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Abstract

We suggest a discrete-time approximation for decoupled forward-backward stochas-
tic differential equations. The Lp norm of the error is shown to be of the order of the
time step. Given a simulation-based estimator of the conditional expectation operator,
we then suggest a backward simulation scheme, and we study the induced Lp error.
This estimate is more investigated in the context of the Malliavin approach for the
approximation of conditional expectations. Extensions to the reflected case are also
considered.
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1 Introduction

In this paper, we are interested in the problem of discretization and simulation of the
(decoupled) forward-backward stochastic differential equation (SDE, hereafter) on the time
interval [0, 1] :

dXt = b(Xt)dt+ σ(Xt)dWt , dYt = f(t,Xt, Yt, Zt)dt− Zt · dWt

X0 = x and Y1 = g(X1) ,

where W is a standard Brownian motion, b, σ and f are valued respectively in Rn, Mn and
R. The analysis of this paper extends easily to the case of reflected backward SDE’s with
z-independent generator f . This extension is presented in the last section of this paper.

Notice that the problem of discretization and simulation of the forward components X is
well-understood, see e.g. [18], and we are mainly interested in the backward component Y .
Given a partition π : 0 = t0 < . . . < tn = 1 of the interval [0, 1], we consider the first naive
Euler discretization of the backward SDE :

Ỹ π
ti − Ỹ π

ti−1
= f(ti−1, X

π
ti−1

, Ỹ π
ti−1

, Z̃π
ti−1

)(ti − ti−1)− Z̃ti−1 · (Wti −Wti−1) ,

together with the final data Ỹ π
tn = g(Xπ

tn). Of course, given (Ỹti , Z̃ti), there is no Fti−1−mea-
surable random variables (Ỹti−1 , Z̃ti−1) which satisfy the above equation. A workable back-
ward induction scheme is obtained by taking conditional expectations. This suggests natu-
rally the following backward procedure for the definition of the discrete-time approximation
(Y π, Zπ) :

Y π
tn = g

(
Xπ

tn

)
, Zπ

ti−1
= (ti − ti−1)−1E

[
Y π

ti (Wti −Wti−1)|Fti−1

]
Y π

ti−1
= E

[
Y π

ti |Fti−1

]
+ f(ti−1, X

π
ti−1

, Y π
ti−1

, Zπ
ti−1

)(ti − ti−1) ,

for all i = 1, . . . , n. Here {Ft} is the completed filtration of the Brownian motion W . Our
first main result, Theorem 3.1, is an estimate of the error Y π − Y of the order of |π|−1. A
similar error estimate was obtained by [27], but with a slightly different, and less natural,
discretization scheme.

The key-ingredient for the simulation of the backward component Y is the following
well-known result : under standard Lipschitz conditions, the backward component and the
associated control (Y, Z), which solves the backward SDE, can be expressed as a function
of X, i.e. (Yt, Zt) = (u(t,Xt), v(t,Xt)), t ≤ 1, for some deterministic functions u and v.
Then, the conditional expectations, involved in the above discretization scheme, reduce to
the regression of Y π

ti and Y π
ti (Wti −Wti−1) on the random variable Xπ

ti−1
. For instance, one

can use the classical kernel regression estimation, as in [9], the basis projection method
suggested by [21], see also [11], or the Malliavin approach introduced in [15], and further
developed in [7], see also [19].

Given a simulation-based approximation Êπ
i−1 of E[·|Fti−1 ], we then analyse the backward

simulation scheme

Ŷ π
tn = g

(
Xπ

tn

)
, Ẑπ

ti−1
= (ti − ti−1)−1Êπ

i−1

[
Ŷ π

ti (Wti −Wti−1)
]

Ŷ π
ti−1

= Êπ
i−1

[
Ŷ π

ti

]
+ f(ti−1, X

π
ti−1

, Ŷ π
ti−1

, Ẑπ
ti−1

)(ti − ti−1) ,
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Let η denote the maximum simulation error of (Êi−1 − Ei−1)
[
Ŷ π

ti

]
and (Êi−1 − Ei−1)[

Ŷ π
ti (Wti −Wti−1)

]
. Observe that η depends both on the number of simulated paths and the

time step |π|. Also, given a number N of simulated paths for the regression approximation,
the best estimate that one can expect for η is N1/2, the classical Monte Carlo error deduced
from the Central Limit Theorem. Our second main result, Theorem 4.1, states that the
Lp−norm of the error due to the regression estimation is of the order |π|−1η. This rate
of convergence is easily understood in the case of a regular grid, as the scheme involves
|π|−1 steps, each of them requiring some regression approximation. As a consequence of
this result, for |π| = n−1, we see that in order to achieve the rate n−1/2, one needs to use
at least N = n3 simulated paths for the regression estimation.

