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STOCHASTIC TARGET PROBLEMS WITH CONTROLLED LOSS*
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Abstract. We consider the problem of finding the minimal initial data of a controlled process
which guarantees to reach a controlled target with a given probability of success or, more generally,
with a given level of expected loss. By suitably increasing the state space and the controls, we
show that this problem can be converted into a stochastic target problem, i.e., finding the minimal
initial data of a controlled process which guarantees to reach a controlled target with probability one.
Unlike in the existing literature on stochastic target problems, our increased controls are valued in an
unbounded set. In this paper, we provide a new derivation of the dynamic programming equation for
general stochastic target problems with unbounded controls, together with the appropriate boundary
conditions. These results are applied to the problem of quantile hedging in financial mathematics
and are shown to recover the explicit solution of Follmer and Leukert [Finance Stoch., 3 (1999), pp.
251-273].
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1. Introduction. For 0 <t < T, we are given two controlled diffusion processes
{XV,.(s),t <s<T}and {VY, ,(s), t <s < T} with values, respectively, in R and
R, satisfying the initial condition (X{,,Y}", ,)(t) = (z,y). The main objective of
this paper is to study the stochastic target problem with controlled probability of

success:

V(t,x,p) :=inf{y > 0: P[YY, (T) > g(X{,(T))] > p for some admissible control v/}.
In the case p = 1, V(t,z) := V(t,z, 1) reduces to the stochastic target problem studied
in Soner and Touzi [15, 16], who concentrate on the case where the control v takes
values in a bounded set.

For p < 1, this problem was introduced in the context of financial mathematics by
Follmer and Leukert [9]. In this paper, the process X models the price of some given
securities and is not affected by the control v, which corresponds to the portfolio strat-
egy of the investor. The process Y represents the value of the investor’s portfolio and
is defined by a diffusion whose coefficients are linear in the control variable. In this
special context, Follmer and Leukert [9] use a duality argument to convert this prob-
lem into a classical test problem in mathematical statistics. An elegant solution is then
obtained by a direct application of the Neyman—Pearson lemma; see also the extension
in Cvitanic and Karatzas [6] and the references therein. This approach applies in the
case where the securities prices are driven by general semimartingales but the linearity
in the control is crucial in order to use Follmer and Leukert’s duality argument.
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In particular, the duality approach of [9] does not extend to the general nonlinear
controlled diffusion case.

Note that a possible approach consists of introducing the standard stochastic
control problem,

p(tz,y) = maxP [V, ,(T) > g (X7, (T))],

which corresponds to the inverse of V(t,x,p) with respect to the p-variable, i.e.,
p(t, x, V(t, x,p)) = p. Then, one can provide a characterization of the value function
p(+) by the dynamic programming equation (DPE), and obtain V by inverting the
solution with respect to the y-variable. We may also translate the DPE for p(¢, x,y)
into a partial differential equation (PDE) for 1% by using the above relation. This,
however, requires some regularity of the value function p(¢,x,y) which is a priori
difficult to prove. One could also solve numerically the PDE associated with p(-)
and then invert it numerically. This would nonetheless require the computation of
p(+) on a large grid of different values y and introduce an additional error due to the
numerical inversion.

In this paper, we propose a direct treatment of the problem 1% along the lines
of [15]. The key idea is to convert the problem V into a stochastic target problem by
diffusing the probability of reaching the target and considering it as an additional con-
trolled state variable P®. This is a direct consequence of the martingale representation
theorem in our assumed Brownian filtration. This reformulation of the problem 1%
opens the door to the geometric dynamic programming approach of [15] but raises
additional difficulties. First, the additional control process in the increased state is
unbounded leading to a singular stochastic target problem. Second, the reformula-
tion is subject to the state constraint p € [0,1] which leads to nontrivial boundary
conditions.

Our first main result is an extension of the derivation of the DPE of [15] to the
general case where the control takes values in an unbounded set. This is achieved by
conveniently introducing a semilimit relaxation of the corresponding natural DPE.
While the subsolution derivation follows along the lines of the original argument
of [15], we provide a new method for the derivation of the supersolution property
which does not require any compactness and avoids delicate passages to the limits.
We also provide a description of the terminal condition in the present unbounded
control case.

Our second main result concerns the special case of the stochastic target problem
with controlled probability of success V. Under fairly general conditions, we show that
the state constraint on p yields the natural boundary conditions V (t,z,1—) = V(t, z)
and V(t,x, 0+) =0 for t < T. At the final time T there is, however, no clear guess
of what should be the behavior of V. Under some extra conditions, we prove that
V(T—,z,p) = pg(x), which is a “face-lifted” version of the natural boundary condition
g(z)1,50. Here, the term “face-lifted” is taken from [4], where a similar phenomenon
was first proved in the context of option hedging.

Notice that the geometric dynamic programming approach of this paper extends
to a larger class of problems, namely, stochastic target problems with controlled loss,

Vit a,p):=inf {y >0: E[loG (X! (T),Y, ,(T))] > p for some admissible v},

where G(z,y) is nondecreasing in y and the loss function £ is nondecreasing. The
above problem V' corresponds to the special case £ := 1g, .
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Finally, we apply our result to the so-called quantile hedging example of Follmer
and Leukert [9]. By using the supersolution property of V, we reproduce the explicit
solution of [9] in the complete market case. The key idea is to observe that the convex
conjugate function of V with respect to the p-variable solves a linear PDE.

The paper is organized as follows. Section 2 presents the general formulation
of singular stochastic target problems and contains the statement of the correspond-
ing DPE. The stochastic target problem under controlled probability of success is
discussed in section 3. We first reduce the problem to the setting of the preceding
section in order to obtain directly the corresponding DPE inside the domain. A del-
icate analysis of the boundary conditions is then provided. Section 4 shows how our
results reproduce the elegant explicit solution of Féllmer and Leukert [9] in the context
of a complete financial market application. The extension to general loss functions
is briefly discussed in section 3.5. Finally, sections 5 and 6 contain the proofs of the
main results.

Throughout this paper, elements of R™, n > 1, are identified as column vectors,
the superscript 7 stands for transposition, - denotes the scalar product on R”, |- | the
Fuclidean norm, and M" denotes the set of n-dimensional square matrices. We denote
by S™ the subset of elements of M™ that are symmetric. For a subset O of R”, n > 1,
we denote by cl(O) its closure, by int(O) its interior, and by dist(x, O) the Euclidean
distance from x to O with the convention dist(x, }) = co. Finally, we denote by B,.(z)
the open ball of radius > 0 centered at x € R™. Given a locally bounded map v on
an open subset B of R”, we define the lower and upper semicontinuous envelopes:

v.(b) := liminf v(b’), v*(b) :=limsupv(b'), b € cl(B).
B3b' —b B3b/ —b
Throughout this paper, inequalities between random variables have to be understood
in the a.s. sense.

2. Singular stochastic target problems.

2.1. Problem formulation. Let 7" > 0 be the finite time horizon, and let
W ={W;, 0 <t < T} be a d-dimensional Brownian motion defined on a complete
probability space (2, F, P). We denote by F = {F;, 0 < ¢ < T} the P-augmentation
of the filtration generated by W.

Let U, be a subset of the collection of progressively measurable processes v
in L2([0,T]) P-a.s., with values in a given closed subset U of R%. For ¢t € [0,7],
z = (z,y) € RY xR, and v € U, we define Z}, := (X7,,Y/",) as the R? x R-valued
solution of the stochastic differential equation,

(2.1) dX(r) = p(X(r),v)dr + o(X (), vy )dW,,
dY (r) = py (Z(r),vp)dr + oy (Z(r),vp) - dWy, t <7 <T,

satisfying the initial condition Z(t) = (X (¢),Y (t)) = (z,y). Here,

(ny,oy) : REXRxU — RxR?,,
(,0) : REx U — R? x M

are locally Lipschitz and assumed to satisfy
(2.2) [y (@, g, u)| + |z, w) + oy (2, y, u)| + |o(z, u)| < K(z, y)(1+ [u]),

where K is a locally bounded map.
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We denote by U a subset of elements of U, for which (2.1) admits a unique strong
solution for all given initial data, and we assume that any constant controls with
values in U belongs to Y. We also allow for state constraints, and we denote by X
the interior of the support of the controlled process X.

Given u € U, we denote by £* the Dynkin operator associated with the controlled
diffusion X,

LY(t, x) = Opp(t,x) + p(z,u) - Do(t, z) + %Tr [crch(a:, u)D?(t, z)],

for a smooth function ¢, where 0, stands for the partial derivative with respect to t,
and Dy and D?p denote the gradient vector and the Hessian matrix with respect to
the x variable.

Let G be a measurable map from R%*! to R such that for every fixed z, the
function

(2.3) y — G(z,y) is nondecreasing and right-continuous.
The stochastic target problem is defined by
(2.4) V(t,z):=inf {y eR : G (X/,(T),YY,

t,xy

(T)) > 0 for some v € U} .
Let us observe that this problem can be formulated equivalently as

(2.5) Vit,z)=inf{y eR : Y}, (T) > g (X/,(T)) for some v € U},
where g is the generalized inverse of G at 0:

(2.6) g(x) :=1inf{y: G(z,y) > 0}.

