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Abstract. This paper considers an extension of the Merton optimal investment problem to the
case where the risky asset is subject to transaction costs and capital gains taxes. We derive the
dynamic programming equation in the sense of constrained viscosity solutions. We next introduce
a family of functions (Vε)ε>0, which converges to our value function uniformly on compact subsets,
and which is characterized as the unique constrained viscosity solution of an approximation of our
dynamic programming equation. In particular, this result justifies the numerical results reported in
the accompanying paper [5].
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1. Introduction. The problem of optimal investment and consumption in finan-
cial markets has been introduced by Merton [20, 21]. The explicit solution derived
in these papers is widely used among fund managers in practical financial markets.
Moreover, this problem became very quickly one of the classical examples of applica-
tion of the verification theorem in stochastic control theory. Indeed, by direct financial
considerations, it is easily seen that the value function of the problem satisfies some
homogeneity property, which completely determines its dependence on the wealth
state variable. Plugging this information into the corresponding dynamic program-
ming equation (DPE) leads to an ordinary differential equation which can be solved
explicitly, thus providing a candidate smooth solution to the DPE.

In this paper, we consider the extension of the Merton problem to the case where
the risky asset is subject to capital gains taxes. For technical reasons, we also assume
that the risky asset is subject to proportional transaction costs. This problem is
formulated in the accompanying paper [5]. In contrast with the Merton frictionless
model, no explicit solution is available in this context. The main result of [5] is the
derivation of an explicit first order expansion of the value function for small tax and
interest rate parameters. The numerical results reported in [5] show that the relative
error induced by this approximation is of the order of 4%. These numerical results
are obtained by comparing the explicit first order expansion to the finite differences
approximation of the solution of the corresponding DPE.

The literature on the optimal investment problem under capital gains taxes is
not very expanded, and is mainly developed in discrete-time binomial models, see [7],
[10], [11], [12], [17, 18], [15] and [19].

The main purpose of this paper is to justify the approximation of the value func-
tion by means of the finite differences scheme applied to the corresponding DPE. Since
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our optimal control problem is singular, the DPE takes the form of a variational in-
equality :

min
{
−Lv , gb ·Dv , gs ·Dv

}
= 0 on S̄ ,v = 0 on ∂zS ,

where L is a second order differential operator defined in (2.13), gb,gs are two vector
fields defined in (2.15), corresponding to the purchase and sale decisions, S is the
state space, and ∂zS is part of the boundary of S. The main difficulty comes from
the fact that the vector field gs is not locally Lipschitz. Then the standard techniques
to prove a uniqueness result for the above PDE fail. We then introduce a convenient
locally Lipschitz approximation gs

ε of gs, and we consider the approximating PDE

min
{
−Lv , gb ·Dv , gs

ε ·Dv
}

= 0 on S̄ ,v = 0 on ∂zS .

The main result of this paper states that the above approximating PDE has a unique
continuous viscosity solution Vε which converges uniformly on compact subsets to-
wards the value function V of our optimal investment problem under capital gains
taxes. Applying the general results of Barles and Souganidis [4], this justifies the con-
vergence of the numerical scheme implemented in the accompanying paper [5] towards
this unique solution of the approximating PDE.

The paper is organized as follows. Section 2 provides a quick review of the problem
of optimal investment under capital gains taxes. The main approximation result is
stated in Section 3. In Section 4, we prove a comparison result for the approximating
PDE, which implies the required uniqueness claim. The existence of a solution of the
approximating PDE is proved in Section 5 by introducing a family of control problems
obtained by modifying conveniently our original problem. Finally, Section 6 reports
the proof of convergence of Vε towards V uniformly on compact subsets.

Notations : For a domain D in Rn, we denote by USC(D) (resp. LSC(D)) the
collection of all upper semi-continuous (resp. lower semi-continuous) functions from
D to R. The set of continuous functions from D to R is denoted by C0(D) :=
USC(D) ∩ LSC(D). For a parameter δ > 0, we say that a function f : D −→ R has
δ−polynomial growth if

sup
x∈D

|f(x)|
1 + |x|δ

<∞ .

We finally denote by USCδ(D) := {f ∈ USC(D) : f has δ−polynomial growth}.
The sets LSCδ(D) and C0

δ(D) are defined similarly.

2. Optimal investment under capital gains taxes.

2.1. Problem formulation. In this section, we review quickly the formulation
of the problem of optimal investment under capital gains taxes. We refer the interested
reader to the accompanying paper [5] for more details. The financial market consists
of a tax-free bank account with constant interest rate r > 0, and a risky asset subject
to proportional transaction costs and to capital gains taxes. The price process of the
risky asset evolves according to the Black and Scholes model :

dPt = Pt (ρdt+ σdWt) ,t ≥ 0 , (2.1)

where ρ > 0 is a constant instantaneous return of the asset, and σ > 0 is a constant
volatility parameter. The process W = {Wt, t ≥ 0} is a standard Brownian motion
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with values in R1 defined on an underlying complete probability space (Ω,F ,P). We
shall denote by F the P-completion of the natural filtration of the Brownian motion.

For technical reasons, see Section 4, we assume that the risky asset is also subject
to proportional transaction costs defined by the coefficients λ, µ ∈ [0, 1), so that the
bid and ask prices at time t of the risky asset are given by (1− µ)Pt and (1 + λ)Pt.

A control process is a triple of F-adapted processes ν = (C,L,M) where

C ≥ 0and
∫ T

0

Ctdt < ∞ P− a.s. for all T > 0 , (2.2)

L, and M are non-decreasing right-continuous, L0− = M0− = 0, and the jumps of M
satisfy

∆Mt ≤ 1fort ≥ 0 P− a.s. (2.3)

Here Ct is the consumption rate at time t, dLt ≥ 0 is the amount invested between
times t and t + dt to purchase risky assets, and dMt ≥ 0 is the proportion of risky
assets in portfolio which is sold between times t and t + dt. Then, the amount of
wealth Y = {Yt, t ≥ 0} on the risky asset account is defined by the dynamics

dYt = Yt
dPt

Pt
+ dLt − Yt−dMt , t ≥ 0 . (2.4)

Since ∆Mt ≤ 1, the no short-sales constraint Y ≥ 0 holds. Capital gains are taxed
only when the investor sells the risky asset. The amount of capital gains (or losses) is
evaluated by comparing the actual price Pt to a tax basis Bt specified by the taxation
code. In our framework the tax basis is defined as the weighted average of past
purchase prices

Bt :=
Kt

Yt
Pt if Yt > 0 and Bt := Pt otherwise ,t ≥ 0 ,

where

dKt = dLt −Kt−dMt ,t ≥ 0 . (2.5)

The natural initial condition for the process K is zero as initially there are no prior
stocks bought. However, the method of dynamic programming always forces us to
consider all possible initial data. Hence we consider the K-equation with a general
initial data K0 = k. Also a more detailed derivation of this tax basis and its place in
actual tax codes is given in Subsection 2.2 of the accompanying paper [5].

Finally, we consider a linear taxation rule, with constant tax rate parameter
α ∈ [0, 1], so that the after-tax and after-transaction costs amount induced by selling
the amount Yt−dMt between times t and t+ dt is given by

(1− µ)Yt−dMt − α(1− µ)
[
Yt−dMt −

Yt−dMt

Pt
Bt−

]
= (1− µ) [(1− α)Yt− + αKt−] dMt .

This justifies the following dynamics for the non-risky asset component of wealth
process :

dXt = (rXt − Ct)dt− (1 + λ)dLt + (1− µ) [(1− α)Yt− + αKt−] dMt ,t ≥ 0 .(2.6)
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We denote by A the set of all control processes, and by S = (X,Y,K) the corre-
sponding state process defined by (2.4)-(2.5)-(2.6). A control process ν is said to be
admissible if the no bankruptcy condition

Zt := Xt + (1− µ) [(1− α)Yt + αKt] ≥ 0 ,t ≥ 0P− a.s. (2.7)

holds. Here Zt is the after-tax and after transaction-costs liquidation value of the
portfolio at time t. Given an initial condition S0− = s, we shall denote by A(s) the
collection of all admissible controls.

The problem of optimal consumption and investment under capital gains taxes is
defined by the value function

V (s) := sup
ν∈A(s)

E
[∫ ∞

0

e−βtU(Ct)dt
]
,whereU(x) :=

xp

p
, x ≥ 0 , (2.8)

and β > 0, p ∈ (0, 1) are two given constant parameters.
Throughout this paper, we assume that the coefficients of the model satisfy the

condition

β

p
− r − (δ − r)2

2(1− p)σ2
> 0 , (2.9)

which ensures that the value function of the Merton optimal consumption-investment
problem (the case λ = µ = α = 0) is finite. In particular, the value function V is
finite under Condition (2.9).

