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Abstract

In this paper, we consider the problem of super-replication under
portfolio constraints in a Markov framework. More specifically, we
assume that the portfolio is restricted to lie in a convex subset, and
we show that the super-replication value is the smallest function which
lies above the Black-Scholes price function and which is stable for the
so-called face lifting operator. A natural approach to this problem
is the penalty approximation, which not only provides a constructive
smooth approximation, but also a way to proceed analytically .
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1 Introduction

The problem of super-replication under portfolio constraints has attracted a

lot of interest. A precise formulation of this problem is provided in Section

2. Let us just observe that it consists in a non-standard stochastic control

problem, with value defined as the minimal initial capital which requires to

hedge some given contingent claim without risk.

The classical approach in the mathematical finance literature was to con-

vert this problem into a standard stochastic control formulation by duality.

This leads to many interesting developments in the field of stochastic pro-

cesses, see e.g. Karatzas and Shreve [7] for an overview. However, this

involves very technical probabilistic arguments, that we intend to avoid in

the present work.

In a Markov framework, this problem can be approached by the classical

dynamic programming technique. However, because of the constraints, we

cannot expect to have a smooth solution of the the associated Bellman equa-

tion. In the previous literature, this problem is solved using the viscosity

theory either on the dual formulation, or on the initial formulation by means

of an original dynamic programming principle, see [9].

On the other hand, a natural approach to this problem is the penalty

approximation, which not only provides a constructive smooth approxima-

tion, but also a way to proceed analytically. More specifically, we assume

that the portfolio is restricted to lie in a convex subset, and we show that

the super-replication value can be characterized in several ways, as the limit

of the penalty approximations which are smooth, as the viscosity solution of

the Bellman equation,and also as the smallest function which lies above the

Black-Scholes price function and which is stable for the face lifting operator

introduced in Broadie et al. [4]. An important feature of our analysis is that

it does not require to pass by the dual formulation.
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2 Problem formulation

2.1 The financial market

Let T > 0 be a finite time horizon, and consider a complete probability space

(Ω,F , P̄ ) equipped with a standard Brownian motion B̄ = {(B̄1
t , . . . , B̄

d
t ),

0 ≤ t ≤ T} valued in Rd, and generating the (P̄ -augmented) filtration F. We

denote by ` the Lebesgue measure on [0, T ].

The financial market consists of a non-risky asset S0 normalized to unity,

i.e. S0 ≡ 1, and d risky assets with price process S = (S1, . . . , Sd) whose

dynamics is defined by the stochastic differential equation:

Si
0 = si , dSi

t = Si
t

[
µi(St)dt +

d∑
j=1

σij(St)dB̄j
t

]
. (2.1)

The functions µ : Rd
+ −→ Rd, and σ : Rd

+ −→ SR(d) satisfy the Lipschitz

condition:

|diag[s]µ(s)− diag[s′]µ(s′)|+ |diag[s]σ(s)− diag[s′]σ(s′)| ≤ K|s− s′| .

Under this condition, it is well-known that the SDE (2.1) has a unique strong

solution. Moreover the coefficients µ and σ are bounded.

sup
s∈(0,∞)d

|µ(s)|+ |σ(s)| < ∞ .

Remark 2.1. The normalization of the non-risky asset to unity is, as usual,

obtained by discounting, i.e., taking the non-risky asset as a numéraire.

The matrix valued function σ is the volatility of the risky assets prices.

We shall assume throughout this paper that the matrix σ(s) is invertible for

every s ∈ (0,∞)d. We then set

λ̄(s) := σ(s)−1µ(s), ∀s ∈ (0,∞)d ,
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and we define the exponential local martingale

Z̄t := E
(
−
∫ t

0

λ̄(Sr) · dWr

)
:= exp

(
−
∫ t

0

λ̄(Sr) · dWr −
1

2

∫ t

0

|λ̄(Sr)|2dr

)
.

Next, we assume that σ−1 is bounded or more general, that the function λ̄

is such that

E
[
Z̄T

]
= 1 , (2.2)

i.e., Z̄ is a martingale. Thus, if we denote by P the probability measure

equivalent to P̄ induced by Z̄

P (A) := Ē
[
Z̄t1A

]
∀A ∈ Ft , 0 ≤ t ≤ T ,

where Ē is the expectation operator under P̄ , then (by Girsanov Theorem),

the process

Bt := B̄t +

∫ t

0

λ̄(St)dt , 0 ≤ t ≤ T ,

is a standard Brownian motion under P , and the SDE (2.1) can be re-written

in terms of B

Si
0 = si , dSi

t = Si
t

d∑
j=1

σij(St)dBj
t , (2.3)

for every i = 1, . . . , d, in the filtered probability space (Ω, P, F).

2.2 Portfolio and wealth process

Let Wt denote the wealth at time t of some investor on the financial market.

We assume that the investor allocates continuously his wealth between the

non-risky asset and the risky assets. We shall denote by πi
t the proportion of

wealth invested in the i-th risky asset. This means that

πi
tWt is the amount invested at time t in the i-th risky asset,
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The remaining proportion of wealth 1−
∑d

i=1 πi
t is invested in the non-risky

asset.

An Rd-valued process π is called an investment strategy if it is F-adapted

and satisfies the integrability condition∫ T

0

|σ(St)
′πt|2 dt < ∞ P -a.s.

where primes denote transposition. We denote by A the set of all investment

strategies. Note that if c(t, s) is a Rd-valued Borel measurable function c(t, s)

satisfying |c(t, s)| ≤ C(1 + |s|) for every s, then a feedback form πt = c(t, St)

is an investment strategy.

Under the so-called self-financing condition (i.e., the variation of the

wealth process is only affected by the variation of the price process), every

investment strategy π induces the following dynamics for the wealth process:

dWt = Wt πt · σ(St)dBt . (2.4)

Observe that the above equation has a well-defined solution for every pair

(w, π) of initial capital and investment strategy :

Ww,π
t := w E

(∫ t

0

πr · σ(Sr)dBr

)
, 0 ≤ t ≤ T .