For the case when the set U is bounded, it was proved in [15] that the value function V'
is a discontinuous viscosity solution of

(2.7) sup {uy (z,v(t,z),u) — L'(t,z) : u € Ny (z,v(t, ), Dv(t,z))} =0,

where

(2.8)
No(z,y,q) == {ueU : N“(z,y,q) =0} and N*(z,y,q) := oy (2,y,u) — o(z,u)"q.

Since Ny(z,y,q) may be empty, we shall use the standard convention sup@) = —oco
throughout this paper.

The chief goal of this section is to provide an extension of this result to the case
where U is unbounded.

2.2. The dynamic programming equation. Because the control set U is not
necessarily bounded, we need to introduce the relaxed semilimits,

F*(©):= limsup F.(0') and F.(0):= liminf F.(0'),
N0, 050 N0, 6/'—6

where, for © = (z,y,q,A) € R x R x R? x §% and £ > 0,

F.(©) :=sup {,uy(a:, y,u) — p(z,u) - q— %Tr [crch(a:, w)A] : ue Ne(a,y, q)}
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and
Ne(2,y,9) :={ueU : [IN“(z,y,q)| <e}, e>0.
Observe that (N:):>0 is nondecreasing so that

N . . !
(2.9) F.(9):= 11®Ip_1>%f Fy(©).

For ease of notation, we shall often simply write F'v(t,z) in place of F(z, v(t,x),
Do(t,z), D*v(t,z)). We shall similarly use the notation F*v and F,v.

Our first main result is the derivation of the DPE corresponding to the stochastic
target problem in the present context of possibly unbounded controls. This is an
extension of [15] and [16], where the set U was assumed to be bounded; see also [3] for
the case of jump diffusions. This extension is crucial for our analysis of the stochastic
target problem under controlled probability and under controlled loss. The following
continuity assumption is needed in order to prove the subsolution property. Note that
this version is slightly weaker than Assumption 4.1 in [16].

Assumption 2.1 (continuity of No(x,y,q)). Let B be a subset of X x R x R? such
that Ay # 0 on B. Then, for every € > 0, (%9, y0, q0) € int(B), and uy € Ny(xo, Yo, o),
there exists an open neighborhood B’ of (z9,y0,q0) and a locally Lipschitz map o
defined on B’ such that |v(zo, yo,q0) — uo| < € and v(zx,y,q) € No(z,y,q) on B’.

Throughout this paper, we shall always assume the standing assumption that V'
is locally bounded, so that the semilimits V, and V* are finite. Our first main result
characterizes V' as a discontinuous viscosity solution of (2.7) in the following sense.

THEOREM 2.1. The function V, is a viscosity supersolution of

(2.10) -V + F*V, >0 o0n [0,T) x X.
If in addition Assumption 2.1 holds, then V* is a viscosity subsolution of
(2.11) -V '+ FEV*<0on [0,T) x X.

The proof of this result is reported in section 5. In particular, the supersolution
property is proved by a new approach and avoids delicate passages to limits that
appear in [16].

Let us now introduce the set-valued map

(2.12) N(z,y,q) :={r e RY: r = N%(z,y,q) for some u € U},

together with the signed distance function from its complement set N€ to the origin,
(2.13) § := dist (0,N¢) — dist (0O, N),

where we recall that dist stands for the (unsigned) Euclidean distance. Then,

(2.14) 0 € int (N(z,y,q)) iff 6(z,y,q) > 0.

The upper- and lower-semicontinuous envelopes of ¢ are, respectively, denoted by
0* and 9., and we will abuse notation by writing d,v(z) = d.(x,v(z), Dv(z)) and
0*v(z) = 0*(xz,v(x), Dv(x)).

Remark 2.1. From the convention sup () = —oo and the supersolution property
(2.10) in Theorem 2.1, it follows that

(2.15) §*V., > 0on [0,T) x R?
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in the viscosity sense. Then, if N¢ # (), this means that V is subject to a gradient
constraint.

Remark 2.2. Let us check that Theorem 2.1 reduces to the viscosity property
of Soner and Touzi [15] in their setting. Assume that for every (z,y,q) and r € R%
there is a unique solution @(x,y,q,r) to the equation N*(z,y,q) = r, i.e.,

(2.16) N"(z,y,q) =r iff u=a(z,y,q,r).

Assume further that @ is locally Lipschitz continuous, so that Assumption 2.1 trivially
holds. For ease of notation, we set uo(z,y,q) := u(x,y,q,0). For a bounded set of
controls U, it follows that for any smooth function ¢, F*p(t,z) > 0 implies that

(2.17) to(z, o(t,z), Dp(t,x)) € U and —dwp(t, z) + Fop(t,z) > 0,

where the operator Fy reduces in the present context to
_ _ 1 T = \P2
Fop = py (-, ¢, U0) = u(- o) - D — 5 Tr [o0 (-, 10) D?¢] -
Similarly, Fip(t,z) < 0 implies that

(2.18) either tg(z, o(t, x), Dp(t,x)) ¢ int(U) or —0xp(t, z) + Fop(t,z) < 0.

Notice that (2.17)—(2.18) correspond to the PDE derived in [15].
We next discuss the boundary condition on {T} x X. By the definition of the
stochastic target problem, we have

V(T,z) = g(z) for every z € RY.

However, the possible discontinuities of V' might imply that the limits Vi (T,.) and
V*(T,.) do not agree with this “natural” boundary condition. The following result
states that the constraint discussed in Remark 2.1 propagates up to the boundary.
Again, this phenomenon was already noticed in [15], among others. Here, the main
difficulty is due to the unboundedness of the set U.

THEOREM 2.2. The function x € X — V. (T, ) is a viscosity supersolution of

(2.19) min { (Vi(T,") = g) L{pev.(1,)<o0} » 0 Va(T,+)} >0 on X,
and, under Assumption 2.1, x € X — V*(T,x) is a viscosity subsolution of
(2.20) min {V*(T,:) —g*, ,.V*(T,)} < 0 on X.

Remark 2.3. Note that §(z,y,q) < 0 whenever int (N(z,y,q)) = 0, so that the
subsolution property carries no information. This is the case when the control set
U has empty interior, as in the context of a stochastic volatility model. A specific
analysis is needed in such cases; see [17] and [11].

Remark 2.4. In the context of Remark 2.2, observe that

e d*p(x) > 0 implies that ao(x, p(z), De(x)) € U, and F*p(x) < oo is always
satisfied;
e J.po(x) > 0 implies that ug(z, (x), De(x)) € int(U).
Hence, for a convex set U with nonempty interior, we recover the boundary condition
of [15].
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When X = R? (and under suitable conditions) a comparison result of viscosity
supersolutions of (2.10)—(2.19) and subsolutions of (2.11)—(2.20) can be proved in cer-
tain classes of functions. We do not pursue this issue any further, and we instead refer
to [5] for some general results in this direction and to [2] for a comparison result in
a similar setting. We recall that the main concern of this paper is the analysis of the
stochastic target problem under controlled probability or, more generally, controlled
loss. However, we shall assume that such a comparison result holds in order to es-
tablish the boundary conditions for the problem of stochastic target under controlled
probability and/or loss of the subsequent section.

Assumption 2.2. There is a class of functions C containing all nonnegative func-
tions dominated by V* such that, for every

e v; € C, lower-semicontinuous viscosity supersolution of (2.10)—(2.19) on [0, 7] x
X"

e v9 € C, upper-semicontinuous viscosity subsolution of (2.11)—(2.20) on [0, T] x X,
we have v1 > vs.

Note that, when the process X is subject to state constraints, the boundary
conditions on [0,7] x 0X have to be specified. We deliberately avoid this issue for
the sake of simplicity. However, in our subsequent analysis, it will appear from the
very nature of the problem, and we will deal with a special type of state constraints;
see subsection 3.3.

3. Target reachability with controlled probability of success. In this sec-
tion, we extend the model presented above to the case where the target has to be
reached only with a given probability p:

(3.1)
V(t,2,p) :=inf {y e Ry : P[G (X} (T), Y/

t,z,y

(T)) = 0] > p for some v €U} .

In order to avoid degenerate results, we restrict the analysis to the case where the Y
process takes nonnegative values, by simply imposing the following conditions on the
coefficients driving its dynamics:

(3.2) py (2,0,u) >0 and oy(x,0,u) =0 forall (z,u) € X x U.

Note that the above definition implies that

(3.3) 0=V(,0 <V <V(-1)=V
and
(3.4) V(,p)=0 forp<0 and V(-,p) =00 forp>1,

with the usual convention inf () = oo.

3.1. Problem reduction. Our first objective is to convert this problem into the
class of (standard) stochastic target problems so that the DPE for the target reacha-
bility problem with controlled probability can be deduced directly from Theorem 2.1.
To do this, we introduce an additional controlled state variable,

(3.5) P, (s) :=p—|—/ ap - dW,, selt,T],
t

where the additional control « is an F-progressively measurable R%valued process
satisfying the integrability condition IE[fOT |os|?ds] < co. We then set X = (X, P),
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X =X x (0,1), U := U x R?, and denote by U the corresponding set of admissible
controls. Finally, we introduce the function

G(ﬁc, Y) = 1G>0y —pfory eR, 2 := (z,p) € cl (X x R).
PROPOSITION 3.1. For all t € [0,T) and & = (x,p) € X, we have

(3.

