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OPTIMAL TRANSPORTATION UNDER CONTROLLED
STOCHASTIC DYNAMICS1

BY XIAOLU TAN AND NIZAR TOUZI

Ecole Polytechnique, Paris

We consider an extension of the Monge–Kantorovitch optimal trans-
portation problem. The mass is transported along a continuous semimartin-
gale, and the cost of transportation depends on the drift and the diffusion co-
efficients of the continuous semimartingale. The optimal transportation prob-
lem minimizes the cost among all continuous semimartingales with given
initial and terminal distributions. Our first main result is an extension of
the Kantorovitch duality to this context. We also suggest a finite-difference
scheme combined with the gradient projection algorithm to approximate the
dual value. We prove the convergence of the scheme, and we derive a rate of
convergence.

We finally provide an application in the context of financial mathematics,
which originally motivated our extension of the Monge–Kantorovitch prob-
lem. Namely, we implement our scheme to approximate no-arbitrage bounds
on the prices of exotic options given the implied volatility curve of some
maturity.

1. Introduction. In the classical mass transportation problem of Monge–
Kantorovich, we fix at first an initial probability distribution μ0 and a terminal
distribution μ1 on Rd . An admissible transportation plan is defined as a random
vector (X0,X1) (or, equivalently, a joint distribution on Rd × Rd ) such that the
marginal distributions are, respectively, μ0 and μ1. By transporting the mass from
the position X0(ω) to the position X1(ω), an admissible plan transports a mass
from the distribution μ0 to the distribution μ1. The transportation cost is a func-
tion of the initial and final positions, given by E[c(X0,X1)] for some function
c : Rd × Rd → R+. The Monge–Kantorovich problem consists in minimizing the
cost among all admissible transportation plans. Under mild conditions, a dual-
ity result is established by Kantorovich, converting the problem into an optimiza-
tion problem under linear constraints. We refer to Villani [36] and Rachev and
Ruschendorf [32] for this classical duality and the richest development on the clas-
sical mass transportation problem.
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As an extension of the Monge–Kantorovitch problem, Mikami and
Thieullen [30] introduced the following stochastic mass transportation mechanism.
Let X be an Rd -continuous semimartingale with decomposition

Xt = X0 +
∫ t

0
βs ds + Wt,(1.1)

where Wt is a d-dimensional standard Brownian motion under the filtration FX

generated by X. The optimal mass transportation problem consists in minimizing
the cost of transportation defined by some cost functional � along all transportation
plans with initial distribution μ0 and final distribution μ1:

V (μ0,μ1) := inf E

∫ 1

0
�(s,Xs,βs) ds,

where the infimum is taken over all semimartingales given by (1.1) satisfying P ◦
X−1

0 = μ0 and P ◦ X−1
1 = μ1. Mikami and Thieullen [30] proved a strong duality

result, thus extending the classical Kantorovitch duality to this context.
Motivated by a problem in financial mathematics, our main objective is to ex-

tend [30] to a larger class of transportation plans defined by continuous semi-
martingales with absolutely continuous characteristics:

Xt = X0 +
∫ t

0
βs ds +

∫ t

0
σs dWs,

where the pair process (α := σσT ,β) takes values in some closed convex sub-
set U of Rd×d × Rd , and the transportation cost involves the drift and diffusion
coefficients as well as the trajectory of X.

The simplest motivating problem in financial mathematics is the following.
Let X be the price process of some tradable security, and consider some path-
dependent derivative security ξ(Xt , t ≤ 1). Then, by the no-arbitrage theory, any
martingale measure P (i.e., probability measure under which X is a martingale)
induces an admissible no-arbitrage price EP[ξ ] for the derivative security ξ . Sup-
pose further that the prices of all 1-maturity European call options with all possible
strikes are available. This is a standard assumption made by practitioners on liquid
options markets. Then, the collection of admissible martingale measures is reduced
to those which are consistent with this information, that is, c1(y) := EP[(X1 −y)+]
is given for all y ∈ R or, equivalently, the marginal distribution of X1 under P is
given by μ1[y,∞) := −∂−c1(y), where ∂−c1 denotes the left-hand side derivative
of the convex function c1. Hence, a natural formulation of the no-arbitrage lower
and upper bounds is inf EP[ξ ] and sup EP[ξ ] with optimization over the set of all
probability measures P satisfying P ◦ (X0)

−1 = δx and P ◦ (X1)
−1 = μ1, for some

initial value of the underlying asset price X0 = x. We refer to Galichon, Henry-
Labordère and Touzi [21] for the connection to the so-called model-free super-
hedging problem. In Section 5.4 we shall provide some applications of our results
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in the context of variance options ξ = 〈logX〉1 and the corresponding weighted
variance options extension.

This problem is also intimately connected to the so-called Skorokhod Embed-
ding Problem (SEP) that we now recall; see Obloj [31] for a review. Given a one-
dimensional Brownian motion W and a centered |x|-integrable probability distri-
bution μ1 on R, the SEP consists in searching for a stopping time τ such that
Wτ ∼ μ1 and (Wt∧τ )t≥0 is uniformly integrable. This problem is well known
to have infinitely many solutions. However, some solutions have been proved
to satisfy some optimality with respect to some criterion (Azéma and Yor [1],
Root [33] and Rost [34]). In order to recast the SEP in our context, we specify
the set U , where the characteristics take values, to U = R × {0}, that is, trans-
portation along a local martingale. Indeed, given a solution τ of the SEP, the pro-
cess Xt := Wτ∧t/(1−t) defines a continuous local martingale satisfying X1 ∼ μ1.
Conversely, every continuous local martingale can be represented as time-changed
Brownian motion by the Dubins–Schwarz theorem (see, e.g., Theorem 4.6, Chap-
ter 3 of Karatzas and Shreve [26]).

We note that the seminal paper by Hobson [23] is crucially based on the connec-
tion between the SEP and the above problem of no-arbitrage bounds for a specific
restricted class of derivatives prices (e.g., variance options, lookback option, etc.).
We refer to Hobson [24] for an overview on some specific applications of the SEP
in the context of finance.

Our first main result is to establish the Kantorovitch strong duality for our semi-
martingale optimal transportation problem. The dual value function consists in the
minimization of μ0(λ0) − μ1(λ1) over all continuous and bounded functions λ1,
where λ0 is the initial value of a standard stochastic control problem with final
cost λ1. In the Markovian case, the function λ0 can be characterized as the unique
viscosity solution of the corresponding dynamics programming equation with ter-
minal condition λ1.

Our second main contribution is to exploit the dual formulation for the purpose
of numerical approximation of the optimal cost of transportation. To the best of
our knowledge, the first attempt for the numerical approximation of an intimately
related problem, in the context of financial mathematics, was initiated by Bonnans
and Tan [10]. In this paper, we follow their approach in the context of a bounded
set of admissible semimartingale characteristics. Our numerical scheme combines
the finite difference scheme and the gradient projection algorithm. We prove con-
vergence of the scheme, and we derive a rate of convergence. We also implement
our numerical scheme and give some numerical experiments.

The paper is organized as follows. Section 2 introduces the optimal mass trans-
portation problem under controlled stochastic dynamics. In Section 3 we extend
the Kantorovitch duality to our context by using the classical convex duality ap-
proach. The convex conjugate of the primal problem turns out to be the value
function of a classical stochastic control problem with final condition given by the
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Lagrange multiplier lying in the space of bounded continuous functions. Then the
dual formulation consists in maximizing this value over the class of all Lagrange
multipliers. We also show, under some conditions, that the Lagrange multipliers
can be restricted to the subclass of C∞-functions with bounded derivatives of any
order. In the Markovian case, we characterize the convex dual as the viscosity so-
lution of a dynamic programming equation in the Markovian case in Section 4.
Further, when the characteristics are restricted to a bounded set, we use the prob-
abilistic arguments to restrict the computation of the optimal control problem to a
bounded domain of Rd .

Section 5 introduces a numerical scheme to approximate the dual formulation
in the Markovian case. We first use the finite difference scheme to solve the control
problem. The maximization is then approximated by means of the gradient projec-
tion algorithm. We provide some general convergence results together with some
control of the error. Finally, we implement our algorithm and provide some numer-
ical examples in the context of its applications in financial mathematics. Namely,
we consider the problem of robust hedging weighted variance swap derivatives
given the prices of European options of all strikes. The solution of the last problem
can be computed explicitly and allows to test the accuracy of our algorithm.

NOTATION. Given a Polish space E, we denote by M(E) the space of all
Borel probability measures on E, equipped with the weak topology, which is also
a Polish space. In particular, M(Rd) is the space of all probability measures on
(Rd, B(Rd)). Sd denotes the set of d × d positive symmetric matrices. Given u =
(a, b) ∈ Sd × Rd , we define |u| by its L2-norm as an element in Rd2+d . Finally,
for every constant C ∈ R, we make the convention ∞ + C = ∞.

2. The semimartingale transportation problem. Let � := C([0,1],Rd) be
the canonical space, X be the canonical process

Xt(ω) := ωt for all t ∈ [0,1],
and F = (Ft )1≤t≤1 be the canonical filtration generated by X. We recall that
Ft coincides with the Borel σ -field on � induced by the seminorm |ω|∞,t :=
sup0≤s≤t |ωs |, ω ∈ � (see, e.g., the discussions in Section 1.3, Chapter 1 of Stroock
and Varadhan [35]).

Let P be a probability measure on (�, F1) under which the canonical process X

is a F-continuous semimartingale. Then, we have the unique continuous decom-
position w.r.t. F:

Xt = X0 + BP
t + MP

t , t ∈ [0,1],P-a.s.,(2.1)

where BP = (BP
t )0≤t≤1 is the finite variation part and MP = (MP

t )0≤t≤1 is the lo-
cal martingale part satisfying B0 = M0 = 0. Denote by AP

t := 〈MP〉t the quadratic
variation of MP between 0 and t and AP = (AP

t )0≤t≤1. Then, following Jacod and
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Shiryaev [25], we say that the P-continuous semimartingale X has characteristics
(AP,BP).

In this paper, we further restrict to the case where the processes AP and BP

are absolutely continuous in t w.r.t. the Lebesgue measure, P-a.s. Then there are
F-progressive processes νP = (αP, βP) (see, e.g., Proposition I.3.13 of [25]) such
that

AP
t =
∫ t

0
αP

s ds, BP
t =
∫ t

0
βP

s ds, P-a.s. for all t ∈ [0,1].(2.2)

REMARK 2.1. By Doob’s martingale representation theorem (see, e.g., The-
orem 4.2 in Chapter 3 of Karatzas and Shreve [26]), we can find a Brownian mo-
tion WP (possibly in an enlarged space) such that X has an Itô representation:

Xt = X0 +
∫ t

0
βP

s ds +
∫ t

0
σP

s dWP
s ,

where σP
t = (αP

t )1/2 [i.e., αP
t = σP

t (σP
t )T ].

REMARK 2.2. With the unique processes (AP,BP), the progressively mea-
surable processes νP = (αP, βP) may not be unique. However, they are unique in
sense dP × dt-a.e. Since the transportation cost defined below is a dP × dt inte-
gral, then the choice of νP = (αP, βP) will not change the cost value and then is
not essential.

We next introduce the set U defining some restrictions on the admissible char-
acteristics:

U closed and convex subset of Sd × Rd,(2.3)

and we denote by P the set of probability measures P on � under which X has the
decomposition (2.1) and satisfies (2.2) with characteristics νP

t := (αP
t , βP

t ) ∈ U ,
dP × dt-a.e.

