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Abstract

We extend the fundamental theorem of asset pricing to the case of markets with
liquidity risk. Our results generalize, when the probability space is finite, those ob-
tained by Kabanov & Stricker (2001), Kabanov, Rasonyi and Stricker (2002, 2003)
and by Schachermayer (2004) for markets with proportional transaction costs. More
precisely, we restate the notions of consistent and strictly consistent price systems and
prove their equivalence to corresponding no arbitrage conditions. We express these
results in an analytical form in terms of the subdifferential of the so-called liquidation

function. We conclude the paper with a hedging theorem.

Introduction

In a frictionless discrete-time market, the fundamental theorem of asset pricing states that
there is no arbitrage opportunity if and only if there exists an equivalent martingale mea-
sure, that is, a probability measure equivalent to the historical one, under which the dis-
counted price process is a martingale. In real financial markets, trading strategies have an
impact on price processes, which is a source of liquidity risk. A simple example of liquidity
risk is the presence of transaction costs, where the price depends on whether the position
is short or long. Markets with transaction costs have been studied by several authors,
see for instance Bensaid, Lesne, Pages and Scheinkman (1992), Jouini and Kallal (1995),
Kabanov and Stricker (2001), Kabanov, Rasonyi and Stricker (2002, 2003), Schachermayer
(2004). On the other hand, the impact of trading strategies on prices has been considered
in many papers, see e.g. Cvitani¢ and Ma (1996), Frey and Stremme (1997), Schonbucher
and Wilmott (2000), Bank and Baum (2004). These authors consider price processes with



dynamics affected by the agent’s position at a each time. Note that, in practice, only
orders, i.e. "instantaneous variations" of the position, can be observed, so that the impact

of the portfolio position on the price process has a poor economic justification.

In two recent papers, Cetin, Jarrow and Protter (2004) and Cetin, Jarrow, Protter and
Warachka (2002), the authors consider the more relevant case where the exchange sizes
have an impact on prices, by introducing a supply curve Sy(z,w), where z is the exchange
size. In a continuous-time setting, they provide a characterization of the no-arbitrage
condition, and discuss the pricing of derivatives. A crucial condition in their work, is that
the supply curve is smooth in the x—variable. In particular, this excludes classical models
with proportional transaction costs, and explains why the no-arbitrage condition in their

setting coincides essentially with the no-arbitrage condition on frictionless markets.

The chief goal of this paper is to develop a financial model with liquidity effect in the
spirit of Cetin, Jarrow and Protter (2004), avoiding strong smoothness condition on the
supply curve at £ = 0. Since liquidity effects do not allow, in general, to transfer funds
from an account to another without any cost, we work in a vector framework, as in the
context of markets with transaction costs. Our framework is a generalization, in a finite
probability space, of Kabanov and Stricker (2001), Kabanov, Rasonyi, and Stricker (2003),
and Schachermayer (2004).

Throughout this paper, we consider a finite probability space (Q,.%,P). By L°(E;.%) we
denote the (finite dimensional) space of .#-measurable functions with values in the subset
E of R¢. Given a subset G of L0 (E;.%), we shall denote by

6c(Z) := sup E[X - Z] forall Zcl'(E;.%),
Xel@
its support function. Here - is the Euclidean inner product.
Given a set S C R, S¢ int (9), ri(S), S, conv(S), cone(S) stand respectively for its
complement, interior, relative interior, closure, convex hull, conical hull and cone(S) =

cone(S). The positive dual cone of S is denoted by S*:

S* = {yERd : m-yZOforallmGS}.

1 A discrete-time model with liquidity risk

We consider a discrete-time market with d assets. The stochastic structure is given by
a finite filtered probability space (2,.%,(F;)o<j<n,P). For z = (z1,...,24) in R, we
denote by Pj(w,z) the liguidation value of x; units of asset 1, ..., and z4 units of asset d
at time j € {0,..., N} in the state of the world w € Q.



We define the solvency region by:
Kj(w) := {x ER? : Pj(w,z) > 0} ,

so that —Kj(w) is the set of portfolios with non-positive purchase cost at time j €
{0,..., N}, in the state of the world w € Q.