Note that Ww,π is a super-martingale and a non-negative local martingale

under P, for every (w, π) in R+ ×A.

2.3 The hedging problem

Let K be a closed convex subset of Rd containing the origin, and define the

set of constrained strategies :

AK := {π ∈ A : π ∈ K, `⊗ P -a.s.} .

The set K represents some constraints on the investment strategies.
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Example 2.2 (Incomplete market). Take K = {x ∈ Rd : xi = 0}, for some

integer 1 ≤ i ≤ d, means that trading on the i-th risky asset is forbidden.

Example 2.3 (No short-selling constraint). Take K = {x ∈ Rd : xi ≥ 0},
for some integer 1 ≤ i ≤ d, means that the financial market does not allow

to sell short the i-th asset.

Example 2.4 (No borrowing constraint). Take K = {x ∈ Rd : x1 + . . .+xd ≤
1} means that the financial market does not allow to sell short the non-risky

asset or, in other words, borrowing from the bank is not available.

In order to simplify the analysis, we shall assume that

K has non-empty interior. (2.5)

Remark 2.5. Condition (2.5) excludes important cases as the incomplete mar-

ket of Example 2.2. In this particular example, it can be shown that the value

function V (t, s) does not depend the si-variable, and the problem is treated

following the analysis of this paper in the financial market with risky assets

Sj, j 6= i. The extension of this methodology to a general closed convex set

K with empty interior can be found in [9].

We next introduce a function g : [0,∞) −→ R, and we assume that

g is non-negative, Lipschitz-continuous, (2.6)

and

g(s) ≤ b(s) := C (1 + sγ) = C

(
1 +

∏
i≤d

(si)γi

)
, (2.7)

for some constants C > 0 and γ in K. The random variable

G := g(ST )

is a European contingent claim. The primary goal of this paper is to study

the following stochastic control problem

V (0, S0) := inf {w ∈ R : Ww,π
T ≥ G, P -a.s. for some π ∈ AK} ,(2.8)
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i.e., the minimal initial capital which allows the seller of the contingent claim

G to face, without risk, the payment G at time T , by means of some clever

investment strategy on the financial market.

As usual, we shall denote by V (t, s) the dynamic version of the problem

(2.8) which consists in the above super-replication problem started at the

time origin t with initial data St = s.

3 The main results

Our main purpose is to obtain an analytical characterization of the value

function of the super-replication problem (2.8).

We first provide a characterization of V by means of the associated

Hamilton-Jacobi-Bellman equation. Denoting by V 0 the value of V in the

unconstrained case, we next show that V is the smallest function majorizing

V 0 and stable for some suitable non-linear operator.

Throughout this paper, we shall make use of the support function of the

K, i.e.,

δ(y) := sup
x∈K

x · y for all y ∈ Rd ,

and we denote by

K̃ := {y ∈ Rn : δ(y) < ∞}

its effective domain, which is a closed convex cone containing the origin. Note

that δ : Rd → [0,∞] is a lower semicontinuous and convex function, because

0 belongs to K, the function δ is positively homogeneous, δ(0) = 0, and

x ∈ K ⇔ δ(y)− x · y ≥ 0, ∀y ∈ K̃, |y| = 1,

and the restriction |y| = 1 may be removed in view of the homogeneity of δ.

Moreover, we need to define the following hat operator, as introduced by

Broadie et al. [4]. For any function h : R+ −→ R, we define the function
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ĥ : R+ −→ R ∪ {+∞} by

ĥ(s) := sup
y∈K̃

h (sey) e−δ(y) ∀s ∈ (0,∞)d , (3.1)

with sey = (s1e
y1 , . . . , sde

yd). Note that always ĥ ≥ h, and if h is differentiable

at s and satisfies ĥ(s) = h(s) > 0 then δ(y)h(s) − y · diag[s]Dh(s) ≥ 0 for

every y in K̃, or equivalently, diag[s]Dh(s)/h(s) belongs to K.

3.1 The Hamilton-Jacobi-Bellman equation

Consider the non-linear parabolic PDE:{
min {−Lv(t, s) , H (v(t, s), diag[s]Dv(t, s))} = 0 ,

for every (t, s) ∈ [0, T )× (0,∞)d ,
(3.2)

where

Lv :=
∂v

∂t
(t, s) +

1

2
Tr
[
diag[s]σ(t, s)σ(t, s)′diag[s]D2v(t, s)

]
,

and

H(r, p) := inf
{

δ(y)r − y · p : y ∈ K̃ and |y| = 1
}

,

where σ(t, s)′ is the transposed matrix of σ(t, s). In term of the so-called

log-variables x = ln s the HJB equation (3.2) becomesmin
{
−L̃ṽ(t, x) , H

(
ṽ(t, x), Dṽ(t, x)

)}
= 0 ,

for every (t, x) ∈ [0, T )× Rd ,
(3.3)

with ṽ(t, x) := v(t, s), σ̃(t, x) := σ(t, s),

L̃ṽ(t, x) :=
∂ṽ

∂t
(t, x)− 1

2
Tr
[
σ̃(t, x)σ̃(t, x)′diag[Dṽ(t, x)]

]
+

+
1

2
Tr
[
σ̃(t, x)σ̃(t, x)′D2ṽ(t, x)

]
,

and xi = ln si, for i = 1, . . . , d. Note that (3.3) is non degenerate in Rd, but

the terminal data would have an exponential growth in x.

The importance of this operator H is highlighted by the following result.

8



Lemma 3.1. Let v be a smooth function.

(i) If v > 0 and H
(
v(t, s), diag[s]Dv(t, s)

)
≥ 0, then v̂ = v.

(ii) If −Lv ≥ 0 and v(T, .) ≥ g, then v ≥ V.