Given two arbitrary probability measures μ0 and μ1 in M(Rd), we also denote

P(μ0) := {P ∈ P : P ◦ X−1
0 = μ0

}
,(2.4)

P(μ0,μ1) := {P ∈ P(μ0) : P ◦ X−1
1 = μ1

}
.(2.5)

REMARK 2.3. (i) In general, P(μ0,μ1) may be empty. However, in the one-
dimensional case d = 1 and U = R+ × R, the initial distribution μ0 = δx0 for
some constant x0 ∈ R, and the final distribution satisfies

∫
R |x|μ1(dx) < ∞, we

now verify that P(μ0,μ1) is not empty. First, we can choose any constant in R for
the drift part, hence, we can suppose, without loss of generality, that x0 = 0 and μ1
is centered distributed, that is,

∫
R xμ1(dx) = 0. Then, given a Brownian motion W ,

by Skorokhod embedding (see, e.g., Section 3 of Obloj [31]), there is a stopping
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time τ such that Wτ ∼ μ1 and (Wt∧τ )t≥0 is uniformly integrable. Therefore, M =
(Mt)0≤t≤1 defined by Mt := Wτ∧t/(1−t) is a continuous martingale with marginal
distribution P ◦ M−1

1 = μ1. Moreover, its quadratic variation 〈M〉t = τ ∧ t
1−t

is
absolutely continuous in t w.r.t. Lebesgue for every fixed ω, which can induce a
probability on � belonging to P(μ0,μ1).

(ii) Let d = 1, U = R+ × {0}, μ0 = δx0 for some constant x0 ∈ R, and μ1

as in (i) with
∫

xμ1(dx) = x0. Then, by the above discussion, we also have
P(μ0,μ1) �= ∅.

The semimartingale X under P can be viewed as a vehicle of mass transporta-
tion, from the P-distribution of X0 to the P-distribution of X1. We then associate P

with a transportation cost

J (P) := EP
∫ 1

0
L
(
t,X, νP

t

)
dt,(2.6)

where EP denotes the expectation under the probability measure P, and L : [0,1]×
�,×U −→ R. The above expectation is well defined on R+ ∪ {+∞} in view of
the subsequent Assumption 3.1 which states, in particular, that L is nonnegative.

Our main interest is on the following optimal mass transportation problem,
given two probability measures μ0, μ1 ∈ M(Rd):

V (μ0,μ1) := inf
P∈P(μ0,μ1)

J (P),(2.7)

with the convention inf ∅ = ∞.

3. The duality theorem. The main objective of this section is to prove a du-
ality result for problem (2.7) which extends the classical Kantorovitch duality in
optimal transportation theory.

This will be achieved by classical convex duality techniques which require to
verify that the function V is convex and lower semicontinuous. For the general
theory on duality analysis in Banach spaces, we refer to Bonnans and Shapiro [9]
and Ekeland and Temam [18]. In our context, the value function of the optimal
transportation problem is defined on the Polish space of measures on Rd , and our
main reference is Deuschel and Stroock [17].

3.1. The main duality result. We first formulate the assumptions needed for
our duality result.

ASSUMPTION 3.1. The function L : (t,x, u) ∈ [0,1] × � × U �→ L(t,x, u) ∈
R+ is nonnegative, continuous in (t,x, u), and convex in u.
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Notice that we do not impose any progressive measurability for the dependence
of L on the trajectory x. However, by immediate conditioning, we may reduce the
problem so that such a progressive measurability is satisfied.

The next condition controls the dependence of the cost functional on the time
variable.

ASSUMPTION 3.2. The function L is uniformly continuous in t in the sense
that

�tL(ε) := sup
|L(s,x, u) − L(t,x, u)|

1 + L(t,x, u)
−→ 0 as ε → 0,

where the supremum is taken over all 0 ≤ s, t ≤ 1 such that |t − s| ≤ ε and all
x ∈ �, u ∈ U .

We finally need the following coercivity condition on the cost functional.

ASSUMPTION 3.3. There are constants p > 1 and C0 > 0 such that

|u|p ≤ C0
(
1 + L(t,x, u)

)
< ∞ for every (t,x, u) ∈ [0,1] × � × U.

REMARK 3.4. In the particular case U = {Id} × Rd , the last condition coin-
cides with Assumption A.1 of Mikami and Thieullen [30]. Moreover, whenever U

is bounded, Assumption 3.3 is a direct consequence of Assumption 3.1.

Let Cb(R
d) denote the set of all bounded continuous functions on Rd and

μ(φ) :=
∫

Rd
φ(x)μ(dx) for all μ ∈ M

(
Rd) and φ ∈ L1(μ).

We define the dual formulation of (2.7) by

V(μ0,μ1) := sup
λ1∈Cb(R

d )

{
μ0(λ0) − μ1(λ1)

}
,(3.1)

where

λ0(x) := inf
P∈P(δx)

EP

[∫ 1

0
L
(
s,X, νP

s

)
ds + λ1(X1)

]
,(3.2)

with P(δx) defined in (2.4). We notice that μ0(λ0) is well defined since λ0 takes
value in R ∪ {∞}, is bounded from below and is measurable by the following
lemma.

LEMMA 3.5. Let Assumptions 3.1 and 3.2 hold true. Then, λ0 is measurable
w.r.t. the Borel σ -field on Rd completed by μ0, and

μ0(λ0) = inf
P∈P(μ0)

EP

[∫ 1

0
L
(
s,X, νP

s

)
ds + λ1(X1)

]
.
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The proof of Lemma 3.5 is based on a measurable selection argument and is
reported at the end of Section 4.1.1. We now state the main duality result.

THEOREM 3.6. Let Assumptions 3.1, 3.2 and 3.3 hold. Then

V (μ0,μ1) = V(μ0,μ1) for all μ0,μ1 ∈ M
(
Rd),

and the infimum is achieved by some P ∈ P(μ0,μ1) for the problem V (μ0,μ1)

of (2.7).

The proof of this result is reported in the subsequent subsections.
We finally state a duality result in the space C∞

b (Rd) of all functions with
bounded derivatives of any order:

V (μ0,μ1) := sup
λ1∈C∞

b (Rd )

{
μ0(λ0) − μ1(λ1)

}
.(3.3)

ASSUMPTION 3.7. The function L is uniformly continuous in x in the sense
that

�xL(ε) := sup
|L(t,x1, u) − L(t,x2, u)|

1 + L(t,x2, u)
−→ 0, as ε → 0,

where the supremum is taken over all 0 ≤ t ≤ 1, u ∈ U and all x1,x2 ∈ � such that
|x1 − x2|∞ ≤ ε.

THEOREM 3.8. Under the conditions of Theorem 3.6 together with Assump-
tion 3.7, we have V = V on M(Rd) × M(Rd).

The proof of the last result follows exactly the same arguments as those of
Mikami and Thieullen [30] in the proof of their Theorem 2.1. We report it in Sec-
tion 3.6 for completeness.

3.2. An enlarged space. In preparation of the proof of Theorem 3.6, we intro-
duce the enlarged canonical space

� := C
([0,1],Rd × Rd2 × Rd),(3.4)

following the technique used by Haussmann [22] in the proof of his Proposi-
tion 3.1.

On �, we denote the canonical filtration by F = (F t )0≤t≤1 and the canonical
process by (X,A,B), where X, B are d-dimensional processes and A is a d2-
dimensional process.

We consider a probability measure P on � such that X is an F-semimartingale
characterized by (A,B) and, moreover, (A,B) is P-a.s. absolutely continuous
w.r.t. t and νt ∈ U , dP × dt-a.e., where ν = (α,β) is defined by

αt := lim sup
n→∞

n(At − At−1/n) and βt := lim sup
n→∞

n(Bt − Bt−1/n).(3.5)
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We also denote by P the set of all probability measures P on (�, F 1) satisfying
the above conditions, and

P(μ0) := {P ∈ P : P ◦ X−1
0 = μ0

}
,

P(μ0,μ1) := {P ∈ P(μ0) : P ◦ X−1
1 = μ1

}
.

Finally, we denote

J (P) := EP
∫ 1

0
L(t,X, νt ) dt.

LEMMA 3.9. The function J is lower semicontinuous on P .

PROOF. We follow the lines in Mikami [29]. By exactly the same arguments
for proving inequality (3.17) in [29], under Assumptions 3.1 and 3.2, we get∫ 1

0
L(s,x, ηs) ds

(3.6)

≥ 1

1 + �tL(ε)

∫ 1−ε

0
L

(
s,x,

1

ε

∫ s+ε

s
ηt dt

)
ds − �tL(ε)

for every ε < 1, x ∈ � and Rd2+d -valued process η.
Suppose now (Pn)n≥1 is a sequence of probability measures in P which con-

verges weakly to some P0 ∈ P . Replacing (x, η) in (3.6) by (X, ν), taking expec-
tation under Pn, by the definition of νt in (3.5) as well as the absolute continuity
of (A,B) in t , it follows that

J
(
Pn)= EPn

∫ 1

0
L(s,X, νs) ds

= 1

1 + �tL(ε)
EPn
[∫ 1−ε

0
L

(
s,X,

1

ε
(As+ε − As),

1

ε
(Bs+ε − Bs)

)
ds

]

− �tL(ε).

Next, by Fatou’s lemma, we find that

(X,A,B) �→
∫ 1−ε

0
L

(
s,X,

1

ε
(As+ε − As),

1

ε
(Bs+ε − Bs)

)
ds

is lower-semicontinuous. It follows by Pn → P0 that

lim inf
n→∞ J

(
Pn)≥ 1

1 + �tL(ε)
EP0
[∫ 1−ε

0
L

(
s,X,

1

ε

∫ s+ε

s
νt dt

)
ds

]
− �tL(ε).

Note that by the absolute continuity assumption of (A,B) in t under P0,

1

ε

∫ s+ε

s
νt (ω)dt −→ νs(ω) as ε → 0, for dP0 × dt-a.e. (ω, s) ∈ � × [0,1),
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and �tL(ε) → 0 as ε → 0 from Assumption 3.2; we then finish the proof by
sending ε to zero and using Fatou’s lemma. �

REMARK 3.10. In the Markovian case L(t,x, u) = �(t,x(t), u), for some de-
terministic function �, we observe that Assumption 3.2 is stronger than Assump-
tion A2 in Mikami [29]. However, we can easily adapt this proof by introducing
the trajectory set {x : sup0≤t,s≤1,|t−s|≤ε |x(t) − x(s)| ≤ δ} and then letting ε, δ → 0
as in the proof of inequality (3.17) in [29].

Our next objective is to establish a one-to-one connection between the cost func-
tional J defined on the set P(μ0,μ1) of probability measures on � and the cost
functional J defined on the corresponding set P(μ0,μ1) on the enlarged space �.

PROPOSITION 3.11. (i) For any probability measure P ∈ P(μ0,μ1), there
exists a probability P ∈ P(μ0,μ1) such that J (P) = J (P).

(ii) Conversely, let P ∈ P(μ0,μ1) be such that EP
∫ 1

0 |βs |ds < ∞. Then, un-
der Assumption 3.1, there exists a probability measure P ∈ P(μ0,μ1) such that
J (P) ≤ J (P).

PROOF. (i) Given P ∈ P(μ0,μ1), define the processes AP, BP from decom-
position (2.1) and observe that the mapping ω ∈ � �→ (Xt(ω),AP

t (ω),BP
t (ω)) ∈

R2d+d2
is measurable for every t ∈ [0,1]. Then the mapping ω ∈ � �→ (X(ω),

AP(ω),BP(ω)) ∈ � is also measurable; see, for example, discussions in Chapter 2
of Billingsley [7] at page 57.

Let P be the probability measure on (�, F 1) induced by (P, (X,AP(X),

BP(X))). In the enlarged space (�, F 1,P), the canonical process X is clearly a
continuous semimartingale characterized by (AP(X),BP(X)). Moreover, (AP(X),

BP(X)) = (A,B), P-a.s., where (X,A,B) are canonical processes in �. It follows
that, on the enlarged space (�,F,P), X is a continuous semimartingale charac-
terized by (A,B). Also, (A,B) is clearly P-a.s. absolutely continuous in t , with
νP(X)t = νt , dP × dt-a.e., where ν is defined in (3.5). Then P is the required
probability in P(μ0,μ1) and satisfies J (P) = J (P).