2.2. The dynamic programming equation. For an admissible control ν ∈
A(s), the induced state process Sν = (Xν , Y ν ,Kν) defined by (2.4)-(2.5)-(2.6) to-
gether with some initial data Sν

0 = s is valued in the state space

S̄ := {(x, y, k) ∈ R× R+ × R+ : z = x+ (1− µ)[(1− α)y + αk] ≥ 0} . (2.10)

We denote by S := int(S̄) the interior of S̄, and we decompose the boundary of this
state space into ∂S = ∂yS ∪ ∂kS ∪ ∂zS, where

∂yS = {s ∈ S : y = 0} ,∂kS = {s ∈ S : k = 0} and ∂zS = {s ∈ S : z = 0} .

Observe that the value function is not known on all of the boundary of the state space
S. It is shown in [5] that the only boundary information is

V (s) = 0for alls ∈ ∂zS . (2.11)

The main result of this section states that the value function V defined in (2.8) solves
the corresponding DPE

F (s, v,Dv,D2v) := min
{
−Lv , gb ·Dv , gs ·Dv

}
= 0onS̄ \ ∂zS , (2.12)

where L is the second order differential operator

Lϕ (s) := −βϕ (s) + rxϕx (s) + ρyϕy (s) +
1
2
σ2y2ϕyy (s) + Ũ (ϕx (s)) , (2.13)

Ũ is the Fenchel dual defined by

Ũ(ξ) := sup
c>0

(U(c)− cξ)for all ξ > 0 , (2.14)
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and gb, gs are the vector fields defined by

gb :=

 1 + λ
−1
−1

 ,gs(s) :=

 −(1− µ)
1

1−α

0

+

 0
−α
1−α

1

 k 1(y,k) 6=0

(1− α) y + αk
.(2.15)

The dynamic programming equation can be written in different forms by taking other
vector fields which are parallel to our choices gb,gs. Since, our choice for gs is
discontinuous and this fact is central to many of the technicalities, one may propose
to choose a parallel vector field which is continuous. However, in singular stochastic
control, if the vector fields appearing in the equation vanishes (which is the case
here if we choose continuous vector fields) then the first order part of the equation
(i.e., the part gs ·Dv in the above particular case) becomes degenerate. Indeed, this
degeneracy is equivalent to the technical difficulties related to the discontinuity of the
vector fields. For this reason, it is standard in singular control to choose these vector
fields non-degenerate and close to unit vector fields.

Since we have no knowledge of any a priori regularity of the value function V , we
will use the theory of viscosity solutions. This notion allows for a weak formulation
of solutions to second order parabolic partial differential equations and boundary
conditions, see [23], [9].

In the sequel, we shall make use of the following classical notations in the viscosity
theory. For a locally bounded function v : S̄ −→ R, we denote the corresponding
upper and lower semi-continuous envelopes by

v∗(s) := lim sup
S3s′→s

v(s′)andv∗(s) := lim inf
S3s′→s

v(s′) .

The notation F∗ in the subsequent definition is defined similarly. Observe that F = F∗
outside the axis {(x, 0, 0) : x ≥ 0}.

Definition 2.1. (i) A locally bounded function v is a constrained viscosity sub-
solution of (2.11)-(2.12) if v∗ ≤ 0 on ∂zS, and for all s ∈ S̄ \ ∂zS and ϕ ∈ C2(S̄)
with (v∗ − ϕ)(s) = maxS̄(v∗ − ϕ) we have F∗

(
s, v(s), Dϕ(s), D2ϕ(s)

)
≤ 0.

(ii) A locally bounded function v is a viscosity supersolution of (2.11)-(2.12) if v∗ ≥ 0
on ∂zS, and for all s ∈ S and ϕ ∈ C2(S) with (v∗ − ϕ)(s) = minS(v∗ − ϕ) we have
F
(
s, v(s), Dϕ(s), D2ϕ(s)

)
≥ 0.

(iii) A locally bounded function v is a constrained viscosity solution of (2.11)-(2.12) if
it is a constrained viscosity subsolution and supersolution.

In the above definition, Observe that there is no boundary value assigned to the
value function on ∂yS∪∂kS. Instead, the subsolution property holds on this boundary.
Notice that the supersolution property is satisfied only in the interior of the domain
S.

Proposition 2.2. The value function V is a constrained viscosity solution of
(2.11)-(2.12).

The proof is reported in Section 5 in the case ε = 0. In the accompanying
paper [5] a numerical scheme based on the finite differences approximation of the
DPE (2.11)-(2.12) is implemented. In order to justify this algorithm, a uniqueness
result for this DPE is needed. As it is usually the case for parabolic second order
equations, uniqueness follows as a consequence of a comparison result. At this point,
a chief difficulty is encountered : the vector field gs is not locally Lipschitz on the
axis {(x, 0, 0) , x ≥ 0}. Because of this problem, the standard techniques for the
derivation of a comparison result for the DPE (2.11)-(2.12) fail.
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remark 1. Consider the Lipschitz vector field Gs := (−(1− µ)[(1− α)y + αk], y, k) =
[(1− α)y + αk]gs. Then, the supersolutions of (2.11)-(2.12) coincide with those of

min
{
−Lv , gb ·Dv , Gs ·Dv

}
≥ 0 on S̄ \ ∂zSandv = 0 on ∂zS . (2.16)

However these two equations do not have the same set of subsolutions. The reason
for this is that the subsolution property must hold also on the boundary ∂yS ∪ ∂kS.
Since Gs(x, 0, 0) = 0 for every x ≥ 0, the equation (2.16) provides no information on
this axis. Notice however that limn→∞ gs(sn) exists for some sequences sn → (x, 0, 0),
and might be non-zero, so that equation (2.12) bears more information on this axis.

2

This remark justifies that the above mentioned difficulty can be avoided if a priori
comparison on the axis {(x, 0, 0) : x ≥ 0} were available.

Proposition 2.3. Let λ + µ > 0. Let u be an upper-semicontinuous con-
strained viscosity subsolution of (2.11)-(2.12), and v be a lower-semicontinuous vis-
cosity supersolution of (2.11)-(2.12) with (u − v)+ ∈ USCp(S̄). Assume further that
(u− v)(x, 0, 0) ≤ 0 for all x ≥ 0. Then u ≤ v on S̄.

The proof of this comparison result is given at the end of Section 4. Unfortunately,
this result does not provide uniqueness of a constrained viscosity solution for the DPE
(2.11)-(2.12), as we have no a priori comparison of two possible solutions on the axis
{(x, 0, 0) : x ≥ 0}.

The chief goal of this paper is to obtain an alternative characterization of V by
considering a convenient approximating PDE which has a unique solution converging
to our value function V . Before turning to this issue, we report the following continuity
property from [5] which follows from Proposition 2.3.

Proposition 2.4 ([5]). Let λ + µ > 0. For s = (x, y, k) ∈ S̄ and z := x + (1 −
µ)[(1 − α)y + αk], we have V (s) = zp V

(
y
z ,

k
z

)
, where V is a Lipschitz-continuous

function on R2
+.

3. The main results. For every ε > 0 and s = (x, y, k) ∈ S̄, we define

fε(s) := h

(
k

εz

)+

wherez := x+ (1− µ) [(1− α)y + αk] , (3.1)

and h is a non-decreasing C2 (R+)−function with

h = 0 on [0, 1]andh = 1 on [2,∞) .

For ε = 0, we set f0(s) = 1.
We next introduce, for all ε ≥ 0, the approximation gs

ε of gs :

gs
ε(s) := gs (x, y, kfε(s))fors = (x, y, k) ∈ S̄ , (3.2)

and the corresponding approximation of the DPE (2.11)-(2.12) :

min
{
−Lv , gb ·Dv , gs

ε ·Dv
}

= 0 on S̄ \ ∂zSandv = 0 on ∂zS . (3.3)

A constrained viscosity solution of this equation is defined exactly as in definition 2.1,
replacing gs by gs

ε. For each ε > 0 the approximation gs
ε is Lipschitz-continuous on

S̄ \ ∂zS, and this property is sufficient to obtain the following comparison result.
Theorem 3.1. Let λ + µ > 0 and ε > 0. Let u be an upper-semicontinuous

constrained viscosity subsolution of (3.3), and v be a lower-semicontinuous viscosity
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supersolution of (3.3) with (u− v)+ ∈ USCp(S̄). Assume further that u ≤ v on ∂zS.
Then u ≤ v on S̄.