We next investigate in more details the error (Êi−1 − Ei−1)
[
Ŷ π

ti

]
and (Êi−1 − Ei−1)[

Ŷ π
ti (Wti −Wti−1)

]
. More precisely, we examine a common difficulty to the kernel and the

Malliavin regression estimation methods : in both methods the regression estimator is the
ratio of two statistics, which is not guaranteed to be integrable. We solve this difficulty
by introducing a truncation procedure along the above backward simulation scheme. In
Theorem 5.1, we show that this reduces the error to the analysis of the ”integrated stan-
dard deviation” of the regression estimator. This quantity is estimated for the Malliavin
regression estimator in §6. The results of this section imply an estimate of the Lp−error
Ŷ π − Y π of the order of |π|−1−d/4pN−1/2p, where N is the number of simulated paths for
the regression estimation, see Theorem 6.2. In order to better understand this result, let
π = n−1 (n time-steps), then in order to achieve an error estimate of the order n−1/2, one
needs to use N = n3p+d/2 simulated paths for the regression estimation at each step. In
the limit case p = 1, this reduces to N = n3+d/2. Unfortunately, we have not been able to
obtain the best expected N = n3 number of simulated paths.

We conclude this introductory section by some references to the existing alternative nu-
merical methods for backward SDE’s. First, the four step algorithm was developed by [23]
to solve a class of more general forward-backward SDE’s, see also [13]. Their method is
based on the finite difference approximation of the associated PDE, which unfortunately
can not be managed in high dimension. Recently, a quantization technique was suggested
by [3] and [4] for the resolution of reflected backward SDE’s when the generator f does
not depend on the control variable z. This method is based on the approximation of the
continuous time processes on a finite grid, and requires a further estimation of the tran-
sition probabilities on the grid. Discrete-time scheme based on the approximation of the
Brownian motion by some discrete process have been considered in [10], [12], [8], [1] and
[22]. This technique allows to simplify the computation of the conditional expectations in-
volved at each time step. However, the implementation of these schemes in high dimension
is questionable. We finally refer to [2] for a random time schemes, which requires a further
approximation of conditional expectations to give an implementation.

Notations : We shall denote by Mn,d the set of all n × d matrices with real coefficients.

We simply denote Rn := Mn,1 and Mn := Mn,n. We shall denote by |a| :=
(∑

i,j a
2
i,j

)1/2

the Euclydian norm on Mn,d, a∗ the transpose of a, ak the k-th column of a, or the k-th
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component if a ∈ Rd. Finally, we denote by x · y :=
∑

i xiyi the scalar product on Rn.

2 The simulation and discretization problem

Let (Ω, {F(t)}0≤t≤1, P ) be a filtered probability space equipped with a d−dimensional
standard Brownian motion {W (t)}0≤t≤1.

Consider two functions b : Rd −→ Rd and σ : Rd −→ Md satisfying the Lipschitz
condition :

|b(u)− b(v)|+ |σ(u)− σ(v)| ≤ K|u− v| (2.1)

for some constant K independent of u, v ∈ Rd. Then, it is well-known that, for any initial
condition x ∈ Rd, the (forward) stochastic differential equation

Xt = x+
∫ t

0
b(Xs)ds+ σ(Xs)dWs (2.2)

has a unique {Ft}−adapted solution {Xt}0≤t≤1 satisfying

E

{
sup

0≤t≤1
|Xt|2

}
< ∞ ,

see e.g. [17]. Next, let f : [0, 1] × Rd × R × Rd −→ R and g : Rd −→ R be two functions
satisfying the Lipschitz condition

|g(u)− g(v)|+ |f(ξ)− f(ζ)| ≤ K (|u− v|+ |ξ − ζ|) (2.3)

for some constant K independent of u, v ∈ Rd and ξ, ζ ∈ [0, 1]×Rd×R×Rd. Consider the
backward stochastic differential equation :

Yt = g(X1) +
∫ 1

t
f(s,Xs, Ys, Zs)ds−

∫ 1

t
Zs · dWs , t ≤ 1 . (2.4)

The Lipschitz condition (2.3) ensures the existence and uniqueness of an adapted solution
(Y, Z) to (2.4) satisfying

E

{
sup

0≤t≤1
|Yt|2 +

∫ 1

0
|Zt|2dt

}
< ∞ ,

see e.g. [24]. Equations (2.2)-(2.4) define a decoupled system of forward-backward stochas-
tic differential equations. The purpose of this paper is to study the problem of discretization
and simulation of the components (X,Y ) of the solution of (2.2)-(2.4).