(ii) Let us first consider the enlarged space �, and denote by FX = (F X
t )0≤t≤1

the filtration generated by process X. Then for every P ∈ P(μ0,μ1), (�,FX,P,X)

is still a continuous semimartingale, by the stability property of semimartingales.
It follows from Theorem A.3 in the Appendix that the decomposition of X under
filtration FX = (F X

t )0≤t≤1 can be written as

Xt = X0 + B̄(X)t + M̄(X)t = X0 +
∫ t

0
β̄s ds + M̄(X)t ,

with A(X)t := 〈M̄(X)〉t = ∫ t
0 ᾱs ds, β̄s = EP[βs |F X

s ] and ᾱs = αs , dP × dt-a.e.
Moreover, by the convexity property (2.3) of the set U , it follows that (ᾱ, β̄) ∈ U ,
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dP × dt-a.e. Finally, since F X
t = Ft ⊗{∅,C([0,1],Rd2 × Rd)}, P then induces a

probability measure P on (�, F1) by

P[E] := P
[
E × C

([0,1],Rd2 × Rd)] ∀E ∈ F1.

Clearly, P ∈ P(μ0,μ1) and J (P) ≤ J (P) by the convexity of L in b of Assump-
tion 3.1 and Jensen’s inequality. �

REMARK 3.12. Let P ∈ P be such that J (P) < ∞, then from the coercivity
property of L in u in Assumption 3.3, it follows immediately that EP

∫ 1
0 |βs |ds <

∞.

3.3. Lower semicontinuity and existence. By the correspondence between J

and J (Proposition 3.11) and the lower semicontinuity of J (Lemma 3.9), we now
obtain the corresponding property for V under the crucial Assumption 3.3, which
guarantees the tightness of any minimizing sequence of our problem V (μ0,μ1).

LEMMA 3.13. Under Assumptions 3.1, 3.2 and 3.3, the map

(μ0,μ1) ∈ M
(
Rd)× M

(
Rd) �−→ V (μ0,μ1) ∈ R := R ∪ {∞}

is lower semicontinuous.

PROOF. We follow the arguments in Lemma 3.1 of Mikami and Thieullen [30].
Let (μn

0) and (μn
1) be two sequences in M(Rd) converging weakly to μ0,μ1 ∈

M(Rd), respectively, and let us prove that

lim inf
n→∞ V

(
μn

0,μ
n
1
)≥ V (μ0,μ1).

We focus on the case lim infn→∞ V (μn
0,μ

n
1) < ∞, as the result is trivial in the

alternative case. Then, after possibly extracting a subsequence, we can assume
that (V (μn

0,μ
n
1))n≥1 is bounded, and there is a sequence (Pn)n≥1 such that Pn ∈

P(μn
0,μ

n
1) for all n ≥ 1 and

sup
n≥1

J (Pn) < ∞, 0 ≤ J (Pn) − V
(
μn

0,μ
n
1
)−→ 0 as n → ∞.(3.7)

By Assumption 3.3 it follows that supn≥1 EPn
∫ 1

0 |νPn
s |p ds < ∞. Then, it follows

from Theorem 3 of Zheng [38] that the sequence (Pn)n≥1, of probability measures
induced by (Pn,X,APn,BPn) on (�, F 1), is tight. Moreover, under any one of
their limit laws P, the canonical process X is a semimartingale characterized by
(A,B) such that (A,B) are still absolutely continuous in t . Moreover, ν ∈ U,dP×
dt-a.e. since 1

t−s
(At − As,Bt − Bs) ∈ U,dP-a.s. for every t, s ∈ [0,1], hence,

P ∈ P(μ0,μ1). We then deduce from (3.7), Proposition 3.11 and Lemma 3.9 that

lim inf
n→∞ V

(
μn

0,μ
n
1
)= lim inf

n→∞ J (Pn) = lim inf
n→∞ J (Pn) ≥ J (P).
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By Remark 3.12 and Proposition 3.11, we may find P ∈ P(μ0,μ1) such that
J (P) ≥ J (P). Hence, lim infn→∞ V (μn

0,μ
n
1) ≥ J (P) ≥ V (μ0,μ1), completing the

proof. �

PROPOSITION 3.14. Let Assumptions 3.1, 3.2 and 3.3 hold true. Then for ev-
ery μ0, μ1 ∈ M(Rd) such that V (μ0,μ1) < ∞, existence holds for the minimiza-
tion problem V (μ0,μ1). Moreover, the set of minimizers {P ∈ P(μ0,μ1) :J (P) =
V (μ0,μ1)} is a compact set of probability measures on �.

PROOF. We just let (μn
0,μ

n
1) = (μ0,μ1) in the proof of Lemma 3.13, then the

required existence result is proved by following the same arguments. �

3.4. Convexity.

LEMMA 3.15. Let Assumptions 3.1 and 3.3 hold, then the map (μ0,μ1) �→
V (μ0,μ1) is convex.

PROOF. Given μ1
0, μ2

0, μ1
1, μ2

1 ∈ M(Rd) and μ0 = θμ1
0 + (1 − θ)μ2

0, μ1 =
θμ1

1 + (1 − θ)μ2
1 with θ ∈ (0,1), we shall prove that

V (μ0,μ1) ≤ θV
(
μ1

0,μ
1
1
)+ (1 − θ)V

(
μ2

0,μ
2
1
)
.

It is enough to show that for both Pi ∈ P(μi
0,μ

i
1) such that J (Pi ) < ∞, i = 1,2,

we can find P ∈ P(μ0,μ1) satisfying

J (P) ≤ θJ (P1) + (1 − θ)J (P2).(3.8)

As in Lemma 3.13, let us consider the enlarged space �, on which the probabil-
ity measures Pi are induced by (Pi ,X,APi ,BPi ), i = 1,2. By Proposition 3.11,
(Pi )i=1,2 are probability measures under which X is a F-semimartingale charac-
terized by the same process (A,B), which is absolutely continuous in t , such that
J (Pi ) = J (Pi ), i = 1,2.

By Corollary III.2.8 of Jacod and Shiryaev [25], P := θP1 + (1 − θ)P2 is also
a probability measure under which X is an F-semimartingale characterized by
(A,B). Clearly, ν ∈ U,dP × dt-a.e. since it is true dPi × dt-a.e. for i = 1,2.
Thus, P ∈ P(μ0,μ1) and it satisfies that

J (P) = θJ (P1) + (1 − θ)J (P2) = θJ (P1) + (1 − θ)J (P2) < ∞.

Finally, by Remark 3.12 and Proposition 3.11, we can construct P ∈ P(μ0,μ1)

such that J (P) ≤ J (P), and it follows that inequality (3.8) holds true. �
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3.5. Proof of the duality result. We follow the first part of the proof of The-
orem 2.1 in Mikami and Thieullen [30]. If V (μ0,μ1) is infinite for every μ1 ∈
M(Rd), then J (P) = ∞ for all P ∈ P(μ0). It follows from (3.1) and Lemma 3.5
that

V (μ0,μ1) = V(μ0,μ1) = ∞.

Now, suppose that V (μ0, ·) is not always infinite. Let M(Rd) be the space of
all finite signed measures on (Rd, B(Rd)), equipped with weak topology, that is,
the coarsest topology making μ �→ μ(φ) continuous for every φ ∈ Cb(R

d). As
indicated in Section 3.2 of [17], the topology inherited by M(Rd) as a subset of
M(Rd) is its weak topology. We then extend V (μ0, ·) to M(Rd) ⊃ M(Rd) by
setting V (μ0,μ1) = ∞ when μ1 ∈ M(Rd) \ M(Rd), thus, μ1 �→ V (μ0,μ1) is a
convex and lower semicontinuous function defined on M(Rd). Then, the duality
result V = V follows from Theorem 2.2.15 and Lemma 3.2.3 in [17], together with
the fact that for λ1 ∈ Cb(R

d),

sup
μ1∈M(Rd )

{
μ1(−λ1) − V (μ0,μ1)

}

= − inf
μ1∈M(Rd )

P∈P(μ0,μ1)

EP

[∫ 1

0
L
(
s,X, νP

s

)
ds + λ1(X1)

]

= − inf
P∈P(μ0)

EP

[∫ 1

0
L
(
s,X, νP

s

)
ds + λ1(X1)

]

= −μ0(λ0),

where the last equality follows by Lemma 3.5.

3.6. Proof of Theorem 3.8. The proof is almost the same as that of Theo-
rem 2.1 of Mikami and Thieullen [30]; we report it here for completeness. Let ψ ∈
C∞

c ([−1,1]d,R+) be such that
∫
Rd ψ(x) dx = 1, and define ψε(x) := ε−dψ(x/ε).

We claim that

V(μ0,μ1) ≥ V(ψε ∗ μ0,ψε ∗ μ1)

1 + �xL(ε)
− �xL(ε).(3.9)

Since the inequality V ≥ V is obvious, the required result is then obtained by send-
ing ε → 0 and using Assumption 3.7 together with Lemma 3.13.

Hence, we only need to prove the claim (3.9). Let us denote δ := �xL(ε) in the
rest of this proof. We first observe from Assumption 3.7 that

L(s,x, u) ≥ L(s,x + z,u)

1 + δ
− δ for all z ∈ R satisfying |z| ≤ ε,

where x + z := (x(t) + z)0≤t≤1 ∈ �. For an arbitrary λ1 ∈ Cb(R
d), we denote

λε
1 := (1 + δ)−1λ1 ∗ ψε ∈ C∞

b . Let P ∈ P(μ0) and Z be a r.v. independent of X
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with distribution defined by the density function ψε under P. Then the probability
Pε on � induced by (P,X + Z := (Xt + Z)0≤t≤1,A

P,BP) is in P(ψε ∗ μ0), and

EP

[∫ 1

0
L
(
s,X, νP

s

)
ds + λε

1(X1)

]

≥ −δ + 1

1 + δ
EP

[∫ 1

0
L
(
s,X + Z,νP

s

)
ds + λ1(X1 + Z)

]

= −δ + 1

1 + δ
EPε

[∫ 1

0
L(s,X, νs) ds + λ1(X1)

]

≥ −δ + 1

1 + δ
inf

P̃∈P(ψε∗μ0)

EP̃

[∫ 1

0
L
(
s,X, νP̃

s

)
ds + λ1(X1)

]
,

where the last inequality follows from Proposition 3.11.
Notice that μ1(λ

ε
1) = (1+ δ)−1(ψε ∗μ1)(λ1) by Fubini’s theorem. Then, by the

arbitrariness of λ1 ∈ Cb(R
d) and P ∈ P(μ0), the last inequality implies (3.9).

4. Characterization of the dual formulation. In the rest of the paper we
assume that

L(t,x, u) = �
(
t,x(t), u

)
,

where the deterministic function � : (t, x, u) ∈ [0,1] × Rd × U �→ �(t, x, u) ∈ R+
is nonnegative and convex in u. Then, the function λ0 in (3.2) is reduced to the
value function of a standard Markovian stochastic control problem:

λ0(x) = inf
P∈P(δx)

EP

[∫ 1

0
�
(
s,Xs, ν

P
s

)
ds + λ1(X1)

]
.(4.1)

Our main objective is to characterize λ0 by means of the corresponding dynamic
programming equations. Then in the case of bounded characteristics, we show
more regularity as well as approximation properties of λ0, which serves as a prepa-
ration for the numerical approximation in Section 5.