This result is proved in Section 4, and implies as usual a uniqueness result for the
approximating PDE (3.3) for every ε > 0. We can now state our main DPE charac-
terization of the value function V which justifies the numerical scheme implemented
in the accompanying paper [5].

Theorem 3.2. For every ε > 0, there exists a unique constrained viscosity
solution Vε for the nonlinear parabolic PDE (3.3) in the class C0

p. Moreover, the
family (Vε)ε>0 is non-decreasing and converges to the value function V uniformly on
compact subsets of S̄ as ε↘ 0.

The existence of a solution for the approximating PDE (3.3) is proved in Section 5
by conveniently modifying the optimal investment problem under capital gains taxes,
and showing that the induced value function Vε is a constrained viscosity solution of
(3.3). Moreover, we will prove in Proposition 6.2 that 0 ≤ Vε ≤ V , so that Vε inherits
the p−polynomial growth of V stated in [5]. Together with the comparison result of
Theorem (3.1), this shows that V ε is the unique constrained viscosity solution in C0

p .
The convergence result is proved in Section 6.

4. The comparison result. We adapt the standard argument based on the
Ishii technique, see Theorem 3.2 and Lemma 3.1 in [9]. The subsequent proof is also
inspired from [1]. In comparison to the latter paper, we have the additional difficulty
implied by the state constraint (y, k) ∈ R2

+. We use the idea of Theorem 7.9 in [9] to
account for this avoiding the continuity assumptions of this theorem. We mention that
comparison results for second order PDE’s with state constraints have been obtained
for specific control problems in [2] and [3], but do not apply to our context. In the
subsequent analysis, the key-result to avoid the continuity is the observation that

for each s ∈ S̄ \ ∂zS , there exists some ζs > 0 such that
s− ζgb ∈ S for every 0 < ζ < ζs , (4.1)

together with the following
Lemma 4.1. Let v ∈ LSC(S̄) be such that v(s0) = lim infS3s→s0 v(s), for

s0 ∈ ∂S. Assume that gb ·Dv ≥ 0 on S in the viscosity sense. Then

lim
`↘0

v(s− `gb) = v(s)for anys ∈ S̄ \ ∂zS .

Proof. Since v is a viscosity super-solution of gb · Dv ≥ 0 on S and (4.1) holds,
we deduce that, for any s ∈ S, the function ` 7−→ v(s − `gb) is well defined and
non-increasing on a neighborhood of 0. In particular, v(s− `gb) ≤ v(s) for any s ∈ S,
and ` ≥ 0 sufficiently small. For s0 ∈ ∂S, it follows from the assumption of the lemma
that v(s0) = lim infS3s→s0 v(s) ≥ lim infS3s→s0 v(s′ − `gb) ≥ v(s0 − `gb). Hence

v(s− `gb) ≤ v(s)for anys ∈ S̄ \ ∂zS and ` ≥ 0 .

This implies that, for any s ∈ S̄ \ ∂zS,

v(s) ≥ lim sup
`↘0

v(s− `gb) ≥ lim inf
`↘0

v(s− `gb) ≥ lim inf
S3s′→s

v(s′) ≥ v(s) ,

completing the proof. 2
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Another important ingredient of our comparison result is the use of a strict su-
persolution of the equation

min{gb ·Dv , gs
ε ·Dv} = 0onS̄ \ ∂zS . (4.2)

This is the only place where the presence of transaction costs is crucial.
Lemma 4.2. Let λ + µ > 0 and assume that Condition (2.9) holds. Then, there

exist two positive parameters

0 < η̄ <
λ+ µ

2
andδ ∈ (p, 1) with

β

δ
− r − θ2

2(1− δ)
> 0 ,

such that the function

Φ(s) := (x+ (1− µ) [(1− α+ η̄)y + (α+ η̄)k])δfors ∈ S̄

is a classical strict supersolution of (4.2).
Proof. We only show that gs

ε · DΦ > 0, as the other strict are easily seen to hold
true. Setting z̃ := x+ (1− µ) [(1− α+ η̄)y + (α+ η̄)k], we directly compute that

(gs
ε ·DΦ) (s) =

(1− µ)η̄
1− α

z̃δ−1

[
1 + (1− 2α)

kfε(s)
(1− α)y + αkfε(s)

]
If y = k = 0 or 1 − 2α ≥ 0, the required inequality is trivial. We next assume that
(y, k) 6= 0 and 1− 2α < 0. Then using the fact that fε(s) ≤ 1, it follows that

(gs
ε ·DΦ) (s) ≥ (1− µ)η̄

1− α
z̃δ−1

[
1 + (1− 2α)

k

(1− α)y + αk)

]
=

(1− µ)η̄
1− α

z̃δ−1 (1− α)(y + k)
(1− α)y + αk

> 0 .

2

We are now ready for the

Proof of Theorem 3.1 We start by setting a new notation. We denote by L̃ the
operator

L̃(s, u, q,Q) := −βu+ rxq1 + ρyq2 +
1
2
σ2Q22

for s = (x, y, k) ∈ S̄, u ∈ R, q = (qi)1≤i≤3 ∈ R3, and Q = (Qi,j)1≤i≤3
1≤j≤3

∈ S(3), so that

the second order operator L can be written as

Lϕ(s) = L̃
(
s, ϕ(s), Dϕ(s), D2ϕ(s)

)
+ Ũ(ϕx(s)) .

Let u and v be as in the statement of Theorem 3.1, and let us prove that u ≤ v in S̄.
We first observe that we can assume without loss of generality that

v(s) = lim inf {v(s′) : s′ ∈ S and s′ 6= s} for everys ∈ ∂yS ∪ ∂kS . (4.3)

Indeed, we may define the function v := v on S ∪ ∂zS and v(s) := lim infs 6=s′→s v(s′)
for s ∈ ∂yS ∪ ∂kS. Then, v satisfies the same conditions as v, and if we succeed in
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proving that u ≤ v, we deduce immediately that u ≤ v since the inequality v ≤ v is
trivial.

We now start the proof of the comparison result with the additional condition
(4.3). Assume to the contrary that

(u− v) (s∗) > 0for somes∗ ∈ S̄ . (4.4)

1. Let Φ be the strict supersolution of (4.2) defined in Lemma 4.2, and η > 0, ζ > 0
be some fixed parameters such that

m0 := (u− v)(s0)− 2ηΦ(s0)− ζ|gb|2 = max
s∈S̄

(u− v − 2ηΦ)− ζ|gb|2 > 0 ,(4.5)

by (4.4), where the maximum is attained thanks to the p−polynomial growth condi-
tion on (u− v)+ and the fact that δ > p. In particular, it follows from (4.5) together
with Φ ≥ 0, u ≤ v on ∂zS and (4.1) that

s0 ∈ S̄ \ ∂zSands0 − ζgb ∈ S for small ζ > 0 . (4.6)

We next define the mappings on S̄ × S̄ by

Ψn(s, s′) := (u− ηΦ)(s)− (v + ηΦ)(s′)− ψn(s, s′) ,

ψn(s, s′) :=
∣∣n(s− s′)− ζgb

∣∣2 + ζ|s− s0|2 .

Here, ζ ∈ (0, 1) is some given constant. From the p−polynomial growth condition
on (u − v)+ and the fact that δ > p in the definition of Φ, we see that the upper-
semicontinuous function Ψn attains its maximum at some (sn, s

′
n) in S̄ × S̄, so that

by (4.5),

mn := Ψn(sn, s
′
n) = max

(s,s′)∈S̄×S̄
Ψn(s, s′) ≥ m0 > 0 .

By (4.6) and the definition of Ψn, we have the inequality Ψn(sn, s
′
n) ≥ Ψn

(
s0, s0 − ζ

ngb
)

which, together with the p−polynomial growth condition on u and v provides∣∣n(sn − s′n)− ζgb
∣∣2 + ζ |sn − s0|2 ≤ (u− ηΦ)(sn)− (v + ηΦ)(s′n)

−(u− ηΦ)(s0) + (v + ηΦ)
(
s0 −

ζ

n
gb

)
(4.7)

≤ Ã
(
1 + |sn|p + |s′n|p + η|sn|δ + η|s′n|δ

)
,

for some positive constant Ã. We deduce from the last inequality that the sequences
(sn)n≥1 and (s′n)n≥1 are bounded, and we can assume without loss of generality that
sn, s

′
n −→ ŝ ∈ S̄ as n → ∞. We now use Lemma 4.1, together with the upper-

semicontinuity of u and the lower-semicontinuity of v, to pass to the limit as n→∞
in (4.7). This provides :

lim sup
n→∞

(∣∣n(sn − s′n)− ζgb
∣∣2 + ζ |sn − s0|2

)
≤ (u− ηΦ)(ŝ)− (v + ηΦ)(ŝ)

− ((u− ηΦ)(s0)− (v − ηΦ)(s0))
≤ 0 ,
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where the last inequality follows from (4.5). Consequently∣∣n(sn − s′n)− ζgb
∣∣2 −→ 0 and sn, s

′
n −→ s0asn→∞ .