6)
V(t, &) = f{y€R+ : G’(Xt”z(T) Y y(T)) >0 for some 0 = (v,«) EZJ[},

)
)

(3.7) and P, € [0,1] for some v = (v,a) € Z/A{} .

_ inf{y eR, : G (Xgi(T) Y, ,(T)) >0

Proof. We denote by v(t, z,p) and w(t, z,p) the value functions appearing on the
right-hand sides of (3.6) and (3.7), respectively.

Step 1. We first show that V > v. For y > V (¢, 2, p), we can find v € U such that
po = P[G (X}, (T),Y},,(T)) > 0] > p. By the stochastic integral representation
theorem, there exists an F-progressively measurable process « such that

T
/ |a5|2d8] < 0.
t

Since pg > p, it follows that 1{G( L(T).Yr,,(T))20) > Pp,(T), and therefore y >

T
1{G(X;”I(T)7Ytlyfzyy(T))20} =Po +/t ~dWs = Py, (T) and E

v(t, z,p) from the definition of the problgm v. o
Step 2. We next show that v > V. For y > w(t,z,p), we have G(X/(T),

Y, (1)) > 0 for some 7 = (v,a) € U. Since Py, is a martingale, it follows that

P [G (XZw(T)’}/tl:w7y(T)) = 0] = [ {c(xy,(D).Yy, y(T))ZO}} > E [Ptcfp(T)] =D

which implies that y > V(t, x,p) by the definition of V.
Step 3. The inequality v < w is obvious. To see that the reverse inequality holds,
consider some y > v(t, x,p). Then, there exists some control 7 = (v, a) € U such that

(3.8) Ya(xp. vy, m)z0p = Fip(T);
Define
7:=T Ainf {s >t PO‘ = O} and &, := asliger) for s € [t, T

Clearly, P?,(T) = P2,(T) on the event set {r = T'}. Since P{,(T’) = 0 on the event
set {7 < T} it follows from (3.8) that

La(xy (v, )20} 2 Pip(T):

We finally observe that Pt‘?‘p > 0 by the definition of &, and that the last inequality
implies that Ptoj‘p(T) < 1. By the martingale property of the process Pt‘"p,
that it is valued in the interval [0, 1]. Hence, y > w(t, x,p). O

Remark 3.1. 1. In the case where the infimum in the definition of V (¢, z,p) is
achieved and there exists a control v € U satisfying P [G (X7.(T), Y%, ,(T)) > 0] =»p,

we conclude
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the above argument shows that the corresponding process Py, coincides with the
conditional probability of the event set {G (X7, (T),Y, ,(T)) > 0}, ie.,

a
Pt,ZD

(s) =P [G (X} .(T),Y, ,(T) > 0| F] forseltT).

2. Equation (3.7) shows that one can restrict to controls o such that Py, takes
values in [0,1]. This is rather natural since the latter should be interpreted as a
conditional probability, and this corresponds to the natural domain [0, 1] of the vari-
able p. From the mathematical viewpoint, one can also allow controls such that Py,
takes nonpositive values as in (3.6), thus avoiding the introduction of a new con-
straint. Note, however, that the value function V(-,p) is constant for p < 0 and
equal to oo for p > 1; see (3.4). In both cases, the natural domain of V' is therefore
[0,T] x cl(X) x [0,1].

3.2. The dynamic programming equation. The above reduction of the prob-
lem V' to a stochastic target problem allows us to apply the general results of the
previous section. For 4 = (u,a) € U and & = (z,p) € X, set

(3, 0) = < “(5%’ u) ) . 6(d,0) = ( o(z, u) ) :

(67

We also introduce, for (y,q, A) € R x R x S+ and 4 = (u,a) € U,

Nﬁ(‘%ayﬂq) = UY(SU;,’%U) - 6(£aﬁ)T(] = Nu(ffayan) — gpQ for q= (qwaqp) € Rd X Ra
Ne(2,y,q) = {an : |Nﬁ(:%,y,q)|§£}, e>0,

1
Fs(jjvyaqvA) = sup {ILLY(ZE,y,U)—,[L(JA:,U,OZ)'q—§Tr [66T(£,u,a)A}},
(w,0) N (#,y,9)

and

N(,y,q) := {Nﬁ(fc,y,q) La e U} . §.=dist (O,NC) — dist (ON) .

The operators F* and F, are constructed from F. exactly as F* and F, are defined
from F;. Finally, we define the function

§@) =inf {y>0: G@ay) 20}, &= (2.p) X x[0,1]
which is related to g by
G(z,p) = g(x)1,50 for z € X and p € [0, 1].

As an almost direct consequence of Theorem 2.1 and (3.6), we obtain the viscosity
property of V under the following assumption, which is the analogue of Assumption 2.1
for the augmented control system X.

Assumption 3.1 (continuity of No(x,p,y,q)). Let B be a subset of X x [0,1] x
R x R such that Ny # 0 on B. Then, for every € > 0, (0,0, Y0, o) € int(B),
and g € No(xo,po,yo,qg), there exists an open neighborhood B’ of (zo, po, %0, q0)
and a locally Lipschitz map # defined on B’ such that |(x0, po, Yo, go) — 0| < € and
v(z,p,y,q) € No(z,p,y,q) on B
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COROLLARY 3.1. The function V., is a viscosity supersolution of
—o, Vo + F*V, > 0 on [0,T) x X.
Under the additional Assumption 3.1, V* is a viscosity subsolution of
min{f/* , =0V + I:—'*V*} < 0on[0,T)xX.

Proof. The supersolution property is a direct consequence of Theorem 2.1 and the
representation (3.6). The subsolution property is obtained similarly. The first term
accounts for the nonnegativity constraint on the state process Y in the arguments of
the proof in section 5.3. O

Remark 3.2. Clearly, Assumption 3.1 holds true whenever the function @ intro-
duced in Remark 2.2 is well defined and locally Lipschitz continuous.

3.3. Boundary conditions and state constraint. The above result relies
on converting V into a (singular) stochastic target problem. This was achieved by
introducing the new state variable p. Because the natural domain of this variable is
[0,1] (recall (3.4)), we need to specify the boundary conditions at the endpoints 0
and 1. By definition of the stochastic target problem with controlled probability, we
have

(3.9) V(-,1) = Vand V(-,0) = 0.
Also, since G is nondecreasing in y, we know that V is nondecreasing in p. Hence
(3.10) 0 < Vi(-0) < V*(,1) < V¥,

and one can naturally expect that V,(-,0) = 0 and V*(-,1) = V*. However, the
function V may have discontinuities at p = 0 or p = 1, and, in general, the boundary
conditions have to be stated in a weak form (see (6.1) and (6.23) below), which
corresponds to classical state-space constraint problems (see [13], [14], [8], or [1] and
the references therein).

To obtain a characterization of V on these boundaries, we shall appeal to the
following additional assumptions.

Assumption 3.2. For all (z,y,q) € X x (0,00) x R, we have Ny(z,y,q) C U.

Assumption 3.3. For any compact subset A of R x R x R? x S¢, there exists
C > 0 such that F.(0) < C(1+¢?) for alle >0 and © € A.

Remark 3.3. Assumption 3.2 is natural and allows us to avoid degenerate cases
that would have to be discussed separately. It will be used only to derive the boundary
condition at p = 0. Assumption 3.3 is more technical and will be used only to discuss
the boundary condition at p = 1.

The main result of this section shows that the natural boundary conditions (3.9)
indeed hold true whenever the comparison principle of Assumption 2.2 holds and
under the above additional assumptions.

THEOREM 3.1. Assume that the function sup,cy |o(-,u)| is locally bounded on X
and that Assumption 3.1 holds true.

(i) Under Assumption 3.2, we have V*(-,0) = 0 on [0,T) x X and V,(-,0) = 0
on [0,T] x X.

(ii) Under Assumption 3.3, V*(-,1) is a viscosity supersolution of (2.10)~(2.19) on
[0,T] x X. In particular, if in addition the comparison assumption, Assumption 2.2,
is satisfied, then V*(-,1) = V,(-,1) = Vi = V* on [0,T] x X.

The proof is reported in section 6.
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3.4. On the terminal condition. The boundary condition at T for V, and V*
can be easily derived from the characterization of Theorem 2.2.
COROLLARY 3.2. The function & € X — V,(T,%) is a viscosity supersolution of

(3.11) min{(m(T,.) )1{F* (1 y<oe} » SV(T, )} >0 on X.

If, in addition, Assumption 3.1 holds, then & € X V*(T, %) is a viscosity subsolu-
tion of

(3.12) min{V*(T,-) — 5, &V*(T,-)} < 0on X.

Note, however, that g* = g* so that the discontinuity in the p-variable of the
boundary condition on V* is not apparent in the above formulation. Moreover, the
condition F*V,(T,-) < oo may not be satisfied because of the unboundeness of the
control « that appears in the definition of F. Tt follows that the above boundary
condition may be useless in most examples.