4.1. PDE characterization of the dynamic value function. Let us consider the
probability measures P on the canonical space (�, F1), under which the canon-
ical process X is a semimartingale on [t,1], characterized by

∫ ·
t νP

s ds for some
progressively measurable process νP. As discussed in Remark 2.2, νP is unique
on � × [t,1] in the sense of dP × dt-a.e. Following the definition of P just be-
low (2.3), we denote by Pt the collection of all such probability measures P such
that νP

s ∈ U , dP × dt-a.e. on � × [t,1]. Let

Pt,x := {P ∈ Pt : P[Xs = x,0 ≤ s ≤ t] = 1
}
.(4.2)
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We notice that under probability P ∈ Pt,x , X is a semimartingale with νP
s = 0,

dP × dt-a.e. on � × [0, t]. The dynamic value function is defined for any λ1 ∈
Cb(R

d) by

λ(t, x) := inf
P∈Pt,x

EP

[∫ 1

t
�
(
s,Xs, ν

P
s

)
ds + λ1(X1)

]
.(4.3)

As in the previous sections, we also introduce the corresponding probability mea-
sures on the enlarged space (�, F 1). For all t ∈ [0,1], we denote by P t the collec-
tion of all probability measures P on (�, F 1) under which X is a semimartingale
characterized by (A,B) in � and ν ∈ U , dP × dt-a.e. on � × [t,1], where ν is
defined above (3.5). For every (t, x, a, b) ∈ [0,1] × Rd × Rd2 × Rd , let

P t,x,a,b := {P ∈ P : P
[
(Xs,As,Bs) = (x, a, b),0 ≤ s ≤ t

]= 1
}
.(4.4)

By similar arguments as in Proposition 3.11, we have under Assumption 3.1 that

λ(t, x) = inf
P∈P t,x,a,b

EP

[∫ 1

t
�(s,Xs, νs) ds + λ1(X1)

]
(4.5)

for all (a, b) ∈ Rd2 × Rd .
We would like to characterize the dynamic value function λ as the viscosity

solution of a dynamic programming equation. The first step is as usual to estab-
lish the dynamic programming principle (DPP). We observe that a weak dynamic
programming principle as introduced in Bouchard and Touzi [12] suffices to prove
that λ is a viscosity solution of the corresponding dynamic programming equa-
tion. The main argument in [12] to establish the weak DPP is the conditioning and
pasting techniques of the control process, which is convenient to use for control
problems in a strong formulation, that is, when the measure space (�, F ) as well
as the probability measure P are fixed a priori. However, we cannot use their tech-
niques since our problem is in weak formulation, where the controlled process is
fixed as a canonical process and the controls are given as probability measures on
the canonical space.

We will prove the standard dynamic programming principle. For a simpler prob-
lem (bounded convex controls set U and bounded cost functions, etc.), a DPP is
shown (implicitly) in Haussmann [22]. El Karoui, Nguyen and JeanBlanc [19] con-
sidered a relaxed optimal control problem and provided a scheme of proof without
all details. Our approach is to adapt the idea of [19] in our context and to provide
all details for their scheme of proof.

PROPOSITION 4.1. Let Assumptions 3.1, 3.2, 3.3 hold true. Then, for all F-
stopping time τ with values in [t,1], and all (a, b) ∈ Rd2+d ,

λ(t, x) = inf
P∈P t,x,a,b

EP

[∫ τ

t
�(s,Xs, νs) ds + λ(τ,Xτ )

]
.
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The proof is reported in Section 4.1.1. The dynamic programming equation is
the infinitesimal version of the above dynamic programming principle. Let

H(t, x,p,�) := inf
(a,b)∈U

[
b · p + 1

2
a · � + �(t, x, a, b)

]
(4.6)

for all (p,�) ∈ Rd × Sd.

THEOREM 4.2. Let Assumptions 3.1, 3.2, 3.3 hold true, and assume further
that λ is locally bounded and H is continuous. Then, λ is a viscosity solution of
the dynamic programming equation

−∂tλ(t, x) − H
(
t, x,Dλ,D2λ

)= 0,(4.7)

with terminal condition λ(1, x) = λ1(x).

The proof is very similar to that of Corollary 5.1 in [12]; we report it in the
Appendix for completeness.

REMARK 4.3. We first observe that H is concave in (p,�) as infimum of
a family of affine functions. Moreover, under Assumption 3.3, � is positive and
u �→ �(t, x, u) has growth larger than |u|p for p > 1; it follows that H is finite
valued and hence continuous in (p,�) for every fixed (t, x) ∈ [0,1] × Rd . If we
assume further that (t, x) �→ �(t, x, u) is uniformly continuous uniformly in u,
then clearly H is continuous in (t, x,p,�).

REMARK 4.4. The following are two sets of sufficient conditions to ensure
the local boundedness of λ in (4.3).

(i) Suppose 0 ∈ U , and let P ∈ Pt be such that νP
s = 0, dP × dt-a.e. Then,

λ(t, x) ≤ |λ1|∞ + ∫ 1
t �(s, x,0) ds and, hence, λ is locally bounded.

(ii) Suppose that there are constants C > 0 and (a0, b0) ∈ U such that
�(t, x, a0, b0) ≤ CeC|x|, for all (t, x) ∈ [0,1] × Rd . By considering P ∈ Pt in-
duced by the process Y = (Ys)t≤s≤1 with Ys := x + b0(s − t) + a

1/2
0 (Ws − Wt), it

follows that λ(t, x) ≤ |λ1|∞ + E[CeC maxt≤s≤1 |Ys |] < ∞.

4.1.1. Proof of the dynamic programming principle. We first prove that the
dynamic value function λ is measurable and we can choose “in a measurable way”
a family of probabilities (Qt,x,a,b)(t,x,a,b)∈[0,1]×R2d+d2 which achieves (or achieves
with ε error) the infimum in (4.5). The main argument is Theorem A.1 cited in the
Appendix which follows directly from the measurable selection theorem.

Let λ∗ be the upper semicontinuous envelope of the function λ, and

P̃t,x,a,b :=
{
P ∈ P t,x,a,b : EP

[∫ 1

t
�(s,Xs, νs) ds + λ1(X1)

]
≤ λ∗(t, x)

}
,

P̃ := {(t, x, a, b,P) : P ∈ P̃t,x,a,b

}
.
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In the following statement, for the Borel σ -field B([0,1] × R2d+d2
) of [0,1] ×

R2d+d2
with an arbitrary probability measure μ on it, we denote by Bμ([0,1] ×

R2d+d2
) its σ -field completed by μ.

LEMMA 4.5. Let Assumptions 3.1, 3.2, 3.3 hold true, and assume that λ is lo-
cally bounded. Then, for any probability measure μ on ([0,1]×R2d+d2

, B([0,1]×
R2d+d2

)),

(i) the function (t, x, a, b) �→ λ(t, x) is Bμ([0,1] × R2d+d2
)-measurable,

(ii) for any ε > 0, there is a family of probability (Q̄ε
t,x,a,b)(t,x,a,b)∈[0,1]×R2d+d2

in P̃ such that (t, x, a, b) �→ Q̄ε
t,x,a,b is a measurable map from [0,1] × R2d+d2

to
M(�) and

E
Q̄ε

t,x,a,b

[∫ 1

t
�(s,Xs, νs) ds + λ1(X1)

]
≤ λ(t, x) + ε, μ-a.s.

PROOF. By Lemma 3.9, the map P �→ EP[∫ 1
t �(s,Xs, νs) ds + λ1(X1)] is

lower semicontinuous, and therefore measurable. Moreover, P̃t,x,a,b is nonempty
for every (t, x, a, b) ∈ [0,1] × R2d+d2

. Finally, by using the same arguments as in
the proof of Lemma 3.13, we see that P̃ is a closed subset of [0,1] × R2d+d2 ×
M(�). Then, both items of the lemma follow from Theorem A.1. �

We next prove the stability properties of probability measures under condition-
ing and concatenations at stopping times, which will be the key-ingredients for the
proof of the dynamic programming principle.

We first recall some results from Stroock and Varadhan [35] and define some
notation:

• For 0 ≤ t ≤ 1, let F t,1 := σ((Xs,As,Bs) : t ≤ s ≤ 1), and let P be a prob-
ability measure on (�, F t,1) with P[(Xt ,At ,Bt ) = ηt ] = 1 for some η ∈
C([0, t],R2d+d2

). Then, there is a unique probability measure δη ⊗t P on
(�, F 1) such that δη ⊗t P[(Xs,As,Bs) = ηs,0 ≤ s ≤ t] = 1 and δη ⊗t P[A] =
P[A] for all A ∈ F t,1. In addition, if P is also a probability measure on (�, F 1),
under which a process M defined on � is a F-martingale after time t , then M

is still a F-martingale after time t in probability space (�, F 1, η ⊗t P). In par-
ticular, for t ∈ [0,1], a constant c0 ∈ R2d+d2

and P satisfying P[(Xt ,At ,Bt ) =
c0] = 1, we denote δc0 ⊗t P := δηc0 ⊗t P, where η

c0
s = c0, s ∈ [0, t].

• Let Q̄ be a probability measure on (�, F 1) and τ a F-stopping time. Then,
there is a family of probability measures (Q̄ω)ω∈� such that ω �→ Q̄ω is F τ -
measurable, for every E ∈ F 1, Q̄[E|F τ ](ω) = Q̄ω[E] for Q̄-almost every
ω ∈ � and, finally, Q̄ω[(Xt ,At ,Bt ) = ωt : t ≤ τ(ω)] = 1, for all ω ∈ �. This
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is Theorem 1.3.4 of [35], and (Q̄ω)ω∈� is called the regular conditional proba-
bility distribution (r.c.p.d.)

LEMMA 4.6. Let P ∈ P t,x,a,b, τ be an F-stopping time taking value in [t,1],
and (Q̄ω)ω∈� be a r.c.p.d. of P|F τ . Then there is a P-null set N ∈ F τ such that
δωτ(ω)

⊗τ(ω) Q̄ω ∈ P τ(ω),ωτ(ω)
for all ω /∈ N .

PROOF. Since P ∈ P t,x,a,b, it follows from Theorem II.2.21 of Jacod and
Shiryaev [25] that

(Xs − Bs)t≤s≤1,
(
(Xs − Bs)

2 − As

)
t≤s≤1

are all local martingales after time t . Then it follows from Theorem 1.2.10 of
Stroock and Varadhan [35] together with a localization technique that there is
a P-null set N1 ∈ F τ such that they are still local martingales after time τ(ω)

both under Q̄ω and δωτ(ω)
⊗τ(ω) Q̄ω, for all ω /∈ N1. It is clear, moreover, that

ν ∈ U,dQ̄ω × dt-a.e. on �×[τ(ω),1] for P-a.e. ω ∈ �. Then there is a P-null set
N ∈ F τ such that δωτ(ω)

⊗τ(ω) Q̄ω ∈ P τ(ω),ωτ(ω)
for every ω /∈ N . �

LEMMA 4.7. Let Assumptions 3.1, 3.2, 3.3 hold true, and assume that λ is lo-
cally bounded. Let P ∈ P t,x,a,b, τ ≥ t a F-stopping time, and (Q̄ω)ω∈� a family of
probability measures such that Q̄ω ∈ P τ(ω),ωτ(ω)

and ω �→ Q̄ω is F τ -measurable.
Then there is a unique probability measure, denoted by P⊗τ(·) Q̄·, in P t,x,a,b, such
that P ⊗τ(·) Q̄· = P on F τ , and

(δω ⊗τ(ω) Q̄ω)ω∈� is a r.c.p.d. of P ⊗τ(·) Q̄·|F τ .(4.8)

PROOF. The existence and uniqueness of the probability measure P ⊗τ(·) Q̄·
on (�, F 1), satisfying (4.8), follows from Theorem 6.1.2 of [35]. It remains to
prove that P ⊗τ(·) Q̄· ∈ P t,x,a,b.