Throughout this paper, we shall assume that
R C Kj, (1.1)
and
Kj(w) is a closed convex subset of R? forall 1 < j < d and w € Q. (1.2)

The latter condition can of course be ensured by convenient assumptions on the liquidation
function P;. For instance, (1.2) holds whenever Pj(w,-) is quasi-concave and upper semi-

continuous, see e.g. Hiriart-Urruty and Lemaréchal (1993).

Example 1.1 (Frictionless Markets) Let {S;, 0 < j < N} be an adapted process
with values in RZ, and consider the liquidation function Pj(w,z) := x - Sj(w). Clearly,
Conditions (1.1) and (1.2) are satisfied. This is the classical context where the sets K;(w)

are half-spaces with normal vector Sj(w).

Example 1.2 (discrete-time version of Cetin, Jarrow and Protter (2002)) The fi-
nancial market consists in one risky asset and a bank account, i.e. d = 2. For each x € R,
let Sj(w,z) € Ry be the price to pay in order to purchase z units of the risky asset.
In this framework, the liquidation function is defined by Pj(w, (z,v)) = y + z Sj(w, —z).
The authors make the crucial assumption that S;(w,z) is a C? function of z. Therefore,
their framework does not include the classical financial market model with proportional
transaction costs. Also, there is no convexity assumption in their paper and their main
example is the specification S;(w,z) = Sj(w,0)e”**. However, our analysis only requires
the convexity of the solvency sets near the origin, so that this specification can easily be

incorporated in our context.

Example 1.3 (Proportional Transaction Costs, Kabanov (1999)) , Define the sol-

vency regions by the following polyhedral cones
. . d . . . .
Kj — {.’L‘ e Rd . sz]z +Z (CLMS;? - (1 +>\zk)aZkS]Z.> >0, 1< <d, for some a € %j}
k=0

where .# d+ is the set of d x d matrices with nonnegative entries and \** is the proportional

transaction cost corresponding to transfers from ¢ to k. Following Bouchard, Kabanov and



Touzi (2001), the corresponding liquidation function is given by Pj(z) := sup{w € R
x —wey € K;}, where e; = (1,0,...,0). Conditions (1.1) and (1.2) are also satisfied in

this context.

Example 1.4 (Concave liquidation function) Let Pj(w,.) be a concave function on
R?, with Pj(w,0) = 0. Then Conditions (1.1) and (1.2) hold. Observe that the concavity
of P; implies that Pj(w, ur) < pPj(w,z) for all # € R and p > 1. Hence the unit price of

any portfolio z is non-increasing in the exchanged volume.

Definition 1.1 A portfolio is an R*-valued adapted process Y = {Y;,0 < j < N}. We
say that 'Y 1s self-financing if:

vie{l,...,N}, Y; Y, e L°(-K;, . F;).

Let

In other words, Ay is the set of the values at time N of self-financing portfolios attainable

from a non-positive initial capital.
Note that the set Ay is only convex. It is not a cone in general.

As usual, we say that there is no arbitrage opportunity if the following condition is
satisfied:

NA AynLY(RL, Zy) = {0}.

This means that it is not possible to produce a nonzero gain with nonnegative components

in every state of the world at time IV.

In Section 2, we introduce two stronger notions of no-arbitrage which extend the concepts
of weak and robust no-arbitrage of Kabanov and Stricker (2001), and Schachermayer (2004)
for markets with proportional transaction costs. In Sections 3 and 4, we show that these
two concepts can be characterized by the existence of so called (strictly) consistent price
systems, see Definition 2.2 below. We restate these characterizations in Section 5 in terms
of the liquidation functions P;. The final section of the paper deals with the super-hedging
problem, i.e. given a contingent claim G € I.°(R?, .Zy), we characterize the initial positions
y € R? from which G can be hedged without risk.

Remark 1.1 When the solvency sets K;(w) are closed convex cones the no-arbitrage

principle is a necessary condition for an equilibrium on the financial market. Indeed, when



there is an arbitrage opportunity, the optimal demand function of each agent is infinite in
the direction of such an arbitrage opportunity, so that the market clearing condition can
not be satisfied. When Kj(w) is not a cone for some j € {0,...,d}, this motivation of the
no-arbitrage principle is not valid anymore, as the agent cannot increase unboundedly her

expected utility.

