Kε �→ (z, ξ) ∈ R+ ×R
d is a one-to-one change of variables, in what

follows for any function f of (s, x, y) we use the convention

f̂(s, z, ξ) := f
(
s, z − εξ − y(s, z), εξ + y(s, z)

)
.(3.2)

The new variable ξ is the “fast” variable, and in the limit it homogenizes to yield the
convergence of v̂ε(s, z, ξ) to the Merton function v(s, z), which depends only on the
(s, z)-variables. This is the main formal connection of this problem to the theory of
homogenization. This variable was also used centrally by Goodman and Ostrov [21].
Indeed, their asymptotic results use the properties of the stochastic equation satisfied
by εξε(Xt, Yt).

First we directly differentiate the expansion (3.1) and compute the terms appear-
ing in (2.2) in term of u and w. The directional derivatives are given by

Λε
i,j · (vεx, vεy) = −ε4(ei − ej) · (wx(s, z, ξ), wy(s, z, ξ)) + ε3λi,jvz +O(ε4).
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We directly calculate that

(3.3) (wx, wy)(s, z, ξ) =
(
wz − 1

ε
yz · wξ

)
1d+1 +

1

ε
(0, wξ) .

To simplify the notation, we introduce

D̂ξw(s, z, ξ) := (0, Dξw(s, z, ξ)) ∈ R
d+1.(3.4)

Then,

Λε
i,j · (vεx, vεy) = ε3

(
λi,jvz + (ej − ei) · D̂w) +O(ε4).(3.5)

The elliptic equation in (2.2) requires a longer calculation, and we will later use the
Merton identities (2.5), (2.6), and (2.7). First, by (2.5),

Iε := βvε − Lvε − Ũ(vεx)

= (y − y) · [(μ− r1d)vz + σσTDszv
]
+

1

2

(|σTy|2 − |σTy|2)vzz
+
(
Ũ(vz)− Ũ

(
vz + ε2uz +O(ε3)

))
− ε2

(
βu− Lu

)
+
ε4

2
Tr[σσTDyyw] +O(ε3).

We use Taylor expansions on the terms involving Ũ and (2.6)–(2.7) in the first line to
arrive at

Iε =
(
− σT(y − y) · σTy +

1

2

(|σTy|2 − |σTy|2))vzz
(3.6)

− ε2
(
βu− Lu+ ĉuz

)
+
ε4

2
Tr[σσT(Dyy +Dss +Dsy)w] +O(ε3)

= −1

2
|σT(y − y)|2vzz − ε2

(
βu− Lu+ ĉuz

)
+
ε4

2
Tr[σσT(Dyy +Dss +Dsy)w] +O(ε3)

= ε2
(
− 1

2
|σTξ|2vzz − βu + Lu− ĉuz

)
+
ε4

2
Tr[σσT(Dyy +Dss +Dsy)w] +O(ε3).

Finally, from (3.3), we see that

∂yw = wz1d +
1

ε

(
Id − 1dy

T
z

)
wξ.

Therefore,

∂yyw =
(
wzz − 1

ε
(yzz · wξ + yz · wzξ)

)
1d1

T
d +

1

ε

(
wzξ1

T
d + 1dw

T
zξ

)
+

1

ε2
(
Id − 1dy

T
z

)
wξξ

(
Id − yz1

T
d

)
.

We substitute this in (3.6) and use the fact that y = y +O(ε). This yields

Iε = ε2
(
− 1

2
|σTξ|2vzz + 1

2
Tr

[
ααTwξξ

]−Au
)
+O(ε3),(3.7)



SMALL TRANSACTION COSTS 2901

where α(s, z) is given by

(3.8) α(s, z) =
{(
Id − yz1

T
d

)
diag[y]− yT

s diag[s]
}
(s, z)σ(s),

diag[y] denotes the diagonal matrix with ith diagonal entry yi, and

(3.9) Au = βu − L0u− (
rz + y · (μ− r1d)− c

)
uz − 1

2
|σTy|2 uzz − σσTy ·Dszu.

Recall that L0 is the infinitesimal generator of the stock price process. Observe that
the above operator is the infinitesimal generator of the pair process (S, Ẑ), where Ẑ is
the optimal wealth process in the Merton zero-transaction cost problem corresponding
to the optimal feedback controls (c,y). In particular, the dynamic programming
equation (2.5) for the Merton problem may be expressed as

(3.10) Av(s, z) = U(c(s, z)).

We have now obtained expressions for all the terms in the dynamic programming
equation (2.2). We substitute (3.5) and (3.7) into (2.2). Notice that since ε > 0, for
any A,B, max{ε2A, ε3B} = 0 is equivalent to max{A,B} = 0. Hence, w and u satisfy

max
0≤i,j≤d

max

{
1

2

∣∣σT(s)ξ
∣∣2vzz(s, z)− 1

2
Tr

[
ααT(s, z)wξξ(s, z, ξ)

]
+ a(s, z) ,(∗)

−λi,jvz(s, z) + (ei − ej) · D̂ξw(z, ξ)

}
= 0,

where D̂ξ = (0, Dξw) is as in (3.4) and a is given by

a(s, z) := Au(s, z), s ∈ R
d
+, z > 0.

In (∗), the pair (s, z) is simply a parameter, and the independent variable is ξ. Also
the value of the function w(s, z, 0) is irrelevant in (3.1) as it only contributes to the
ε4 term. Therefore, to obtain a unique w, we set its value at the origin to zero. We
continue by presenting (3.10) and (∗) in a form that is compatible with the power
case. So first we divide the above equation by vz and then introduce the new variable

ρ = ξ/η(s, z),

where η is the risk tolerance coefficient defined by (1.1). We also set

w̄(s, z, ρ) :=
w(s, z, η(s, z)ρ)

η(s, z)vz(s, z)
, ā(s, z) :=

a(s, z)

η(s, z)vz(s, z)
, ᾱ(s, z) :=

α(s, z)

η(s, z)
.

Then, the corrector equations in this context are the following pair of equations.
Definition 3.1 (corrector equations). For a given point (s, z) ∈ R

d
+ × R+, the

first corrector equation is for the unknown pair (ā(s, z), w̄(s, z, ·)) ∈ R× C2(Rd),

max
0≤i,j≤d

max

{
−|σT(s)ρ|2

2
− 1

2
Tr

[
ᾱᾱT(s, z)w̄ρρ(s, z, ρ)

]
+ ā(s, z) ,(3.11)

−λi,j + (ei − ej) · D̂ρw̄(s, z, ρ)
}
= 0 ∀ ρ ∈ R

d,

together with the normalization w̄(s, z, 0) = 0.
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The second corrector equation uses the constant term ā(s, z) from the first cor-
rector equation and is a simple linear equation for the function u : Rd

+ × R
+ �→ R

1,

(3.12) Au(s, z) = a(s, z) = vz(s, z)η(s, z)ā(s, z) ∀ s ∈ R
d
+, z ∈ R

+.

We say that the pair (u,w) is the solution of the corrector equations for a given utility
function or, equivalently, for a given Merton value function.

We summarize our formal calculations in the following.
Formal Expansion Theorem. The value function has the expansion (3.1),

where (u,w) is the unique solution of the corrector equations.

Remark 3.1. The function u introduced in (1.2) is a solution of the second
corrector equation (3.12), provided that it is finite. Then, assuming that uniqueness
holds for the linear PDE (3.12) in a convenient class, it follows that u is given by the
stochastic representation (1.2).

Remark 3.2. Usually a second order equation like (3.12) in (0,∞) needs to
be completed by a boundary condition at the origin. However, as we have already
remarked, the operator A is the infinitesimal generator of the optimal wealth process
in the Merton problem. Then, under the Inada conditions satisfied by the utility
function U , we expect that this process does not reach the origin. Hence, we need only
appropriate growth conditions near the origin and at infinity to ensure uniqueness.