Proof. In the view of the discussion following the definition of the hat oper-

ator (3.1), we only have to show item (ii). By Itô’s formula, we have

v
(
τ, St,s

τ

)
= v(t, s) +

∫ τ

t

Lv
(
r, St,s

r

)
+

∫ τ

t

(
diag[s]Dv · σ

)(
r, St,s

r

)
dBr

≤ v(t, s) +

∫ τ

t

(
diag[s]Dv · σ

)(
r, St,s

r

)
dBr = W t,w,π

τ ,

where

πr :=
(
diag[s]v−1Dv

) (
r, St,s

r

)
and w := v(t, s) .

Since v is positive, this shows that π ∈ A. Moreover, it follows from the fact

that v̂ = v that π is valued in K. Hence, π ∈ AK . For τ = T , the above

inequality shows that

g
(
St,s

T

)
≤ v

(
T, St,s

T

)
≤ W t,w,π

T ,

and therefore v(t, s) ≥ V (t, s) by definition of the value function V .

We next derive a smooth approximation of V by considering the non-

linear parabolic PDE

− Lv(t, s)− 1

ε
H− (v(t, s), diag[s]Dv(t, s)) = 0 , (3.4)

where H− := max{0,−H}.

Theorem 3.2. Let condition (2.7) hold. Then, for every parameter ε >

0, there is a unique classic solution U ε to the equation (3.4) satisfying the

boundary condition

U ε(T, s) = g(s) , (3.5)
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together with the growth condition

sup
(t,s)∈[0,T ]×Rd

+

U ε(t, s)

1 + sγ
< ∞ . (3.6)

Moreover U ε ≤ V for every ε > 0, and the family (U ε)ε is a non-decreasing

in ε.

The proof of this result is given in Section 4.1. In view of the monotonicity

of the family (U ε), we introduce the function

U(t, s) := lim
ε↘0

U ε(t, s) = sup
ε>0

U ε(t, s), ∀(t, s) ∈ [0, T )× (0,∞)d ,

which is finite whenever V is finite. In the next statement, we use

V ∗(t, s) := lim sup
(t′,s′)→(t,s)

V (t, s) and U(t, s) := lim inf
(ε,t′,s′)→(0,t,s)

U ε(t′, s′) .

Observe that V ∗ and U are finite whenever V is locally bounded.

Theorem 3.3. Assume that V is locally bounded. Then:

(i) V ∗ is a viscosity sub-solution of (3.2), and V ∗(T, s) ≤ ĝ(s).

(ii) U is a viscosity super-solution of (3.2), and U(T, s) ≥ ĝ(s).

The proof of this result is delayed until Sections 4.2 and 5.

Remark 3.4. For later use, we observe that

U(t, s) ≤ U∗(t, s) := lim inf
(t′,s′)→(t,s)

U(t′, s′) .

To see this, let (εn, tn, sn)n be a sequence such that εn → 0, (tn, sn) → (t, s),

and U(tn, sn) → U∗(t, s). Then

U(t, s) = lim inf
(ε,t′,s′)→(0,t,s)

U ε(t′, s′) ≤ lim inf
n→∞

U ε(tn, sn) ≤

≤ lim inf
n→∞

U(tn, sn) = U∗(t, s) ,

where we used the fact that U ε ≤ U .
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3.2 The case of a constant volatility matrix

We isolate the case of a constant volatility matrix as the corresponding value

function can be characterized easier and under weaker assumption than in

the general case, see Corollary 3.7. This case was studied in Broadie et al. [4]

and [2]. We obtain here their results as a consequence of Theorem 3.3 (ii).

Theorem 3.5. Let σ be a constant matrix, and assume that the payoff func-

tion g satisfies condition (2.7). Then V (t, s) = E[ĝ(St,s
T )].

Proof. From Theorem 3.3 (ii), we deduce that −LU ≥ 0 and U(T, ·) ≥ ĝ.

Observe that the function w(t, s) := E[ĝ(St,s
T )] is a solution of the above

(linear) PDE, i.e. −Lw = 0 and w(T, ·) = ĝ. Then, it follows from (2.7)

together with the maximum principle that U(t, s) ≥ E[ĝ(St,s
T )], and there-

fore V (t, s) ≥ E[ĝ(St,s
T )] by Theorem 3.2. The reverse inequality follows by

applying Lemma 3.1 to the function w.

3.3 Uniqueness and viscosity characterization

When the volatility matrix σ is not constant, the result of Theorem 3.5

does not hold. In order to characterize the value function V by means of

the associated HJB equation, Theorem 3.3 has to be complemented by a

uniqueness result.

Theorem 3.6. Let u (resp. v) be an upper semi-continuous (resp. lower

semi-continuous) sub-solution (resp. super-solution) of the equation (3.2) on

[0, T )× (0,∞)d with u(T, ·) ≤ ĝ ≤ v(T, ·), and

sup
(t,s)∈[0,T ]×Rd

+

|u(t, s)|+ |v(t, s)|
1 + sβ

< ∞ for some β ∈ int
(
K ∩ Rd

+

)
.

Assume further that either one of the following conditions{
u ≤ v on [0, T ]× ∂Rd

+ , or

(HK) K ∩ int(Rd
−) 6= ∅ ,

holds. Then u ≤ v on [0, T ]× Rd
+.
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Here Rd
+ = [0,∞)d and Rd

− = (−∞, 0]d. The proof of this result is given

in Section 6. We now have all the ingredients for the characterization of the

value function V by means of the associated HJB equation.

Corollary 3.7. Let γ be in the interior int(K ∩ Rd
+). Assume further that

conditions (HK) and (2.7) hold true. Then, the value function V is con-

tinuous on [0, T ) × Rd
+, V = U , and it is the unique viscosity solution of

the equation (3.2) satisfying the boundary condition limt↗T V (t, s) = ĝ(s)

together with the growth condition V (t, s) ≤ C (1 + sγ), with a constant C.