Since Q̄ω ∈ P τ(ω),ωτ(ω)
, X is a δω ⊗τ(ω) Q̄ω-semimartingale after time τ(ω),

characterized by (A,B). Then, the processes X − B and (X − B)2 − A are lo-
cal martingales under δω ⊗τ(ω) Q̄ω after time τ(ω). By Theorem 1.2.10 of [35]
together with a localization argument, they are still local martingales under
P ⊗τ(·) Q̄·. Hence, the required result follows from Theorem II.2.21 of [25]. �

We have now collected all the ingredients for the proof of the dynamic program-
ming principle.

PROOF OF PROPOSITION 4.1. Let τ be an F-stopping time taking value in
[t,1]. We proceed in two steps:
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(1) For P ∈ P t,x,a,b, we denote by (Q̄ω)ω∈� a family of regular conditional
probability distribution of P|F τ , and P

ω

τ := δωτ(ω)
⊗τ(ω) Q̄ω. By the representa-

tion (4.5) of λ, together with the tower property of conditional expectations, we
see that

λ(t, x)

= inf
P∈P t,x,a,b

EP

[∫ τ

t
�(s,Xs, νs) ds +

∫ 1

τ
�(s,Xs, νs) ds + λ1(X1)

]
(4.9)

= inf
P∈P t,x,a,b

EP

[∫ τ

t
�(s,Xs, νs) ds + EP

ω
τ

{∫ 1

τ
�(s,Xs, νs) ds + λ1(X1)

}]

≥ inf
P∈P t,x,a,b

EP

[∫ τ

t
�(s,Xs, νs) ds + λ(τ,Xτ )

]
,

where the last inequality follows from the fact that P
ω

τ ∈ P τ(ω),ωτ(ω)
by Lemma 4.6.

(2) For ε > 0, let (Q̄ε
t,x,a,b)[0,1]×R2d+d2 be the family defined in Lemma 4.5,

and denote Q̄ε
ω := Q̄ε

τ(ω),ωτ(ω)
. Then ω �→ Q̄ε

ω is F τ -measurable. Moreover, for all

P ∈ P t,x,a,b, we may construct by Lemmas 4.5 and 4.7 P ⊗τ(·) Q̄· ∈ P t,x,a,b such
that

EP⊗τ(·)Q̄·
[∫ 1

t
�(s,Xs, νs) ds + λ1(X1)

]

≤ EP

[∫ τ

t
�(s,Xs, νs) ds + λ(τ,Xτ )

]
+ ε.

By the arbitrariness of P ∈ P t,x,a,b and ε > 0, together with the representa-
tion (4.5) of λ, this implies that the reverse inequality to (4.9) holds true, and the
proof is complete. �

We conclude this section by the following:

PROOF OF LEMMA 3.5. By the same arguments as in Lemma 4.5, we can
easily deduce that λ0 is Bμ0(Rd)-measurable, and we just need to prove that

μ0(λ0) = inf
P∈P(μ0)

EP

[∫ 1

0
�(s,Xs, νs) ds + λ1(X1)

]
.

Given a probability measure P ∈ P(μ0), we can get a family of conditional prob-
abilities (Q̄ω)ω∈� such that Q̄ω ∈ P 0,ω0 , which implies that

EP

[∫ 1

0
�(s,Xs, νs) ds + λ1(X1)

]
≥ μ0(λ0) ∀P ∈ P(μ0).
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On the other hand, for every ε > 0 and μ0 ∈ M(Rd), we can select a measurable
family of (Q̄ε

x ∈ P 0,x,0,0)x∈Rd such that

EQ̄ε
x

[∫ 1

0
�(s,Xs, νs) ds + λ1(X1)

]
≤ λ0(x) + ε, μ0-a.s.,

and then construct a probability measure μ0 ⊗0 Q̄ε· ∈ P(μ0) by concatenation such
that

Eμ0⊗0Q̄ε·
[∫ 1

0
�(s,Xs, νs) ds + λ1(X1)

]
≤ μ0(λ0) + ε ∀ε > 0,

which completes the proof. �

4.2. Bounded domain approximation under bounded characteristics. The
main purpose of this section is to show that when U is bounded, then λ0 in (4.1) is
Lipschitz, and we may construct a convenient approximation of λ0 by restricting
the space domain to bounded domains. These properties induce a first approxima-
tion for the minimum transportation cost V (μ0,μ1), which serves as a preparation
for the numerical approximation in Section 5. Let us assume the following condi-
tions.

ASSUMPTION 4.8. The control set U is compact, and � is Lipschitz-
continuous in x uniformly in (t, u).

ASSUMPTION 4.9.
∫
Rd |x|(μ0 + μ1)(dx) < ∞.

REMARK 4.10. We suppose that U is compact for two main reasons. First, the
uniqueness of viscosity solution of the HJB (4.7) relies on the comparison princi-
ple, for which the boundedness of U is generally necessary. Further, to construct
a convergent (monotone) numerical scheme for a stochastic control problem, it is
also generally necessary to suppose that the diffusion functions are bounded (see
also Section 5.1 for more discussions).

4.2.1. The unconstrained control problem in the bounded domain. Denote

M := sup
(t,x,u)∈[0,1]×Rd×U

(|u| + ∣∣�(t,0, u)
∣∣+ ∣∣∇x�(t, x, u)

∣∣),(4.10)

where ∇x�(t, x, u) is the gradient of � with respect to x which exists a.e. under
Assumption 4.8. Let OR := (−R,R)d ⊂ Rd for every R > 0, a stopping time τR

can be defined as the first exit time of the canonical process X from OR ,

τR := inf{t :Xt /∈ OR},
and define for all bounded functions λ1 ∈ Cb(R

d),

λR(t, x) := inf
P∈Pt,x

EP

[∫ τR∧1

t
�
(
s,Xs, ν

P
s

)
ds + λ1(XτR∧1)

]
.(4.11)
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LEMMA 4.11. Suppose that λ1 is K-Lipschitz satisfying λ1(0) = 0 and As-
sumption 4.8 holds true. Then λ and λR are Lipschitz-continuous, and there is a
constant C depending on M such that∣∣λ(t,0)

∣∣+ ∣∣λR(t,0)
∣∣+ ∣∣∇xλ(t, x)

∣∣+ ∣∣∇xλ
R(t, x)

∣∣≤ C(1 + K)

for all (t, x) ∈ [0,1] × Rd .

PROOF. We only provide the estimates for λ; those for λR follow from the
same arguments. First, by Assumption 4.8 together with the fact that λ1 is K-
Lipschitz and λ1(0) = 0, for every P ∈ Pt,0,

EP

[∫ 1

t
�
(
s,Xs, ν

P
s

)
ds + λ1(X1)

]
≤ M + (M + K) sup

t≤s≤1
EP|Xs |.

Recall that X is a continuous semimartingale under P whose finite variation part
and quadratic variation of the martingale part are both bounded by a constant M .
Separating the two parts and using Cauchy–Schwarz’s inequality, it follows that
EP|Xs | ≤ M + √

M,∀t ≤ s ≤ 1, and then |λ(t,0)| ≤ M + (M + K)(M + √
M).

We next prove that λ is Lipschitz and provide the corresponding estimate. Ob-
serve that Pt,y = {P := P̃ ◦ (X + y − x)−1 : P̃ ∈ Pt,x}. Then∣∣λ(t, x) − λ(t, y)

∣∣
≤ sup

P∈Pt,x

EP

∣∣∣∣
∫ 1

t
�
(
s,Xs, ν

P
s

)− �
(
s,Xs + y − x, νP

s

)
ds

+ λ1(X1) − λ1(X1 + y − x)

∣∣∣∣
≤ (M + K)|y − x|

by the Lipschitz property of � and λ in x. �

Denoting λR
0 := λR(0, ·), in the special case where U is a singleton, equa-

tion (4.14) degenerates to the heat equation. Barles, Daher and Romano [2] proved
that the error λ−λR satisfies a large deviation estimate as R → ∞. The next result
extends this estimate to our context.

LEMMA 4.12. Letting Assumption 4.8 hold true, we denote |x| := maxd
i=1 |xi |

for x ∈ Rd and choose R > 2M . Then, there is a constant C such that for all
K > 0, all K-Lipschitz function λ1 and |x| ≤ R − M ,∣∣λR − λ

∣∣(t, x) ≤ C(1 + K)e−(R−M−|x|)2/2M.

PROOF. (1) For arbitrary (t, x) ∈ [0,1] × Rd and P ∈ Pt,x , we denote Y i :=
sup0≤s≤1 |Xi

s |, where Xi is the ith component of the canonical process X. By
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the Dubins–Schwarz time-change theorem (see, e.g., Theorem 4.6, Chapter 3 of
Karatzas and Shreve [26]), we may represent the continuous local martingale part
of Xi as a time-changed Brownian motion W . Since the characteristics of X are
bounded by M , we see that

Si(R) := P
[
Y i ≥ R

] ≤ P
[

sup
0≤t≤M

|Wt | ≥ R − |xi | − M
]

≤ 2P
[

sup
0≤t≤M

Wt ≥ R − |xi | − M
]

(4.12)

= 4
(
1 − N

(
RM|xi |
))

,

where RM|xi | := (R − M − |xi |)/
√

M , N is the cumulative distribution function of
the standard normal distribution N(0,1), and the last equality follows from the
reflection principle of the Brownian motion. Then by integration by parts as well
as (4.12),

EP[Y i1Y i≥R

]= RSi(R) +
∫ ∞
R

Si(z) dz

≤ 4
∫ ∞
R

1√
M

1√
2π

exp
(

(z − M − |xi |)2

2M

)
z dz

= 4
(|xi | + M

)(
1 − N

(
RM|xi |
))+ 4

√
M√

2π
exp
(
−(RM|xi |)

2

2

)
.

We further remark that for any R > 0,

(
1 − N(R)

)= ∫ ∞
R

1√
2π

e−t2/2 dt ≤ 1

R

∫ ∞
R

1√
2π

te−t2/2 dt = 1√
2π

1

R
e−R2/2.

(2) By definitions of λ, λR , it follows that for all (t, x) such that |x| ≤ R − M ,

∣∣λ − λR
∣∣(t, x) ≤ sup

P∈Pt,x

EP

[∫ 1

τR∧1

∣∣�(s,Xs, ν
P
s

)∣∣ds + ∣∣λ1(XτR∧1) − λ1(X1)
∣∣]

≤ sup
P∈Pt,x

EP
[(

M + √
dKR + (M + K) sup

t≤s≤1
|Xs |
)
1τR<1

]
(4.13)

≤ sup
P∈Pt,x

EP

[
d∑

i=1

(
M + √

dKR + √
d(M + K)Yi

)
1Yi≥R

]

≤ C(1 + K)e
−(RM|x|)2/2

for some constant C depending on M and d . This completes the proof. �

With the estimate in Lemma 4.11, we have the following result.
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THEOREM 4.13. Suppose that Assumptions 3.1, 3.2, 3.3 hold true and H

given by (4.6) is continuous. Then the function λR in (4.11) is the unique viscosity
solution of equation

−∂tλ
R(t, x) − H

(
t, x,DλR,D2λR)= 0, (t, x) ∈ [0,1) × OR,(4.14)

with boundary conditions

λR(t, x) = λ1(x) for all (t, x) ∈ ([0,1) × ∂OR

)∪ ({1} × OR

)
,(4.15)

where ∂OR denotes the boundary of OR .

PROOF. First, it follows by the same arguments as in Theorem 4.2 that λR

is a viscosity solution of (4.14) with boundary condition (4.15). The uniqueness
follows by the comparison principle of (4.14), (4.15), which holds clearly true
from discussions in Example 3.6 of Crandall et al. [13]. �

4.2.2. Approximation of the transportation cost value. In the bounded char-
acteristics case, we can give a first approximation of the minimum transportation
cost. Nevertheless, a complete resolution needs a numerical approximation which
will be provided in Section 5. Let us fix the two probability measures μ0 and μ1,
and simplify the notation V (μ0,μ1) [resp., V(μ0,μ1)] to V (resp., V ).