Remark 3.3. The first corrector equation has the following stochastic represen-
tation as the dynamic programming equation of an ergodic control problem. For this
representation we fix (s, z) and let {M i,j

t , t ≥ 0} be nondecreasing control processes
for each i, j = 0, . . . , d. Let ρ be the controlled process defined by

ρit = ρi0 +

d∑
j=1

ᾱi,j(s, z)Bj
t +

d∑
j=0

(
M j,i

t −M i,j
t

)

for some arbitrary initial condition ρ0 and a d-dimensional standard Brownian motion
B. Then, the ergodic control problem is

ā(s, z) := inf
M

J(s, z,M),

where

J(s, z,M) := lim sup
T→∞

1

T
E

[
1

2

∫ T

0

∣∣σT(s)ρt
∣∣2dt+ d∑

i,j=0

λi,jM i,j
T

]
.

In the scalar case, this problem is closely related to the classical finite fuel problem
introduced by Benes, Shepp, and Witsenhausen [4]. We refer to the paper by Menaldi,
Robin, and Taksar [27] for the present multidimensional setting.

The function w̄ is the so-called potential function in ergodic control. We refer
the reader to the book and the manuscript of Borkar [7, 8] for information on the
dynamic programming approach for the ergodic control problems.

Remark 3.4. The calculation leading to (3.7) is used several times in the paper.
Therefore, for future reference, we summarize it once again. Let v, z, and ξ be as
above. For any smooth functions

φ : Rd
+ × R+ �→ R, � : Rd

+ × R+ × R
d �→ R,
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and ε ∈ (0, 1], set

Ψε(s, x, y) := v(s, z)− ε2φ(s, z)− ε4�(s, z, ξ).

In the above calculations, we obtained an expansion for the second order nonlinear
operator

J (Ψε) := βΨε − LΨε − Ũ(Ψε
x)

= ε2
(
− vzz

2
|σTξ|2 + 1

2
Tr

[
ααT�ξξ

]−Aφ+Rε
)
,(3.13)

where α, A are as before and Rε(s, x, y) is the remainder term. Moreover, Rε is
locally bounded by an ε times a constant depending only on the values of the Merton
function v, φ, and �. Indeed, a more detailed description and an estimate will be
proved in one space dimension in section 6.

4. Corrector equation in one dimension. In this section, we solve the first
corrector equation explicitly in the one-dimensional case. Then, we provide some
estimates for the remainder introduced in Remark 3.4.

4.1. Closed-form solution of the first corrector equation. Recall that
w = ηvzw̄, a = ηvz ā, and the solution of the corrector equations is a pair (w̄, ā)
satisfying

(4.1) max

{
− 1

2
σ2ρ2 − 1

2
ᾱ2w̄ρρ + ā,−λ1,0 + w̄ρ,−λ0,1 − w̄ρ

}
= 0, w̄(s, z, 0) = 0,

where ᾱ = α/η and α(s, z) is given in (3.8). We also recall that the variables (s, z)
are fixed parameters in this equation. Therefore, throughout this section, we suppress
the dependencies of σ, α, and w̄ on these variables.

In order to compute the solution explicitly in terms of η, we postulate a solution
of the form

(4.2) w̄(ρ) =

⎧⎨
⎩

k4ρ
4 + k2ρ

2 + k1ρ, ρ1 ≤ ρ ≤ ρ0,
w̄(ρ1)− λ0,1(ρ− ρ1), ρ ≤ ρ1,
w̄(ρ0) + λ1,0(ρ− ρ0), ρ ≥ ρ0.

We first determine k4 and k2 by imposing that the fourth order polynomial solves the
second order equation in (ρ0, ρ1). A direct calculation yields

k4 =
−σ2

12ᾱ2
and k2 =

ā

ᾱ2
.

We now impose the smooth pasting condition, namely the assumption that w̄ is C2

at the points ρ0 and ρ1. Then, the continuity of the second derivatives yields

ρ20 = ρ21 =
2ā

σ2
implying that ā ≥ 0 and ρ0 = −ρ1 =

(2ā
σ2

)1/2

.(4.3)

The continuity of the first derivatives of w̄ at the points ρ0 and ρ1 yields

4k4(ρ0)
3 + 2k2ρ0 + k1 = −λ0,1,

4k4(ρ1)
3 + 2k2ρ1 + k1 = λ1,0.
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Since ρ0 = −ρ1, we determine the value of k1 by summing the two equations to get

k1 =
λ1,0 − λ0,1

2
.

Finally, we obtain the value of ā by further substituting the values of k4, k2, and
ρ0 = −ρ1. The result is

ā =
σ2

2
ρ20 and ρ0 =

(
3ᾱ2

4σ2
(λ1,0 + λ0,1)

)1/3

.(4.4)

All coefficients of our candidate are now uniquely determined. Moreover, we verify
that the gradient constraint

−λ1,0 ≤ w̄ρ ≤ λ0,1(4.5)

holds true for all ρ ∈ R. Hence, w̄ constructed above is a solution of the corrector
equation. One may also prove that it is the unique solution. However, in the sub-
sequent analysis we simply use the function w̄ defined in (4.2) with the constants
determined above. Therefore, we do not study the question of uniqueness of the
corrector equation.

Remark 4.1. In the homothetic case with constant coefficients r, μ, and σ, one
can explicitly calculate all the functions; see section 8. Here we only report that, in
that case, all functions are independent of the s-variable and ρ0, ā(z) are constants.
Therefore, a(z) is a positive constant times the Merton value function.

Remark 4.2. Pointwise estimates on the derivatives of w will be used in the
subsequent sections. So we record them here for future reference. Indeed, by (4.5)
and the fact that w(·, 0) = 0,

(4.6) |w(s, z, ξ)| ≤ λ vz(s, z)|ξ|, |wξ(s, z, ξ)| ≤ λ vz(s, z), where λ := λ0,1 ∨ λ1,0.
Moreover, under the smoothness assumption on v, we obtain the following pointwise
estimates: (|w| + |ws|+ |wss|+ |wz |+ |wzz |

)
(z, ξ) ≤ C(s, z)(1 + |ξ|),(4.7) (|wξ|+ |wzξ|+ |wsξ|

)
(s, z) ≤ C(s, z) and |wξξ| ≤

(
C1[ξ0,ξ1]

)
(s, z),(4.8)

where C is an appropriate continuous function in R
2
+, depending on the Merton value

function and its derivatives.