In the rest of this section, we provide conditions under which a more precise
boundary condition can be specified. These assumptions will be satisfied in our ex-
ample of application; see section 4.

PROPOSITION 3.2. (i) Assume that g is continuous and that for all sequences
(tns Ty Yns Py Vn ) Of [0, T) XX XRL %[0, 1] XU such that (tn, Tn, Yn,Dn) = (T, 2,y,p)
€ {T} x X xRy x[0,1], there exists a P-absolutely continuous probability measure Q
such that
(3.13) limsupE® Y, (1)) <y and lim sup E© [lg(X;m,. (T)) —g(z)|] =0.

n—oo n—oo
Then, Vi(T,z,p) > pg(z) for all (x,p) € X x [0,1].

(ii) Let the conditions of Theorem 3.1 hold true and assume that V* is conve in its
p-variable and that V*(T,-) < g. Then, V*(T, x,p) < pg(x) for all (x,p) € X x[0,1].

Proof. 1t follows from Theorem 3.1 and the convexity property of V* that
V*(t,z,p) < pV*(t,z) for all (¢t,z,p) € [0,T) x X x [0,1]. Since V*(T,-) < g by
assumption, we deduce that V*( T,-,p) < pg by considering a sequence (t,,, Tpn, pn)n in
[0,7) x X x (0,1) such that (t,, Zn, pn) = (T, z,p) and V*(t,, 2n, pn) — V*(T,z,p).
On the other hand, given a sequence (tn,Zn,pn)n in [0,7") x X x (0,1) such that
(tns T, pn) = (T2, p) and V (tn, &n, pn) — Vi(T, x,p), we can find (v, o) € U such
that

Lovie, =gz, (z0p 2 Pilp, (1),
where yy, := V(tn, Tn, pn) + 1/n — Vi(T, z,p). This implies that
Yo ww (1) 2 P, (D)9(Xe 7 o, (1)),
and, since P;'", (T') is bounded by 1,
Y (1) 2 PO, (T)g(2) = [g(XP7,, (T)) = g(2)] .-

Taking the expectation under Q and recalling that Pt‘);fpn is a martingale, we get
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Passing to the limit and using (3.13) leads to V. (T, z,p) > pg(z). O

The conditions of Proposition 3.2 are easily satisfied if the coefficients of X” and
YV are Lipschitz continuous uniformly in the control variable. The condition on Y
also typically holds if, after a suitable change of measure, the control appears in its
dynamics only through the It6 integral. This is typically the case in finance, where
Y" plays the role of the wealth process; see the example in section 4.

We now provide conditions ensuring the convexity of V* in its p-variable.

PROPOSITION 3.3. Assume that V* >0 on [0,T) x X x (0,1) and that U = R,
Assume further that the function u defined in (2.16) is locally Lipschitz continuous,
that @(z,vy,q,-) is Lipschitz on R? for all (z,y,q) € X x R x R, and that for each
compact set @ C X x Ry there exist C > 0 and € € (0,2] such that

(3.14) |py (2, y,w)| + |z, w)| + |o(@,u)|* < C(L+ |uf*~%) for all (z,y,u) € O x U.

Then, V*(t,x,p) s convex in p.

Proof. Since U = R?, it follows from the same argument as in Remark 2.2 that
the condition of Corollary 3.1 is satisfied. Since V* > 0, this implies that V* is a
viscosity subsolution of —8,V* + F,V* < 0 on [0,T) x X. Let ¢ be a smooth function
and (t,z,p) be a local maximizer of V* — ¢ on [0,7T) x X. Note that, by definition
of @ and the assumption U = R?,

No(z,y, (02, 4p)) = {(@(, Y, @, aqp), @), o € R}

In view of the growth condition (3.14) and the Lipschitz continuity assumption on @,
this implies that there exists C' > 0 and € € (0, 2] such that, for all o € R,

1 _
—§|Oé|2Dpp<p(t,x,p) <C(1+ |0‘|2 °).
This implies that Dpp¢(t, z,p) > 0. The convexity then follows from the same argu-

ments as in [7, Proposition 5.2]. d

3.5. Extension to target reachability with controlled expected loss. We
now briefly explain how to extend the key idea of Proposition 3.1 to the target reach-
ability problem with controlled expected loss, in the spirit of [10].

Let £ : R — R be a nondecreasing function, and denote by

L :=comv (£ o G(X x Ry))

the closed convex hull of the image of £oG. For p € L, we define the target reachability
problem with controlled loss:

Vit 2, p) == inf {yeRy : E[toG (Xt”m(T),Kf”my(T))] > p for some v €U} .

Observe that for ¢(r) = 1,>¢ we recover the target reachability problem with con-
trolled probability. As in the previous section, we introduce an additional controlled
state variable defined by

(3.15) Po(s) = p+/ ay - dW,, se€[t,T],
t

where the additional control a is an F-progressively measurable real-valued process
satisfying [E [fOT las|?ds] < oo. We next denote by X := (X,P), X = X x L, U =
U x R, U the corresponding set of admissible controls, and we define

GUi,y) i=LoG(x,y)—p, yeRy, &= (z,p)ecd(XxR).
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If Lo G (X},(T), Ytl’my(T)) is square integrable for all initial conditions and controls
v € U, we can then follow the arguments used in the proof of Proposition 3.1 and

relate V¥ to a stochastic target problem with unbounded controls:
Vit &) = inf{y eRy : Gf ()A(t”z(T),Yt”zy(T)) > 0 for some 0 = (v,a) € Z/?} :

This allows us to provide a PDE characterization of V% in the spirit of the one
obtained for V' above. The adaptation of the previous arguments to this context is
obvious.

4. Application to the quantile hedging problem. In this section, we spe-
cialize the discussion to the quantile hedging problem of Féllmer and Leukert [9]. We
first assume that the state space of the process X is X := (0,00)¢ and that it is not
affected by the control:

(4.1) w(x,u) = p(x) and o(x,u) = o(x) are independent of u,

where p and ¢ are Lipschitz continuous. In order to avoid arbitrage, we also assume
that o is invertible and that

(4.2) sup  |A(2)] < oo where X := o' pu.
z€(0,00)¢

The coefficients of the controlled process Y are given by
(4.3) py (z,y,u) = u-p(x),  oy(z,y,u) =0t (z)u,
Finally,
(4.4)  G(x,y) =y — g(x) for some Lipschitz continuous function g : R — R
The process X is thus defined by the stochastic differential equation
dXt () = p(Xt.2(8)) ds + 0 (Xt 0(s)) dWs, X .(t) =z € (0,00)?

and should be interpreted as the price process of d risky securities. Here, we implicitly
assume that the coefficients y and o are such that X; , € (0,00)? P-a.s. for all initial
conditions (t,z) € [0,T] x (0, c0)%.

The control process v is valued in U = R?, with components v! indicating the
number of shares of the ith security held in a portfolio at time s. After the usual
reduction of the interest rates to zero, it follows from the self-financing condition that
the value of the portfolio is given by

Yrtyzy(s) =Y +/ Vp - dXt,w(r)a s$ = t;
t

which leads to the definitions in (4.3). The stochastic target problem V (¢, x) corre-
sponds to the problem of superhedging the contingent claim g(X; (7)), and V(t, x,p)
is the corresponding quantile hedging problem. Note that the above assumptions en-
sure that V is continuous and is given by V(¢,z) = E%= [g(X, .(T))], where Q; ;. is
the P-equivalent martingale measure defined by

T T
dQy,/dP = exp <—%/t IN Xt (5))[ds —/t A X¢(8)) - dWS> .

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/02/20 to 129.104.4.146. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

3136 BRUNO BOUCHARD, ROMUALD ELIE, AND NIZAR TOUZI
In particular, V is a viscosity supersolution on [0, 7)) x (0, 00)? of

1
(4.5) og—@V—gTqmﬁDmvy

For later use, let us denote by W= := W + [/ A(X;4(s))ds the Q¢ ,-Brownian
motion defined on [t, T7.

In [9], the quantile hedging problem is solved in the general nonnecessarily Markov
model of asset prices process, by means of the Neyman—Pearson lemma from mathe-
matical statistics. In our Markov setting, we shall recover the solution of [9] by using
only the supersolution property from the results of the previous sections.

First note that the conditions of Corollary 3.1, Theorem 3.1, and (i) of Propo-
sition 3.2 are trivially satisfied. This implies that V, is a viscosity supersolution of
[0,T) x X,

(4.6) 0< -8V, + F*V,
~ 1 T ~
= —0;V, — 3 Tr [crcr DMV*}

a€cRd

N - 1 ~
— inf <—04(DPV*)T01M+ Tr |:O'O[D;EPV*:| + §|a|2DPPV*> ’

with the boundary conditions
(4.7)
Vi(,1) =V and Vi(-,0) =0 on [0,T] x X; V(T z,p) > pg(x) on X x [0, 1].
For the sake of clarity, we extend V; to [0,7] x X x R by setting
(4.8) Vi(,p) :=0for p<0 and V,(-,p):= oo for p > 1.

The key idea for solving (4.6)—(4.7) is to introduce its Legendre—Fenchel dual with
respect to the p-variable in order to remove the nonlinearity in (4.6):

(4.9) u(t,z,q) == sgg {pq - f/*(t, a:,p)} , (t,x,q) €0,T] x (0, o0)4 x R.