Remark 2.1 Under the Lipschitz conditions (2.1)-(2.3), it is easily checked that :

|Yt| ≤ a0 + a1 |Xt| , 0 ≤ t ≤ 1 ,

for some parameters a0 and a1 depending on K, b(0), σ(0), g(0) and f(0). In the subse-
quent paragraph, we shall derive a similar bound on the discrete-time approximation of Y .
The a priori knowledge of such a bound will be of crucial importance for the simulation
scheme suggested in this paper. tu
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3 Discrete-time approximation error

In order to approximate the solution of the above BSDE, we introduce the following dis-
cretized version. Let π : 0 = t0 < t1 < . . . < tn = 1 be a partition of the time interval [0, 1]
with mesh

|π| := max
1≤i≤n

|ti − ti−1| .

Throughout this paper, we shall use the notations :

∆π
i = ti − ti−1 and ∆πWi = Wti −Wti−1 , i = 1, . . . , n .

The forward component X will be approximated by the classical Euler scheme :

Xπ
t0 = Xt0

Xπ
ti = Xπ

ti−1
+ b(Xπ

ti−1
)∆π

i + σ(Xπ
ti−1

)∆πWi , for i = 1, . . . , n , (3.1)

and we set

Xπ
t := Xπ

ti−1
+ b(Xπ

ti−1
) (t− ti−1) + σ(Xπ

ti−1
)
(
Wt −Wti−1

)
for t ∈ (ti−1, ti) .

We shall denote by {Fπ
i }0≤i≤n the associated discrete-time filtration :

Fπ
i := σ

(
Xπ

tj , j ≤ i
)
.

Under the Lipschitz conditions on b and σ, the following Lp estimate for the error due to
the Euler scheme is well-known :

lim sup
|π|→0

|π|−1/2E

[
sup

0≤t≤1
|Xt −Xπ

t |
p + max

1≤i≤n
sup

ti−1≤t≤ti

∣∣Xt −Xti−1

∣∣p]1/p

< ∞ , (3.2)

for all p ≥ 1, see e.g. [18]. We next consider the following natural discrete-time approxi-
mation of the backward component Y :

Y π
1 = g (Xπ

1 ) ,

Y π
ti−1

= Eπ
i−1

[
Y π

ti

]
+ f

(
ti−1, X

π
ti−1

, Y π
ti−1

, Zπ
ti−1

)
∆π

i , 1 ≤ i ≤ n , (3.3)

Zπ
ti−1

=
1
∆π

i

Eπ
i−1

[
Y π

ti ∆
πWi

]
(3.4)

where Eπ
i [·] = E[· | Fπ

i ]. The above conditional expectations are well-defined at each step
of the algorithm. Indeed, by a backward induction argument, it is easily checked that Y π

ti

∈ L2 for all i.

Remark 3.1 Using an induction argument, it is easily seen that the random variables Y π
ti

and Zπ
ti are deterministic functions of Xπ

ti for each i = 0, . . . , n. From the Markov feature
of the process Xπ, it then follows that the conditional expectations involved in (3.3)-(3.4)
can be replaced by the correponding regressions :

Eπ
i−1

[
Y π

ti

]
= E

[
Y π

ti | X
π
ti−1

]
and Eπ

i−1

[
Y π

ti ∆
πWi

]
= E

[
Y π

ti ∆
πWi | Xπ

ti−1

]
.
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For later use, we observe that the same argument shows that :

Ei−1

[
Y π

ti

]
= E

[
Y π

ti | X
π
ti−1

]
and Ei−1

[
Y π

ti ∆
πWi

]
= E

[
Y π

ti ∆
πWi | Xπ

ti−1

]
,

where Ei[·] := E[· | Fti ] for all 0 ≤ i ≤ n. tu

Notice that (Y π, Zπ) differs from the approximation scheme suggested in [27] which in-
volves the computation of (2d+ 1) conditional expectations at each step.

For later use, we need to introduce a continuous-time approximation of (Y, Z). Since Y π
ti

∈ L2 for all 1 ≤ i ≤ n, we deduce, from the classical martingale representation theorem,
that there exists some square integrable process Zπ such that :

Y π
ti+1

= E
[
Y π

ti+1
| Fti

]
+
∫ ti+1

ti

Zπ
s · dWs

= Eπ
i

[
Y π

ti+1

]
+
∫ ti+1

ti

Zπ
s · dWs . (3.5)

We then define :

Y π
t := Y π

ti − (t− ti) f
(
ti, X

π
ti , Y

π
ti , Z

π
ti

)
+
∫ t

ti

Zπ
s · dWs , ti < t ≤ ti+1 .