4.2. Remainder estimate. In this subsection, we estimate the remainder term
in Remark 3.4. So, let Ψε be as in Remark 3.4 with � satisfying the same esti-
mates (4.7)–(4.8) as w. We have seen in (3.13) that

J (Ψε)(s, x, y) :=
(
βΨε − LΨε − Ũ(Ψε

x)
)
(s, x, y)

= ε2
[
−1

2
vzz(s, z)ξ

2 +
1

2
α2(s, z)�ξξ(s, z, ξ)−Aφ(s, z) +Rε(s, z, ξ)

]
,

where α, A are defined in (3.8)–(3.9) and Rε is the remainder. By a direct (tedious)
calculation, the remainder term can be obtained explicitly. In view of our previous
bounds (4.7)–(4.8) on the derivatives of w, we obtain the estimate

∣∣Rε(s, z, ξ)
∣∣ ≤ ε

(
|ξ||μ− r||φz |+ 1

2
σ2(εξ2 + 2|ξ||y|)|φzz |+ σ2|ξ||φsz |

)
(s, z)

+ εC(s, z)
(
1 + ε|ξ|+ ε2|ξ|2 + ε3|ξ|3)

+ ε−2
∣∣Ũ(ψε

x)− Ũ(vz)− (ψε
x − vz)Ũ

′(vz)
∣∣
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for some continuous function C(s, z). Since Ũ is C1 and convex,

|Rε(s, z, ξ)|

≤ ε

(
|ξ||μ− r||φz |+ 1

2
σ2(εξ2 + 2|ξ||y|)|φzz |+ σ2|ξ||φsz |

)
(s, z)

+ εC(s, z)
(
1 + ε|ξ|+ ε2|ξ|2 + ε3|ξ|3)

+ (|φz |+ ε2|φz |+ εyz|�ξ|)
∣∣Ũ ′(vz) + ε2|φz|+ ε4|�z|+ ε3yz |�ξ| − Ũ ′(vz)

∣∣.
Suppose that � satisfies the same estimates (4.7)–(4.8) as w. Then,

∣∣Rε(s, z, ξ)
∣∣ ≤ ε

(
|ξ||μ− r||φz |+ 1

2
σ2(εξ2 + 2|ξ||y|)|φzz |+ σ2|ξ||φsz |

)
(s, z)

+ εC(s, z)
(
1 + ε|ξ|+ ε2|ξ|2 + ε3|ξ|3)

+ ε2
(|φz |+ εC(s, z)(1 + ε|ξ|))2Ũ ′′(vz + ε2|φz |+ ε3C(s, z)(1 + ε|ξ|)).

5. Assumptions. The main objective of this paper is to characterize the limit
of the following sequence:

ūε(s, x, y) :=
v(s, z)− vε(s, x, y)

ε2
, s ≥ 0, (x, y) ∈ Kε.

Our proof follows the general methodology developed by Barles and Perthame [2]
in the context of viscosity solutions. Hence, we first define relaxed semilimits by

u∗(ζ) := lim sup
(ε,ζ′)→(0,ζ)

ūε(ζ′),u∗(ζ) := lim inf
(ε,ζ′)→(0,ζ)

ūε(ζ′).

Then, we show under appropriate conditions that they are viscosity subsolution and
supersolution, respectively, of the second corrector equation (3.12).

We shall now formulate some conditions which guarantee that
(i) the relaxed semilimits are finite,
(ii) the second corrector equation (3.12) verifies comparison for viscosity solu-

tions.
We may then conclude that u∗ ≤ u∗. Since the opposite inequality is obvious, this
shows that u = u∗ = u∗ is the unique solution of the second corrector equation (3.12).

In this short subsection, for the convenience of the reader, we collect all the
assumptions needed for the convergence proof, including the ones that were already
used.

We first focus on the finiteness of the relaxed semilimits u∗ and u∗. A local lower
bound is easy to obtain in view of the obvious inequality vε(s, x, y) ≤ v(s, x+y) which
implies that ūε ≥ 0. Our first assumption complements this with a local upper bound.

Assumption 5.1 (uniform local bound). The family of functions ūε is locally
uniformly bounded from above.

The above assumption states that for any (s0, x0, y0) ∈ R+×R
2 with x0+y0 > 0,

there exist r0 = r0(s0, x0, y0) > 0 and ε0 = ε0(s0, x0, y0) > 0 so that

(5.1) b(s0, x0, y0) := sup{ uε(s, x, y) : (s, x, y) ∈ Br0(s0, x0, y0), ε ∈ (0, ε0] } <∞,

where Br0(s0, x0, y0) denotes the open ball with radius r0, centered at (s0, x0, y0).
This assumption is verified in section 7 under some conditions on v and its deriva-

tives by constructing an appropriate subsolution to the dynamic programming equa-
tion (2.2). However, the subsolution does not need to have the exact ε2 behavior as
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needed in other approaches to this problem starting from [35, 22]. Indeed, in these
earlier approaches, both the sub- and the supersolution must be sharp enough to have
the exact limiting behavior in the leading ε2 term. For the above estimate, however,
this term needs to be only locally bounded.

The next assumption is a regularity condition on the Merton problem.
Assumption 5.2 (smoothness). The Merton value function v and the Merton

optimal investment strategy y are twice continuously differentiable in the open domain
(0,∞)2 and vz(s, z) > 0 for all s, z > 0. Moreover, there exist c1 ≥ c0 > 0 such that

c0z ≤ [y(1 − yz)− sy](s, z) ≤ c1z ∀ s, z ∈ R+.(5.2)

In particular, together with our standing assumption on the volatility function σ,
the above assumption implies that the diffusion coefficient α(s, z) in the first corrector
equation is nondegenerate away from the origin. For later use we record that there
exist two constants 0 < α∗ ≤ α∗ so that

(5.3) 0 < α∗ ≤ α(s, z)

z
≤ α∗ ∀ s, z ∈ R+.

We will not attempt to verify the above hypothesis. However, in the power utility
case, the value function is always smooth, and the condition (5.2) can be directly
checked as the optimal investment policy y is explicitly available.

We next assume that the second corrector equation (3.12) has comparison. Recall
the function u introduced in (1.2), let b be as in (5.1), and set

(5.4) B(s, z) := b
(
s, z − y(z),y(z)

)
, s, z ∈ R+.

Assumption 5.3 (comparison). For any upper-semicontinuous (resp., lower-semi-
continuous) viscosity subsolution (resp., supersolution) u1 (resp., u2) of (3.12) in
(0,∞)2 satisfying the growth condition |ui| ≤ B on (0,∞)2, i = 1, 2, we have u1 ≤
u ≤ u2 in (0,∞)2.

In the above comparison, notice that the growth of the supersolution and the
subsolution is controlled by the function B which is defined in (5.4) by means of the
local bound function b. In particular, B controls the growth both at infinity and near
the origin. This observation is further detailed in Remark 7.1 below.

We observe, however, that, as discussed earlier, the operator A is the infinitesimal
generator of the optimal wealth process in the limiting Merton problem. In view of
our Assumption 5.2, we implicitly assume that this process does not reach the origin
with probability one.

We finally formulate a natural assumption which was verified in [35, Remark 11.3],
in the context of power utility functions. This assumption will be used for the proof
of the subsolution property. To state this assumption, we first introduce the no-
transaction region defined by

(5.5) N ε :=
{
(s, x, y) ∈ Kε : Λ

ε
0,1 ·Dvε(s, x, y) > 0 and Λε

1,0 ·Dvε(s, x, y) > 0
}
.

By the dynamic programming equation (2.2), the value function vε is a viscosity
solution of

βvε − Lvε − Ũ(vεx) = 0 on N ε.

Assumption 5.4 (no transaction region). The no-transaction region N ε contains
the Merton line M := {(s, z − y(z),y(z)) : s, z ∈ R+}.
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Remark 5.1. In our companion paper [31], the expansion result in the d-di-
mensional context is proved without Assumption 5.4. However, this induces an im-
portant additional technical effort. Therefore, for the sake of simplicity, we refrained
from including this improvement in the present one-dimensional paper.

6. Convergence in one dimension. For the convergence proof, we introduce
the following “corrected” version of ūε:

uε(s, x, y) := ūε(s, x, y)− ε2w(s, z, ξ), s ≥ 0, (x, y) ∈ Kε.

Notice that both families ūε and uε have the same relaxed semilimits u∗ and u∗.
Theorem 6.1. Under Assumptions 5.1–5.4 the sequence {uε}ε>0 converges locally

uniformly to the function u defined in (1.2).
Proof. In subsections 6.1–6.3, we will show that the semilimits u∗ and u∗ are

viscosity supersolution and subsolution, respectively, of (3.12). Then, by the compar-
ison assumption, Assumption 5.3, we conclude that u∗ ≤ u ≤ u∗. Since the opposite
inequality is obvious, this implies that u∗ = u∗ = u. The local uniform convergence
follows immediately from this and the definitions.