Note that (4.8) and the second equality in (4.7) imply that

(4.10) v(,q) =00 for ¢ <0 and v(-,q) = sup {pq - V*(-,p)} for ¢ > 0.
p€[0,1]

Using the PDE characterization of V and V above, we shall prove below that v
is an upper-semicontinuous viscosity subsolution on [0,7") x (0,00)¢ x (0, 00) of

1 1
(4.11) —0w — 3 Tr [0 Dyyv] — 3 AP > Dygqv — Tr [oAD4qv] <0

with the boundary condition

(4.12) o(T,2,q) < (¢ —g(x))".

Since the above equation is linear, an explicit upper bound for v is available from the
Feynman—Kac representation result. Namely,

(413)  olt,2,0) < 0(t2,0) = B2 [(Quag(T) — g (Xia(T))]
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on [0,7] x (0,00)¢ x (0,00), where the process Qy s, is defined by the dynamics

dQ(s)
Q(s)
Given the explicit representation of v, we can now provide a lower bound for the

primal function v by using (4.10). Clearly the function o is convex in ¢ and there is
a unique solution (¢, z, p) to the equation

(4.14) = A\ Xt2(5)) - dWQt=, Qt.r.q(t) = q € (0,00).

(4.15)

v _

% (t,2,q) =E%* [Qt01(T)1(q, . s1)>g(Xen(1)}] = P[Qtag(T) > g(Xi2(T))] = p,
where we have used the fact that dP/dQ., = Qi 1(T). It follows that the value
function of the quantile hedging problem V' admits the lower bound

V(t,,p) > Vilt,,p) > pa(t,z,p) — v (t,2,4(t,z,p))
= q(t,z.p) [p — E** [Qt0,1(T) 1 {q(t,0,0) Q.0 (1)29(X0rw (1))} ]]
+E% [g(Xe.2(T)) L{q(t,0,0) Q0. 1 (T) 29( X a(T)}]
=E%* [9(Xt2(T)) L{q(t,2,0)Qu.0n (1) 29(Xea (T} =2 Y(E,2,D)-

On the other hand, it follows from the martingale representation theorem that we can
find v € U such that

Yyt (1) 2 9 (Xew(T)) Lgt,o.0)Qu 01 (1) >9(Xe o (1))}

Since, by (4.15), P[G(t, ,p)Qt.21(T) > g (X; 2(T))] = p, this implies that V (¢, z,p) =
y(t, z,p), which corresponds exactly to the solution of Féllmer and Leukert [9].

To conclude our argument, it remains to prove that v is a viscosity subsolution
of (4.11)—(4.12).

Proof of (4.11)—(4.12). First note that the fact that v is upper-semicontinuous
on [0,T] x (0, 00)% x (0, 00) follows from the lower-semicontinuity of V, and the repre-
sentation in the right-hand side of (4.10), which allows us to reduce the computation
of the sup to the compact set [0,1]. Moreover, the boundary condition (4.12) is an
immediate consequence of the right-hand-side inequality in (4.7) and (4.10).

We now turn to the PDE characterization inside the domain. Let ¢ be a smooth
function with bounded derivatives and (¢, zo, qo) € [0,7) x (0, 00)% x (0, 00) be a local
maximizer of v — ¢ such that (v — ¢)(to, 0, q0) = 0.

(a) We first show that we can reduce to the case where the map ¢ — ¢(-,q) is
strictly convex. Indeed, since v is convex, we necessarily have Dgqp(to, z0,qo) > 0.
Given €, > 0, we now define p.,, by ¢:,(t,z,q) == @(t,2,q) +€lg — q|* + nlg —
a0|*(lg — qo|* + |t — to]? + |z — x0|?). Note that (to,0,qo) is still a local maximizer
of U — ¢e . Since Dyqp(to, o, q0) > 0, we have Dyqpe 1, (to, o, q0) > 2 > 0. Since ¢
has bounded derivatives, we can then choose 7 large enough so that Dggp., > 0. We
next observe that, if ¢. , satisfies (4.11) at (¢, o, qo) for all € > 0, then (4.11) holds
for ¢ at this point too. This is due to the fact that the derivatives up to order two of
e at (to, o, qo) converge to the corresponding derivatives of ¢ as ¢ — 0.

(b) From now on, we thus assume that the map g — ¢(-, q) is strictly convex. Let
¢ be the Fenchel transform of ¢ with respect to g, i.e.,

@(t, x,p) := sup{pq — ¢(t,x,q)}.
qeR
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Since ¢ is strictly convex in g and smooth on its domain, ¢ is strictly convex in p and
smooth on its domain; see, e.g., [12]. Moreover, we have

Qp(tv €T, Q) = sup{pq - @(ta x,p)}

peER
= J(t,z,q)q — @(t,x, J(t,x,q)) on (0,T) x (0,00)?
(4.16) x (0,00) C int(dom(y)),

where g — J (-, q) denotes the inverse of p — D,@(-, p); recall that @ is strictly convex
in p.

We now deduce from the assumption go > 0 and (4.10) that we can find po € [0, 1]
such that v(to,z0,q90) = pogo — Vi(to, xo,po) which, by using the very definition of
(to, o, Po,qo) and v, implies that

(4.17)  (to, o, po) is a local minimizer of V, — ¢ such that (Vi — @)(to, zo,po) = 0
and

(4.18) ¢(to; 20, q0) = Sug{qu — @(to, zo,p)}
pe

= poqo — $(to, o, po) with po = J(to, 20, q0),

where the last equality follows from (4.16) and the strict convexity of the map p
pqo — @(to, o, p) in the domain of @.

We conclude the proof by discussing three alternative cases depending on the
value of py.

1. If po € (0,1), then (4.17) implies that ¢ satisfies (4.6) at (to, zo,po), and the
required result follows by exploiting the link between the derivatives of ¢ and the
derivatives of its p-Fenchel transform ¢, which can be deduced from (4.16).

2. If po = 1, then the first boundary conditions in (4.7) and (4.17) imply
that (to, o) is a local minimizer of V,(-,1) — @(-,1) = V — ¢(-,1) such that (V —
&(+,1))(to, zo) = 0. This implies that ¢(-,1) satisfies (4.5) at (to,zo) so that ¢ sat-
isfies (4.6) for o = 0 at (to,xo0,po). We can then make the same conclusion as in
item 1.

3. If pp = 0, then the second boundary conditions in (4.7) and (4.17) im-
ply that (to,z0) is a local minimizer of Vi (-,0) — @(-,0) = 0 — @(-,0) such that
0 — @(+,0)(to, zo) = 0. In particular, (tg, o) is a local maximum point for @(-,0)
so that (0:@, D) (to, z0,0) = 0 and D ,@(to, xo,0) is negative semidefinite. This
implies that (-, 0) satisfies (4.5) at (o, xo) so that ¢ satisfies (4.6) at (to, o, po) for
a = 0. We can then argue as in the first case. ad

5. Derivation of the dynamic programming equation for singular sto-
chastic target problems. This section is dedicated to the proofs of Theorems 2.1
and 2.2. We first recall the geometric dynamic programming principle of [16]. We
next report the proofs of the supersolution properties in subsections 5.1 and 5.2, and
those of the subsolution properties in subsections 5.3 and 5.4.

THEOREM 5.1 (geometric dynamic programming principle). Let (t,z) € [0,T) x
X, and let 0 be an [s, T]-valued stopping time. Then,

(5.1) V(t,z) =inf{ly e R: Y

t,x,y

(0) >V (0,X/,(0)) a.s. for some v € U}.

The DPE (2.7) is the infinitesimal analogue of the above geometric dynamic
programming principle. The viscosity property stated in Theorem 2.1 is obtained in
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two steps. The supersolution property will be deduced from the following consequence
of (5.1).

(GDP1) Ify > V(t,x), then there exists v € U such that for all stopping times
0<T,

(5:2) Yy (0) = V(0, X ,(6)).

The subsolution property will be proved using the following claim, which is again
implied by (5.1).
(GDP2) For every y < V(t,x), v €U, and all stopping times § < T,

(5.3) PYY, ,0) > V(0, X!, (6)] < 1.

Notice that (5.1) is equivalent to (GDP1)—(GDP2).

5.1. The supersolution property on [0,T) X X. This proof avoids delicate
limit arguments of the supersolution derivation in [15] and [16].
Step 1. Let (to, o) € [0,T) x X, and let ¢ be a smooth function such that

(strict) Igpl)uxlx(% —¢) = (Vi —p)(to,z0) = 0.

)

Assume to the contrary that (—0:p + F*p) (to,x0) =: —2n for some 1 > 0, and let us
work towards a contradiction. By definition of F*, we may find € > 0 such that

(5:4) py (z,y,u) — L*(t, x) < —n for all u € Ne(z, y, Dp(t, )
and (¢t,z,y) € [0,T) x X x Rs.t. (t,z) € Be(to, o) and |y — ¢(t,z)| < e,

where we recall that B.(tog,xo) denotes the ball of radius € around (to,zp). Let
0pB:(to, x0) := {to + €} x cl(Be(to, z0)) U [to, to + €) x 0B:(x¢) denote the parabolic
boundary of Bc(to,zo) and observe that

5.5 = i V. — ) >0
(5.5) ¢ aprﬁ?@w( ©)

since (tp,xg) is a strict minimum.