Proof. 1.- We first check that V (t, s) ≤ v(t, s) := eτ(t−T )b(s) for sufficiently

large τ . Indeed, since γ ∈ K and σ(·) is bounded, it is immediately checked

that v̂ = v, and −Lv ≥ 0 for large τ . Since g ≤ b = v(T, ·), we deduce from

Lemma 3.1 that V ≤ v.

2.- By Theorem 3.3, the functions V ∗ and U are respectively super-solution

and sub-solution of the equation (3.2) on [0, T )× (0,∞)d, with V ∗(T, ·) ≤ ĝ

and U(T, ·) ≥ ĝ. Moreover, V ∗ and U inherit from V the growth conditions

derived in the first step of this proof, recall that U ≤ V by Theorem 3.2.

We are then in the context of Theorem 3.6, and we can conclude that V ∗

≤ U . Since V ≥ U and U∗ ≥ U by Remark 3.4, this provides the required

result.

Remark 3.8. Condition (HK) excludes some important cases as the no short

selling constraint of Example 2.3. It is possible to deal with such cases by

analyzing the value function in the neighborhood of ∂Rd
+. For instance, let

d = 1, and suppose that

(Hg) g ≤ f for some convex function f with f̂ = f and f(0) = g(0) ,

and let a be some constant satisfying σ(s)2 ≤ a. Then

(i) V (t, s) ≤ F (t, s), where F be the unique classical solution of the linear

parabolic PDE

− Ft(t, s)−
1

2
a s2D2F (t, s) = 0 on [0, T )× (0,∞) (3.7)
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with boundary condition

F (T, ·) = f . (3.8)

To see this, observe that for all y ∈ K̃, the function

δ(y)F (t, s)− y · diag[s]DF (t, s)

is a classical super-solution of (3.7) with non-negative terminal condition,

as a consequence of the fact that f̂ = f . This yields F̂ = F . Also, it is

easily checked that F (t, .) inherits the convexity of f for all t ∈ [0, T ]. Then

−LF ≥ 0, and we conclude that F ≥ V by Lemma 3.1.

(ii) In particular, this implies that V ∗(t, 0) ≤ f(0) = g(0) = ĝ(0). This is a

consequence of the Feynman-Kac representation of the solution F of (3.7)–

(3.8).

(iii) It is also easy to see that U(t, 0) ≥ g(0). Indeed, since Uε is a super-

solution of the equation −LUε ≥ 0 and Uε(T, .) = g, it follows from the clas-

sical maximum principle that Uε(t, s) ≥ E
[
g(St,s

T )
]
. Hence, Fatou’s lemma

yields the desired result.

(iv) Since V ∗(t, 0) ≤ U(t, 0) by (ii) and (iii), the statement of Corollary 3.7

holds by substituting (Hg) to (HK).

3.4 An analytical characterization of V

The value function V was characterized in Corollary 3.7 by means of the

notion of viscosity solutions. The following result provides an alternative

probabilistic characterization, by working directly on the semigroup of con-

ditional expectations associated to the process S. Notice that the statement

of the following result does not appeal to any notion from PDE’s, while the

corresponding proof is based on the previous PDE-based developments.

We also observe that Condition (HK) is required in the following state-

ment, and that it can be weakened as in Remark 3.8.
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Theorem 3.9. Let γ be in the interior int(K ∩ Rd
+), and assume that con-

ditions (HK) and (2.7) hold true. Then, the function V is the smallest Borel

measurable function satisfying a growth condition as (2.7), i.e.,

sup
(t,s)∈[0,T ]×Rd

+

|v(t, s)|
1 + sγ

< ∞,

and the following properties:

P1 v(t, s) ≥ E
{
v(θ, St,s

θ ) | St = s
}

for all (t, s) ∈ [0, T ) × (0,∞)d and all

stopping time θ with values in [t, T ],

P2 v̂∗(t, ·) = v∗(t, ·) for all t ∈ [0, T ),

P3 v∗(T, ·) ≥ g, where v∗ is the lower semicontinuous envelop, i.e.,

v∗(t, s) := lim inf
(t′,s′)→(t,s)

v(t, s),

for every (t, s) in [0, T ]× (0,∞)d.

Proof. 1. We first check that V satisfies P1-P2-P3. From Corollary 3.7, V

is continuous on [0, T )×Rd
+, and V (T−, ·) = ĝ. We then concentrate on P1

and P2.

1.1. Let θ be a stopping time with values in [t, T ], and set

θn := θ ∧ inf
{
r > t :

∣∣ln St,s
r − ln s

∣∣ > n
}

.

For all ε > 0, the function U ε is smooth by Proposition 3.2 and by means of

Itô’s formula we get

U ε(t, s)− E
[
U ε(θn, S

t,s
θn

)
]

=

= E

[∫ θn

t

−LU ε(r, St,s
r )dr −DU ε(r, St,s

r ) · diag[St,s
r ]σ(St,s

r )dBr

]
= E

[∫ θn

t

−LU ε(r, St,s
r )dr

]
≥ 1

ε
E

[∫ θn

t

H− (U ε(r, St,s
r ), diag[Sr]DU ε(r, St,s

r )
)
dr

]
≥ 0 .
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Sending n to infinity, and using Fatou’s lemma, we see that

U ε(t, s) ≥ E
[
U ε(θ, St,s

θ ) | St = s
]

.

We finally send ε to zero. Recalling that U ε ↗ V by Corollary 3.7, we deduce

that V satisfies P1 by monotone convergence.

1.2. To see that V satisfies P2, we first observe that the inequality V̂ ≥ V is

always true by definition of the hat operator. We next introduce, for every

fixed (t, s) ∈ [0, T ]× (0,∞)d, the family of continuous functions

h(y)(r) := ln [V (t, sery)]− δ(y)r , for r ∈ R1 and y ∈ K̃ .