First, under Assumptions 3.1, 3.2, 3.3, 3.7 and 4.8, it follows by our duality
result of Theorem 3.6 together with Theorem 3.8 that

V = V := sup
λ1∈Cb(R

d )

(
μ0(λ0) − μ1(λ1)

)
(4.16)

= V := sup
λ1∈C∞

b (Rd )

(
μ0(λ0) − μ1(λ1)

)
,

where λ0 is defined in (3.2).
Let Lip0

K denote the collection of all bounded K-Lipschitz-continuous func-
tions φ : Rd −→ R with φ(0) = 0, and denote Lip0 :=⋃K>0 Lip0

K . Since v(λ1 +
c) = v(λ1) for any λ1 ∈ Cb(R

d) and c ∈ R, we deduce from (4.16) that

V = sup
λ1∈Lip0

v(λ1) where v(λ1) := μ0(λ0) − μ1(λ1).

As a first approximation, we introduce the function

V K := sup
λ1∈Lip0

K

v(λ1).(4.17)

Under Assumptions 4.8 and 4.9, it is clear that V K < ∞,∀K > 0 by Lemma 4.11.
Then, it is immediate that(

V K)
K>0 is increasing and V K −→ V as K → ∞.(4.18)
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Letting λR be defined in (4.11) for every R > 0, denote

V K,R := sup
λ1∈LipK

0

vR(λ1) and

(4.19)
vR(λ1) := μ0

(
λR

0 1OR

)− μ1(λ11OR
).

Then the second approximation is on variable R.

PROPOSITION 4.14. Let Assumptions 4.8 and 4.9 hold true, then for all
K > 0, ∣∣V K,R − V K

∣∣
(4.20)

≤ C(1 + K)

(
e−R2/8M+R/2 +

∫
Oc

R/2

(
1 + |x|)(μ0 + μ1)(dx)

)
.

PROOF. By their definitions in (4.17) and (4.19), we have∣∣V K,R − V K
∣∣

=
∣∣∣ sup
λ1∈Lip0

K

{
μ0
(
λR

0 1OR

)− μ1(λ11OR
)
}− sup

λ1∈Lip0
K

{
μ0(λ0) − μ1(λ1)

}∣∣∣
≤ sup

λ1∈Lip0
K

∣∣μ0
(
λR

0 1OR

)− μ0(λ0)
∣∣+ K

∫
Oc

R

|x|μ1(dx).

Now for all λ1 ∈ Lip0
K , we estimate from Lemmas 4.11 and 4.12 that∣∣μ0

(
λR

0 1OR

)− μ0(λ0)
∣∣

≤ μ0
(∣∣λR

0 − λ0
∣∣1OR/2

)+ μ0
((∣∣λR

0
∣∣+ |λ0|)1(OR/2)

c

)
≤ C(1 + K)

(∫
OR/2

e
−(RM|x|)2/2

μ0(dx) +
∫
(OR/2)

c

(
1 + |x|)μ0(dx)

)
.

Observing that (RM|x|)2 ≥ R2/4M − R + M on OR/2, this implies that
∣∣μ0
(
λR

0 1OR

)− μ0(λ0)
∣∣

≤ C(1 + K)

(
e−R2/8M+R/2 +

∫
(OR/2)

c

(
1 + |x|)μ0(dx)

)
,

and the required estimate follows. �

5. Numerical approximation. Throughout this section, we consider the
Markovian context where L(t,x, u) = �(t,x(t), u) under bounded characteristics.
Our objective is to provide an implementable numerical algorithm to compute
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V K,R in (4.19), which is itself an approximation of the minimum transportation
cost V in (4.16).

Although there are many numerical methods for nonlinear PDEs, our problem
concerns the maximization over the solutions of a class of nonlinear PDEs. To the
best of our knowledge, it is not addressed in the previous literature. In Bonnans and
Tan [10], a similar but more specific problem is considered. Their set U allowing
for unbounded diffusions is out of the scope of this paper. However, by using the
specific structure of their problem, their key observation is to convert the uncon-
strained control problem into an optimal stopping problem for which they propose
a numerical approximation scheme. Our numerical approximation is slightly dif-
ferent, as we avoid the issue of singular stochastic control by restricting to bounded
controls, but uses their gradient algorithm for the minimization over the choice of
Lagrange multipliers λ1.

In the following, we shall first give an overview of the numerical methods for
nonlinear PDEs in Section 5.1. Then by constructing the finite difference scheme
for nonlinear PDE (4.14), we get a discrete optimization problem in Section 5.2
which is an approximation of V K,R . We then provide a gradient algorithm for the
resolution of the discrete optimization problem in Section 5.3. Finally, we imple-
ment our numerical algorithm to test its efficiency in Section 5.4.

In the remaining part of this paper, we restrict the discussion to the one-
dimensional case

d = 1 so that OR = (−R,R).

5.1. Overview of numerical methods for nonlinear PDEs. There are several
numerical schemes for nonlinear PDEs of the form (4.7), for example, the finite
difference scheme, semi-Lagrangian scheme and Monte-Carlo schemes. General
convergence is usually deduced by the monotone convergence technique of Bar-
les and Souganidis [4] or the controlled Markov-chain method of Kushner and
Dupuis [27]. Both methods demand the monotonicity of the scheme, which implies
that in practice we should assume the boundedness of drift and diffusion functions
[see, e.g., the CFL condition (5.3) below]. To derive a convergence rate, we usually
apply Krylov’s perturbation method; see, for example, Barles and Jakobsen [3].

For the finite difference scheme, the monotonicity is guaranteed by the CFL
condition [see, e.g., (5.3) below] in the one-dimensional case d = 1. However, in
the general d-dimensional case, it is usually hard to construct a monotone scheme.
Kushner and Dupuis [27] suggested a construction when all covariance matrices
are diagonal dominated. Bonnans et al. [8, 11] investigated this issue and provided
an implementable but sophisticated algorithm in the two-dimensional case. Debra-
bant and Jakobsen [15] proposed recently a semi-Lagrangian scheme for nonlinear
equations of the form (4.7). However, to be implemented, it still needs to discretize
the space and then to use an interpolation technique. Therefore, it can be viewed
as a kind of finite difference scheme.
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In the high-dimensional case, it is generally preferred to use Monte-Carlo
schemes. For linear and semilinear parabolic PDEs, the Monte-Carlo methods
are usually induced by the Feynman–Kac formula and backward stochastic dif-
ferential equations (BSDEs). This scheme is then generalized by Fahim, Touzi and
Warin [20] for fully nonlinear PDEs. The idea is to approximate the derivatives
of the value function arising in the PDE by conditional expectations, which can
then be estimated by simulation-regression methods. However, the Monte-Carlo
method is not convenient to be used here since for every terminal condition λ1,
one needs to simulate many paths of a stochastic differential equation and then to
solve the PDE by regression method, which makes the computation too costly.

For our problem in (4.19), we finally choose to use the finite difference scheme
for the resolution of λR

0 since it is easy to be constructed explicitly as a monotone
scheme under explicit conditions in our context.

5.2. A finite differences approximation. Let (l, r) ∈ N2 and h = (�t,�x) ∈
(R+)2 be such that l�t = 1 and r�x = R. Denote xi := i�x, tk := k�t and define
the discrete grids:

N := {xi : i ∈ Z}, NR := N ∩ (−R,R),

MT ,R := {(tk, xi) : (k, i) ∈ Z+ × Z
}∩ ([0,1] × (−R,R)

)
.

The terminal set and boundary set as well as the interior set of MT ,R are denoted
by

∂T MT ,R := {(1, xi) :xi ∈ NR

}
, ∂R MT ,R := {(tk,±R) :k = 0, . . . , l

}
,

◦
MT ,R := MT ,R \ (∂T MT ,R ∪ ∂R MT ,R).

We shall use the finite differences method to solve the dynamic programming
equation (4.14), (4.15) on the grid MT ,R . For a function w defined on MT ,R , we
introduce the discrete derivatives of w:

D±w(tk, xi) := w(tk, xi±1) − w(tk, xi)

�x

and

(bD)w := b+D+w + b−D−w for b ∈ R,

where b+ := max(0, b), b− := max(0,−b); and

D2w(tk, xi) := w(tk, xi+1) − 2w(tk, xi) + w(tk, xi−1)

�x2 .

We now define the function λ̂h,R(or λ̂h,R,λ̂1 to emphasize its dependence on the
boundary condition λ̂1) on the grid MT ,R by the following explicit finite differ-
ences approximation of the dynamic programming equation (4.14):

λ̂h,R(tk, xi) = λ̂1(xi) on ∂T MT ,R ∪ ∂R MT ,R,
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and on
◦

MT ,R ,

λ̂h,R(tk, xi)
(5.1)

=
(
λ̂h,R + �t inf

u=(a,b)∈U

{
�(·, u) + (bD)λ̂h,R + 1

2
aD2λ̂h,R

})
(tk+1, xi).

We then introduce the following natural approximation of vR :

v̂R
h (λ̂1) := μ0

(
linR[λ̂h,R

0

])− μ1
(
linR[λ̂1]) where λ̂

h,R
0 := λ̂h,R(0, ·),(5.2)

and for all functions φ defined on the grid NR we denote by linR[φ] the linear
interpolation of φ extended by zero outside [−R,R].

We shall also assume that the discretization parameters h = (�t,�x) satisfy
the CFL condition

�t

( |b|
�x

+ |a|
�x2

)
≤ 1 for all (a, b) ∈ U.(5.3)

Then the scheme (5.1) is L∞-monotone, so that the convergence of the scheme
is guaranteed by the monotonic scheme method of Barles and Souganidis [4]. For
our next result, we assume that the following error estimate holds.

ASSUMPTION 5.1. There are positive constants LK,R , ρ1, ρ2 which are inde-
pendent of h = (�t,�x), such that

μ0
(∣∣linR[λ̂h,R

0

]− λ01[−R,R]
∣∣)≤ LK,R

(
�tρ1 + �xρ2

)
for all λ1 ∈ LipK

0 and λ̂1 = λ1|NR
.

Let LipK,R
0 be the collection of all functions on the grid NR defined as restric-

tions of functions in LipK
0 :

LipK,R
0 := {λ̂1 := λ1|NR

for some λ1 ∈ LipK
0
}
.(5.4)

The above approximation of the dynamic value function λ suggests the following
natural approximation of the minimal transportation cost value:

V
K,R
h := sup

λ̂1∈LipK,R
0

v̂R
h (λ̂1)

(5.5)
= sup

λ̂1∈LipK,R
0

μ0
(
linR[λ̂h,R

0

])− μ1
(
linR[λ̂1]).

REMARK 5.2. Under Assumption 4.8 and the additional condition that � is
uniformly 1

2 -Hölder in t with constant M , then in spirit of the analysis in Barles
and Jakobsen [3], Assumption 5.1 holds true with ρ1 = 1

10 , ρ2 = 1
5 and LK,R =

C(1 + K + KR) with some constant C depending on M . This rate is not the best,
but to the best of our knowledge, it is the best rate which has been proved.
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THEOREM 5.3. Let Assumption 5.1 be true, then with the constants LK,R , ρ1,
ρ2 introduced in Assumption 5.1, we have∣∣V K,R

h − V K,R
∣∣≤ LK,R

(
�tρ1 + �xρ2

)+ K�x.

PROOF. First, given λ1 ∈ LipK
0 , we take λ̂1 := λ1|NR

∈ LipK,R
0 , then clearly

| linR[λ̂1]−λ1|L∞([−R,R]) ≤ K�x, and it follows from Assumption 5.1 and (4.19)
as well as (5.2) that vR(λ1) ≤ v̂R

h (λ̂1) + LK,R(�tρ1 + �xρ2) + K�x. Hence,

V K,R ≤ V
K,R
h + LK,R

(
�tρ1 + �xρ2

)+ K�x.