Step 2. We now show that (5.4) and (5.5) lead to a contradiction to (GDP1).
Let (tn,xn)n be a sequence in [0,7) x X which converges to (to, o) and such that
V(tn, zn) — Vi(to, z0). Set yn, = V(tn,x,) +n~! and observe that

For each n > 1, we have y,, > V(t,, z,). Then, there exists some v™ € U such that

(5.7) G (Z™(T)) > 0 where Z" := (X", V") := (X"" " ) .

tn,Tn? T tn,Tn,Yn

We now define the stopping times

00 :={s>t, : (s,X"(s)) ¢ B(to,x0)},
On i ={s>t, : [Y"(s)—p(s,X"(s))| >} NO

and set

(5.8) A= {s € [t 0n] + py (Z7(s),07) — L% o (5, X"(s)) > —n}.
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Observe that (5.4) implies that the process
(5.9) Y= NY" (Z", Dgp(s, XT')) satisfies [¢| > ¢ for s € A,,.
By (5.7) and (GDP1), it follows that
YPtNO,) > V(EANO,, XM (tA0)), t>tn.
Using the definition of ¢ in (5.5) and 6,,, this implies that
Y™ (tAOn) > @ (A O, X (EA0) + (CLigo—p,} + €1(0o50,1) Lito,}
>pANOn, X"(ENO)) + (CAE) Lp—p,y, t 2ty

Since ¢ is smooth, it follows from It6’s lemma, (5.6), the definition of ¢™, (2.8), and
(5.8) that

tAOy,
(€A ey <r = €A+ [ (27007) — £ (5, X7(5) s

n

tAOy,
+’j/ ’wg/'dtvé
t

n

tAB,, tAB,,
(5.10) <M =y, — ((ANe) —l—/ byds —l—/ YT - dWs,
t t

where we set b7 1= {py (Z"(s), 1) — LY ¢ (5,X"(s))} 1a,(s). Let L™ be the expo-
nential local martingale defined by L =1 and, for s > t,,

dLy = —LYbg [y 720y 1a, (s) - AW,

which is well defined by (5.9), (2.2), and our definition of the set of admissible con-
trols U.

By It6’s formula and (5.10), we see that L™M™ is a local martingale which is
bounded from below by the submartingale — (¢ A ) L™. Then, L"M™ is a super-
martingale, and it follows from (5.10) that

0<E[Ly My ] <L} M =M =~,-(A¢,
which contradicts (5.6) for n large enough. O

5.2. The supersolution property on {T'} x X. Let 29 € X, and let ¢ be a
smooth function such that

(strict) Ir%én(V*(T, ) =)= (Vi(T,") — p)(z0) = 0.

The fact that §*p(xo) > 0 is deduced from (2.15) and the upper-semicontinuity of 6*
by standard arguments; see, e.g., the proof of Lemma 5.2 in [15]. We now prove the
second assertion. Assume that

F*p(x9) < 0o and @(x0) = Vi(T, z0) < g«(x0),

and let us work towards a contradiction. Since V(T,.) = g by the definition of the
problem, there is a constant 77 > 0 such that ¢ — V(T,-) < ¢ — g. < —n on Be(zg) for
some £ > 0. Since xg is a strict minimizer, 2¢ := min,cpp_(z,) Vs (T, z) — p(x) > 0,
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and it follows that there exists r > 0 such that V (¢, z) — o(x) > ¢ > 0 for all (¢,z) €
[T —r,T] x 0B:(x0). Indeed, otherwise we could find (t,,x,) € [T —r,T] X dBc(x0)
such that V(¢,, z,) — ¢(z,) < ¢ for each r > 0. Sending r — 0 would then lead to a
contradiction since 0B, (o) is compact. Hence,

(5.11) Vt,z) —p(z) >CAn>0
for (t,x) € ([T —r,T) x 0Bs(x0)) U ({T} X Be(x0)).

We now use the fact that F*p(z¢) < oo to deduce that, after possibly changing € > 0,

py (z,y,u) — LY (z) < C for all u € No(x,y, Dp(t, x))
and (z,y) € X xR s.t. ¢ € Be(xo) and |y — p(z)] < e

for some constant C' > 0. Let ¢(¢t,z) := ¢(x) + C(t — T). Then, for sufficiently small
r > 0, we have

Vi(ta) — $(x) > 5(CAm) >0 for (1) € (T —r.T] x 9Ba(0)) U (T} x Ba(ao)

and py (x,y,u) — LY@(x) < C for all u € N (z,y, DP(t, x)),
(x,y) € X X R s.t. z € Bo(xp) and |y — ¢p(z)| < e.

By following the arguments in Step 2 of section 5.1, the latter inequalities lead to a
contradiction of (GDP1). O

5.3. The subsolution property on [0,T) x X. We essentially adapt the
arguments of [15] and [16]. Since our controls are not bounded and Assumption 2.1
is weaker that their assumptions, we provide the complete proof.

Step 1. Let (to,x0) € [0,T) x X, and let ¢ be a smooth function such that

(5.12) 0 = (V' =o)(to,z0) > (V" —@)(t, ), (to,20) # (t,2) € [0,T) x X.

We have to show that (=0 + Fi) (to,z0) < 0. Assume to the contrary that
dn = (=0 + Fro) (to,z0) > 0.

By (2.9), we may find € > 0 such that

pwy (z,y,u) — LYo(t, x) > 2n for some u € Ny(x,y, Dp(t, T))
for all (t,z,y) € [0,T) x X x R s.t. (t,z) € Be(to, zo) and |y — ¢(t, x)| < e.

For € small enough, Assumption 2.1 then implies that

az OB =y oy Dt a)) - LDl ) 2
' for all (¢t,z,y) € [0,T) x X x R s.t. (t,x) € Be(to, o) and |y — o(t,2)| < e,

where © is a locally Lipschitz map satisfying

(5.14) v(x,y, Do(t,x)) € No(z,y, Do(t, x)) on Be(to, zo).

Observe that, since (tg, zg) is a strict maximizer in (5.12), we have

5.15 —(:= max (V*'-— < 0,
(5.15) Cm, s (V)
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where 0pBc(to, zo) = {to + e} x cl(Be(to, o)) U [to,to + ) x 0B (xo) denotes the
parabolic boundary of Be(tg, o).

Step 2. We now show that (5.13), (5.14), and (5.15) lead to a contradiction of
(GDP2). Let (tn,xn)n be a sequence in [0,7) x X which converges to (to,zo) and
such that V (t,,z,) — V*(to,70). Set y, = V(tn,r,) —n~' and observe that

(516) Tn ‘= Yn — (p(tnvxn) — 0.

Let Z" := (X™,Y™) denote the solution of the SDE (2.1) associated with the
Markovian control ™ = p(X™ Y™ De(-,X™)) and the initial condition Z™(t,) =
(Zn,yn). Since ¥ is locally Lipschitz, this solution is well defined. We next define the
stopping times

00 :=inf {s > t, : (5,X"(s)) ¢ Be(to,x0)},
Op :=1nf {s > t, : [Y"(s) — (s, X"(s))| > e} NOy.

Note that the first line in (5.13), (5.16), and a standard comparison theorem imply
that Y"™(0,,) — ©(0n, X™(0,)) > € on {|[Y™(0,) — ¢(0,,X™(0,))] > €} for n large
enough. Since V < V* < ¢, we then deduce from (5.15) and the definition of 6,, that

Y™(0n) =V (0n, X"(0")) > 1{0n<0§;} {Y™(0n) — ¢ (0n, X"(00))}
+ 1go,—093 {Y"(07) = V™ (67, X" (07))}
= elyg, <og) + Lo, —opy {Y"(00) — V7 (05, X"(07))}
> elgp, <00y + Lio, =00y 1Y (07) + C— (07, X™(00))}
2 e NG+ Lgg,—053 (Y (07) — 0 (67, X7(67))} -

We continue by using [t6’s formula:

On
Y7 (0n) =V (00, X"(0")) 2 & ANC+ Lig,—05} <7n +/ a(stQ,Ys”)d8> :
tn
where the drift term «(-) > 7 is defined as in (5.13) and the diffusion coefficient
vanishes by (5.14). Since €,¢ > 0 and +,, — 0, this implies that
Y™(0,) > V(0,,X"(6")) for sufficiently large n.

Recalling that the initial position of the process Y™ is v, = V(tn,z,) — n~ ! <
V(tn, xr), this is clearly in contradiction with part (GDP2) of the geometric dynamic
programming principle. 0

5.4. The subsolution property on {T} x X. The proof combines arguments
used in sections 5.3 and 5.2. We explain only the main steps.
Let zp € X and ¢ be a smooth function such that
(strict) Hl)?(iX(V*(T, =)= V*T,) —¢)(xo) =0.

Assume that

(5.17) dsp(xo) > 0 and 0 < 4n := p(xo) — g* (o) = V* (T, 20) — 9" (z0).
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By (2.14) and Assumption 2.1, we can find r,e > 0 and a locally Lipschitz map &
satisfying

(5.18) D(z,y, Dp(x)) € No(z,y, Dp())
for all (z,y) € X x Rs.t. € By(x0) and |y — ¢(z)| <e.