The following property of the Zπ is needed for the proof of the main result of this section.

Lemma 3.1 For all 1 ≤ i ≤ n, we have :

Zπ
ti−1

∆π
i = Ei−1

[∫ ti

ti−1

Zπ
s ds

]
.

Proof. Since Y π
ti ∈ L

2, there is a sequence (ξk)k of random variables in D1,2 converging to
Y π

ti in L2. Then, it follows from the Clark-Ocone formula that, for all k :

ξk = Ei−1

[
ξk
]

+
∫ ti

ti−1

ζk
s · dWs where ζk

s := E
[
Dsξ

k | Fs

]
, ti−1 ≤ s ≤ ti .

Using Remark 3.1, we now compute that :

Zπ
ti−1

∆π
i = Ei−1

[
Y π

ti ∆
πWi

]
= lim

k→∞
Ei−1

[
ξk∆πWi

]
= lim

k→∞
Ei−1

[∫ ti

ti−1

Dsξ
kds

]

= lim
k→∞

Ei−1

[∫ ti

ti−1

ζk
s ds

]
, (3.6)

by the Malliavin integration by parts formula and the tower property for conditional ex-
pectations. We then estimate that :∣∣∣∣∣Ei−1

[∫ ti

ti−1

(
ζk
s − Zπ

s

)
ds

]∣∣∣∣∣ ≤

∣∣∣∣∣Ei−1

[∫ ti

ti−1

(
ζk
s − Zπ

s

)2
ds

]∣∣∣∣∣
1/2
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=
∣∣∣∣Ei−1

[
ξk − Ei−1[ξk]−

(
Y π

ti − Ei−1[Y π
ti ]
)]2∣∣∣∣1/2

≤ 2
∣∣∣∣Ei−1

[
Y π

ti − ξk
]2∣∣∣∣1/2

.

Since ξk converges to Y π
ti in L2, the last inequality together with (3.6) provide the required

result. tu

We also need the following estimate proved in Theorem 3.4.3 of [27].

Lemma 3.2 For each 1 ≤ i ≤ n, define

Z̄π
ti−1

:=
1
∆π

i

E

[∫ ti

ti−1

Zsds | Fti−1

]
.

Then :

lim sup
|π|→0

|π|−1

{
max
1≤i≤n

sup
ti−1≤t<ti

E
∣∣Yt − Yti−1

∣∣2 +
n∑

i=1

E

[∫ ti

ti−1

|Zt − Z̄π
ti−1

|2dt

]}
< ∞ .

We are now ready to state our first result, which provides an error estimate of the ap-
proximation scheme (3.3)-(3.4) of the same order than [27].

Theorem 3.1

lim sup
|π|→0

|π|−1

{
sup

0≤t≤1
E |Y π

t − Yt|2 + E

[∫ 1

0
|Zπ

t − Zt|2 dt
]}

< ∞ .

Proof. In the following, C > 0 will denote a generic constant independent of i and n that
may take different values from line to line. Let i ∈ {0, . . . , n− 1} be fixed, and set

δYt := Yt − Y π
t , δZt := Zt − Zπ

t and δf t := f (t,Xt, Yt, Zt)− f
(
ti, X

π
ti , Y

π
ti , Z

π
ti

)
for t ∈ [ti, ti+1). By Itô’s Lemma, we compute that

At := E|δYt|2 +
∫ ti+1

t
E|δZs|2ds− E

∣∣δYti+1

∣∣2 =
∫ ti+1

t
E [2δYsδfs] ds , ti ≤ t ≤ ti+1 .

1. Let α > 0 be a constant to be chosen later on. From the Lipschitz property of f ,
together with the inequality ab ≤ αa2 + b2/α, this provides :

At ≤ E

[
C

∫ ti+1

t
|δYs|

(
|π|+

∣∣Xs −Xπ
ti

∣∣+ ∣∣Ys − Y π
ti

∣∣+ ∣∣Zs − Zπ
ti

∣∣) ds]
≤

∫ ti+1

t
αE|δYs|2ds

+
C

α

∫ ti+1

t
E
[
|π|2 +

∣∣Xs −Xπ
ti

∣∣2 +
∣∣Ys − Y π

ti

∣∣2 +
∣∣Zs − Zπ

ti

∣∣2] ds (3.7)
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Now observe that :