6.1. First properties. In this subsection, we use only the assumptions on the
smoothness of the limiting Merton problem and the local boundedness of {uε}ε. We
first recall that

λ := λ0,1 ∨ λ1,0.
Lemma 6.1. (i) For all ε, s > 0, (x, y) ∈ Kε, u

ε(s, x, y) ≥ −ελvz(s, z)|y−y(s, z)|.
In particular, u∗ ≥ 0.

(ii) If, in addition, Assumption 5.1 holds, then

0 ≤ u∗(s, x, y) ≤ u∗(s, x, y) <∞ ∀ s, x, y > 0.

Proof. Since statement (ii) is a direct consequence, we focus on (i). From the
obvious inequality vε(s, x, y) ≤ v(s, x + y), it follows that uε(s, x, y) ≥ −ε2w(s, z, ξ),
so that the required result follows from the bound (4.5) on wξ together with w(·, 0) =
0.

We next show that the relaxed semilimits u∗ and u∗ depend on the pair (x, y)
only through the aggregate variable z = x+ y.

Lemma 6.2. Let Assumptions 5.1 and 5.2 hold true. Then, u∗ and u∗ are func-
tions of (s, z) only. Moreover, for all s, z ≥ 0,

u∗(s, z) = lim inf
(ε,s′,z′)→(0,s,z)

uε
(
s′, z′ − y(z′),y(z′)

)
,

and

u∗(s, z) = lim sup
(ε,s′,z′)→(0,s,z)

uε
(
s′, z′ − y(z′),y(z′)

)
.

Proof. This result is a consequence of the gradient constraints in the dynamic
programming equation (2.2),

Λε
1,0 · (vεx, vεy) ≥ 0 and Λε

0,1 · (vεx, vεy) ≥ 0 in the viscosity sense.

1. We change variables and use the above inequalities to obtain(
1 + λ1,0ε3(1− yz)

)
v̂εξ ≥ −λ1,0ε4v̂εz,

(
1 + λ0,1ε3yz

)
v̂εξ ≤ λ0,1ε4v̂εz(6.1)
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in the viscosity sense. Since vε is concave in (x, y), the partial gradients vεx and vεy exist
almost everywhere. By the smoothness of the Merton optimal investment strategy
y, this implies that the partial gradient v̂εz also exists almost everywhere. Then, by
the definition of uε, we conclude that the partial gradients ûεz and ûεξ exist almost
everywhere. In view of condition (5.2) in Assumption 5.2, we conclude from (6.1) and
the fact that v̂εz ≥ 0 that ∣∣v̂εξ∣∣ ≤ λε4v̂εz.(6.2)

We now claim that

v̂εz(s, z, ξ) ≤ γε(s, x, y)

:= vz(s, z − ε) + ε
(
uε(s, x− ε, y) + uε(s, x, y − ε)

)
(6.3)

+ ε3λvz(s, z)

(
1 + |yz(s, z)|+ |ξ|+ |y(s, z)− y(s, z − ε)|

ε

)
.

We postpone the justification of this claim to the next step and continue with the
proof. Then, it follows from (6.2), (6.3) together with Assumption 5.2 and (4.5) that∣∣ûεξ(s, z, ξ)∣∣ ≤ ε2λ̄ (vz(s, z) + v̂εz(s, z, ξ))

≤ ε2λ̄ (vz(s, z) + γε(s, z, ξ)) .(6.4)

Hence,

(e1 − e0) · (uεx, uεy) = −1

ε
ûεξ ≤ ελ̄ (vz(s, z) + γε(s, z, ξ)) .

By the local boundedness of {uε}ε, for any (s, x, y), there are an open neighborhood
of (s, x, y) and a constant K, both independent of ε, such that the maps

t �→ uε(s, x− t, y + t) + εKt and t �→ −uε(s, x− t, y + t) + εKt

are nondecreasing for all ε > 0. Then, it follows from the definition of the relaxed
semilimits that û∗ and û∗ are independent of the ξ-variable.

2. We now prove (6.3). For ε > 0 and (x, y), (x− ε, y), (x, y − ε) ∈ Kε, we denote
as usual z = x + y and ξ = (y − y(s, z))/ε. By the concavity of vε in the pair (x, y)
and the concavity of the Merton function v in z it follows that

vεx(s, x, y) ≤
1

ε

(
vε(s, x, y)− vε(s, x− ε, y)

)
≤ 1

ε

(
v(s, z)− v(s, z − ε)

)
+

1

ε

(
v(s, z − ε)− vε(s, x− ε, y)

)
≤ vz(s, z − ε) +

1

ε

(
v(s, z − ε)− vε(s, x− ε, y)

)
.

By the definition of uε,

vεx(s, x, y) ≤ vz(s, z − ε) + ε
(
uε(s, x− ε, y) + ε2w(s, z − ε, ξε)

)
,

where ξε := (y− y(s, z − ε))/ε = ξ + (y(s, z)− y(s, z − ε))/ε. We use the bound (4.6)
on w to arrive at

vεx(s, x, y) ≤ vz(s, z−ε)+εuε(s, x−ε, y)+ε3λvz(s, z)
(
1+ |ξ|+ |y(s, z)− y(s, z − ε)|

ε

)
.
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By exactly the same argument, we also conclude that

vεy(s, x, y) ≤ vz(s, z − ε) + εuε(s, x, y − ε)

+ ε3λvz(s, z)

(
1 + |ξ|+ | − ε + y(s, z)− y(s, z − ε)|

ε

)
.

Then, using the bounds on yz from Assumption 5.2,

v̂εz(s, z, ξ) = ∂zv
ε
(
s, z − εξ − y(s, z), εξ + y(s, z)

)
=

(
1− yz(s, z)

)
vεx(s, x, y) + yz(s, z)v

ε
y(s, x, y)

≤ vz(s, z − ε) + ε
(
uε(s, x− ε, y) + uε(s, x, y − ε)

)
+ ε3λvz(s, z)

(
1 + |yz(s, z)|+ |ξ|+ |y(s, z)− y(s, z − ε)|

ε

)
.

3. The final statement in the lemma follows from (6.4), the expression of γε

in (6.3), and Assumption 5.1.

6.2. Viscosity subsolution property. In this section, we prove the following
proposition.

Proposition 6.1. Under Assumptions 5.1 and 5.2, the function u∗ is a viscosity
subsolution of the second corrector equation (3.12).

Proof. Let (s0, z0, ϕ) ∈ (0,∞)2 × C2(R2
+) be such that

0 = (u∗ − ϕ)(s0, z0) > (u∗ − ϕ)(s, z) ∀ s, z ≥ 0, (s, z) �= (s0, z0).(6.5)

Our objective in the following steps is to prove that

(6.6) Aϕ(s0, z0)− a(s0, z0) ≤ 0.

1. By the definition of u∗ and Lemma 6.2, there exists a sequence (sε, zε) so that

(sε, zε) → (s0, z0) and ûε(sε, zε, 0) → u∗(s0, z0) as ε ↓ 0,

where we used the notation (3.2). Then, it is clear that

(6.7) �ε∗ := ûε(sε, zε, 0)− ϕ(sε, zε) → 0

and

(xε, yε) =
(
zε − y(sε, zε),y(sε, zε)

) −→ (x0, y0) :=
(
z0 − y(s0, z0),y(s0, z0)

)
.