Set ¢(t,z) = @(x) + T —t. Since 0:p(t,x) — —oo as t — T, we deduce that, for
r > 0 small enough,

(@, y) = py (2,y,0(x,y, DP(t,x))) — L7V PN Gt 2) >

>
5.19 -
( ) for all (t,z,y) € [T —r,T) x X xR s.t. x € B.(z9) and |y — §(t,2)| < e.

Also observe that, since V* — ¢ is upper-semicontinuous and (V*(T',-) — ¢)(xg) = 0,
we can choose r > 0 so that

(5.20) V(t,x) < @(t,z) +¢/2 forall (t,x) € [T —r,T]x By(x).

Moreover, combining the identity V (T, zo) = g(xo), (5.17), (5.19), and the fact that
o achieves a strict maximum, and using arguments similar to those of section 5.2,
we see that

(5.21)
V(t,x) — ¢(t,z) < —¢ for all (t,z) € ([T'—r,T] x 0B, (x0)) U ({T} x Br(x0))

for some r,e,( > 0 small enough but so that the above inequalities still hold.
By following the arguments in Step 2 of section 5.3, we see that (5.18), (5.19),
(5.20), and (5.21) lead to a contradiction of (GDP2). O

6. Derivation of the boundary conditions for the stochastic target with
controlled probability. We now prove Theorem 3.1. The Dynkin operator associ-
ated with (X, P%*) will be denoted by

B, ) i= dyplt ) + (3, @) - Dolt, &) + % Tr [567 (&, 8) D20 (1, )]

6.1. The endpoint p = 1. In order to prove that V*(, 1) is a supersolution of
(2.10)—(2.19), it suffices to show that V. (-, 1) is a supersolution of

(6.1) max{m(.,n—m : —atm(.,1)+F*V*(.,1)} > 0on[0,7) x X,

and that V, (T, -,1) is a viscosity supersolution on X of

(6.2) max{m(T,.,n —V(T,)),
min { (Va(T, 1) = 0.) L pgs 1)<y 8V (70 1) 2 0,

To convince ourselves, let us show, for instance, that (6.1) implies (2.10). Let (o, o)
be a local minimizer of V,(-,1) — ¢ for some smooth function ¢. Then,

- either Vi (to, o, 1) < Vi(to, zo) and (2.10) holds for ¢ at (to, xo),

- or Vi(to,x0,1) = Vi(to,20) so that (to,xo) is a local minimizer of V, — ¢,
and (2.10) holds for ¢ at (to,zo) by the viscosity property of V,; see Theorem 2.1.
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Step 1. We first show that for any smooth function ¢ on [0,T] x X x [0,1] and
(to, o) € [0,T) x X such that

. i i * T = A* - ) 71 =Y,
(6.3) (strict) oD o 1](V ¢) = (Vi = ¢)(to,70,1) =0
we have
(64) max{g@(to,xo,l) — ‘/*(to,ﬁo) s (—8tQO+F*(p) (to,ﬁo,l)} > 0.

If not, we can find n,e > 0 such that

65)  max{e(t,z,p) — Vit,2), py (e y,u) - £(t2,p) ) < —n
for all (u, @) € Nz(x,y, D(t,,p)) and (t,2,p,y) € [0,T) x X x (0,1] x R
s.t. (t,z,p) € Be(to,x0) X [L —¢,1] and |y — (¢, z,p)| < e.

Let (tn, Tn,pn)n be a sequence in [0,7") x X x (0, 1) which converges to (o, xo, 1) and
such that V (t,, 2n, pn) — Vi(to, 2o, 1). Set y, = V(tn, Tp, pn) +n~! and observe that

Yn = Yn — @(tn, zn) — 0.

For each n > 1, we have y,, > V (5, ). Then, there exists some 7" := (v",a") € U
such that

(6.6) C:(Z"(T)) >0, where Z" := (X", P",Y") = (Xt’ﬁmnaPtifpnathzmyn)'

We now define the stopping times

00 :={s>1t, : (s,X"(s),P"(s)) € D},
On :={s = tn : [Y"(s) —@(s,X"(s))| =2 e} N O],

where
D .= (8pB€(t0,$0) X [1 — g, 1]) U (Bg(to,xo) X {]. — g, 1}),

and 9, B:(to, xo) := {to+e} xcl(Bc(to, xo))U[to, to+¢€) X OB: (o) denotes the parabolic
boundary of B. (o, zo). It follows from (6.3) and (6.5) that

¢:= 1%f(V — ) > 0.
By (6.6) and (GDP1), it follows that
Y7 (0n) 2 V(0n, X" (0), P (0n)) > @(0n, X" (00), P (00),

where the second inequality follows from (6.3). Using the definition of 8,, and ¢ > 0,
this implies that

Y™(0,) > o (0n, X™(0n), P"(60,)) + ¢ Ae.

By arguing as in section 5.1, this leads to a contradiction.
Step 2. We now show (6.1); i.e., for any smooth function ¢ on [0,7] x X and
(to, o) € [0,T) x X such that

(strict) [O%;EX(K(-, 1) —¢) = (Vi(-, 1) — 9)(to, m0) = 0,
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we have

(6.7) max {¢(to, o) — Vi(to,x0) , (=0 + F*p) (to,x0)} > 0.

(a) For every k > 0, we introduce the smooth function

or(t,x,p) == (t, ) — |z — zo|* — (t —t0)” — Yi(p),

where, for some fixed p > 0,

1 o2k
p
Observe that
6.9)  —2pk < Gl(p) = <K okl h
( ‘ ) - p — wk(p) - p ek(p'H) _ 82k+1 — _2(8 _ 1) or arge enoug )
ek(P+3)
(6.10) ¥y (p) = —pk? <0 forall k>0,

(eF(p+1) — g2k+1)2

L )

e A P T

=p if (pr)x is a sequence in [0, 1] s.t. klim k(1 —pr) =0.
—00

Let (t, 2k, pr) be a minimizer of Vi, — @i on [0,7] x cl(BX(z0)) x [0,1], where

B¥(z0) := Bi(zo) N X and Bj(zo) is the open unit ball centered at xo. Observe

that, by definition of (¢, x, pr) and (to, o),

(V* - (P)(to,$0, ) ( * k)(toaa:Ov 1)
> (A* k) (ks Th, Di)
= (Vi — ) (tg, e, pr) + |2 — 0| * + (ts — t0)? + Vn(pk)
> (Vi = ) (b @p, i) + | — ol * + (b — t0)” + 2(epﬁ ) (1= pr),

where the last inequality follows from (6.9) for k large enough and the fact that
¥r(1) = 0. Since V., >0 by construction and ¢ is bounded, this implies that the
sequence (tg, Tk, k)i is bounded and therefore converges to some (t., ., ps«) up to a
subsequence. Clearly, p. = 1, since otherwise we would have k(1 — p;) — oco. By
definition of (¢, zo), this implies that

(Vi — ¢)(to, 0, 1)
> liminf(f/* — k) (tk, Tk, D)
k— oo

- pk
> (Vi — @)ty Ta, 1) + |20 — mo|* + (£ — t0)* + hmlnf 7(1 — Pk)
k—o0 2(6 - 1)
. pk
> (Vi — @) (to, 20, 1) + @ — mo|* + (t. — to)* + hmmf 7(1 — Dk)-
k—oo 2(e—1)

This shows that, after possibly passing to a subsequence,
(6.12)  (t, 2k, pi) — (to, 20, 1), k(1 — pr) — 0, and Vi (tr, 2k, pe) — Vi(to, 20, 1).
(b) In order to prove (6.7), we assume that

(6.13) Va(to, 0, 1) — Vi(to, 20) < 0,
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and we intend to prove that
(6.14) (=0wp + F"p)(to, w0) 2 0.

By the previous convergence results, it follows from (6.13) that the sequence (tx, Tk, pk)
of minimizers of the difference V, —  satisfies V*(tk, Tk, pr) — Vi (tk, z) < 0 after pos-
sibly passing to a subsequence. By Corollary 3.1 together with the result of Step 1,
we then deduce that

(—atgpk + F*tpk) (tg, zk,pr) > 0 for every k > 1.
Now observe that by (6.12),

(6.15)  (9¢pr, Dty D2ook) (tey Ty i) — (Opp, Do, D*) (g, 0) as k — oo,
(Dppr, D201, Diyor) (b, i, pi) = (=0 (pr), 0, = (pr)) for every k > 1.