2 Price systems and no-arbitrage concepts

2.1 Consistent price systems

In the context of a financial market with proportional transaction costs, Kabanov and
Stricker (2001) isolated two kinds of pricing systems, called consistent and strictly consis-
tent price processes in Schachermayer (2004). These concepts extend the classical Radon-

Nykodim density of risk neutral measures in frictionless markets.

Definition 2.1 A (0, 00)?—valued martingale Z = {Z;, 0 < j < N} is called :

(i) a consistent price system if Z; takes values in K7, for any j € {0,...,N},

(ii) a strictly consistent price system if Z; takes values in vi(K), for any j € {0,..., N}.
The existence of such price systems is as usual obtained by applying the Hahn-Banach

Theorem to separate the sets L) (RL, #y) and Ay.

1. In financial markets with proportional transaction costs, the cone property of the set

Ap is crucial in order to prove that the separating hyperplane contains zero.

2. Observe that any price system defines a separating hyperplane of LY (Ri,yN) and
Ty := cone(Ap), the closed cone generated by Ay, as illustrated in Figure 1. This suggests
to extend the classical characterization results of the no-arbitrage concepts by passing to

the cone generated by Ap.

Fig. 1: Both Ay and T can be separated from L° (]Rf_ ,<Zn) by the same hyperplane



3. In Figure 2, the intersection of the sets Ty and L°(R%,.Zy) is not reduced to {0},
although the no-arbitrage condition holds. In particular, there is no consistent price system
in this example. This suggests that Definition 2.1 does not provide the appropriate dual

concepts in the context where Ay is not a cone.

T
N X,

Ay

Fig. 2: Ty does not necessarily satisfy NA when Ay does

4. The situation illustrated in Figure 2 can occur for instance if Kj is tangent to
LY (R4, .%;) for some j € {0,...,N}. Notice that it can occur even in a situation where
L (cone(K), ;) NLY (RY, F;) = {0} for every j € {0,...,N}. This is illustrated by the

following example which was communicated by Professor W. Schachermayer.

Example 2.1 Suppose Q = {w;,ws}. Define a two-date market consisting in one risk-free
asset with constant price 1 and one risky asset with prices Sy at time 0, Sj(w1) = 2 at
time 1 in the state of the world wy, and S1(w2) = 1 at time 1 in the state of the world ws.

Assume that the liquidation functions are of the following form:
Py(x1,29) = 21 + 9 — cx% and Py(x1,x9) = 21 + 2251
for a given constant ¢ > 0. We easily show that there is no arbitrage opportunity.

Consider now the "tangent market", i.e. take the smallest cones containing the previous

solvency regions. Then, the liquidation functions are given by:

Po(l‘l,l‘g) =TI + T9 and Pl(l‘l,J?Q) =TI + 1‘251.

Obviously, the "strategy" (—1, 1), whose initial value is 0, is an arbitrage since it leads

to the payoff 1 in state wy and 0 in state ws.

2.2 Nearly consistent price systems

In the previous subsection, we illustrated that the notion of consistent price system is not

appropriate in the context where Ay is not a cone. In particular, Figure 2 shows that the



main difficulty is related to the small portfolios near the origin which may converge towards
a tangent portfolio. In order to circumvent this difficulty, our main idea is to approximate

the set An by a family of subsets which behave nicely as in Figure 1. We thus define the

sets
K; := KjNcone(©3) forevery je{0,...,n}
with
d
0] = {xEKj : Z|xz|:6}
=1
and

N
Ay = Y L (=K, 7).
j=0

Note that the family {K7; e > 0} is decreasing.

Figure 3 illustrates our construction.

e |X
cone(-K;) |

J

X1

\\\. - < {XE’KJ' ey ool }

Fig. 3: Both —K7 and cone(—K3) satisfy NA

The following easy result shows that we can proceed to the analysis of the no-arbitrage

condition by working separately on each of the Af%;.

Lemma 2.1 The following properties are equivalent:
(i) NA

(ii) A5 NLO(RY, Fn) = {0} for alle >0

(iii) cone (A%) NLO(RY, Fn) = {0} for all e > 0.