Since H (V, diag[s]DV ) ≥ 0 in the viscosity sense, it follows that h(y) is

a viscosity super-solution of the equation −Dh(y) ≥ 0. Then h(y) is non-

increasing, and therefore h(y)(0) ≥ h(y)(1), i.e. ln [V∗ (t, s)] ≥ ln [V∗ (t, sey)]−
δ(y) for all y ∈ K̃. This provides

V (t, s) ≥ V (t, sey) e−δ(y), ∀y ∈ K̃ ,

and therefore V (t, ·) ≥ V̂ (t, ·).
2. Now let v : [0, T ]×(0,∞)d −→ R be function satisfying P1-P2-P3 together

with the growth condition (2.7). From P1, we deduce by classical techniques

that v∗ is a viscosity super-solution of −Lv∗ ≥ 0. From P2, we immediately

show that v∗ is a viscosity super-solution of H (v∗(s), diag[s]Dv∗(s)) ≥ 0.

Together with P3, we then have that v∗ is a viscosity super-solution of (3.2)

with v∗(T, .) ≥ ĝ and, under (Hg), v∗(t, 0) ≥ g(0). Since v satisfies the growth

condition (2.7), we deduce from the comparison result of Theorem 3.6 that

v∗ ≥ V . Since v ≥ v∗ by definition, this proves that v ≥ V .

4 The viscosity super-solution property

This section is devoted to the proof of the super-solution property of the

function U which was defined as the relaxed semi-limit of the family (Uε)ε.
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4.1 Properties of the approximating family (U ε)ε

The proof of Theorem 3.2 is split in the following lemmas.

Lemma 4.1. The PDE (3.4) has a unique classical solution U ε satisfying

the terminal condition (3.5) and the growth Condition (3.6). Moreover (U ε)ε

is non-increasing in ε.

Proof. By passing to the log-variables, as in (3.3), the equation (3.4) is re-

duced to a uniformly parabolic PDE with bounded coefficients, but with

exponentially growth terminal conditions. Then, existence and uniqueness

of a classical solution U ε to the equation (3.4) satisfying the terminal condi-

tion U ε(T, s) = g(s) together with the required growth condition (with con-

stant depending on ε) follows from classical results on uniformly parabolic

equations, see Friedman [3], also [2], for details.

The monotonicity of the family (U ε)ε is a direct consequence of the max-

imum principle. Next, recall that the vector γ defining the bound b in (2.7)

is in K. Then for a sufficiently large parameter τ > 0, the function

f(t, s) := e−τ(t−T )b(s)

is a classical super-solution of the PDE (3.4)-(3.5) for any ε > 0, and the

growth condition (3.6) follows from the classical maximum principle.

Lemma 4.2. For every ε > 0, we have U ε ≤ V .

Proof. We shall concentrate on the case t < T , as the inequality holds obvi-

ously for t = T .

1. In order to prove this claim, we need to introduce some notations. Let

ŷ(t, s) be such that

δ (ŷ(t, s)) U ε(t, s)−ŷ(t, s) · diag[s]DU ε(t, s) =

= Hε (U ε(t, s), diag[s]DU ε(t, s)) ,

where

Hε(r, p) := min
{

δ(y)r − y · p : y ∈ K̃ and |y| ≤ ε−1
}

.
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Since K̃ is a cone and δ is positively homogeneous, it is easily checked that

Hε(r, p) = −1

ε
H−(r, p) (4.1)

One can clearly choose the function ŷ to be measurable so that the process

νt := ŷ(t, St) , t ≤ T ,

is an F-adapted process. We next define the probability measure P ν equiva-

lent to P by its Radon-Nikodym density

dP ν

dP

∣∣∣∣
FT

= exp

(∫ T

0

νr · dWr −
1

2

∫ T

0

|νr|2dr

)
and the real-valued process

X0,x,π
t := x +

∫ t

0

πr · σ(Sr)dBr −
1

2

∫ t

0

|πr · σ(Sr)|2dr.

Since the process ν is valued in K̃, it follows from a direct application of Itô’s

formula that the process

e−
∫ t
0 δ(νr)drX0,x,π

t is a P ν-super-martingale (4.2)

for every π in AK .

2. Define the sequence of stopping times

θn := T ∧ inf
{
r > t : | ln St,s

r − ln s| ≥ n
}

,

and observe that θn ↗ T P -a.s. Since the process St,s is bounded up to the

stopping time θn, it follows from Itô’s formula that

EP ν
[
e−

∫ θn
t δ(νr)drU ε

(
θn, S

t,s
θn

)]
=

= U ε(t, s) + EP ν

[∫ θn

t

e−
∫ r

t δ(νu)du
(
LU ε + ε−1hε

) (
r, St,s

r

)
dr

]
,
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where hε(t, s) := Hε
(
U ε(t, s), diag[s]DU ε(t, s)

)
. By using (4.1), the PDE

defining U ε in Theorem 3.2 yields

U ε(t, s) = EP ν
[
e−

∫ θn
t δ(νr)drU ε

(
θn, S

t,s
θn

)]
= lim

n→∞
EP ν

[
e−

∫ θn
t δ(νr)drU ε

(
θn, S

t,s
θn

)]
= EP ν

[
e−

∫ T
t δ(νr)drU ε

(
T, St,s

T

)]
. (4.3)

Indeed, recalling that U ε satisfies the growth condition (3.6), i.e.,

0 ≤ U ε
(
θn, S

t,s
θn

)
≤ C

(
1 + sup

t≤r≤T
St,s

r

)
∈ L1

by means of classical estimates for stochastic differential equations (e.g., see

Karatzas and Shreve [6]) the last equality (4.3) follows from the Lebesgue

dominated convergence theorem.

3. We are now able for the proof of the inequality U ε ≤ V on [0, T )× (0,∞)d

by contradiction. Indeed, assume to the contrary that U ε(t, s)− η > V (t, s)

for some ε, η > 0 and (t, s) ∈ [0, T ) × (0,∞)d, and let us work towards

a contradiction. By definition of the super-replication problem (2.8), there

exists an admissible portfolio π ∈ AK such that

X
t,Uε(t,s)−η,π
T ≥ g (ST ) = U ε(T, ST ) .