E
∣∣Xs −Xπ

ti

∣∣2 ≤ C|π| (3.8)

E
∣∣Ys − Y π

ti

∣∣2 ≤ 2
{
E |Ys − Yti |

2 + E |δYti |
2
}
≤ C

{
|π|+ E |δYti |

2
}
, (3.9)

by (3.2) and the estimate of Lemma 3.2. Also, with the notation of Lemma 3.2, it follows
from Lemma 3.1 that :

E
∣∣Zs − Zπ

ti

∣∣2 ≤ 2
{
E
∣∣Zs − Z̄π

ti

∣∣2 + E
∣∣Zπ

ti − Z̄π
ti

∣∣2}
= 2

{
E
∣∣Zs − Z̄π

ti

∣∣2 + E

∣∣∣∣ 1
∆π

i+1

∫ ti+1

ti

E [δZr | Fti ] dr
∣∣∣∣2
}

≤ 2
{
E
∣∣Zs − Z̄π

ti

∣∣2 +
1

∆π
i+1

∫ ti+1

ti

E |δZr|2 dr
}

(3.10)

by Jensen’s inequality. We now plug (3.8)-(3.9)-(3.10) into (3.7) to obtain :

At ≤
∫ ti+1

t
αE|δYs|2ds+

C

α

∫ ti+1

t
E
[
|π|+ |δYti |

2 +
∣∣Zs − Z̄π

ti

∣∣2] ds
+

C

α∆π
i+1

∫ ti+1

t

∫ ti+1

ti

E |δZr|2 drds (3.11)

≤
∫ ti+1

t
αE|δYs|2ds+

C

α

∫ ti+1

t
E
[
|π|+ |δYti |

2 +
∣∣Zs − Z̄π

ti

∣∣2] ds
+
C

α

∫ ti+1

ti

E |δZr|2 dr . (3.12)

2. From the definition of At and (3.12), we see that, for ti ≤ t < ti+1,

E |δYt|2 ≤ E |δYt|2 +
∫ ti+1

t
E|δZs|2ds ≤ α

∫ ti+1

t
E |δYs|2 ds+Bi (3.13)

where

Bi := E
∣∣δYti+1

∣∣2 +
C

α

{
|π|2 + |π|E |δYti |

2 +
∫ ti+1

ti

E |δZr|2 dr +
∫ ti+1

ti

E
∣∣Zs − Z̄π

ti

∣∣2 ds } .

By Gronwall’s Lemma, this shows that E |δYt|2 ≤ Bie
α|π| for ti ≤ t < ti+1, which plugged

in the second inequality of (3.13) provides :

E|δYt|2 +
∫ ti+1

t
E|δZs|2ds ≤ Bi

(
1 + α|π|eα|π|

)
≤ Bi (1 + Cα|π|) (3.14)

for small |π|. For t = ti and α sufficiently larger than C, we deduce from this inequality
that :

E|δYti |
2 +

1
2

∫ ti+1

ti

E|δZs|2ds ≤ (1 + C|π|)
{
E
∣∣δYti+1

∣∣2 + |π|2 +
∫ ti+1

ti

∣∣Zs − Z̄π
ti

∣∣2 ds} ,

for small |π|.
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3. Iterating the last inequality, we get :

E|δYti |
2 +

1
2

∫ ti+1

ti

E|δZs|2ds

≤ (1 + C|π|)1/|π|

{
E |δY1|2 + |π|+

n∑
i=1

∫ ti

ti−1

E
∣∣∣Zs − Z̄π

ti−1

∣∣∣2 ds} .

Using the estimate of Lemma 3.2, together with the Lipschitz property of g and (3.2), this
provides :

E|δYti |
2 +

1
2

∫ ti+1

ti

E|δZs|2ds ≤ C (1 + C|π|)1/|π|
{
E |δY1|2 + C|π|

}
≤ C|π| , (3.15)

for small |π|. Summing up the inequality (3.14) with t = ti, we get :∫ 1

0
E|δZs|2ds ≤ E |δY1|2 − E |δY0|2 +

C

α

∫ 1

0
E|δZs|2ds

+
C

α

n−1∑
i=0

{
|π|2 + |π|E |δYti |

2 +
∫ ti+1

ti

E
∣∣∣Zs − Zπ0,1

ti

∣∣∣2 ds} .