Proof. We only show that (ii) = (i), as all other implications are trivial. Suppose that
(ii) holds and that there exists a non zero X = Z;-V:O &in Ay NLO(RL, Zy). If X #0,
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then .
£ = min{2|(§j(w))i| :0<j<N,we, gj(w);éo} > 0,
=1

and we obtain a contradiction by observing that X € A5 N LY(RL, Zy) = {0}. O

We now generalize the concepts of price systems.

Definition 2.2 A family {Z°, € > 0} of martingales, with values in (0,00)%, is called :

(i) a nearly consistent price system if Z; takes values in K5, for every j € {0,..., N} and
e >0,

(ii) a nearly strictly consistent price system if Z; takes values in ri (K;*), for every j €
{0,...,N} and € > 0.

Remark 2.1 Let us specialize the discussion to the case where the solvency sets K;(w) are
closed convex cones of R?. Then, it is immediately checked that K JE = Kj, and the notion
of nearly (strictly) consistent price system reduces to the notion of (strictly) consistent

price system.

2.3 Dual characterization of no-arbitrage concepts

In this subsection, we state a characterization result of the existence of nearly (strictly)
consistent price systems in terms of a suitable strengthening of Condition NA which relies

on the approximating family (A% )s>o0 of Ay introduced in the previous subsection.

The first concept, called robust no-arbitrage condition, is given by the following condi-

tion :
NAT For every € > 0, there is a family {Rj, 0 < j < N} of closed convex subsets of
R? such that :
K\ F; C int (f{j) and A% NLO(RL, Zy) = {0},
where

N
F; := tone(K;) Ncone(—K;) and Ay = ZIL,O (—K’j,ﬁ}-) .
=0

Forgetting the technical aspect of turning Ay into A%;, Condition NAF says that the

no-arbitrage condition still holds for slightly better market conditions.



1. In the context of markets with proportional transaction costs F; = F; = K; N (—Kj)
is independent of €, and represents the frictionless directions in the financial market. It is
then natural to exclude these directions, as there is no possible improvement of the market

conditions when exchanges are not subject to transaction costs.

2. In our context, we still need to exclude the linear space F} although these directions
are not necessarily feasible in our financial market, and can only be approximated by

suitable sequences of strategies.

Remark 2.2 The above condition NA" is in agreement with the robust no-arbitrage
condition introduced by Schachermayer (2004) in the context of a financial market with
proportional transaction costs. This follows immediately from the fact that K JE = K; and

F]ﬂE = F; when Kj is a closed convex cone.

We next introduce our second concept of no-arbitrage, that we call weak no-arbitrage

condition.

NAY  For every € > 0, there is a convex cone C¢ C L°(R¢;.%y) such that

LY(R%, Zy)\ {0} C int(C%) and Ay NC° = {0}.

The interpretation of this condition is very similar to that of NAF. Condition NAY says

that there is no arbitrage even if we relax slightly the definition of positivity.

To the best of our knowledge, Condition NAW has not been introduced before in the
financial context. It is however related to a notion of efficiency in vector optimization
theory, see e.g. Luc (1989).

Remark 2.3 Clearly, NAY implies NA. When Ay is known to be a closed convex cone,
as in the case of financial markets with proportional transaction costs, we shall see later
that equivalence holds between NAY and NA . See Remark (3.1).

We now state the two first main results of this paper, which will be proved in the

subsequent sections.

Theorem 2.1 Condition NAY holds if and only if there exists a nearly consistent price

system.

Theorem 2.2 Condition NAT holds if and only if there exists a nearly strictly consistent

price system.



3 Characterization of the weak no-arbitrage condition

In this section, we prove the characterization of Condition NAY stated in Theorem 2.1.

Fix € > 0 and suppose NAWY holds. Then there is a closed convex cone C® such that
LY(RL, Zy)\ {0} C int(C°) and A5 NC° = {0}.
By the (large) separation Theorem, there exists a non-zero Z° € L°(R?,.Zy) such that
E[Z°-Y] < 0 < EZ°-X] forall Y € Ay and X € C°. (3.1)

The second inequality in (3.1) shows that Z° € (C*)*. Since L°(RZ, . #y)\ {0} C int(C?),
this implies that Z¢ takes values in (0,00)?. Set Z; = E[Z°|.7;]. Since LU(—Kj;yj) C
Af;, the process {ZJ‘?, 0 < j < N} is a martingale with values in (0, 00)¢, and