In particular, it follows from (4.6) that

s′n = sn −
ζgb + o(1)

n
∈ Sandsn ∈ S̄ \ ∂zS for large n . (4.8)

2. For each n ≥ 1, (sn, s
′
n) is a maximum point of

Ψn : (s, s′) 7−→ (u− ηΦ) (s)− (v + ηΦ) (s′)− ψn(s, s′) .

Then applying Theorem 3.2 in [9] to the upper-semicontinuous functions u−ηΦ and to
the lower-semicontinuous function v+ηΦ, we deduce that there exist 3×3 symmetric
matrices Ξn and Υn, with Ξn ≤ Υn such that

jn :=
(
qn := D1ψ(sn, s

′
n) + ηDΦ(sn);Qn := Ξn + ηD2Φ(sn)

)
∈ J̄2,+

S̄\∂zSu(sn) ,(4.9)

j′n :=
(
q′n := −D2ψ(sn, s

′
n)− ηDΦ(s′n);Q′n := Υn − ηD2Φ(s′n)

)
∈ J̄2,−

S v(s′n) ,(4.10)

and

−
(
2n2 + ||Mn||

)
I ≤

(
Ξn 0
0 −Υn

)
≤ Mn +

1
2n2

M − n2 , (4.11)

where

Mn := D2ψ(sn, s
′
n) = 2n2

(
I −I
−I I

)
+ 2ζ

(
I 0
0 0

)
,

D1ψ(s, s′) = 2n
(
n (s− s′)− ζgb

)
+2ζ(s−s0) , −D2ψ(s, s′) = 2n

(
n (s− s′)− ζgb

)
.

Here the norm of a symmetric matrix M is defined as ‖M‖ = sup{Mξ · ξ : |ξ| ≤ 1 }.
By (4.8) and for large n ≥ 1, the subsolution property of u holds at jn and the

supersolution property of v holds at j′n, i.e.

min
{
βu(sn)− L̃(sn, qn, Qn)− Ũ(qn 1) , gb · qn , gs

ε(sn) · qn
}
≤ 0 , (4.12)

min
{
βv(s′n)− L̃(s′n, q

′
n, Q

′
n)− Ũ(q′n 1) , gb · q′n , gs

ε(s
′
n) · q′n

}
≥ 0 . (4.13)

3. For each n ≥ 1

gb · qn − gb · q′n = ηgb · (DΦ(sn) +DΦ(s′n)) + 2ζgb · (sn − s0) .

Recall that sn, s
′
n −→ s0 ∈ S̄ \ ∂zS, and gb · Φ > 0 on S̄ \ ∂zS, then

lim
n→∞

(
gb · qn − gb · q′n

)
= 2ηgb ·DΦ(s0) > 0 . (4.14)

We also compute for all n ≥ 1 that

gs
ε(sn) · qn − gs

ε(s
′
n) · q′n = η (gs

ε(sn) ·DΦ(sn) + gs
ε(s

′
n) ·DΦ(s′n)) + 2ζgs

ε(sn) · (sn − s0)
+ (gs

ε(sn)− gs
ε(s

′
n)) · 2n

[
n(sn − s′n)− ζgb

]
.
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By the local Lipschitz continuity of the function gs
ε at s0, there exists some positive

constant C0 such that for large n

|gs
ε(sn) · qn − gs

ε(s
′
n) · q′n − η (gs

ε(sn) ·DΦ(sn) + gs
ε(s

′
n) ·DΦ(s′n))|

≤ 2ζ |gs
ε(sn)| |sn − s0|C0 |sn − s′n| 2n

∣∣n (sn − s′n)− ζgb
∣∣

≤ 2ζ |gs
ε(sn)| |sn − s0| 2C0

∣∣n (sn − s′n)− ζgb
∣∣2 + 2C0ζ|gb|

∣∣n (sn − s′n)− ζgb
∣∣ .

Since sn −→ s0 and |n(sn − s′n)− ζgb| −→ 0, we get

lim
n→∞

(gs
ε(sn) · qn − gs

ε(s
′
n) · q′n) = 2ηgs

ε ·DΦ(s0) > 0 . (4.15)

We deduce from (4.13), (4.14), (4.15) together with Lemma 4.2 that for large n,

min
{
gb · qn , gs

ε(sn) · qn
}
≥ 2 min

{
gb ·DΦ(s0) , gs

ε(sn) ·DΦ(s0)
]
+ o(1) > 0 .

Consequently, (4.12) implies that for large n

βu(sn)− L̃(sn, qn, Qn)− Ũ(qn 1) ≤ 0 . (4.16)

4. From (4.13) and (4.16), it follows that for large n

βu(sn)− L̃(sn, qn, Qn)− Ũ(qn 1) ≤ 0 ≤ βv(s′n)− L̃(s′n, q
′
n, Q

′
n)− Ũ(q′n 1) .

Using the local Lipschitz continuity property of the function Ũ , a direct calculation
shows that for some positive constant C and for large n,

β(u(sn)− v(s′n)) ≤ L̃(sn, qn, Qn)− L̃(s′n, q
′
n, Q

′
n) + Ũ(qn 1)− Ũ(q′n 1)

≤ C
(
|sn|ζ|sn − s0|+ |n(sn − s′n)− ζgb|2 + |DΦ(sn)−DΦ(s′n)|

)
+
σ2

2
(
y2

n(Qn)22 − (y′n)2(Q′n)22
)

+η
{
L̃(sn, DΦ(sn), D2Φ(sn)) + L̃(s′n, DΦ(s′n), D2Φ(s′n))

}
.

From (4.11), we have that

(
y2

n(Qn)22 − (y′n)2(Q′n)22
)
≤ 4ζyn(un − y′n) +

ζ2

n2
yn .

Moreover, the mapping Φ satisfies βΦ(.)− L̃(., DΦ, D2Φ) on S̄ \ ∂zS, hence for some
positive constant C̃ and for large n

β[u(sn)− v(s′n)]− ηΦ(sn)− ηΦ(s′n) ≤ L̃(sn, qn, Qn)− L̃(s′n, q
′
n, Q

′
n) + Ũ(qn 1)− Ũ(q′n 1)

≤ C̃

{
1
n2

+ |sn|ζ|sn − s0|+ |n(sn − s′n)− ζgb|2

+ |DΦ(sn)−DΦ(s′n)|} ,

where the right-hand side of the inequality goes to zero as n→∞. This implies

β[u(s0)− v(s0)]− 2ηΦ(s0) = lim sup
n→∞

(β[u(sn)− v(s′n)]− ηΦ(sn)− ηΦ(s′n)) ≤ 0 ,

contradicting (4.5). 2
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We conclude this section by the

Proof of Proposition 2.3 We use the same arguments as in the proof of Theorem
3.1, substituting gs to gs

ε. The only difference is the following. The maximizer s0
in (4.5) is now known to be in S̄ \ (∂zS ∪ {(x, 0, 0) : x ≥ 0}), as it is assumed in
the statement of the proposition that u ≤ v on ∂zS ∪ {(x, 0, 0) : x ≥ 0}. Then,
the sequences (sn)n and (s′n)n, defined in Step 1, are valued in a ball around s0
which does not intersect the axis {(x, 0, 0) : x ≥ 0}. Since gs is locally Lipschitz on
S̄ \ {(x, 0, 0) : x ≥ 0}, we just follow the lines of the previous proof. 2

5. An approximating control problem. Let s = (x, y, k) be an initial con-
dition in the state space S̄, and consider a control process ν ∈ A, i.e. a triple of
F-adapted processes ν = (C,L,M), with non-decreasing right-continuous processes
L,M , L0− = M0− = 0, and satisfying Conditions (2.2) and (2.3). For every param-
eter ε ≥ 0, we denote by Sε,s,ν = (Xε,s,ν , Y ε,s,ν ,Kε,s,ν) the unique strong solution
of

dXε
t = (rXε

t − Ct)dt− (1 + λ)dLt + (1− µ)
[
(1− α)Y ε

t− + αfε(Sε
t−)Kε

t−
]
dMt(5.1)

dY ε
t = Y ε

t [ρdt+ σdWt] + dLt − Y ε
t−dMt (5.2)

dKε
t = dLt − fε(Sε

t−)Kε
t−dMt (5.3)

with initial condition Sε,s,ν
0− = s. With this definition, observe that the jumps of the

state processes Sε,s,ν are given by

∆Sε,s,ν
t = −∆Lt gb − ∆Mt

[
(1− α)Y ε,s,ν

t− + αfε(Sε,s,ν
t− )Kε,s,ν

t−
]

gs
ε

(
Sε,s,ν

t−
)

where the vector fields gb and gs
ε are defined in (2.15) and (3.2).