For α sufficiently larger than C, it follows from (3.15) and Lemma 3.2 that :∫ 1

0
E|δZs|2ds ≤ C|π| .

Together with Lemma 3.2 and (3.15), this shows that Bi ≤ C|π|, and therefore :

sup
0≤t≤1

E |δYt|2 ≤ C|π| ,

by taking the supremum over t in (3.14). This completes the proof of the theorem. tu

We end up this section with the following bound on the Y π
ti ’s which will be used in the

simulation based approximation of the discrete-time conditional expectation operators Eπ
i ,

0 ≤ i ≤ n− 1.

Lemma 3.3 Assume that

|g(0)|+ |f(0)|+ ‖b‖∞ + ‖σ‖∞ ≤ K , (3.16)

for some K ≥ 1, and define the sequence

απ
n := 2K , βπ

n := K

απ
i := (1−K|π|)−1

{
(1 +K|π|)1/2 (απ

i+1 + βπ
i+14K

2|π|
)

+ 3K2|π|
}

βπ
i := (1−K|π|)−1

{
(1 +K|π|)1/2K|π|βπ

i+1 + 3K2|π|
}

, 0 ≤ i ≤ n− 1 .
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Then, for all 0 ≤ i ≤ n ∣∣Y π
ti

∣∣ ≤ απ
i + βπ

i

∣∣Xπ
ti

∣∣2 , (3.17)

Eπ
i−1

∣∣∣Ŷ π
ti

∣∣∣ ≤ {
Eπ

i−1

∣∣∣Ŷ π
ti

∣∣∣2}1/2

≤ απ
i + βπ

i

[
(1 + 2K|π|)

∣∣∣Xπ
ti−1

∣∣∣2 + 4K2|π|
]
, (3.18)

Eπ
i−1

∣∣∣Ŷ π
ti ∆

πWi

∣∣∣ ≤ √
|π|
{
απ

i + βπ
i

[
(1 + 2K|π|)

∣∣∣Xπ
ti−1

∣∣∣2 + 4K2|π|
]}

. (3.19)

Moreover,

lim sup
|π|→0

max
0≤i≤n

{απ
i + βπ

i } < ∞ .

Proof. We first observe that the bound (3.18) is a by-product of the proof of (3.17). The
bound (3.19) follows directly from (3.18) together with the Cauchy-Schwartz inequality. In
order to prove (3.17), we use a backward induction argument. First, since g is K−Lipschitz
and g(0) is bounded by K, we have :

|Y π
1 | ≤ K (1 + |Xπ

1 |) ≤ K
(
2 + |Xπ

1 |
2
)

= απ
n + βπ

n |Xπ
1 |

2 . (3.20)

We next assume that ∣∣∣Y π
ti+1

∣∣∣ ≤ απ
i+1 + βπ

i+1

∣∣∣Xπ
ti+1

∣∣∣2 , (3.21)

for some fixed 0 ≤ i ≤ n−1. From the Lipschitz property of f , there exists an R×Rd×R×Rd-
valued Fti-measurable random variable (τi, ξi, νi, ζi), essentially bounded by K, such that :

f
(
ti, X

π
ti , Y

π
ti , (∆

π
i+1)

−1Eπ
i

[
Y π

ti+1
∆πWi+1

])
− f (0)

= τiti + ξiX
π
ti + νiY

π
ti + (∆π

i+1)
−1ζi · Eπ

i

[
Y π

ti+1
∆πWi+1

]
.

By the definition of Y π in (3.3), this provides

Y π
ti = Eπ

i

[
Y π

ti+1

]
+ ∆π

i+1f(0)

+∆π
i+1

{
τiti + ξiX

π
ti + νiY

π
ti + (∆π

i+1)
−1ζi · Eπ

i

[
Y π

ti+1
∆πWi+1

]}
.

Then, it follows from the Cauchy-Schwartz inequality and the inequality |x| ≤ 1 + |x|2

that, for |π| ≤ 1,

(1−K|π|)
∣∣Y π

ti

∣∣ ≤ Eπ
i

∣∣∣Y π
ti+1

(1 + ζi ·∆πWi+1)
∣∣∣+K|π|

(
2 +

∣∣Xπ
ti

∣∣)
≤

[
Eπ

i

∣∣∣Y π
ti+1

∣∣∣2]1/2 [
Eπ

i |1 + ζi ·∆πWi+1|2
]1/2

+K|π|
(
3 +

∣∣Xπ
ti

∣∣2)(3.22)

Now, since ζi is Fti-measurable and bounded by K, observe that :

Eπ
i |1 + ζi ·∆πWi+1|2 ≤ 1 +K|π| .