5L0(7K;’ﬂ‘j)(zj) = 0 forevery j€{0,...,N}. (3.2)

Let X be an arbitrary .#j—measurable random variable with values in —K 5, and set
X' = XI{Z];,X>0}. Then X' € ]LU(—K;, F;j), and it follows from (3.2) that E[X" - Z5] < 0.
Hence P(X - Z7 < 0) = 1. From the arbitrariness of X € ]LU(—K;T, #;), we conclude that

ZJ‘? takes values in KJE*

Conversely, suppose there exists a consistent price system {Z¢;e¢ > 0}. For any ¢ > 0,

set
ME = {XeLU(Ri,yN) : E[va-X]zl},
v o= fx e @iy ez X <3
and
C° = come(M* + N°) .
Observe that
E[Z5 -X] > 0 forevery X €C°\ {0}. (3.3)

Clearly, L°(R% , Zx) C C°. Since int (C®) D M¢, it follows that int (C¢) D LY (RL, #y) \
{0}. In order to conclude the proof, it remains to show that A3, NC* = {0}. To see this, let
X =370 0 &;, for some & € L(=K5;.%;), 0 < j < N. Then (X - Z5) < 0 by definition
of Z¢, which contradicts (3.3) if X # 0. O

Remark 3.1 Assume that Ay is a closed convex cone, and let us show that the notion

NA is equivalent to (the apparently stronger notion) NAY . Under NA | it follows from
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a strict separation theorem that there exists a consistent price system Z in the sense of
Definition 2.1, see Kabanov and Stricker (2001). Next, define the set C' := tone (M + N),

where

M = {XeLO(Ri,yN) : ]E[ZN-X]:1},
and
N := {XeLU(Rd;yN) : |E[ZN-X]|<%}.

As in the previous proof, it is easily checked that Ay NC = {0}, and that L°(R% , Zy)\ {0}
C int(C). Hence NAY holds.

4 Characterization of the robust no-arbitrage condition

In this section, we prove the characterization of Condition NAT stated in Theorem 2.2.

In the sequel, we denote by
Ty := cone(AYy)

the closed cone generated by Af%,. In order to prove the required result, we shall first
show that NAT implies that the set cone(A% ) is closed, for every ¢ > 0. Then the robust
no-arbitrage condition implies that T NLY(RL, . #y) = {0}, for all € > 0, thus reducing
our problem to the classical cone context. The rest of the proof essentially follows the

arguments of Schachermayer (2004).

4.1 Closedness of attainable sets

Lemma 4.1 Let C be a closed conver subset of RY, let € > 0, and set C° := C'Ncone(O°),
with ©° := {x eC: Z?Zl |z;| = 8}. Then the set cone(C?) is closed in R?,

Proof. Fix ¢ > 0. Since ©° is a compact set that does not contain 0, cone(C?) is a closed
convex cone (see Rockafellar (1970), Corollary 9.6.1). Obviously, cone(C*®) =cone(6%).

Hence, cone(C*?) is closed. O

To prove the closedness of cone (A%), we verify the following criterion for the closedness

of sums of closed convex cones.

Lemma 4.2 [Rockafellar (1970), Corollary 9.1.3] Let C4,...,Cp, be non-empty closed
convex cones in R", and set Dj := C; N (—=Cj). Assume that

{(z1y-+y2m) €EC1 X+ XCpy + 21+ +2,=0} C Dy X--XDy,.

11



Then Ci + --- + Cy, is a closed convex cone of R".
Proposition 4.1 Let Condition NA" hold. Then cone (A%) is closed.
Proof. 1. We first observe that

N
cone (Ay) = Zcone (L° (—Kj,yj)) .
j=0
The inclusion cone (A4%) C Z;'V:o cone (IL,U (—K H ,9}-)) is trivial. Conversely, let \; > 0,
and ¢ € L (—K;T,yj) for j € {0,...,m}. Set A = max{)g,...,\n}, and consider two
cases.

~If A=0, then £ := Y7, \i{ = 0 € cone (AY).

If A >0, then £ := A", M€, where \; := A7)\ € [0,1]. By convexity of K7, we see
that \;¢ € 1. (—Kj,ﬂ}), and therefore £ € cone (A%,).