Since (uε) is locally bounded from above (Assumption 5.1), there are r0 := r0(s0, x0,
y0) > 0 and ε0 := ε0(s0, x0, y0) > 0 so that

b∗ := sup{uε(s, x, y) : (s, x, y) ∈ B0, ε ∈ (0, ε0]} <∞,(6.8)

where B0 := Br0(s0, x0, y0)

is the open ball centered at (s0, x0, y0) with radius r0. We may choose r0 ≤ z0/2 so
that B0 does not intersect the line z = 0. For ε, δ ∈ (0, 1], set

ψ̂ε,δ(s, z, ξ) := v(s, z)− ε2�ε∗ − ε2ϕ(s, z)− ε4(1 + δ)w(s, z, ξ)− ε2φ̂ε(s, z, ξ),
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where, following our standard notation (3.2), φ̂ε is determined from the function

φε(s, x, y) := C
[
(s− sε)4 + (x+ y − zε)4 + (y − y(s, x + y))4

]
,

and C > 0 is a large constant that is chosen so that for all sufficiently small ε > 0,

φε ≥ 1 + b∗ − ϕ on B0 \B1 with B1 := Br0/2(s0, x0, y0).(6.9)

The constant C chosen above may depend on many things, including the test function
ϕ, s0, z0, δ, but not on ε. The convergence of (sε, zε) to (s0, z0) determines how small
ε should be for (6.9) to hold.

2. We first show that, for all sufficiently small ε > 0, δ > 0, the difference
(vε − ψε,δ) or, equivalently,

Iε,δ(s, x, y) :=
vε(s, x, y)− ψε,δ(s, x, y)

ε2

= −uε(s, x, y) + ϕ(s, z) + �ε∗ + φε(s, x, y) + ε2δw(s, z, ξ),

has a local minimizer in B0. Indeed, by the definition of uε, ψε,δ, and �ε∗, (6.9), (6.8),
and the fact that w ≥ 0, for any (s, x, y) ∈ ∂B0,

Iε,δ(s, x, y) ≥ −uε(s, x, y) + �ε∗ + 1 + b∗ + ε2δw(s, z, ξ) ≥ 1 + �ε∗ > 0

for sufficiently small ε in view of (6.7). Since Iε,δ(sε, xε, yε) = 0, we conclude that
Iε,δ has a local minimizer (s̃ε, x̃ε, ỹε) in B0 with z̃ε := x̃ε + ỹε, ξ̃ε := (ỹε − y(s̃ε, z̃ε))/ε
satisfying

min
(s,z,ξ)∈B1

(v̂ε − ψ̂ε,δ) = (v̂ε − ψ̂ε,δ)(z̃ε, ξ̃ε) ≤ 0, |s̃ε − s0|+ |z̃ε − z0| < r0 |ξε| < r1/ε

for some constant r1. Since v
ε is a viscosity supersolution of the dynamic programming

equation (2.2), we conclude that(
βvε − Lψε,δ − Ũ

(
ψε,δ
x

))
(s̃ε, x̃ε, ỹε) ≥ 0,(6.10)

and

Λε
1,0 ·

(
ψε,δ
x , ψε,δ

y

)
(s̃ε, x̃ε, ỹε) =

(
ψε,δ
x − (1− λ1,0ε3)ψε,δ

y

)
(s̃ε, x̃ε, ỹε) ≥ 0,

Λε
0,1 ·

(
ψε,δ
x , ψε,δ

y

)
(s̃ε, x̃ε, ỹε) =

(
ψε,δ
y − (1− λ0,1ε3)ψε,δ

x

)
(s̃ε, x̃ε, ỹε) ≥ 0.

By a direct calculation using the boundedness of (s̃ε, z̃ε, εξ̃ε), we rewrite the last
gradient inequalities as follows:

−4ε2(εξ̃ε)3 + ε3vz(s̃
ε, z̃ε)

[
λ1,0 − (1 + δ)wρ(s̃

ε, z̃ε, ρ̃ε)
]
+ ◦(ε3) ≥ 0,(6.11)

4ε2(εξ̃ε)3 + ε3vz(s̃
ε, z̃ε)

[
λ0,1 + (1 + δ)wρ(s̃

ε, z̃ε, ρ̃ε)
]
+ ◦(ε3) ≥ 0,(6.12)

where ρ̃ε := ξ̃ε/η(s̃ε, z̃ε).
3. Let ρ0(s, z) be as in (4.3). In this step, we show that

|ρ̃ε| < ρ0(s̃
ε, z̃ε) ∀ sufficiently small ε ∈ (0, 1].(6.13)
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Indeed, assume that ρ̃εn ≤ −ρ0(s̃εn , z̃εn) = ρ1(s̃
εn , z̃εn) for some sequence εn ∈ (0, 1]

with εn → 0. Then, wρ(s̃
εn , z̃εn , ρ̃εn) = −λ0,1, and it follows from inequality (6.12),

together with the fact that ρ̃εn ≤ ρ1(s̃
εn , z̃εn) ≤ 0, that

0 ≤ 4ε2n(εnξ̃
εn)3 − ε3nvz(s̃

εn , z̃εn)δλ0,1 + ◦(ε3n) ≤ −εn3vz(s̃
εn , z̃εn)δλ0,1 + ◦(εn3).

Since δ > 0, this cannot happen for large n. Similarly, if ρ̃εn ≥ ρ0(s̃
εn , z̃εn) for some se-

quence εn → 0, we have wρ(s̃
εn , z̃εn, ρ̃εn) = λ1,0, and it follows from inequality (6.11),

together with the fact that ρ̃εn ≥ ρ0(s̃
εn , z̃εn) ≥ 0, that

0 ≤ −4ε2n(εnξ̃
εn)3 + ε3nvz(s̃

εn , z̃εn)(−δλ1,0) + ◦(εn3) ≤ −ε3nvz(s̃εn , z̃εn)δλ1,0 + ◦(ε3n),
which leads again to a contradiction for large n, completing the proof of (6.13).

4. Since (s̃ε, z̃ε) is bounded and (s, z) �→ ρ0(s, z) is continuous, we conclude
from (6.13) that the sequence (ξ̃ε)ε is bounded. Hence, there exists a sequence εn → 0
so that

(sn, zn, ξn) := (s̃εn , z̃εn , ξ̃εn) −→ (ŝ, ẑ, ξ̂) = (s0, z0, ξ̂)

for some ξ̂ ∈ R. The fact that the limit of (sn, zn) is equal to (s0, z0) follows from
standard arguments using the strict minimum property of (s0, z0) in (6.5). We now
take the limit in (6.10) along the sequence εn. Since the function ψε,δ has the form
as in Remark 3.4, we do not repeat the computations given in section 3, and, given
the remainder estimate of section 4.2, we directly conclude that

0 ≤ lim
εn→0

ε−2
n

(
βvεn − Lψεn,δ − Ũ

(
ψεn,δ
x

))
(sn, zn, ξn)

=
1

2
(ησ2)(s0, z0)ξ̂

2 +
1

2
(1 + δ)α2(s0, z0)wξξ(s0, z0, ξ̂)−Aϕ(s0, z0).(6.14)

In the above, we also used the fact that all derivatives of φε vanish at the origin as ε
tends to zero.

5. In step 3, we have proved that |ρε| ≤ ρ0(zε). Hence, |ξ̂| ≤ (ηρ0)(s0, z0). Since
w = ηvzw̄, a = ηvz ā, the first corrector equation (3.11) implies that

a(s0, z0) =
1

2
(σ2η)(s0, z0)ξ̂

2 +
1

2
α2(s0, z0)wξξ(s0, z0, ξ̂).

We use the above identity in (6.14). The result is

Aϕ(s0, z0) ≤ 1

2
(σ2η)(s0, z0)ξ̂

2 +
1

2
(1 + δ)α2(s0, z0)wξξ(s0, z0, ξ̂)

= a(s0, z0) +
1

2
δα2(s0, z0)wξξ(s0, z0, ξ̂).