A control process ν = (C,L,M) is said to be (s, ε)−admissible if the correspond-
ing state process Sε,s,ν is valued in S̄. We shall denote by Aε(s) the collection of all
(s, ε)−admissible controls.

For every initial condition s ∈ S̄, ε ≥ 0, and (ε, s)−admissible control ν =
(C,L,M), we introduce the criterion

Jε
T (s, ν) := E

[∫ T

0

e−βtU(Ct)dt+ e−βTU(Zε,s,ν
T )1T<∞

]
, T ∈ R+ ∪ {∞} , (5.4)

where U is the power utility function defined in (2.8). The value function Vε is then
defined by

Vε(s) := sup
ν∈Aε(s)

Jε
∞(s, ν) . (5.5)

remark 2. When ε = 0, the above problem reduces to the optimal investment
problem under capital gains taxes reviewed in Section 2, in particular V0 = V . For
positive ε, the control problem (5.5) can be interpreted as a utility maximization
problem with a modified taxation rule. Under this new taxation rule, the tax basis
used to evaluate the capital gains is equal to the relative weighted average purchase
price as long as the ratio K/Z is larger then 2ε, but it is set to zero when K/Z < ε.
Roughly speaking, for ε > 0, the investor pays more taxes then in the original market
when the ratio K/Z < ε. Consequently, we expect that Vε increases towards V as ε
goes to zero. This will be proved in Proposition 6.2 below.
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The main objective of this paragraph is to prove that the function Vε is a con-
strained viscosity solution of the approximating PDE (3.3), thus proving the existence
statement in Theorem 3.2. The arguments of this section hold for every ε ≥ 0. In
particular, the proof of Proposition 2.2 corresponds to the special case ε = 0.

As usual, the key-ingredient in order to derive the dynamic programming equation
is a dynamic programming principle. We state it here without proof, and we refer to
[6],[13] and [14].

Theorem 5.1. Let ε ≥ 0, s ∈ S̄, and let τ be some P − a.s. finite F-stopping
time. Then

Vε(s) = sup
ν=(C,L,M)∈Aε(s)

E
[∫ τ

0

e−βtU(Ct)dt+ e−βτVε (Sε,s,ν
τ )

]
.

Before turning to the derivation of the dynamic programming equation for the
problem Vε, we introduce a notation which will be used frequently in the sequel. Let
ε ≥ 0, s ∈ S̄, ν = (C,L,M) ∈ A(s), and consider some stopping time τ such that
Sε,s,ν

τ− ∈ S̄. Then, it is easy to verify that the strategy ν(τ) defined by

ν(τ)t :=
(
C̄, L̄, M̄

)
:= νt1[0,τ [(t) + (0, Lτ−,Mτ− + (1−∆Mτ ))1[τ,∞)(t) (5.6)

is in Aε(s), and that

E
[∫ ∞

0

e−βtU
(
C̄t

)
dt

]
= E

[∫ τ

0

e−βtU
(
C̄t

)
dt

]
. (5.7)

5.1. Supersolution property. In this section, we prove that the value function
Vε is a viscosity supersolution of (3.3) on S for every ε ≥ 0.
1. Fix some ε ≥ 0. Recall that Vε ≥ 0 by definition, and in particular (Vε)∗(0) ≥ 0.
So it remains to show that, for s0 be in S and ϕ in C2(S̄) such that

0 = ((Vε)∗ − ϕ) (s0) = min
S

((Vε)∗ − ϕ) ,

the test function ϕ must satisfy at the point s0:

min
{
−Lϕ , gb ·Dϕ , gs

ε ·Dϕ
}

(s0) ≥ 0 .

2.1. Let η > 0 be such that B(s0, η) ⊂ S, and consider some sequence (sn)n≥1

satisfying

(i)B(s0, η) 3 sn −→
n→∞

s0 ,

(ii)ξn := Vε(sn)− ϕ(sn) −→ 0 as n→ 0 .

Fix some (c, `,m) in (0,∞)3, define the strategy ν ∈ A by : νt = (Ct = c, Lt = ` t,Mt = mt),
and let (τn)n≥0 be the stopping times

τn := inf {t ≥ 0 : Sε,sn,ν
t /∈ S}n ≥ 0 .

Given that for each n ≥ 0, sn /∈ ∂zS, and that the strategy ν is continuous, we have

τn > 0 for all n ≥ 0 and τn −−−−→
n→∞

τ0P− a.s. (5.8)

2.2. To each n ≥ 1 we associate the (ε, sn)−admissible strategy ν(τn) = (Cn, Ln,Mn)
∈ Aε(sn) defined in (5.6). To simplify the notations, we set Sn := Sε,sn,ν(ε,sn). For
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any P− a.s. finite stopping time θn, the dynamic programming principle of Theorem
5.1 provides

Vε(sn) ≥ E

[∫ θn∧τn/2

0

e−βtU(Cn
t )dt + e−β θn∧τn/2Vε

(
Sn

θn∧τn/2

)]
.

Notice that Sn
θn∧τn/2 ∈ S, we then deduce from the inequalities ϕ ≤ (Vε)∗ ≤ Vε on S

that

ξn + ϕ(sn) ≥ E

[∫ θn∧τn/2

0

e−βtU(Cn
t )dt + e−βθn∧τn/2ϕ

(
Sn

θn∧τn/2

)]
.

By the definition of the strategy ν(τn), jumps of the process Sn may occur only
at the stopping time τn, and by definition of the stopping time τn, the process{
Sn

t 1[0,τn](t), t ≥ 0
}

is uniformly bounded. Hence, using Itô formula we get

−ξn ≤ E

[∫ θn∧τn/2

0

e−βt
{
−Lϕ+ Ũ(ϕx)− (U(Cn

t )− Cn
t ϕx)

}
(Sn

t )dt

]

+ ` E

[∫ θn∧τn/2

0

e−βtgb ·Dϕ(Sn
t )dt

]
(5.9)

+m E

[∫ θn∧τn/2

0

e−βt [(1− α)Y n
t + αfε(Sn

t )Kn
t ] (gs

ε ·Dϕ) (Sn
t )dt

]
.

2.3. Set

θn =
{ √

ξn if ξn > 0 ,
n−1 if ξn = 0 .

Since θn −→ 0 and τn −→ τ0 > 0 P − a.s. as n → ∞, it follows that for P − a.e ω,
θn ∧ τn/2 = θn for large n. Rewriting (5.9), and taking the limits as n → ∞, we
obtain

0 = lim
n→∞

− ξn
θn

≤ lim inf
n→∞

E

[
1
θn

∫ θn∧τn/2

0

e−βt
{
−Lϕ+ Ũ(ϕx)− (U(Cn

t )− Cn
t ϕx)

}
(Sn

t )dt

]
(5.10)

+ ` E

[
1
θn

∫ θn∧τn/2

0

e−βtgb ·Dϕ(Sn
t )dt

]

+m E

[
1
θn

∫ θn∧τn/2

0

e−βt [(1− α)Y n
t + αfε(Sn

t )Kn
t ] (gs

ε ·Dϕ) (Sn
t )dt

]
.

Since ϕ ∈ C2
(
S̄
)

and the process
{
Sn

t 1[0,τn/2](t), t ≥ 0
}

is continuous and uniformly
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bounded, we get by dominated convergence

lim inf
n→∞

E

[
1
θn

∫ θn∧τn/2

0

e−βt
{
−Lϕ+ Ũ(ϕx)− (U(Cn

t )− Cn
t ϕx)

}
(Sn

t )dt

]

+ ` E

[
1
θn

∫ θn∧τn/2

0

e−βtgb ·Dϕ(Sn
t )dt

]

+m E

[
1
θn

∫ θn∧τn/2

0

e−βt [(1− α)Y n
t + αfε(Sn

t )Kn
t ] (gs

ε ·Dϕ) (Sn
t )dt

]
.

= −Lϕ(s0) + Ũ(ϕx(s0)− (U(c)− c ϕx(s0))
+ ` gb ·Dϕ(s0) + m [(1− α)y0 + αfε(s0)k0]gs

ε(s0) ·Dϕ(s0) .