2. We next observe that

cone (ILO (—Kj,ﬁj)) = L0 (—cone (K;) ,ﬁj)

for every j € {0,...,m}. We only need to prove that the right hand-side set is contained
in the left hand-side one. Let A and ¢ be non-zero random variables with values in R, and
—Kz, respectively. Set A= max{\(w) :w € Q}. Then \¢ = AE, with € € L9 (—Kj,?j>
by convexity of K7.

3. In view of the previous steps, we have to show that

N
ZIL,O (—cone (Kj) ,ﬁj) is closed.
§=0

To do this, we shall verify the sufficient condition of Lemma 4.2 by adapting an argu-
ment from Schachermayer (2004). Let ¢; € L0 (—cone (K;) ,ﬂ}), for j € {0,...,N},
be such that {o + --- + &y = 0. Without loss of generality, we can assume that {; €
1L (—Kj,?j) Suppose that & ¢ L9 (—cone (Ff),.%;) for some i € {0,...,N}, then it
follows from NAT' that &; takes values in int (—Kf) We then can find a random variable
fz- e IO (—K'f ,ﬁi) such that fz — &, is a non-zero random variable with values in R‘i.
set éj = ¢ for j # i, and observe that fo+-+én € A?v ﬂLO(Ri,ﬁN). This is in
contradiction with Condition NAF. O

12



4.2 Some properties of closed convex sets

Lemma 4.3 Let C be a conver subset of R, and set D := cone(C) N cone(—C). Then
D = {0} if and only if int (C*) # 0.

Proof. The space D is reduced to {0} if and only if int(cone(C)*) # (. But cone(C)* = C*,
which concludes the proof O

Lemma 4.3 is the key-result in order to prove the following characterization of the relative

interior of the polar of a closed convex set.

Lemma 4.4 Let C # 0 be a closed conver subset of R?, and set Do := come(C) N
cone(—C). Fory € RY, the following properties are equivalent:

(i) y € ri(Cv),

(i) y € C*\ {0} for some non-empty closed convex set C C R such that C'\ D¢ C int(C).

Proof. The proof relies on a reduction to the case where the space D¢ is {0}, as in
Schachermayer (2004).

1. Since D¢ is a (closed) subspace, we consider the quotient space R? /D¢ and the canonical
projection 7 : R — R?/D¢ defined by m(z) = 7(y) if and only if z—y € D¢. Set C = Cc/
D¢, and observe that Dg = D¢ /D¢ = {0}. It then follows from Lemma 4.3 that int (6*)
£ 0.

Now, since 7 is continuous, a vector z € R? is in ri(C*) if and only if 7(z) belongs to

ri(a*) = int(a*). Hence, in the following, we can assume without loss of generality that
D¢ = {0}.

2. Let z be an arbitrary element of int(C*). Then
x-z>0 forall z € C)\{0}.
Set C:={zx € R%:z-2>0}: wehave C\ {0} C int(C).

Conversely, let z € R* \ {0} be satisfying (ii), i.e. there is a closed convex set C such

that C'\ {0} C int(C'), and

2#0 and z-2>0 forall z e C.

Then, if z € int(C), z - z > 0. In particular, for all z € C'\ {0}, -2z > 0, i.e. z € int(C*),
which proves that (i) implies (ii). O

13



4.3 Proof of Theorem 2.2

Suppose NAT holds and take an arbitrary € > 0. Then, by Lemma 2.1 and Proposition
4.1, va NILo (Ri,yN) = {0}, where ffv is the tangent cone to fl’fv at 0. Hence, applying
the separation theorem, for all Y € 1.0 (Rﬂ_,fg\z), there exists a random variable Z¢ such
that:

VX e Ty, E(Z°-X)<0<E(Z-Y).

Thus Z° is in L% (R%, .Zy) and satisfies

5T1§,(Z )=0
which implies
d s, (Z5) =0

since A% is a convex subset of T containing 0. Set Z; = E[Zy|Fj] forall j € {0,...,N}.
The adapted process {Z5, 0 <j < N}isan R4\ {0}-valued martingale such that:

5L0(_R;7y])(Z;) = 0 fOI' 0 Sj S N
since L(—K5;.%;) C A% and E(Z% - X) = E[E(Zy - X)|.%] = E(Z5 - X) for all Zj-
measurable random variable X.