This inequality together with (4.2) and (4.3) imply

U ε(t, s)− η ≥ EP ν
[
e−

∫ T
t δ(νr)drU ε(T, ST )

]
= U ε(t, s) ,

which is the required contradiction.

4.2 Asymptotic result for the family (Uε)ε

We now derive the viscosity super-solution property of the function U which

was defined from U ε by sending ε to zero. This will be obtained by sending

ε to zero in the PDE (3.4) satisfied by U ε.
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Corollary 4.3. The function U is a viscosity supersolution of the PDE (3.2)

satisfying U(T, s) ≥ ĝ(s).

Proof. Let (t0, s0) ∈ [0, T )×(0,∞)d and ϕ ∈ C2
(
[0, T )× (0,∞)d, R

)
be such

that

0 = (U − ϕ)(t0, s0) = (strict) min(U − ϕ) .

We have to prove that

− Lϕ(t0, s0) ≥ 0 and H(ϕ, diag[s]Dϕ)(t0, s0) ≥ 0 . (4.4)

1. Let B be some open ball containing (t0, s0). By definition of U , there

is a sequence (εn, tn, sn)n≥1 such that

(εn, tn, sn) −→ (0, t0, s0) and U εn(tn, sn) −→ U(t0, s0) .

Let (t̄n, s̄n) be such that

(U εn − ϕ) (t̄n, s̄n) = min
B̄

(U εn − ϕ) ,

where B̄ denotes the closure of B. In the following Step 2, we shall verify

that the claim

(t̄n, s̄n) −→ (t0, s0) (4.5)

holds. Then, for sufficiently large n, (t̄n, s̄n) is an interior minimizer of the

difference (U εn − ϕ), and it follows from Theorem 3.2 that

−Lϕ(t̄n, s̄n) +
1

εn

[
δ(y)ϕ(t̄n, s̄n)− y · diag[s̄n]Dϕ(t̄n, s̄n)

]
for every y in K̃ with |y| ≤ 1. Hence, as n goes to infinity we deduce

H
(
ϕ(t0, s0), diag[s0]Dϕ(t0, s0)

)
≥ 0. The remaining inequality of (4.4) is ob-

tained by setting y to zero and sending n to infinity.
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2. It remains to prove (4.5). Since (t̄n, s̄n) ∈ B̄, the sequence {(t̄n, s̄n) : n ≥}
converges to some (t̄, s̄) in B̄, after possibly passing to a subsequence. We

then compute that

0 = lim
n→∞

(U εn − ϕ) (tn, sn) ≥ lim inf
n→∞

(U εn − ϕ) (t̄n, s̄n) ≥

≥ lim inf
(ε,t′,s′)→(0,t̄,s̄)

U ε(t′, s′)− ϕ(t̄, s̄) = (U − ϕ)(t̄, s̄) .

Since (t0, s0) is a strict minimizer of the difference (U − ϕ), this proves that

(t̄, s̄) = (t0, s0).

3. Following the lines of the proof of Lemma 5.2 in Soner and Touzi [8],

we see that H
(
V (T, s), diag[s]DV (T, s)

)
≥ 0 in the viscosity sense. This

technical part is nothing but a passage to the limit as t ↗ T in the equation

H
(
V (t, s), diag[s]DV (t, s)

)
≥ 0.

We then argue as in Step 1.2 of the proof Theorem 3.9 to see that

U(T, ·) ≥ Û(T, ·). On the other hand, it follows from the definition of the

U ε, the continuity of g, together with Fatou’s lemma, that U(T, ·) ≥ g. Thus

U(T, ·) ≥ ĝ.

5 The viscosity sub-solution property

We first recall from [8] that the value function V satisfies the following geo-

metric dynamic programming principle : for all stopping time τ with values

in [t, T ],

V (t, s) = inf
{
w : W t,w,π

τ ≥ V (τ, St,s
τ ) for some π ∈ AK

}
.

In this section, we shall make use of this result in order to prove that the

value function of the problem (2.8) is a (discontinuous) viscosity sub-solution

of (3.2).

Notice that the geometric dynamic programming principle is also suitable

for proving the super-solution property of the value function. However, due

to the unbounded nature of the control π, this derivation leads to heavy
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technicalities, see e.g. [9]. In this paper, the super-solution property was

derived in Section 4.2 by an alternative argument which produces, as a by-

product, a smooth approximating sequence for the value function V .

Since we have no knowledge of the regularity of the value function V , we

introduce the upper semi-continuous envelope of V,

V ∗(t, s) := lim sup
(t′,s′)→(t,s)

V (t′, s′) .

Proposition 5.1. Assume that V is locally bounded. Then V ∗ is a viscosity

subsolution of (3.2) satisfying V ∗(T, ·) ≤ ĝ.

Proof. 1.- We first show that V ∗ is a viscosity subsolution of (3.2). In order

to simplify the presentation, we shall pass to the log-variables. Set x := ln w,

X t,x,π := ln W t,w,π, and v := ln V . By Itô’s formula, the controlled process

X t,x,π is given by

X t,x,π
u = x +

∫ u

t

πr · σ(Sr)dBr −
1

2

∫ u

t

|σ(Sr)
′πr|2 dr .

With this change of variable, Proposition 5.1 states that v∗ satisfies on [0, T )×
(0,∞)d the equation

min
{
−L̂v∗(t, s) , Ĥ(diag[s]Dv∗s(t, s))

}
≤ 0

in the viscosity sense, where

L̂v∗(t, s) := v∗t (t, s)+

+
1

2
Tr
[
diag[s]σ(s)σ(s)′diag[s]

(
D2v∗ + Dv∗(Dv∗)′

)
(t, s)

]
,

and

Ĥ(p) := H(1, p) .