Recall (5.10), then

0 ≤ −Lϕ(s0) + Ũ(ϕx(s0)− (U(c)− c ϕx(s0))
+ ` gb ·Dϕ(s0) +m [(1− α)y0 + αfε(s0)k0]gs

ε(s0) ·Dϕ(s0) . (5.11)

2.4. Observe that s0 ∈ S implies that [(1− α)y0 + αfε(s0)k0] > 0. Since (c, `,m) ∈
(0,∞)3, (5.11) provides

0 ≤ min
{
−Lϕ , gb ·Dϕ , gs

ε ·Dϕ
}

(s0) .

5.2. Subsolution property. In this section, we prove that the value function
Vε is a constrained viscosity subsolution of (3.3) for every ε ≥ 0. In preparation for
this proof, we state some intermediate results.

Lemma 5.2. Let ϕ be a mapping in C2(S̄), and s0 ∈ S̄ such that ϕx(s0) > 0.
Then there exists η > 0, γ > 0, and c0 > 0 such that

Ũ (ϕx(s))− [U(c) − cϕx(s)] ≥ γ (c− c0)
+for allc ≥ 0 and s ∈ B (s0, η) ∩ S̄ .

Proof. Since ϕx(s0) > 0 we can find some η, δ > 0 such that ϕx > δ on B(s0, η)∩S̄.
The mapping s 7−→ I (ϕx(s)) := (U ′)−1 (ϕx(s)) is then bounded on B(s0, η)∩S̄, and
since U ′ is a decreasing function, we can find c0 > 0 such that

c0 > max
B(s0,η)∩S̄

I (ϕx)andγ := min
B(s0,η)∩S̄

(ϕx − U ′ (c0)) > 0 .

For all s ∈ B(s0, η) ∩ S̄, using the nonnegativity and the convexity of the function
c ∈ R+ 7−→ Ũ(ϕx(s))− (U(c)− c ϕx(s)), we get :

Ũ(ϕx(s))− (U(c)− c ϕx(s)) ≥ Ũ(ϕx(s))− (U(c)− c ϕx(s))
− Ũ(ϕx(s)) + (U(c0)− c0 ϕx(s))

≥ (ϕx(s)− U ′ (c0)) (c− c0)
+

≥ γ (c− c0)
+
.

2

Lemma 5.3. Let ϕ ∈ C1(S̄) and s0 ∈ S̄\∂zS. Assume that min
{
gb ·Dϕ , gs

ε ·Dϕ
}

(s0) >
0. Then, there exist η, γ > 0 such that for s = (x, y, k) ∈ B(s0, η) ∩ S̄, and
s′ := s− `gbη −m[(1− α)y + αfε(s)k]gs

ε ∈ B(s0, η) ∩ S̄ with `,m ≥ 0,

ϕ(s)− ϕ(s′) ≥ γ`+ γm [(1− α)y + αfε(s)k] .
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Proof. We first observe that ‖gs
ε‖∞ <∞. In view of the definition of gs

ε this follows
from that

0 ≤ kfε(s)
(1− α)y + αkfε(s)

≤ k

(1− α)y + αk
≤ 1

α
,

where we used the inequality fε ≤ 1. Set

4γ := min
{
gb ·Dϕ ; gs

ε ·Dϕ
}

(s0) > 0 .

Since gs
ε and Dϕ are continuous on S̄ \ ∂zS, there exists some η > 0 such that for all

s, s′ ∈ B(s0, η) ∩ S̄

(i) min
{
gb ·Dϕ , gs

ε ·Dϕ
}

(s) > 2γand(ii) |Dϕ(s)−Dϕ(s′)| ≤ γ

‖gs
ε‖∞

.

Let s and s′ be as in the statement of the lemma. By the mean value theorem, there
exists some s∗ ∈ [s, s′] ⊂ B(s0, η) ∩ S̄ such that

ϕ(s)− ϕ(s′) = (s− s′) ·Dϕ(s∗)
= `gb ·Dϕ(s∗) +m [(1− α)y + αfε(s)k] gs

ε(s) ·Dϕ(s∗)
= `gb ·Dϕ(s∗) +m [(1− α)y + αfε(s)k] gs

ε(s) ·Dϕ(s)
−m [(1− α)y + αfε(s)k] gs

ε(s) · [Dϕ(s)−Dϕ(s∗)]
≥ `gb ·Dϕ(s∗) +m [(1− α)y + αfε(s)k] gs

ε(s) ·Dϕ(s)
−m [(1− α)y + αfε(s)k] ‖gs

ε‖∞|Dϕ(s)−Dϕ(s∗)| .
≥ ` 2γ +m [(1− α)y + αfε(s)k] (2γ − γ)
≥ γ ` + γ m [(1− α)y + αfε(s)k] .

2

Proof of the subsolution property 1. For each ε ≥ 0, the value function Vε is
bounded from above by V , see Proposition 6.2 below. We also recall from Proposition
4.5 in [5] that for every s = (x, y, k) ∈ S̄

V (s) ≤ V 0(x+ (1− µ)αk, (1− α)y) ,

where the function V 0, defined in [5], is continuous and satisfies

V 0(x̄, ȳ) = 0for all (x̄, ȳ) ∈ R2 such that x̄+ (1− µ)ȳ = 0 .

It then follows that for each ε ≥ 0, the lower-semicontinuous envelope of Vε satisfies
(Vε)∗ ≤ 0 on ∂zS.

Let s0 ∈ S̄ \ ∂zS, and ϕ ∈ C2
(
S̄
)

be such that

0 = (V ∗ε − ϕ)(s0) = max
S̄

(V ∗ε − ϕ) ,

and assume to the contrary that

F∗
(
s0, ϕ(s0), Dϕ(s0), D2ϕ(s0)

)
> 0 .



17

Observe that the last inequality implies that Ũ (ϕx(s0)) <∞ and therefore ϕx(s0) >
0. Since ϕ ∈ C2(S̄), we deduce from Lemmas 5.2 and 5.3 the existence of η, γ, c0 >
0, with B(s0, η) ⊂ S̄ \ ∂zS, such that

min
{
−Lϕ , gb ·Dϕ , gs

ε ·Dϕ
}

(s) ∧ ϕx(s) > 0 , (5.12)

Ũ (ϕx(s))− (U(c)− cϕx(s)) ≥ γ (c− c0) , (5.13)
ϕ(s)− ϕ(s′) ≥ γl + γm [(1− α)y + αfε(s)k] , (5.14)

for all s ∈ B(s0, η) ∩ S̄, and s′ = s− `gbη −mgs
ε ∈ B(s0, η) ∩ S̄ for some `,m ≥ 0.

2. Let (sn = (xn, yn, kn))n≥1 be some sequence such that

(i) sn ∈ B
(
s0,

η

2

)
, (ii) sn −→

n→∞
s0 ,and(iii) ξn := |Vε(sn)− V ∗ε (s0)| −→

n→∞
0 .

For each n ≥ 1, there exists a strategy νn = (Cn, Ln,Mn) ∈ Aε(sn) such that

Vε(sn) ≤ ξn + E
[∫ ∞

0

e−βtU(Cn
t )dt

]
.

Set Sn = (Xn, Y n,Kn) := Sε,sn,νn

for n ≥ 1, and fix some finite positive time horizon
T > 0. By the dynamic programming principle of Theorem 5.1,

Vε(sn) ≤ ξn + E

[∫ T∧θn

0

e−βtU(Cn
t )dt

]
+ E

[
e−βT∧θn

Vε (Sn
T∧θn)

]
,

where θn := inf {t ≥ 0 : Sn
t 6∈ B(s0, η)}. Since Vε ≤ V ∗ε ≤ ϕ on S̄ \ ∂zS, and

ξn = |Vε(sn)− V ∗ε (s0)| = |Vε(sn)− ϕ(s0)|, it follows that for all n ≥ 1 :

ϕ(s0) − E
[
e−βT∧θn

ϕ (Sn
T∧θn)

]
≤ 2ξn + E

[∫ T∧θn

0

e−βtU(Cn
t )dt

]
.