10



We then get from (3.22) :

(1−K|π|)
∣∣Y π

ti

∣∣ ≤ (1 +K|π|)1/2

[
Eπ

i

∣∣∣Y π
ti+1

∣∣∣2]1/2

+K|π|
(
3 +

∣∣Xπ
ti

∣∣2) . (3.23)

Using (3.21), we now write that :[
Eπ

i

∣∣∣Y π
ti+1

∣∣∣2]1/2

≤ απ
i+1 + βπ

i+1

{
Eπ

i

(
Xπ

ti + |π|b
(
Xπ

ti

)
+ σ

(
Xπ

ti

)
∆πWi+1

)4}1/2
(3.24)

where, by (3.16) and the assumption K ≥ 1, direct computation leads to :{
Eπ

i

(
Xπ

ti + |π|b
(
Xπ

ti

)
+ σ

(
Xπ

ti

)
∆πWi+1

)4}1/2
≤

(∣∣Xπ
ti

∣∣+K|π|
)2 + 3K|π|2

≤ (1 + 2K|π|)
∣∣Xπ

ti

∣∣2 + 4K2|π| . (3.25)

Together with (3.23)-(3.24)-(3.25), this implies that :

(1−K|π|)
∣∣Y π

ti

∣∣ ≤ (1 +K|π|)1/2
{
απ

i+1 + βπ
i+1

(
(1 + 2K|π|)

∣∣Xπ
ti

∣∣2 + 4K2|π|
)}

+K|π|
(
3 +K|π|

∣∣Xπ
ti

∣∣2)
≤ (1 +K|π|)1/2

{
απ

i+1 + βπ
i+1

(
(1 + 2K|π|)

∣∣Xπ
ti

∣∣2 + 4K2|π|
)}

+3K2|π|
(
1 +

∣∣Xπ
ti

∣∣2) .

It follows that : ∣∣Y π
ti

∣∣ ≤ απ
i+1 + βπ

i+1

∣∣Xπ
ti

∣∣2 .
Now observe that for all 0 ≤ i ≤ n :

βπ
i = 7K2|π|

n−1∑
j=i

(1 +K|π|)(j−i)/2 (1 + 2K|π|)j−i + (1 +K|π|)(n−i)/2 (1 + 2K|π|)n−i βπ
n

≤ 8K2 (1 +K|π|)
1

2|π| (1 + 2K|π|)
1
|π| ,

where the last term is uniformly bounded in |π|. The same argument shows that max
0≤i≤n

απ
i

is uniformly bounded in |π|. tu

4 Error due to the regression approximation

In this section, we focus on the problem of simulating the approximation (Xπ, Y π) of the
components (X,Y ) of the solution of the decoupled forward-backward stochastic differential
equation (2.2)-(2.4). The forward componentXπ defined by (3.1) can of course be simulated
on the time grid defined by the partition π by the classical Monte-Carlo method. Then,
we are reduced to the problem of simulating the approximation Y π defined in (3.3)-(3.4),
given the approximation Xπ of X.

11



Notice that each step of the backward induction (3.3)-(3.4) requires the computation of
(d+ 1) conditional expectations. In practice, one can only hope to have an approximation
Êπ

i of the conditional expectation operator Eπ
i . Therefore, the main idea for the definition

of an approximation of Y π, and therefore of Zπ, is to replace the conditional expectation
Eπ

i by Êπ
i in the backward scheme (3.3)-(3.4).

However, we would like to improve the efficiency of the approximation scheme of (Y π, Zπ)
when it is known to lie in some given domain. Let then ℘π =

{(
℘π

i
, ℘π

i

)}
0≤i≤n

be a sequence

of pairs of maps from Rd into R ∪ {−∞,+∞} satisfying :

℘π
i
(Xπ

ti) ≤ Y π
ti ≤ ℘π

i (Xπ
ti) for all i = 0, . . . , n , (4.1)

i.e. ℘π
i
≤ ℘π

i are some given a priori known bounds on Y π
i for each i. For instance, one

can define ℘π by the bounds derived in Lemma 3.3. When no bounds on Y π are known,
one may take ℘π

i
= −∞ and ℘π

i = +∞.
Given a random variable ζ valued in R, we shall use the notation :

T℘π

i (ζ) := ℘π
i
(Xπ

ti) ∨ ζ ∧ ℘π
i (Xπ

ti) ,

where ∨ and ∧ denote respectively the binary maximum and minimum operators. Since
the backward scheme (3.3)-(3.4) involves the computation of the conditional expecta-
tions Eπ

i−1[Y
π
ti ] and Eπ

i−1[Y
π
ti ∆

πWi], we shall also need to introduce the sequences <π ={(
<π

i ,<
π
i

)}
0≤i≤n

and =π =
{(
=π

i ,=
π
i

)}
0≤i≤n

of pairs of maps from Rd into R∪{−∞,+∞}
satisfying :