We argue by contradiction. Let (t0, s0) ∈ [0, T )×(0,∞)d and ϕ ∈ C2
(
[0, T )×

(0,∞)d
)

be such that

0 = (v∗ − ϕ)(t0, s0) = (strict) max(w∗ − ϕ) ,
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and suppose that

−L̂ϕ(t0, s0) > 0 and Ĥ (diag[s0]Dϕ(t0, s0)) > 0 .

Since K has non-empty interior by (2.5), the last condition is equivalent to

diag[s0]Dϕ(t0, s0) ∈ int(K) .

Set p̂(t, s) := diag[s]Dϕ(t, s). Let 0 < α < T − t0 be an arbitrary scalar and

define the neighborhood of (t0, s0)

N := {(t, s) ∈ Bα(t0, s0) : p̂(t, s) ∈ K and − Lyϕ(t, s) ≥ 0} ,

where

Bα(t0, s0) =
{
(t, s) : |t− t0|+ Σ1≤i≤d

∣∣ln (si/si
0)
∣∣ < α

}
.

Since (t0, s0) is a strict maximizer of (v∗ − ϕ), we can define

−3β := max
∂N

(v∗ − ϕ) < 0 .

Let (t1, s1) be some element in N such that

x1 := v(t1, s1) ≥ v∗(t0, s0)− β = ϕ(t0, s0)− β ,

and consider the controlled process

X t1,x1−β,π̂ = ln W t1,w1e−β ,π̂ with control π̂t := p̂
(
t, St1,s1

t

)
.

This defines a wealth process W t1,w1e−β ,π̂ at least up to the stopping time θ̂

given by

θ̂ := inf
{
r > t0 :

(
r, St1,s1

r

)
6∈ N

}
.

Now, it follows from the inequality v ≤ v∗ ≤ ϕ− 3β on ∂N that

X t1,x1−β,π̂

θ̂
− v(θ̂, St1,s1

θ̂
) ≥ 2β + v(t1, s1)− ϕ(θ̂, St1,s1

θ̂
) ≥

≥ β + ϕ(t1, s1)− ϕ(θ̂, St1,s1

θ̂
) .
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Applying Itô’s formula to the smooth function ϕ, we get

X t1,x1−β,π̂

θ̂
− v(θ̂, St1,s1

θ̂
) ≥ β +

∫ θ̂

t1

L̂ϕ(t, St1,s1
r )dr ≥

≥ β > 0 P -a.s.

where the diffusion term vanishes by definition of π̂. This proves the inequal-

ity

W t1,w1e−β ,π̂

θ̂
> V (θ̂, St1,s1

θ̂
),

which is in contradiction with the geometric dynamic programming principle

stated in the beginning of this section.

2.- Following the lines of the proof of Lemma 5.3. in Soner and Touzi [8],

we can pass to the limit as t ↗ T in the subsolution property of the value

function, and we deduce from the result of the previous step that

min
{
V ∗(T, s)− g(s) , H(V̄ ∗(T, s), diag[s]DV ∗(T, s))

}
≤ 0 (5.1)

in the viscosity sense. Clearly, ĝ ≥ g. It is also easily checked from the

definition of ĝ that H (ĝ(s), diag[s]Dĝ(s)) ≥ 0 in the viscosity sense. Hence

ĝ is a viscosity super-solution of the equation appearing on the left hand-side

of (5.1). By the comparison result reported in Theorem 4.3 of Barles [1],

we conclude that ĝ ≥ V ∗(T, ·) (this is the only place where we need g to be

Lipschitz), completing the proof of the proposition.

6 Comparison result

The last ingredient which has been used in the proof of Corollary 3.7 is the

comparison result of Theorem 3.6. The assumption that γ belongs to int(K),

for the given bound b(s) := C(1+sγ), is a key condition in the quoted results.

Thus, there exists a vector

γ ∈ int(K) such that γ − γ ∈ int
(
Rd

+

)
. (6.1)
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We next consider the following function whose definition depends on whether

or not Condition (HK) is in force

β(t, s) := Ceτ(T−t)
(
1 + sγ

)
, (6.2)

β(t, s) := Ceτ(t−T )
(
1 + sγ + sγ

)
, (6.3)

for some γ in int
(
K ∩Rd

−
)
6= ∅ under (HK). Here, the parameter τ is chosen

so that

− Lβ ≥ 0 . (6.4)

We also observe that, since 0 ∈ K and γ, γ ∈ int(K), we have

H (β(t, s), diag[s]Dβ(t, s)) > 0 for all (t, s) ∈ [0, T ]× Rd
+ . (6.5)

We are now ready to prove the comparison result.

Proof of Theorem 3.6. Let λ > 0 be some given parameter, and define the

functions

uλ(t, s) := eλtu(t, s) vλ(t, s) := eλtv(t, s) and βλ(t, s) := eλtβ(t, s) .

Then, with

Lλw := Lw − λw ,

the functions uλ and vλ are viscosity sub-solution and super-solution of the

equation

min
{
−Lλw(t, s) , H (w(t, s), diag[s]Dw(t, s))

}
= 0 , ∀(t, s) (6.6)

satisfying uλ(T, ·) ≤ vλ(T, ·) and the growth condition stated in the propo-

sition. Also, by means (6.4)-(6.5) of the preceding discussion, one deduces

that βλ satisfies

− Lλβλ ≥ 0 and H
(
βλ(t, s), diag[s]Dβλ(t, s)

)
> 0 . (6.7)
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In the rest of this proof, we drop the λ exponent in the notation of uλ, vλ

βλ, and we simply write u, v, β. We shall also denote O := [0, T )× (0,∞)d.

Let α > 0 and ε > 0 be two parameters and define

Mα := sup
O×O

φ(t, s, t′, s′) , (6.8)

where

φ(t, s, t′, s′) := u(t, s)− v(t′, s′)− α

2

(
|t− t′|2 + |s− s′|2

)
−

−ε (β(t, s) + β(t′, s′)) .