Finally, we let δ go to zero. However, ξ̂ = ξ̂δ depends on δ, and care must be taken.
But since |ξn| ≤ (ηρ0)(sn, zn), it follows that ξ̂δ is uniformly bounded in δ. Hence
the second term in the above equation goes to zero with δ, and we obtain the desired
inequality (6.6).

6.3. Viscosity supersolution property. In this section, we prove the following
proposition.

Proposition 6.2. Let Assumptions 5.1, 5.2, and 5.4 hold true. Then, the func-
tion u∗ is a viscosity supersolution of the second corrector equation (3.12).
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As remarked earlier, the above result holds true without Assumption 5.4, as
proved in our forthcoming paper [31]. However, in this paper we utilize it to provide
a somehow shorter proof. We first need the following consequence of Assumption 5.4
and the convexity of vε. Similar arguments are also used in [35].

Lemma 6.3. Assume the hypothesis of Proposition 6.2. Let (x, y) be an arbitrary
element of Kε. Then,

(i) for y ≥ y(s, z) (or, equivalently, ξ ≥ 0), we have Λε
0,1 ·(vεx(s, x, y), vεy(s, x, y)) >

0,
(ii) for y ≤ y(s, z) (or, equivalently, ξ ≤ 0), we have Λε

1,0·(vεx(s, x, y), vεy(s, x, y)) >
0.

Proof. For z ∈ R+ set

yε
+(s, z) := sup

{
y : (z − y, y) ∈ Kε, and Λε

0,1 · (vεx, vεy)(s, z − y, y) = 0
}
.

In view of the form of Kε, we have y ≥ −z/(ε3λ0,1), and by convention the above
supremum is equal to this lower bound if the set is empty. By the concavity of vε, we
conclude that

Λε
0,1 · (vεx, vεy)(s, x, y)

{
= 0 ∀ y ≤ yε

+(s, z),
> 0 ∀ y > yε

+(s, z).

Let N ε be as in (5.5). Therefore it is included in the set {(s, x, y) : y > yε
+(s, z)}.

Since Assumption 5.4 states that the Merton line {(s, x, y) : y = y(s, z)} is included
in N ε, we conclude that y(s, z) > yε

+(s, z). This proves statement (i). The other
assertion is proved similarly.

Proof of Proposition 6.2. Let (s0, z0, ϕ) ∈ (0,∞)2 × C2(R+) be such that

0 = (u∗ − ϕ)(s0, z0) < (u∗ − ϕ)(s, z) ∀ s, z ≥ 0, (s, z) �= (s0, z0).(6.15)

We proceed to prove that

(6.16) Aϕ(s0, z0)− a(s0, z0) ≥ 0.

1. By the definition of u∗ and Lemma 6.2, there exists a sequence (sε, zε) such
that

(sε, zε) → (s0, z0) and ûε(sε, zε, 0) → u∗(s0, z0) as ε ↓ 0,

where we used the notation (3.2). Then, it is clear that

�∗ε := ûε(sε, zε, 0)− ϕ(sε, zε) −→ 0

and

(xε, yε) =
(
zε − y(sε, zε),y(sε, zε)

) −→ (x0, y0) :=
(
z0 − y(s0, z0),y(s0, z0)

)
.

Since uε(s, x, y) ≥ −ε2w(s, z, ξ) ≥ −εC(s, z)|y−y(s, z)|, for some continuous function
C, there are r0 := r0(s0, x0, y0) > 0 and ε0 := ε0(s0, x0, y0) > 0 so that

b∗ := inf
(s,x,y)∈B0

uε(s, x, y) > −∞, where B0 := Br0(s0, x0, y0).

We also choose r0 sufficiently small so that B0 does not intersect the line z = 0. For
ε ∈ (0, 1] and δ > 0, define

ψ̂ε,δ(s, z, ξ) := v(s, z)− ε2�∗ε − ε2ϕ(s, z)− ε4(1 − δ)w(s, z, ξ) + ε2φ̂ε(s, z, ξ),
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where, following our notation convention (3.2), the function φ̂ε is obtained from the
function φε defined by

φε(s, x, y) := C
[
(s− sε)4 + (x+ y − zε)4 + (y − y(s, x + y))4

]
,

and, similarly to the proof of the supersolution property, C > 0 is a constant chosen
so that

−b∗ + �∗ε +
(
ϕ− φε

)
(s, x, y) < 0 on ∂B0.(6.17)

2. Set

Iε,δ(s, z, ξ) := ε−2
(
vε − ψε,δ

)
(s, x, y)

= −uε(s, x, y) + ϕ(s, z) + �∗ε − φε(s, x, y)− ε2δw(s, z, ξ).

Since w(s, z, 0) = 0, we have Iε,δ(sε, zε, 0) = 0. On the other hand, it follows from
(6.17) that

Iε,δ(s, z, ξ) ≤ −b∗ + �∗ε +
(
ϕ− φε

)
(s, x, y)− ε2δw(s, z, ξ) < 0 on ∂B0.

Then, the difference vε − ψε,δ has an interior maximizer (s̃ε, z̃ε, ξ̃ε) in B0,

(6.18) max
B0

(
vε − ψλ,ε

)
= (vε − ψλ,ε)(s̃ε, x̃ε, ỹ

ε),

and |s̃ε− s0|+ |z̃ε− z0|+ |εξ̃ε| ≤ r1 for some constant r1. By the subsolution property
of vε, at (s̃ε, x̃ε, ỹε),

(6.19) min
{
βvε − Lψε,δ − Ũ

(
ψε,δ
x

)
,Λε

0,1 · (ψε,δ
x , ψε,δ

y ),Λε
1,0 · (ψε,δ

x , ψε,δ
y )

} ≤ 0.

3. In this step, we show that for all sufficiently small ε > 0,

Λε
0,1 · (ψε,δ

x , ψε,δ
y )(s̃ε, x̃ε, ỹε) > 0 and Λε

1,0 · (ψε,δ
x , ψε,δ

y )(s̃ε, x̃ε, ỹε) > 0.(6.20)

By Lemma 6.3, it suffices to prove that

(6.21)
D0,1 := Λε

0,1 · (ψε,δ
x , ψε,δ

y )(s̃ε, x̃ε, ỹε) > 0 for ξ̃ < 0,

D1,0 := Λε
1,0 · (ψε,δ

x , ψε,δ
y )(s̃ε, x̃ε, ỹε) > 0 for ξ̃ > 0.

We directly compute that

ψε,δ
x = vz − ε2ϕz − ε4(1 − δ)

(
wz − yz

ε
wξ

)
+ 4ε2C

(
(z − zε)3 − yz(y − y)3

)
,

ψε,δ
y = vz − ε2ϕz − ε4(1 − δ)

(
wz +

1− yz

ε
wξ

)
+ 4ε2C

(
(z − zε)3 + (1− yz)(y − y)3

)
.

Then, it follows from the estimates (6.18) that

D0,1 = ε3
(
(1− δ)wξ + λ0,1vz

)
(s̃ε, z̃ε, ξ̃ε)− 4Cε2(εξ̃ε)3 + ◦(ε3),

D1,0 = ε3
(− (1− δ)wξ + λ1,0vz

)
(s̃ε, z̃ε, ξ̃ε) + 4Cε2(εξ̃ε)3 + ◦(ε3).

Since w solves (4.1), wξ + λ0,1vz ≥ 0 and −wξ + λ1,0vz ≥ 0. Then,

D0,1 ≥ −ε3δvz(s̃ε, z̃ε)− 4Cε2(εξ̃ε)3 + ◦(ε3)
≥ −ε3δvz(s̃ε, z̃ε) + ◦(ε3) for ξ̃ ≤ 0,
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and

D1,0 ≥ ε3δvz(s̃
ε, z̃ε) + 4Cε2(εξ̃ε)3 + ◦(ε3)

≥ ε3δvz(s̃
ε, z̃ε) + ◦(ε3) for ξ̃ ≥ 0.