By definition of F*, we can then find sequences e, > 0, &1, = (29,p9) € X x [0, 1],
e > 0, g = (¢f.qp) € R x R, and a symmetric matrix 4y € S¥! with rows
(Azz ATP) € §% x RY and (A?P") APP) € RY x R such that

(6.16) ex — 0, & — (wo,1), and |(y, qr, Ax) — (@,D@,D2g0k)(tk,xk,pk)| <k!
and

—0p(to, wo) + Fék Tk, Yks qrs Ag) > —k 1

By the definition of Fak, we may find a maximizing sequence (ug, ax) € Nak (Zk, Yr» )
such that

—0p(to, x0) + py (23, Yr, ) — pl(ah, ur) - g
1 z _
-3 (Tr [oo™ (2, ur) AL"] + | P AP + 20T (2, ue) AFP - a) > —2k~ 1
Observe that (ux,ar) € N, (Zr,Yr,qr) implies that ug € Newtiqpan (29, Yk, af).-
Then
(6.17)

—8t30(t0,$0) + Fsk+|q£ak\ (xgayka qk;Ak ) 2 _E + §|ak|2A£p + O'T(l'g,Uk)Akp c g,

and we deduce from Assumption 3.3 that, for some constant C' > 0 (which may change
from line to line),

1
C (1 + |CIZO<1<|2) > §A£p|0‘k|2 =+ UT(l’g, u) AP - oy,

(6.18)

v

1 @
SATla]? + CLAT o,

where we used the condition that sup,cy |o(z, )| is locally bounded. From (6.9),
(6.10), (6.11), (6.12), (6.15), and (6.16), it follows that

()

(6.19) AP — 00, AP — 0, and A7
k

— p as k — oo,
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and we deduce from (6.18) that, for small p,
|k 2| A | < C and |ax[?|gf|* < Cp
for some constant C. In view of (6.19), this implies that |ax| — 0. We now return

to (6.17) to deduce that

2 €T
~0up(to, @o) + Py 1+ yop (70, Uk 4k, AF”) 2 T ot (2, ur) AT - a,

since A}” > 0, and we obtain the required result (6.14) by sending k& — oo and then
p — 0, and recalling that (|a|, A;”) — 0 and that o is locally bounded, uniformly in
the control w.

Step 3. Tt remains to prove (6.2). The fact that V.(T),-,1) is a viscosity super-
solution of

max{m(T,.,l) — VT, 5*17*(11.,1)} >0

is deduced from (6.7) of the previous step by using the same arguments as in sec-
tion 5.2. It remains to show that V(T -, 1) is a viscosity supersolution of

max {V*(T7 ) 1) - V*(T, ) ) (V* (T, ) 1) - g*)l{F*V*(T7.71)<oo}} >0.

By combining the arguments of Step 1 with those of section 5.2, we first show that
for any smooth function ¢ on X x [0,1] and z¢ € X such that

(strict) xTééh](V* (T,) = ¢) = (Vu(T,-) = @) (20, 1) = 0,

we have
(6.20) max {Va(T,20,1) = Va(T,a0), (Va(T,20,1) = 50(20) ) L g1y <oe) | = O
We then consider a smooth function ¢ on X and z¢ € X such that

(strict) m)i(n(f/* (T,-,1) — @) = (Vi(T,-,1) — @) (20) = 0
and
(6.21) AT, x0) < Vi(T,20), F o(T,x0) < 00.
We follow the construction of Step 2 of modified test functions

or(z,p) = (@) — |z — wo|* — ¥u(p),

where 9y, is defined by (6.8). As in the above Step 2, we prove that the difference
V.(T,.) — ¢ has a local minimizer & = (2, pi) satisfying all estimates derived in the
above Step 2 (forgetting about the ¢t variable). In particular, since F*p(Zy) < C for
some constant C' > 0 independent of k by (6.21), we deduce from the same estimates as
in Step 2 that F*o(dy) < 2C for all large k. It then follows from Corollary 3.2, (6.20),
and (6.21) that Vi(T, &) > §.(2#;). Sending k — oo, this provides V, (T, zo,1) >
Jx (0, 1), and the proof is completed by observing that §.(zo, 1) = g.(zo). O
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6.2. The endpoint p = 0. We organize the proof in three steps. As in the
previous subsection, Steps 1 and 2 focus on ¢t < T, while Step 3 concentrates on
t="T.

Step 1. We first show that for any smooth function ¢ on [0,7) x X x [0, 1] and
(t1,21) € [0,T) x X such that

.22 trict V*—3)=(V* =) (¢t =
(6.22) (stric )[O,T)Ti’i[o,l]( ¢) = ( @)(t1,71,0) =0,
we have
(6.23) min{V* , —at¢+13:¢} (t1,21,0) < 0.

The proof is very similar to that of subsection 5.3 up to the modification explained
in the proof of Corollary 3.1 and the fact that we have to handle the state constraint
p = 0. For completeness, we report here the entire argument. Assume on the contrary
that

an = min {V*, (=8¢ + F.¢) (t0,0,0)} > 0,

i.e., for some € > 0,
(6.24)

min {(ﬁ(t,fc) , by (Z,y,4) — ﬁ“gb(t,fc)} > 2 for some 4 € No(#,y, D@(t, 7))

for all (¢,#,y) € [0,T) x X x R s.t. (t,2) € B(to, 20) x [0,¢], |y — ¢(t, )| < e.
Assumption 3.1 implies that
(6.25)

alt,,y) = min {@(t.2) , py (@, 9(3,y, Dp(t.2)) = LV PN (1, 5) | >
for (t,2,y) € [0,T] x X x R s.t. (t,2) € Be(to, o) x [0,¢], |y — (t, &) <e,

where 7 is a locally Lipschitz map satisfying
(6.26) o(&,y, Dp(t, &) € No(&,y, D@(t, ) on Be(to, o) x [0, ).
Observe that since (¢1,x1) is a strict maximizer in (6.22), we have

(6.27)
= mgx(v* — @) < 0, where D := (9,Bc(to,z0) x [0,¢]) U (B:(to, z0) x {€}).

Also, we deduce the following from (6.24) and the fact that V(-,0) = 0 by definition:

(6.28) 0>-n> max (V—¢)(0).
Be (to,®o)
By following the arguments in Step 2 of section 5.3, we see that (6.25), (6.26), (6.27),
and (6.28) lead to a contradiction of (GDP2).
Step 2. Let ¢ be a smooth test function on [0,7] x X, and let (¢, x¢) € [0,T) x X
be such that

(strict) [ofl%?i‘x(v* —©)(,0) = (V" = ¢)(to, x0,0) = 0.
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By definition, we have V*(t, 20,0) > 0. Let us assume that
(6.29) V*(to, 20,0) > 0
and work towards a contradiction. Recall the function vy, of (6.8), and define

er(t,2,p) == p(t,z) + |z — 20| + (t — t0)? + i (L — p).

Arguing as in Step 2 of the previous subsection, we see that the difference V- Pk
has a local maximizer (ty, zx, px) on cl([0,T] x X x [0, 1]) satisfying

(630) (t/mxkapk) — (t07x070)7 kpk — 07 and V*(tkaxkapk) — V*(t07x070)7
so that

(6.31) (0sk> Daois D24 ok) (b, T pk) — (Orp, Do, D*) (Lo, 20),
(Dppr, D201, Do) by iy pi) = (=04 (1 — pi), 0,907 (1 — pie)).

Since V*(to, x0,0) > 0, we have v (tg, K, pr) > 0 for all k, after possibly passing to
a subsequence. Then, it follows from Corollary 3.1 and Step 1 that

(—8ttpk + F*tpk) (tg, vk, pr) < 0 for all & > 1.

By the definition of F\, we can then find sequences ), > 0, & = (29,p%) € X x [0, 1],
yr > 0, and g = (¢f.qh) € R? x R, and a symmetric matrix A, € S with rows
(Azz ATP) € §% x RY and (A?P") APP) € RY x R such that

(6.32) er — 0, & — (w0, 1), and |(yx, gk, Ax) — (0, Do, D> ) (tr, wr, pr)| < k™7
and
—0rp(to, w0) + Fey (Tk, Yk, ars Ar) < K715
i.e., for every (u,a) € Nak (Th, Yk i),
(6.33)  —hp(to, o) + py (h, yi, w) — p(ah, ) - gf
- % (Tr [oo™ (2, u)AL"] + [P APP + 20" (z, u) A7P - o) < k1.

Observe that (6.9), (6.10), (6.11), (6.30), and (6.31) imply that

P\2
oo v . zp ()
(6.34) AP <0, |gp| >0 for large k, klgx;OAk =0, and kli)n;o JAPP]

Now let u € U be an arbitrary control, and define o := N* (2, yx,qF) /q} so that
(u, ar) € Nz, (&x, Yk, qx), and it follows from (6.33) that
| A7
(43)?
for some C' > 0 independent of k and p. Sending & — oo in the above inequality, we
then deduce from (6.32) and (6.34) that

IN* (2, yeoaf)|” < €

p~LINY (20, (to, T0), Dy(to, x0))|* < C.
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Since p > 0 can be chosen arbitrarily close to 0, this shows that N“(zo, ©(to, o),
Dy(tg,x0)) = 0, and the arbitrariness of u € U is in contradiction with Assump-
tion 3.2. Hence, (6.29) does not hold, and therefore V*(-,0) = 0 on [0,7T) x X.

Step 3. We finally show that V,(T,-,0) = 0 on X. Since V*(t,z,0) = 0 for
t < T and z € X, we can find a sequence (tp, Zn,Pn)n in [0,7) x X x (0,1) such that
(tns Ty pn) — (T, 2,0) and 0 < V (ty, Zn, pn) < 1/n for all n > 0. Passing to the limit
leads to the required result. O
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