Notice that for all n ≥ 1, the process
{
Sn

t 1[0,T∧θn)(t), t ≥ 0
}

is uniformly bounded,
then Itô formula provides

2 ξn ≥ E

[∫ T∧θn

0

e−βt
[
−Lϕ+ Ũ(ϕx)− (U(Cn

t )− Cn
t ϕx)

]
(Sn

t )dt

]

+ E

[∫ T∧θn

0

e−βtgb ·Dϕ(Sn
t )dLnc

t

]

+ E

[∫ T∧θn

0

e−βt [(1− α)Y n
t + αfε(Sn

t )Kn
t ] (gs

ε ·Dϕ) (Sn
t )dMnc

t

]

+ E

 ∑
0≤t<T∧θn

e−βt
(
ϕ(Sn

t−) − ϕ(Sn
t )
) ,

where Lnc and Mnc denote the continuous part of Ln and Mn. Recall that ϕ satisfies
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(5.12), (5.13) and (5.14), then it follows from the previous inequality

2 ξn ≥ γ e−βT E

[
(T ∧ θn) + Lnc

T∧θn +
∫ T∧θn

0

[(1− α)Y n
t + αfε (Sn

t )Kn
t ] dMnc

t

]

+γe−βT E

 ∑
0≤t<T∧θn

∆Ln
t +

[
(1− α)Y n

t− + αfε
(
Sn

t−
)
Kn

t−
]
∆Mn

t


+ e−βT γE

[∫ T∧θn

0

(Cn
t − c0)

+
dt

]
,

≥ E[hn(T ∧ θn)] ,

where

hn(T ∧ θn) = γe−βT {(T ∧ θn) + Ln
T∧θn

+
∫ T∧θn

0

[
(1− α)Y n

t− + αfε
(
Sn

t−
)
Kn

t−
]
dMn

t +
∫ T∧θn

0

(Cn
t − c0)

+
dt

}
.

3. In order to obtain a contradiction, we are going to show that for a sufficiently
small T , there is some constant m∗ such that for large n ≥ 1, E [hn(T ∧ θn)] ≥ m∗.
The following argument is largely inspired from [22].
3.1. We start by providing estimates for |Xn − x0|, |Y n − y0|, and |Kn − k0|. Fix
some n ≥ 1, and assume that n is sufficiently large so that ξn ≤ η/2 holds. Let Λ
be the process defined by : Λt :=

(
ρ− σ2

2

)
t + σWt , and set

Λ?
t := |ρ− σ2

2
|t+ σ (W ?

t −W?t) ,whereW ?
t := max

u∈[0,t]
Wu and W?t := min

u∈[0,t]
Wu .

Since d
[
Y n

t e
−Λt
]

= e−ΛtdLn
t − e−ΛtY n

t−dM
n
t , we deduce by a direct calculation that

|Y n
t − y0| ≤ |y0 − yn| + yn|1− eΛt | + eΛ

?
tLn

t + eΛ
?
t

∫ t

0

Y n
u−dM

n
u (5.15)

The dynamics of the processes Kn and Xn are such that

|Kn
t − k0| ≤ |k0 − kn| + Ln

t +
∫ t

0

fε(Sn
u−)Kn

u−dM
n
u , (5.16)

|Xn
t − x0| ≤ |xn − x0| + |xn|

(
ert − 1

)
+ ert

∫ t

0

e−ruCn
udu+ ert (1 + λ)

∫ t

0

e−rudLn
u

+ ert

∫ t

0

e−ru(1− µ)
[
(1− α)Y n

u− + αfε(Sn
u−)Kn

u−
]
dMn

u (5.17)

3.2. We have |1− eΛT | ≤ max
[
eΛ

?
T − 1; 1− e−Λ?

T

]
. Define the set

FT :=
{
ω ∈ Ω : max

[
eΛ

?
T − 1; 1− e−Λ?

T

]
≤ min

[
1,

η

4(y0 + 1)

]}
.

We claim that it is possible to choose the parameter T > 0 such that

P(FT ) ≥ 1
2
,erT − 1 ≤ η

4(1 + |x0|)
, and erT ≤ 2 . (5.18)
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Indeed, Doob’s maximal martingale inequalities provide, for δ > 0

P{W ?
T ≥ δ} ≤ 1

δ2
E[W ?

T ]2 ≤ 4
δ2

E[WT ]2 =
4 T
δ2

, similarly P{W?T ≤ δ} ≤ 4 T
δ2

Hence for all δ > 0

P{W ?
T −W?T ≥ δ} ≤ P{W ?

T ≥ δ/2}+ P{W?T ≤ δ/2} ≤ 32 T
δ2

.

We now turn back to the estimates (5.15)-(5.16)-(5.17) and recall that ξn ≤ η/2. Since
T satisfies (5.18), the following inequalities (where A denotes some positive constant
depending on (x0, y0, k0)) do hold P− a.s. on the set FT

|Xn
T − x0| ≤ η/2 + η/4 + 2

∫ T

0

Cn
t dt + ALn

T + A

∫ T

0

Gε(Sn
t−)dMn

t , (5.19)

|Y n
T − y0| ≤ η/2 + η/4 + ALn

T + A

∫ T

0

Gε(Sn
t−)dMn

t , (5.20)

|Kn
T − k0| ≤ η/2 + ALn

T + A

∫ T

0

Gε(Sn
t−)dMn

t . (5.21)

where

Gε(s) := (1− α)y + αfε(s)kfors = (x, y, k) ∈ S̄ .

3.3. For ω in FT , we consider the following cases
Case 1 : θn(ω) ≥ T . Then, by the definition of hn(T ∧θn), we have hn(T ∧θn) ≥

γ e−βTT .
Case 2 : θn(ω) < T . Recall that Sn is càdlag̀, then, by the definition of the

stopping time θn, this happens when Sn
θn(w) /∈ B(s0, η], i.e.

max
[
|Xn

θn(ω)(ω)− x0|; |Y n
θn(ω)(ω)− y0|; |Kn

θn(ω)(ω)− k0|
]
≥ η .

Subcase 2.1 : |Xn
θn(ω)(ω)− x0| ≥ η. It follows from (5.19) that at least one of the

following inequalities holds

(i)
∫ θn(ω)

0

Cn
t dt ≥ η/16or(ii) Ln

θn +
∫ θn(ω)

0

Gε(Sn
t−)dMn

t ≥ η

8A
.

In the former case (i) :

η

16
≤
∫ θn(ω)

0

Cn
t dt ≤ c0T +

∫ θn(ω)

0

(Cn
t − c0) dt

Since it is possible to choose T such that c0T ≤ η
32 , it follows that

η

16
≤ η

32
+
∫ θn(ω)

0

(Cn
t − c0)

+
dt

then η/32 ≤
∫ θn(ω)

0
(Cn

t − c0)
+
dt and it follows that

hn(T ∧ θn) ≥ γe−βT

∫ θn(ω)

0

(Cn
t − c0)

+
dt ≥ γe−βT η

32
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In case (ii), it immediately follows hn(T ∧ θn) ≥ γe−βT η
8 A .

Subcase 2.2 : |Y n
θn(ω) − y0| ≥ η. Then, it follows from inequality (5.20) that

η

4
≤ A

(
Ln

θn(ω) +
∫ θn

0

Gε(Sn
t−)dMn

t

)
,

hence, hn(T ∧ θn(ω)) ≥ γe−βT η
4 A .

Subcase 2.3 : |Kn
θn(ω) − k0| ≥ η. By inequality (5.21) we see that in this case

η

2
≤ A

(
Ln

θn(ω) +
∫ θn

0

Gε(Sn
t−)dMn

t

)
,

hence, hn(T ∧ θn(ω)) ≥ γe−βT η
2 A .

From the several case discussed above, it follows that for P−a.e. ω in FT :

hn(T ∧ θn(ω)) ≥ m? := γmin
[
T,

η

32
,
η

8A

]
,

and therefore, for T sufficiently small and large n :

E [hn(T ∧ θn)] ≥ E [1FT
hn(T ∧ θn)] ≥ m?P(FT ) =

m?

2
.

2

remark 3. Let A0(s) be the subset of A(s) consisting of all controls ν =
(C,L,M) with Lebesgue-absolutely continuous component M . Then, it is clear that
the above derivation of the dynamic programming equation is not altered by this ad-
ditional restriction. Hence the value problem of this new control problem coincides
with Vε, by the comparison result of Theorem 3.1. The same comment holds if the
component L, or both components L and M , are restricted to be Lebesgue-absolutely
continuous.

6. The convergence result. We first derive a useful estimate.
Lemma 6.1. Let s be in S̄. Then for any ε ≥ 0, Aε(s) ⊂ A(s), and for all

ν ∈ A(s) and t ≥ 0 :

0 ≤ Z0,s,ν
t − Zε,s,ν

t ≤ 4εr Z0,s,ν ?
T ertwhereZ0,s,ν ?

t := sup
u∈[0,t]

|Z0,s,ν
u | .