Next, given λ̂ ∈ LipK,R
0 , let λ1 := lin[λ̂1] ∈ LipK

0 be the linear interpolation of λ̂1.
It follows from Assumption 5.1 that v̂R

h (λ̂1) ≤ vR(λ1) + LK,R(�tρ1 + �xρ2) and,
therefore,

V
K,R
h ≤ V K,R + LK,R

(
�tρ1 + �xρ2

)
. �

5.3. Gradient projection algorithm. In this section we suggest a numerical
scheme to approximate V

K,R
h = sup

λ̂1∈LipK,R
0

v̂R
h (λ̂1) in (5.5). The crucial obser-

vation for our methodology is the following. By B(NR), we denote the set of all
bounded functions on NR .

PROPOSITION 5.4. Under the CFL condition (5.3), the function λ̂1 �→ v̂R
h (λ̂1)

is concave on B(NR).

PROOF. Letting ū = (ūk,i)0≤k<l,−r<i<r , with ūk,i = (āk,i , b̄k,i) ∈ U , we in-

troduce λh,ū,λ̂1 (or just λh,ū if there is no risk of ambiguity) as the unique solution
of the discrete linear system on MT ,R with a given λ̂1:

λh,ū(tk, xi) = λ̂1(xi) for (tk, xi) ∈ ∂T MT ,R ∪ ∂R MT ,R,

and on
◦

MT ,R

λh,ū(tk, xi)
(5.6)

= (λh,ū + �t
(
�(·, ūk,i) + (b̄k,iD)λh,ū + āk,iD

2λh,ū))(tk+1, xi).

Let λ
h,ū
0 := λh,ū(0, ·), and define

v
R,ū
h (λ̂1) := μ0

(
linR[λh,ū

0

])− μ1
(
linR[λ̂1]).

We claim that

v̂R
h (λ̂1) = inf

ū∈Ul(2r−1)
vh

R,ū(λ̂1).(5.7)
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Indeed, under the CFL condition (5.3), the finite difference scheme (5.1) as well
as (5.6) are both L∞-monotone in the sense of Barles and Souganidis [4]. More-
over, the linear interpolation λ̂0 �→ linR[λ̂0] is also monotone. Then taking in-
fimum step by step in (5.1) and (5.5) is equivalent to taking infimum globally
in (5.7).

Finally, the concavity of λ̂1 �→ v̂R
h (λ̂1) follows from its representation as the

infimum of linear maps in (5.7). �

By the previous proposition, V
K,R
h consists in the maximization of a concave

function, and a natural scheme to approximate it is the gradient projection algo-
rithm.

REMARK 5.5. Since U is compact by Assumption 4.8, then for every func-
tion λ̂1, we have the optimal control û(λ̂1) = (ûk,i(λ̂1))0≤k<l,−r<i<r such that

λ̂
h,R
0 = λ

h,û(λ̂1)
0 and v̂R

h (λ̂1) = vh
R,û(λ̂1)(λ̂1).(5.8)

Now we are ready to give the gradient projection algorithm for V
K,R
h in (5.5).

Given a function ϕ ∈ B(NR), we denote by PLipK,R
0

(ϕ) the projection of ϕ on

LipK,R
0 , where LipK,R

0 ⊂ B(NR) is defined in (5.4). Of course, the projection de-
pends on the choice of the norm equipping B(N ) which in turn has serious conse-
quences on the numerics. We shall discuss this important issue later.

Letting γ := (γn)n≥0 be a sequence of positive constants, we propose the fol-
lowing algorithm:

ALGORITHM 1. To solve problem (5.5):

• (1) Let λ̂0
1 := 0.

• (2) Given λ̂n
1, compute the super-gradient ∇v̂R

h (λ̂n
1) of λ̂1 �→ v̂R

h (λ̂1) at λ̂n
1.

• (3) Let λ̂n+1
1 = PLipK,R

0
(λ̂n

1 + γn∇v̂R
h (λ̂n

1)).

• (4) Go back to step 2.

In the following, we shall discuss the computation of super-gradient ∇v̂R
h (λ̂1),

the projection PLipK,R
0

as well as the convergence of the above gradient projection

algorithm.

5.3.1. Super-gradient. Let λ̂1 ∈ B(NR) be fixed. Then, by Remark 5.5, we
may find an optimal control û(λ̂1) = (ûk,i(λ̂1))0≤k<l,−r≤i≤r , where ûk,i(λ̂1) =
(âk,i(λ̂1), b̂k,i(λ̂1)) ∈ U , for system (5.7). We then denote by gj the unique solu-
tion of the following linear system on MT ,R , for every −r ≤ j ≤ r :

gj (tk, xi) = δi,j , for (tk, xi) ∈ ∂T MT ,R ∪ ∂R MT ,R,
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and on
◦

MT ,R ,

gj (tk, xi) = (gj + �t
((

b̂k,i(λ̂1)D
)
gj + âk,i(λ̂1)D

2gj ))(tk+1, xi).(5.9)

Denote g
j
0 := gj (0, ·) and δj a function on NR defined by δj (xi) := δi,j .

PROPOSITION 5.6. Let CFL condition (5.3) hold true, then the vector

∇v̂R
h (λ̂1) := (μ0

(
linR[gj

0

])− μ1
(
linR[δj ]))−r≤j≤r(5.10)

is a super-gradient of ϕ ∈ B(NR) �→ v̂R
h (ϕ) ∈ R at λ̂1.

PROOF. Consider the system (5.6) introduced in the proof of Proposition 5.4.
Under the CFL condition (5.3), by (5.7), we have for every perturbation �λ̂1 ∈
B(NR),

v̂R
h (λ̂1 + �λ̂1) = vh

R,û(λ̂1+�λ̂1)(λ̂1 + �λ̂1) ≤ vh
R,û(λ̂1)(λ̂1 + �λ̂1),

which implies that

v̂R
h (λ̂1 + �λ̂1) − v̂R

h (λ̂1) ≤ vh
R,û(λ̂1)(λ̂1 + �λ̂1) − vh

R,û(λ̂1)(λ̂1).

We next observe that for fixed λ̂1, the function ϕ �−→ vh
R,û(λ̂1)(ϕ) is linear, and it

follows that (
vh

R,û(λ̂1)(λ̂1 + δj ) − vh
R,û(λ̂1)(λ̂1)

)
−r≤j≤r(5.11)

is a super-gradient of ϕ �→ v̂R
h (ϕ) at λ̂1. Finally, by (5.6) and (5.9), gj (tk, xi) =

λû(λ̂1),λ̂1+δj (tk, xi) − λû(λ̂1),λ̂1(tk, xi), where λû(λ̂1),λ̂1+δj is the solution of (5.6)
with boundary condition λ̂1 + δj . By the definition of vh

R,ū(λ̂1) in (5.7), it follows
that the super-gradient (5.11) is equivalent to ∇v̂R

h (λ̂1) defined in (5.10). �

5.3.2. Projection. To compute the projection PLipK,R
0

(ϕ), ∀ϕ ∈ B(NR), we

need to equip B(NR) with a specific norm. In order to obtain a simple projection
algorithm, we shall introduce an invertible linear map between B(NR) and R2r+1,
then equip on B(NR) the norm induced by the classical L2-norm on R2r+1.

Let us define the invertible linear map TR from B(NR) to R2r+1 as

ψi = TR(ϕ)i :=
⎧⎪⎨
⎪⎩

ϕ(xi+1) − ϕ(xi), i = 1, . . . , r,

ϕ(0), i = 0,

ϕ(xi−1) − ϕ(xi), i = −1, . . . ,−r,

and define the norm | · |R on B(NR) (easily be verified) by

|ϕ|R := ∣∣TR(ϕ)
∣∣
L2(R2r+1) ∀ϕ ∈ B(NR).
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Notice that

TR LipK,R
0 := {ψ = TRϕ :ϕ ∈ LipK,R

0

}
= {ψ = (ψi)−r≤i≤r ∈ [−K�x,K�x]2r+1 :ψ0 = 0

}
.

Then the projection PLipK,R
0

from B(NR) to LipK,R
0 under norm | · |R is equivalent

to the projection PTR LipK,R
0

from R2r+1 to TR LipK,R
0 under the L2-norm, which is

simply written as

(
PTR LipK,R

0
(ψ)
)
i =
{

0, if i = 0,

(K�x) ∧ ψi ∨ (−K�x), otherwise.

5.3.3. Convergence rate. Now, let us give a convergence rate for the above
gradient projection algorithm. In preparation, we first provide an estimate for the
norm of super-gradients ∇v̂R

h .

PROPOSITION 5.7. Suppose that CFL condition (5.3) holds true, then
|v̂R

h (ϕ1) − v̂R
h (ϕ2)| ≤ 2|ϕ1 − ϕ2|∞ for every ϕ1, ϕ2 ∈ B(NR). In particular, the

super-gradient ∇v̂R
h satisfies

∣∣∇v̂R
h (λ̂1)

∣∣
R ≤ 2

√
R

�x
+ 1, for all λ̂1 ∈ B(N ).(5.12)

PROOF. Under the CFL condition, the scheme (5.1) is L∞-monotone, then
|λ̂h,R,ϕ1

0 − λ̂
h,R,ϕ2
0 |∞ ≤ |ϕ1 −ϕ2|∞, and it follows from the definition of v̂R

h in (5.2)
that ∣∣v̂R

h (ϕ1) − v̂R
h (ϕ2)

∣∣≤ 2|ϕ1 − ϕ2|∞.(5.13)

Next, by the Cauchy–Schwarz inequality,

|ϕ1 − ϕ2|∞ ≤ max

(
r∑

i=0

∣∣TR(ϕ1 − ϕ2)i
∣∣, −r∑

i=0

∣∣TR(ϕ1 − ϕ2)i
∣∣)

≤ √
r + 1|ϕ1 − ϕ2|R.

Together with (5.13), this implies that (5.12) holds for every super-gradient
∇v̂R

h (λ̂1). �

Let us finish this section by providing a convergence rate for our gradient pro-
jection algorithm. Denote

� := max
ϕ1,ϕ2∈LipK,R

0

|ϕ1 − ϕ2|2R ≤ 2r(K�x)2 ≤ 2K2R�x,
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and it follows from Section 5.3.1 of Ben-Tal and Nemirovski [5] that

0 ≤ V
K,R
h − max

n≤N
v̂R
h

(
λ̂n

1
)≤ � +∑N

n=1 γ 2
n |∇v̂R

h (λ̂n
1)|2R∑N

n=1 γn
(5.14)

≤ 2K2R�x + 4(R/�x + 1)
∑N

n=1 γ 2
n∑N

n=1 γn

.

We have several choices for the series γ = (γn)n≥1:

• Divergent series: γn ≥ 0,
∑∞

n=1 γn = +∞ and
∑∞

n=1 γ 2
n < +∞, then the right-

hand side of (5.14) converges to 0 as N → ∞.

• Optimal stepsizes: γn =
√

2�

|∇v̂R
h (λ̂n

1)|R√
n

, [5] shows that

V
K,R
h − max

n≤N
v̂R
h

(
λ̂n

1
)≤ C1

(max1≤n≤N |∇v̂R
h (λ̂n

1)|R) · √2�√
N

≤ C
K(R + √

R�x)√
N

for some constant C independent of K , R, �t , �x and N .

5.4. Numerical examples. We finally implement the above algorithm in the
context of an application in finance which consists in the determination of the
optimal no-arbitrage bounds of exotic options.

As discussed in the Introduction, this problem has been solved by means of the
Skorokhod Embedding Problem (SEP) in the context of some specific examples
of derivative securities. However, the SEP approach is not suitable for numerical
approximation. In Davis, Obloj and Raval [14], the authors consider a similar prob-
lem for the weighted variance swap option which can be included in our context. In
contrast to our constraint P ◦ X−1

1 = μ1 in (2.5), they impose the constraint of the
form EP[φk(X1)] = pk, k = 1, . . . , n for some functions (φk)1≤k≤n and constants
(pk)1≤k≤n. Then, they convert their problem into a semi-infinite linear program-
ming problem which can be solved numerically. We shall use some techniques
in [14] to derive an explicit solution for some examples in order to compare with
our numerical results.