Assume to the contrary that u(t0, s0)− v(t0, s0) > 0 for some (t0, s0) ∈ O, so

that

Mα ≥ (u− v)(t0, s0)− 2εβ(t0, s0) =: η > 0 , (6.9)

and let us work towards a contradiction.

1.- From the growth conditions assumed on u and v, together with (6.1),

(6.2), (6.3), it follows that

Mα = φ(tα, sα, t′α, s′α) (6.10)

for some (tα, sα), (t′α, s′α) ∈ O. We also estimate that Mα ≥ u(T, sα) −
v(T, sα)− 2εβ(T, sα), and therefore

ε [β(tα, sα) + β(t′α, s′α)] ≤ C [1 + u(T, sα)− v(T, sα)] .

From the bound (|u|+ |v|)(T, s) ≤ C(1 + sγ) and (6.1), this implies that the

families (tα, sα)α and (t′α, s′α)α are located in a compact subset of [0, T ] ×
[0,∞) (the bounds depending on ε). By Lemma 3.1 in Crandall et al. [5], we

then conclude that when α →∞

(tα, sα) −→ (t̄, s̄) ∈ O and α
(
|tα − t′α|2 + |sα − s′α|2

)
−→ 0 ,(6.11)

after possibly passing to a subsequence.
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2. In this step, we prove that (6.9) implies that t̄ < T and s̄ ∈ int(Rd
+).

2.1. If t̄ = T , we directly compute that

lim
α→∞

Mα = u(T, s̄)− v(T, s̄)− 2εβ(T, s̄) ≤ u(T, s̄)− v(T, s̄) ,

so that the assumption that u(T, .)−v(T, .) ≤ 0 is in contradiction with (6.9).

2.2. When u ≤ v on [0, T ]× ∂Rd
+, the case s̄ ∈ ∂Rd

+ leads to a contradiction

by the same argument as above.

2.3. Under Condition (HK), we also have that s̄ ∈ int(K). This follows from

the extra term sγ in the definition of the function β.

3.- From the previous step, we have that (tα, sα), (t′α, s′α) is a local maximizer

in (6.8). By Theorem 3.2 (and the discussion thereafter) in Crandall et al. [5],

there exist two symmetric matrices A and B such that

−3α

(
I 0

0 I

)
≤

(
A 0

0 −B

)
≤ 3α

(
I −I

−I I

)
, (6.12)

and(
pα + εβt(tα, sα), qα + εDβ(tα, sα), A + εD2β(tα, sα)

)
∈ J̄2,+u(tα, sα) ,(

pα − εβt(t
′
α, s′α), qα − εDβ(t′α, s′α), B − εD2β(t′α, s′α)

)
∈ J̄2,−v(t′α, s′α) ,

where

pα := α(t− t′) , qα := α(s− s′) ,

and J2,+w(z) and J2,−w(z) denote the closed superjet and subjet of the func-

tion w at the point z, see [5] for the definitions. By the viscosity properties

of the functions u and v, this implies that

min

{
−εL0β(tα, sα) + λu(tα, sα)− pα −

1

2
Tr [a(sα)A] , Hα

}
≤ 0 , (6.13)

min

{
εL0β(t′α, s′α) + λv(t′α, s′α)− pα −

1

2
Tr [a(s′α)B] , H ′

α

}
≥ 0 , (6.14)
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where a(s) := diag[s]σ(s)σ(s)′diag[s],

Hα := H (u(tα, sα), diag[sα] (qα + εβ(tα, sα))) ,

H ′
α := H (v(t′α, s′α), diag[s′α] (qα − εβ(t′α, s′α))) .

4.- Since {y ∈ K̃ : |y| = 1|} is compact, it contains some yα such that

Hα −H ′
α = δ(yα)u(tα, sα)− yα · diag[sα] (qα + εβ(tα, sα))−H ′

α

≥ δ(yα) [u(tα, sα)− u(t′α, s′α)]− yα · (diag[sα]− diag[s′α]) qα

−εyα [diag[sα]Dβ(tα, sα) + diag[s′α]Dβ(t′α, s′α)]

≥ δ(yα)
[
η +

α

2
(|tα − t′α|2 + |sα − s′α|2)

]
− εyα (diag[sα]− diag[s′α]) qα

+ε [δ(yα)β − yα ·Dβ] (tα, sα) + ε [δ(yα)β − yα ·Dβ] (t′α, s′α)

We now send α to infinity. By possibly passing to a subsequence, we obtain

for some ȳ ∈ K̃, |ȳ| = 1

lim inf
α→∞

Hα −H ′
α ≥ ηδ(ȳ) + 2ε [δ(ȳ)β − ȳ ·Dβ] (t̄, s̄) > 0 , (6.15)

where the last inequality follows from (6.7) together with the non-negativity

of the support function δ.

5.- Recall that −Lλβ = λβ − Lβ ≥ 0 by (6.7) (with the simplified notation

β for βλ). It then follows from (6.13), (6.14), and (6.15) that for sufficiently

large α

−ελβ(tα, sα) + λu(tα, sα)− pα −
1

2
Tr [a(sα)A] ≤ 0 ,

and

ελβ(t′α, s′α) + λv(t′α, s′α)− pα −
1

2
Tr [a(s′α)B] ≥ 0 ,

which implies that

0 ≤ ε [β(tα, sα) + β(t′α, s′α)] + v(t′α, s′α)− u(tα, sα) +
1

2
Tr [a(sα)A− a(s′α)B]

≤ ε [β(tα, sα) + β(t′α, s′α)] + v(t′α, s′α)− u(tα, sα) + Cα|sα − s′α|2
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for some constant C, where the last inequality follows follows from (6.12),

see Example 3.6 in Crandall et al. [5]. By (6.9) and (6.10), this provides

0 ≤ −η − C ′α
(
|tα − t′α|2 + |sα − s′α|2

)
.

Since η > 0 is independent of α, the above inequality is in contradiction with

(6.11).
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