Since vz > 0, (6.21) holds for all sufficiently small ε > 0.
4. In this step, we prove that ξ̃ε is bounded in ε ∈ (0, 1]. Indeed, in view of (6.19)

and (6.20),

0 ≥
(
βvε − Lψε,δ − Ũ

(
ψε,δ
x

))
(s̃ε, x̃ε, ỹε)

= ε2
[
(−σ2vzz)(s

ε, z̃ε)

2
|ξε|2 + 1− δ

2
α2(s̃ε, z̃ε)wξξ(z̃ε, ξ̃ε)

−Au(s̃ε, z̃ε) +Rε(s̃ε, x̃ε, ỹε)

]
,(6.22)

where we used the fact that the function ψε,δ is exactly in the form assumed in
Remark 3.4. Then, by the remainder estimate of section 4.2, we deduce that

|Rε(s̃ε, x̃ε, ỹε)| ≤ C(s̃ε, z̃ε)
[
ε+ ε|ξ̃ε|+ ε2|ξ̃ε|2

]
.(6.23)

In section 4, the function w is explicitly constructed. Since w is linear in ξ for large
values of ξ, there is a continuous function Ĉ(s, z) such that

0 ≤ wξξ(s, z, ξ) ≤ Ĉ(s, z) ∀ (s, z, ξ) ∈ R
2
+ × R

1.

Then, since (s̃ε, z̃ε) is uniformly bounded in ε ∈ (0, 1], there are constants C, C̃ > 0
such that

0 ≥ ε2C̃
[
ξ̃2ε − C

(
1 + ε|ξ̃ε|+ ε2|ξ̃ε|2

)]
.

Hence (ξ̃ε)ε is also uniformly bounded in ε ∈ (0, 1] by a constant depending only on
the test functions.

5. Since (zε, ξε)ε∈(0,1] is bounded, there exists a sequence (εn)n such that

εn ↓ 0 and (zn, ξn) :=
(
zεn , ξεn

) −→ (ẑ, ξ̂) = (z0, ξ̂) ∈ (0,∞)× R,

where the fact that ẑ = z0 follows from the strict maximum property in (6.15) and clas-
sical arguments from the theory of viscosity solutions. We finally conclude from (6.22)
and (6.23) that

0 ≥ −1

2
(σ2vzz)(s0, z0)ξ̂

2 −Aϕ(s0, z0)−Aφ(0) + 1

2
(1− δ)α2(s0, z0)wξξ(s0, z0, ξ̂)

= −Aϕ(s0, z0)− 1

2
(σ2vzz)(s0, z0)ξ̂

2 +
1

2
(1− δ)α2(s0, z0)wξξ(s0, z0, ξ̂),

since Aφ(0) = 0. Now, in view of the first corrector equation (3.11),

0 ≥ −Aϕ(s0, z0) + a(s0, z0) +
1

2
δα2(s0, z0)wξξ(s0, z0, ξ̂).

Finally, we conclude that Aϕ(s0, z0)− a(s0, z0) ≥ 0 by sending δ to zero.
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7. Verifying Assumption 5.1. In this section, we verify Assumption 5.1. This
is done by constructing an appropriate subsolution of the dynamic programming equa-
tion (2.2). Clearly, this construction requires assumptions, and here we present only
one possible set of assumptions. To simplify the presentation, we suppose that the co-
efficients are independent of the s-variable. Next, we assume that there exist constants
0 < k∗ ≤ k∗ so that the limit Merton value function satisfies

0 < k∗z ≤ η(z) ≤ k∗z.(7.1)

Let c be the optimal Merton consumption policy given as in (2.6). We assume that

U(c(z)) ≥ k∗zv′(z)(7.2)

for some constant k∗ > 0. Notice that all the above assumptions hold in the power
utility case. First, using (5.3) and the explicit representation of a, one may directly
verify that there is a constant a∗ > 0 so that

a(z) ≤ a∗zv′(z).

Then, the definition of A and the above assumptions imply that

(7.3) Av(z) = U(c(z)) ≥ k∗zv′(z) ≥ k∗
a∗
a(z) =

k∗
a∗

Au(z).

Let u be the function defined in (1.2). Since v is assumed to be smooth, we may apply
Itô’s formula in a standard way to conclude from the last inequality that

(7.4) 0 ≤ u(z) ≤ a∗

k∗
v(z).

Moreover, since we assume that coefficients are independent of the s-variable, (2.7) is
equivalent to y(z) = η(z)(μ− r)/σ2. Hence, (5.3) implies that

(7.5) −v′′(z) ≤ η(z) v′′′ ≤ −2v′′(z).

We now use these observations to construct a subsolution of the dynamic pro-
gramming equation of the form

(7.6) V ε(x, y) := v(z)−Kε2v(z) + ε4W̃ (z, ξ),

with a sufficiently large constant K ≥ a∗/k∗ and a slightly modified corrector,

W̃ (z, ξ) := zv′(z)w̃(ξ/z),

where the function w̃(z) and the constant ã > 0 are the unique solution of w̃(0) = 0
and

(7.7) max

{
−k∗σ

2

2
ρ2 − (α∗k∗)2

2
w̃ρρ + ã; −2λ1,0 + w̃ρ; −2λ0,1 − w̃ρ

}
.

The solution of the above equation is explicitly available through the general solution
obtained earlier in section 4.1.

The fact that V ε is a subsolution of (2.2) follows from tedious but otherwise direct
calculations. To streamline these calculations, we first state an estimate that follows
from the explicit form of W̃ .
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Lemma 7.1. There is a constant k∗ > 0 such that

z
∣∣∣W̃ξξ(z, ξ)

∣∣∣ ≤ k∗v′(z),∣∣∣W̃z(z, ξ)
∣∣∣ ≤ k∗v′(z)

(
1 +

|ξ|
z

)
,

z
∣∣∣∂xW̃ (z, ξ)

∣∣∣+ z
∣∣∣∂yW̃ (z, ξ)

∣∣∣ ≤ k∗zv′(z)
(
1

ε
+

|ξ|
z

)
,

z2
∣∣∣∣∂yyW̃ (z, ξ)− (1− y′(z))2

ε2
W̃ξξ(z, ξ)

∣∣∣∣ ≤ k∗zv′(z)
(
1

ε
+

|ξ|
z

)
.

Proof. These estimates follow directly from straightforward differentiation and
the estimates (7.1), (7.5).

Lemma 7.2 (lower bound). Assume (7.1), (7.2), and (5.2). Then, for sufficiently
large K > 0, V ε defined in (7.6) is a subsolution of (2.2) in R

2
+. Moreover,

ūε(x, y) ≤ Kv(z) + ε2W̃ (z, ξ)

on R
2
+, and Assumption 5.1 holds.
Proof. We need to show that at any point (x, y) ∈ R

2
+ one of the three terms

in (2.2) is nonpositive. Since (x, y) ∈ R
2
+, by Assumption 5.2, we have

|ξ| = |y − y(z)|
ε

≤ z

ε
⇒ Ξ :=

ξ

z
∈ 1

ε
[−1, 1].

Let ρ0 > 0 be the threshold in (7.7). We analyze several cases separately.