5.4.1. A toy example. Suppose that �(t, x, a, b) = a, and U := [a, a] × {0},
then under every P ∈ P , the canonical process X is a martingale. Suppose that
P(μ0,μ1) is nonempty, then it is clear that

V = inf
P∈P(μ0,μ1)

EP

[∫ 1

0
αP

t dt

]

= inf
P∈P(μ0,μ1)

EP
[
X2

1 − X2
0
]= μ1(φ0) − μ0(φ0),
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FIG. 1. Numerical Example 1 (toy example): μi = N(0, σ 2
i ) with σ0 = 0.1, σ1 = 0.2, K = 1.5,

R = 1, �x = 0.1, �t = 0.025. The computation time is 56.38 seconds for 105 iterations.

where φ0(x) := x2. In our implemented example, we choose μi as normal distri-
bution N(0, σ 2

i ) with σ0 = 0.1, σ1 = 0.2, a = 0 and a = 0.1. It follows by direct
computation that V = 0.03. In our numerical test, for 105 iterations, the compu-
tation time is 56.38 seconds, and it gives a numerical solution 0.029705, which
implies that the relative error is less than 1%; see Figure 1.

5.4.2. The weighted variance swap contract. Let S = (St )t≥0 denote the price
process of an underlying stock. We assume that S is a scalar positive continu-
ous semimartingale. The variance swap contract is therefore defined by the payoff
〈logS〉1 at maturity 1, which is the quadratic variation of the process (logSt )t≥0 at
time 1.

Following Section 4 of [14], we shall consider an η-weighted variance swap,
for some Lipschitz function η : R → R. This is a derivative security defined by the
payoff at maturity 1: ∫ 1

0
η(logSt )d〈logS〉t .

Under no additional information, any martingale measure P (i.e., a probability
measure under which the process S is a martingale) induces an admissible no-
arbitrage price

EP

[∫ 1

0
η
(
log(St )

)
d〈logS〉t

]
.
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Following Galichon et al. [21], we assume that all European options maturing
at time 1 with all possible strikes are liquids and available for trading, that is,
c1(y) := E[(S1 − y)+] is given for all y ≥ 0. Then the marginal distribution of S1
under P is given by μ̃1[y,∞) = −∂−c1(y). In other words, for every λ1 ∈ Cb(R),
the derivative security with payoff λ1(S1) at maturity 1 is available for trading
(long or short) at the no-arbitrage price μ̃1(λ1). Under this additional information,
a no-arbitrage lower bound of the η-weighted variance swap is given by

sup
λ1∈Cb(R)

{
inf
P

EP

[∫ 1

0
η(logSt ) d〈logS〉t + λ1(S1)

]
− μ̃1(λ1)

}
,(5.15)

where the infimum is taken over all martingale measures for S.
This problem can be studied by our mass transportation problem. Suppose that

St = exp(Xt), where X is the canonical process on the canonical space �. Suppose
further that

U := {(a,−1
2a
) ∈ S1 × R :a ∈ [a, a]},

with positive constants a ≤ a < ∞. Then under every P ∈ P [defined below (2.3)],
the process St := exp(Xt) is a positive continuous martingale. If we take the in-
fimum in (5.15) over P , it follows by our duality result (Theorem 3.6) that the
bound (5.15) equals

V = inf
P∈P(δx0 ,μ1)

EP
∫ 1

0
η(Xt)α

P
t dt,

where x0 = logS0 ∈ R and μ1 is the distribution of X1 = logS1 when S1 ∼ μ̃1 [or,
equivalently, it is derived from μ̃1 by

∫
R ϕ(x)μ1(dx) := ∫R ϕ(logy)μ̃1(dy), ∀ϕ ∈

Cb(R)]. Furthermore, by similar techniques as in Section 4 of Davis et al. [14],
using Itô’s formula, it follows that when P(δx0,μ1) is nonempty, we have

V = inf
P∈P(δx0 ,μ1)

EP[φ(X1) − φ(X0)
]= μ1(φ) − φ(x0),(5.16)

where φ is a solution to φ′′(x) − φ′(x) = 2η(x).
In our numerical experiments, we choose a = 0, a = 0.1, x0 = 1, μ1 is a normal

distribution N(1 − a/2, a) with a = 0.04 ∈ [0,0.1]. Then P(δx0,μ1) is nonempty
since the probability P induced by the process (1 − at/2 + √

aWt)0≤t≤1 (with
Brownian motion W ) belongs to it. In a first example, we choose η1(x) = 1, then
φ1(x) := −2x + C1e

x + C2 is the solution to φ′′(x) − φ′(x) = 2η1(x). It follows
by direct computation that the value in (5.16) is given by V1 = 0.04. Our numer-
ical solution is 0.0395311 after 105 iterations, which takes 138.51 seconds. In a
second example, we choose η2(x) = x, then φ2(x) := −x2 − 2x − C1e

x + C2 is
the solution to φ′′(x) − φ′(x) = 2η2(x). It follows that the value in (5.16) is given
by V2 = a − a2/4 = 0.0396. In our numerical test, the computation time is 142.23
seconds for 105 iterations and it gives the numerical solution 0.0391632; see Fig-
ure 2.
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FIG. 2. Numerical Example 2 (weighted variance swap): σ = 0.2, K = 1.5, R = 2, �x = 0.1,
�t = 0.025. For weight function η1(x) = 1, the numerical solution is 0.0395311 after 105 iterations.
For weight function η2(x) = x, the numerical solution is 0.0391632 after 105 iterations.

APPENDIX

We first give a result which follows directly from the measurable selection the-
orem. Let E and F be two Polish spaces with their Borel σ -fields E := B(E) and
F := B(F ). A ∈ E ⊗ F is a measurable subset in the product space E × F sat-
isfying that for every x ∈ E, there is y ∈ F such that (x, y) ∈ A. Letting μ be a
probability measure on (E, E ), we denote by E μ the μ-completed σ -field of E .
Suppose that f :A → R ∪ {∞} is E ⊗ F -measurable, and denote

g(x) := inf
{
f (x, y), (x, y) ∈ A

}
.(A.1)

THEOREM A.1. The function g is E μ-measurable. Moreover, for every ε > 0,
there is a E μ-measurable variable Yε such that for μ-a.e. x ∈ E, (x,Yε(x)) ∈ A

and

f
(
x,Yε(x)

)≤ (g(x) + ε
)
1g(ω)>−∞ − 1

ε
1g(x)=−∞.(A.2)

REMARK A.2. Theorem A.1 is almost the same as Proposition 7.50 of Bert-
sekas and Shreve [6], and can be easily deduced from it. The key argument is the
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measurable selection theorem. We also refer to Section 12.1 of Stroock and Varad-
han [35], Chapter 7 of Bertsekas and Shreve [6] or Chapter 3 of Dellacherie and
Meyer [16] for different versions of the measurable selection theorem.

We next report a theorem which provides the unique canonical decomposition
of a continuous semimartingale under different filtrations. In particular, it follows
that an Itô process has a diffusion representation, by taking the filtration gener-
ated by itself. This is in fact Theorem 7.17 of Liptser and Shiryayev [28] in the
1-dimensional case or Theorem 4.3 of Wong [37] in the multidimensional case.

THEOREM A.3. In a filtrated space (�,F = (Ft )0≤t≤1,P) (here � is not nec-
essarily the canonical space), a process X is a continuous semimartingale with
canonical decomposition:

Xt = X0 + Bt + Mt,

where B0 = M0 = 0, and B = (Bt )0≤t≤1 is of finite variation and M = (Mt)0≤t≤1
a local martingale. In addition, suppose that there are measurable and F-adapted
processes (α,β) such that

Bt =
∫ t

0
βs ds,

∫ 1

0
E
[|βs |]ds < ∞ and At := 〈M〉t =

∫ t

0
αs ds.

Let FX = (F X
t )0≤t≤1 be the filtration generated by process X and F̄ = (F̄t )0≤t≤1

be a filtration such that F X
t ⊆ F̄t ⊆ Ft . Then X is still a continuous semimartin-

gale under F̄, whose canonical decomposition is given by

Xt = X0 +
∫ t

0
β̄s ds + M̄t with Āt := 〈M̄〉t =

∫ t

0
ᾱs ds,

where

β̄t = E[βt |F̄t ] and ᾱt = αt , dP × dt-a.e.

PROOF OF THEOREM 4.2. The characterization of the value function as vis-
cosity solution to a dynamic programming equation is a natural result of the dy-
namic programming principle. Here, we give a proof, similar to that of Corol-
lary 5.1 in [12], in our context.

(1) We first prove the subsolution property. Suppose that (t0, x0) ∈ [0,1) × Rd

and φ ∈ C∞
c ([0,1) × Rd) is a smooth function such that

0 = (λ − φ)(t0, x0) > (λ − φ)(t, x) ∀(t, x) �= (t0, x0).

By adding ε(|t − t0|2 + |x − x0|4) to φ(t, x), we can suppose that

φ(t, x) ≥ λ(t, x) + ε
(|t − t0|2 + |x − x0|4)(A.3)
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without losing generality. Assume to the contrary that

−∂tφ(t0, x0) − H
(
t0, x0,Dxφ(t0, x0),D

2
xxφ(t0, x0)

)
> 0,

and we shall derive a contradiction. Indeed, by definition of H , there is c > 0 and
(a, b) ∈ U such that

−∂tφ(t, x) − b · Dxφ(t, x) − 1
2a · D2

xxφ(t, x) − �(t, x, a, b) > 0

∀(t, x) ∈ Bc(t0, x0),

where Bc(t0, x0) := {(t, x) ∈ [0,1) × Rd : |(t, x) − (t0, x0)| ≤ c}. Let τ := inf{t ≥
t0 : (t,Xt) /∈ Bc(t0, x0)} ∧ T , then

λ(t0, x0) = φ(t0, x0) ≥ inf
P∈P t0,x0,0,0

EP

[∫ τ

t
�(s,Xs, νs) ds + φ(τ,Xτ )

]

≥ inf
P∈P t0,x0,0,0

EP

[∫ τ

t
�(s,Xs, νs) ds + λ(τ,Xτ )

]
+ η,

where η is a positive constant by (A.3) and the definition of τ . This is a contradic-
tion to Proposition 4.1.

(2) For the supersolution property, we assume to the contrary that there is
(t0, x0) ∈ [0,1) × Rd and a smooth function φ satisfying

0 = (λ − φ)(t0, x0) < (λ − φ)(t, x) ∀(t, x) �= (t0, x0)

and

−∂tφ(t0, x0) − H
(
t0, x0,Dxφ(t0, x0),D

2
xxφ(t0, x0)

)
< 0.

We also suppose without losing generality that

φ(t, x) ≤ λ(t, x) − ε
(|t − t0|2 + |x − x0|4).(A.4)

By continuity of H , there is c > 0 such that for all (t, x) ∈ Bc(t0, x0) and every
(a, b) ∈ U ,

−∂tφ(t, x) − b · Dxφ(t, x) − 1
2a · D2

xxφ(t, x) − �(t, x, a, b) < 0.

Let τ := inf{t ≥ t0 : (t,Xt) /∈ Bc(t0, x0)} ∧ T , then

λ(t0, x0) = φ(t0, x0) ≤ inf
P∈P t0,x0,0,0

EP

[
φ(τ,Xτ ) +

∫ τ

t0

�(s,Xs, νs) ds

]

≤ inf
P∈P t0,x0,0,0

EP

[
λ(τ,Xτ ) +

∫ τ

t0

�(s,Xs, νs) ds

]
− η

for some η > 0 by (A.4), which is a contradiction to Proposition 4.1. �
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