Finally Z%(w) € R’j*(w)\{O} for all w € Q. Indeed, as in the proof of Theorem 3.1, take
X € LO(—IE';T;ﬁj). The random variable X' = Xl{ng.X>0} belongs to I[P(—Kj;yj), SO
that E[X' - Z] <0, ie. P(X - Z5 < 0) = L.

We deduce from Lemma 4.4 that ZJ‘? € ri KJE*

Conversely, suppose there exists a nearly strictly consistent price system {Z¢; ¢ > 0}.
We set, for all e >0, €{0,...,N} and w € Q :

—kj(w) ={reR: Z;(w) -z < 0}.

Then —K? \ Ff Cint(—K?). If X = YN (¢ € Ay NLO(RY, Fy), let

d
£ = min{Z (& (w)il ; 0< <N, weQ, &(w) # 0}
=1

Then:
E(Zy - X) <0.

But since X € .Y (Ri,y ~) and since the components of Z5; are positive, we deduce that
X =0. Thus Ay NL°(RE, Zy) = {0}. 0

14



5 Interpretation in Terms of the Liquidation Function

In this section, we assume that there is a numéraire, and that the liquidation value P;(z, y)

of (z,y) at time j can be written as

Pj(z,y) = Qj(x) +y

where y € R is the "numéraire part" of the portfolio (z,y) € R?. In addition, we assume
that, for all (j,w) € {0,...,N} x €,

Qj(w,-) is concave and Q;(w,0) =0. (5.1)

Notice that the concavity assumption on @Q;(w,:) can be weakened by assuming that

Qj(w,-) is locally concave at the origin.

Given a function f : R? — R, its epigraph is the set defined by
Epi(f) = {(z,r) ER! xR+ f() <r}
and its super-differential at o € R? is the set defined by

Of (o) ={y €R? : Vz e RY, f(z) < f(zo) +y- (w—20)}.

Lemma 5.1 Let J = {(z,y) € R xR : q(z) +y > 0}, where ¢ : R~ — R is concave
and let z = (21, 22) € R¥™! x (0,400), z #0. Then:

zGJ*@ﬁeaq(O)

22
and
2 € 1i(JY) &= ? € 1i(9g(0)).
2
Proof.

z € J* V(l‘l,J?Q)GJ, Ty 21+ X929 >0
[V($1,$2) ERY, —q(z1) <mp = 1 > —%]
Vo, € RTL, g(xy) < z—; - Z1

2L € 0q(0)

1117

which proves the first assertion. To prove the second assertion, write

J* = {(zl,zQ) : % c 8q(0)} - {z2 (%1) ; % € 3q(0)} .

Then it follows from Corollary 6.8.1 in Rockafellar (1970) that z € ri(J*) if and only if
2L € 1i(0q(0)). O
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We next use the previous lemma in order to restate the characterizations of NAY and
NAT in terms of the Q;’s. For every £ > 0, we define

Q;(w,x) == sup{y : Qw,z) >y and (z,y) € cone(@?)‘}

where €5 := { (r,9) € K; : y| + T foul = e}

Let

Qj(w,-) be the us.c. concave hull of Q;(w, ).

Proposition 5.1 (i) NAY holds if and only if there exists a family {Z°; e > 0} of
(0,00)4=! x (0, 00)-valued martingales Z¢ = (Z¢,¢%) such that
Z]E 0 e ar .
I e L (8Qj(0),a‘j) forall 7€{0,...,N} ande>0.
j
(1) NAT holds if and only if there exists a family {Z¢; € > 0} of (0,00)%! x (0, 00)-valued
martingales Z¢ = (Z¢,(%) such that
ng 0 (. € :
I3 e L (rl(an(O)),fj) forall 7€{0,....,N} ande > 0.
j

Proof. We first remark that K = Epi(—Q) N cone(©5), so that
(K = (Epi(—Q) N cone(®5))"

Thus,

(K5)* = (Epi(—Q5))" = (co(Epi(—@5)))*
Since E(é’pi(—@?)) is the epigraph of the Ls.c. convex hull —Q5 of —Q;, we conclude by
applying Lemma 5.1. O

Corollary 5.1 Assume Ay is a cone.
(i) NAY holds if and only if there erists a (0, +00)471 x (0, +00)-valued martingale Z =
(Z,¢) such that f—; e 10 (3Q;(0), %), for all j € {0,...,N}.