Proof. Clearly the inclusion Aε(s) ⊂ A(s) follows from the inequality Z0,s,ν ≥
Zε,s,ν .
1. We first prove that Zε,s,ν ≤ Z0,ε,ν P− a.s.. To see this, we consider a sequence of
stopping times (τn)n≥0 exhausting the jumps of the càdlàg process M , with τ0 = 0.
The dynamics of the processes Kε,s,ν and K0,s,ν are such that

d
(
Kε,s,ν −K0,s,ν

)
t
= −

(
Kε,s,ν −K0,s,ν

)
t− dMt +

[
1− fε

(
Sε,s,ν

t−
)]
Kε,s,ν

t− dMt .

Then, for all n ≥ 0, we have P− a.s. for t ∈ [τn, τn+1)

Kε,s,ν
t −K0,s,ν

t = e−(Mc
t−Mc

τn
)

(
Kε,s,ν

τn
−K0,s,ν

τn
+
∫ t

τn

eMc
u−Mc

τn

[
1− fε(Sε,s,ν

u− )
]
Kε,s,ν

u− dMu

)
.

(6.1)
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Since 1− fε ≥ 0, this implies that

Kε,s,ν
t −K0,s,ν

t ≥ e−(Mc
t−Mc

τn
)
(
Kε,s,ν

τn
−K0,s,ν

τn

)
= e−(Mc

t−Mc
τn

)
((
Kε,s,ν

τn− −K0,s,ν
τn−

)
(1−∆Mτn

) (6.2)

+
[
1− fε(Sε,s,ν

τn− )
]
Kε,s,ν

τn− ∆Mτn

)
≥ 0 .

Clearly, Y ε,s,ν = Y 0,s,ν . Then

d
(
Zε,s,ν − Z0,s,ν

)
t
= r

(
Zε,s,ν − Z0,s,ν

)
t
dt− r(1− µ)α

(
Kε,s,ν −K0,s,ν

)
dt .

Since Zε,s,ν
0 − Z0,s,ν

0 = 0 and Kε,s,ν ≥ K0,s,ν , this implies that

Zε,s,ν
t − Z0,s,ν

t = −r(1− µ)αert

∫ t

0

e−ru
(
Kε,s,ν

u −K0,s,ν
u

)
du ≤ 0 . (6.3)

2. We next prove the second inequality. Observe that [1− fε(s)] k ≤ 2εz for s =
(x, y, k) ∈ S̄, where z := x + (1 − µ) [(1− α)y + αk]. Together with (6.1) and (6.2)
this shows that, for all n ≥ 0 and t ∈ [τn, τn+1),

Kε,s,ν
t −K0,s,ν

t ≤ 2ε e−(Mc
t−Mc

τn
)

(
Zε,s,nu

τn− +
∫ t

τn

eMc
u−Mc

τnZε,s,ν
u− dMu

)
.

Using the increase of M together with the fact that Zε,s,ν ≤ Z0,s,ν , as shown in the
first step of this proof, this provides

Kε,s,ν
t −K0,s,ν

t ≤ 2εZ0,s,ν?
t e−(Mc

t−Mc
τn

)

(
1 +

∫ t

τn

eMc
u−Mc

τndMu

)
≤ 4εZ0,s,ν?

t .

The required inequality is obtained by plugging this estimate into (6.3). 2

Proposition 6.2. The sequence (Vε)ε>0 is non-increasing and Vε ≤ V .
Proof. The inequality Vε ≤ V follows immediately from the fact that Aε(s) ⊂ A(s),
as stated in Lemma 6.1. In order to prove that the sequence (Vε)ε>0 is non-increasing,
we shall prove that Aε1(s) ⊂ Aε2(s) whenever ε1 ≥ ε2. To do this, it is sufficient
to prove that for any control ν = (C,L,M) ∈ Aε(s), the associated process Zε :=
Xε,s,ν + (1 − µ) [(1− α)Y ε,s,ν + αKε,s,ν ] is non-increasing with respect to ε. Recall
that

fε(s) = h

(
k

εz

)
wherez = x+ (1− µ)[(1− αy + αz] ,

and h is a smooth function. From Remark 3, we may restrict the process M to be
absolutely continuous with respect to the Lebesgue measure, i.e. Mt =

∫ t

0
mudu for

some F−adapted process {mt, t ≥ 0}, as the restriction of the control M to this class
produces the same value function Vε.

Then, by classical results on the regularity of flows of stochastic differential equa-
tions, see e.g. [16], the process Zε, Y ε := Y ε,s,ν and Kε := Kε,s,ν are differentiable
in ε, and the processes

zε
t := e−rt ∂Z

ε
t

∂ε
,yε

t :=
∂Y ε

t

∂ε
, kε

t := e−rt ∂K
ε
t

∂ε
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satisfy yε
t = 0 for all t ≥ 0, zε

0 = kε
0 = 0, and solve the system of ordinary differential

equations

żε
t = −rαktandk̇ε

t = at + btzt − ctkt ,

where

at :=
(Kε

t )2

εZε
t

h′
(
Kε

t

εZε
t

)
,bt :=

(Kε
t )2

ε(Zε
t )2

h′
(
Kε

t

εZε
t

)
,

and

e−rtct := r +mt

[
h

(
Kε

t

εZε
t

)
+

Kε
t

εZε
t )
h′
(
Kε

t

εZε
t

)]
.

Differentiating once more with respect to the t-variable, we obtain the following second
order differential equation for zε :

−z̈ε
t − ct ż

ε
t − rαbt z

ε
t − rαat = 0andżε

0 = z0 = 0 . (6.4)

We now consider the function :

ẑt := −rα
ε

∫ t

0

∫ u

0

(Kε
t )2

εZε
t

h′
(
Kε

t

εZε
t

)
du dtfort ≥ 0 .

Since ẑt ≤ 0, ˙̂zt ≤ 0, bt ≥ 0 and c ≥ 0, it follows that ẑt is a supersolution of
the equation (6.4). By a standard comparison result, we deduce that zε

t ≤ ẑt, and
therefore zε

t ≤ 0 for all t ≥ 0. This completes the proof. 2

Our final result states the convergence of Vε towards V .
Proposition 6.3. The sequence (Vε)ε>0 is non-increasing and converges towards

V , as ε↘ 0, uniformly on compact subsets of S̄
Proof. Let (νn = (Cn, Ln,Mn))n≥1 be a maximizing sequence of controls for V (s) :

V (s)− 1
n
≤ E

[∫ ∞

0

e−βtU(Cn
t )dt

]
for alln ≥ 1 .

By the monotone convergence theorem we verify that

E
[∫ ∞

0

e−βtU(Cn
t )dt

]
= lim

T→∞
E

[∫ T

0

e−βtU(Cn
t )dt

]
.

Then V (s)− 1
2n ≤ E

[∫ T n

0
e−βtU(Cn

t )dt
]

for some Tn > 0. By Lemma 6.1we have

Z0,s,ν
t∧T n ≥ Zε,s,ν

t∧T n ≥ Z0,s,ν
t∧T n − 4rεZ0,s,ν?

T n P− a.s. for all t ≥ 0. Then, the stopping times
τ(ε, s, n) := inf {t ≥ 0 : Zε,s,ν

t ≤ 0}, ε ≥ 0, satisfy

τ(0, s, n) ∧ Tn ≥ τ(ε, s, n) ∧ Tnandlim
ε→0

τ(ε, s, n) ∧ Tn = τ(0, s, n) ∧ Tn P− a.s.

Hence, by the monotone convergence theorem

lim
ε→0

E

[∫ τ(ε,s,n)∧T n

0

e−βtU(Cn
t )dt

]
= E

[∫ τ(0,s,n)∧T n

0

e−βuU(Cn
t )dt

]
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Recall from (5.6) and (5.7) that

Vε(s) ≥ E

[∫ τ(ε,s,n)∧T n

0

e−βtU(Cn
t )dt

]
and

E

[∫ τ(0,s,n)∧T n

0

e−βtU(Cn
t )dt

]
= E

[∫ T n

0

e−βuU(Cn
u )du

]
.

Then

lim inf
ε→0

Vε(s) ≥ E

[∫ T n

0

e−βtU(Cn
t )dt

]
≥ V (s)− 1

2n
.

By arbitrariness of n ≥ 1, this provides lim infε→0 Vε(s) ≥ V (s). Together with
Proposition 6.2, this shows that Vε(s) −→ V (s) as ε↘ 0 for every s ∈ S̄.

We finally recall from Proposition 2.4 that the limit function V is continuous.
Since (Vε)ε>0 is a monotonic sequence of continuous functions, it follows from the
Dini theorem that the convergence holds uniformly on compact subsets of S̄. 2
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