Case 1. ρ0 ≤ Ξ ≤ 1/ε.
In this case, W̃ξ(z, ξ) = 2λ1,0v′(z). We use Lemma 7.1 and (5.2) to arrive at

Λε
1,0 · (V ε

x , V
ε
y ) =

1

ε
V̂ ε
ξ + ε2λ1,0(1− y′)V̂ ε

ξ + ε3λ1,0V̂ ε
z

= ε3
[
(1− ε3λ1,0(1 − y′))W̃ξ + (1− Cε2)v′ − λ1,0ε4W̃z

]
≤ ε3λ1,0v′

(−1 + k∗ε3
) ≤ 0,

provided that ε is sufficiently small.
Case 2. −1/ε ≤ Ξ ≤ −ρ0.
A similar calculation shows that Λε

0,1 · (V ε
x , V

ε
y ) ≤ 0 for all sufficiently small ε.

Case 3. |Ξ| ≤ ρ0. We now use Remark 3.4 to conclude that

J (V ε) = ε2
[
−σ

2v′′(z)
2

ξ2 +
α2(z)

2
W̃ξξ(z, ξ)−KAv(z) +Rε(z, ξ)

]
.

We first use (7.1), (5.2), (7.7), (7.3) and set ρ := ξ/z. The result is

I :=
J (V ε)

ε2

≤ ε2v′(z)η(z)
[
k∗σ2

2
ρ2 +

(α∗k∗)2

2
w̃ρρ(ρ)−K(k∗)2

]
+ ε2Rε(z, ξ)

= ε2v′(z)η(z)
[
ã−K(k∗)2

]
+ ε2Rε(z, ξ).
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IfK is sufficiently large, then K(k∗)2 is larger than ã, and by (7.1), the above estimate
implies that

I ≤ −zv′(z) +Rε(z, ξ).

We now estimate Rε by recalling the results of subsection 4.2. We split this into
three terms coming from the value function v, the corrector W̃ , and from the utility
function:

|Rε| := Rε
v +Rε

w +Rε
U .

We estimate each one using Lemma 7.1. Then,

Rε
v ≤ K

[
εΞ(μ− r)zv′(z) +

σ2

2

(
ε2Ξ2 + 2εΞ

(y
z

))
z2v′′(z)

]
≤ εKk∗zv′(z).

Also,

Rε
w ≤ ε2

[
βW̃ − rz

((
1−

(
y

z

))
+ εΞ

)
W̃x − μz

(
εΞ +

(
y

z

))
W̃y

− σ2

2
z2

(
εΞ+

(
y

z

))2 (
W̃yy − W̃ξξ

(1− yz)
2

ε2

)

+
σ2

2
z2W̃ξξ

(1− yz)
2

ε2

(
ε2Ξ2 + 2εΞ

(
y

z

))]
≤ k∗zv′(z).

Finally,

Rε
U = Ũ(v′)− Ũ(V ε

x )

≤ Ũ(v′)− Ũ(v′[1− ε2K + k∗ε4]) ≤ 0.

Hence, there is k∗ such that

|Rε| ≤ εk∗zv′(z).

Hence, if K is sufficiently large, V ε is a subsolution of (2.2) for all small ε.
Boundary y = 0.
Then, again by (5.2), for all sufficiently small ε > 0,

Ξ =
y − y(z)

ε
=

−y(z)

ε
< −ρ0.

Hence, by the second case and Lemma 6.3,

Λε
1,0 · (V ε

x , V
ε
y )(x, 0) ≤ 0 = Λε

1,0 · (vεx, vεy)(x, 0) ∀ x > 0.

Boundary x = 0.
By a similar analysis, we can show that

Λε
0,1 · (V ε

x , V
ε
y )(0, y) ≤ 0 = Λε

0,1 · (vεx, vεy)(0, y) ∀ y > 0.
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Then, on R
2
+, V

ε is a subsolution of (2.2), while vε is a solution. Also on the bound-
ary of R2

+, V
ε is again a subsolution of an oblique Neumann condition, and vε is a

supersolution. Then, by comparison (or by a verification argument), we conclude that
vε ≥ φ on R

2
+. This proves the lower bound on uε on the positive orthant.

Remark 7.1. In view of Lemma 7.2, it follows that the local upper bounding
function B, defined in (5.4), is bounded by the function Kv(z). In particular, this
implies that the growth of u∗ and u∗, both at infinity and at the origin, is the same
as that of the zero-transaction cost Merton value function v. By introducing the
logarithmic variable, we observe that the behavior near the origin transforms into a
growth condition at minus infinity.

8. Homothetic case. In this short section, we consider the classical constant
relative risk aversion utility function

U(c) :=
c1−γ

1− γ
, c > 0,(8.1)

for some γ > 0 with γ = 1 corresponding to the logarithmic utility. Our objective is
to reproduce the results of Janecek and Shreve [22] by directly applying our explicit
expansion result of Theorem 6.1. Also, these calculations show how one may use our
results to obtain the asymptotic formulae for problems with power utility that have
explicitly known Merton value functions, such as factor models.

In the context of the power utility (8.1), the Merton value function is explicitly
given by

v(z) =
1

(1− γ)

z1−γ

vγM
,

with the Merton constant

vM =
β − r(1 − γ)

γ
− 1

2

(μ− r)2

γ2σ2
(1 − γ).

Hence, the risk tolerance function and the optimal strategies are given by

η(z) =
z

γ
, y(z) =

μ− r

γσ2
z := πMz, c(z) = vMz.

In particular, since y and c are linear in z, the comparison assumption, Assump-
tion 5.3, is immediately verified to hold true. Indeed, by introducing the logarithmic
variable z′ = ln z, the second corrector equation (3.12) becomes linear with constant
coefficients on (−∞,∞). The growth condition as discussed in Remark 7.1 trans-
forms into an exponential sublinear growth. It is well known that this condition is
sufficient to prove comparison. The corresponding probabilistic argument refers to the
integrability of exponential sublinear growth with respect to the Gaussian density.

Moreover, since the conditions of section 7 are satisfied in the present context,
it follows that Assumption 5.1 holds true in our power utility case, provided that
πM ∈ (0, 1). Finally, by Remark 11.3 in Shreve and Soner [35], the last condition also
implies the validity of Assumption 5.4. We have then verified the following.

Lemma 8.1. Assume πM ∈ (0, 1). Then, Assumptions 5.1–5.4 hold true in the
context of the power utility function (8.1).

Since the diffusion coefficient α(z) = σy(z)[1 − yz(z)], it follows that

ᾱ =
α(z)

η(z)
= γσπM (1− πM ).
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The constants in the solution of the corrector equation are given by

ρ0 =

(
3ᾱ2

4σ2

(
λ1,0 + λ0,1

))1/3

,

a(z) = η(z)v′(z)ā =
σ2(1 − γ)

2γ
ρ20 v(z).

Since

Av(z) = U(c(z)) =
1

1− γ
(vMz)

1−γ = vMv(z),

the unique solution u(z) of the second corrector equation

Au(z) = a(z) =
σ2(1− γ)

2γ
ρ20 v(z)

is given by

u(z) =
σ2(1− γ)

2γ
ρ20v

−1
M v(z) = u0z

1−γ ,

where

u0 := (πM (1− πM ))
4/3

v
−(1+γ)
M .

Finally, we summarize the expansion result in the following.
Lemma 8.2. For the power utility function U in (8.1),

vε(x, y) = v(z)− ε2u0z
1−γ +O(ε3).

The width of the transaction region for the first correction equation 2ξ0 = 2η(z)ρ0 is
given by

2ξ0 =

(
6

γ
(λ0,1 + λ1,0)

)1/3

(πM (1 − πM ))
2/3

.

The above formulae with λi,j = 1 are exactly the same as equation (3.13) in
Janecek and Shreve [22] .
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[30] D. Possamäı, H. M. Soner, and N. Touzi, Large liquidity expansion of super-hedging costs,
Asymptot. Anal., 79 (2012), pp. 45–64.
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