(ii) NAT holds if and only if there erists a (0, +00)%=1 x (0, +00)-valued martingale Z =
(Z,¢) such that f—j € L? (ri (0Q,;(0)),.%;), for all j € {0,...,N}.

Proof. This is a direct application of Theorems 2.1 and 2.2, and Lemma 5.1. O
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6 Hedging

In this section, we focus on the problem of super-replication of contingent claims in our
financial market with liquidity risk. Our main result is an extension of the classical dual

formulation of this problem. We introduce the following notation: for every € > 0, set

Di(w) = zeRY : sup —z-z<o0y,
TEKS (W)
for w e Qand j € {0,...,N}. We then denote by Z* the collection of all martingales
Z =1{Z;,0<j <N} with
Z; € D5n(0,00)" forall je{0,...,N}.
Note that, from the results of the previous sections, 2°° # () whenever NAY or NA" are
satisfied. We also observe that

das, (ZN) < oo forevery 7 € Z°.
Indeed, for all (¢;,0 <t < N) € [[\L,L° (~K}, %), we have
N N N
E|Znv-) G| = D E[Z-¢] < Z%O(fz(;,yj)(zj),
=0 =0 j=0

and therefore

j=0
We need the following sets:
r = {yERd : y—i—YN:GforsomeYeszf}
and
D := {y € R? : there exists € > 0 s.t. B[(G —y) - Zn] — das,(Zn) <Ofor all Z € ffa}.

Theorem 6.1 Let G € LO(R?, Zy). Assume 2°° # O for all € > 0. Then

int(D) cI' C D.

Proof. Let y € T, i.e. y = G — Yy where Yy = Z;-v:ofj for some (&,...,&N) €
[T)5 LY (—Kj, 7). Set

d
e = min{Zu@(w)m; 0<j<Nwe, &w) #o} .
=1
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Then
E(G —y)-Zn]—6as,(Zn) < O
for all Z € Z¢. Hence y € D and we have proved that

I ¢ D.

Now, suppose that y ¢ I". Then:
AYyN{G -y} =10

for all ¢ > 0. Fix an arbitrary ¢ > 0. By the (large) separation Theorem, there exists a

non-zero Z such that

0 < 64(2) < E(G-1)-7]. (6.1)
Then Z; = E(Z | #;) defines a martingale such that Z; € D; (0 <j < N).
Let Z* := (1 = \)Z + \Z for some Z € Z° and X € [0,1]. Then Z* € Z*.

We deduce the following inequalities from (6.1) and the convexity of das:

0 < E[(G-y) 2] =045, (Z)+E[(G — 1) - (Z — ZY)] = (0a5,(2) — 6a5,(2Y))
< E[(G-y) 2] = 0a5, (2 4 AE[(G — ) (2 = 2)| = (65, (2) — 645,(2)
< sup {E[(G—y)- 2]~ iag (2))

ME[(G =) (2= 2)] - 04y, (2) - 55, (2))}
and letting A — 0, we have:

0 < sup {E[(G—y)- 2] - (2)}. (6.2)
Zeze

Take any Z¢ € Z*¢ and set y, := y — %e where e = (1,...,1). By (6.2), we find:
£ £ (> (> 1 (>
E[(G —yn) - Zy] — 5A§V(ZN) = E[(G -y)  Zx] - 6A§V(ZN) + He 25 >0

which shows that y € D¢. Since y, — y, we have y € D¢. Hence I'® C D¢ and therefore
(De)e CT.

The required inclusion follows from the observation that (D¢)¢ = int(D). O

Remark 6.1 - When D is closed (which is the case when Ay is a cone), Theorem 6.1 says
that

=]
[
S
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If in addition Ay is closed, then

' = D.

This is the case in financial markets with proportional transaction costs.

- The support function of A% plays the role of a penalty function. When Ay is a cone,

this penalty function reduces to the indicator function of some closed convex subset, and

we recover the usual result for markets with transaction costs.
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