<π
i−1(X

π
ti−1

) ≤ Eπ
i−1

[
Y π

ti

]
≤ <π

i−1(X
π
ti−1

)

=π
i−1(X

π
ti−1

) ≤ Eπ
i−1

[
Y π

ti ∆
πWi

]
≤ =π

i−1(X
π
ti−1

)

for all i = 1, . . . , n. The corresponding operators T<π

i and T=π

i are defined similarly to
T℘π

i . An example of such sequences is given by Lemma 3.3.
Now, given an approximation Êπ

i of Eπ
i , we define the process (Ŷ π, Ẑπ) by the backward

induction scheme :

Ŷ π
1 = Y π

1 = g (Xπ
1 ) ,

Y̌ π
ti−1

= Êπ
i−1

[
Ŷ π

ti

]
+ ∆π

if
(
ti−1, X

π
ti−1

, Y̌ π
ti−1

, Ẑπ
ti−1

)
(4.2)

Ŷ π
ti−1

= T℘π

i−1

(
Y̌ π

ti−1

)
, (4.3)

Ẑπ
ti−1

=
1
∆π

i

Êπ
i−1

[
Ŷ π

ti ∆
πWi

]
, (4.4)

for all 1 ≤ i ≤ n. Recall from Remark 3.1 that the conditional expectations involved
in (3.3)-(3.4) are in fact regression functions. This simplifies considerably the problem of
approximating Eπ

i .

Example 4.1 (Non-parametric regression) Let ζ be an Fti+1-measurable random variable,
and (Xπ(j)

, ζ(j))N
j=1 be N independent copies of (Xπ

t1 , . . . , X
π
tn , ζ). The non-parametric

12



kernel estimator of the regression operator Eπ
i is defined by :

Ẽπ
i [ζ] :=

∑N
j=1 ζ

(j)κ
(
(hN )−1

(
Xπ(j)

ti −Xπ
ti

))
∑N

j=1 κ
(
(hN )−1

(
Xπ(j)

ti
−Xπ

ti

)) ,

where κ is a kernel function and hN is a bandwidth matrix converging to 0 as N →∞. We
send the reader to [5] for details on the analysis of the error Ẽπ

i − Eπ
i .

The above regression estimator can be improved in our context by using the a priori
bounds ℘π on Y π :

Êπ
i−1

[
Ŷti

]
= T<π

i−1

(
Ẽπ

i−1

[
Ŷti

])
and Êπ

i−1

[
Ŷti∆

πWi

]
= T=π

i−1

(
Ẽπ

i−1

[
Ŷti∆

πWi

])
.

Example 4.2 (Malliavin regression approach) Let φ be a mapping from Rd into R, and
(Xπ(j)

)N
j=1 be N independent copies of (Xπ

t1 , . . . , X
π
tn). The Malliavin regression estimator

of the operator Eπ
i is defined by :

Ẽπ
i

[
φ(Xπ

ti+1
)
]

:=

∑N
j=1 φ

(
Xπ(j)

ti+1

)
HXπ

ti

(
Xπ(j)

ti

)
S(j)∑N

j=1HXπ
ti

(
Xπ(j)

ti

)
S(j)

,

where Hx is the Heaviside function, Hx(y) =
∏d

i=1 1xi≤yi , and S(j) are independent copies
of some random variable S whose precise definition is given in §6 below. Notice that the
practical implementation of this approximation procedure in the backward induction (4.2)-
(4.4) requires a slight extension of this estimator. This issue will be discussed precisely in
§6.

As in the previous example, we use the bounds ℘π on Y to define the approximations The
above regression estimator can be improved in our context by using the a priori bounds ℘π

on Y π :

Êπ
i−1

[
Ŷti

]
= T<π

i−1

(
Ẽπ

i−1

[
Ŷti

])
and Êπ

i−1

[
Ŷti∆

πWi

]
= T=π

i−1

(
Ẽπ

i−1

[
Ŷti∆

πWi

])
.

Remark 4.1 The use of a priori bounds on the conditional expectation to be computed is
a crucial step in our analysis. This is due to the fact that, in general, natural estimators Ẽπ

i ,
as in Examples 4.1 and 4.2, produce random variables which are not necessarily integrable.

tu

We now turn to the main result of this section, which provides an Lp estimate of the error
Ŷ π − Y π in terms of the regression errors Êπ

i − Eπ
i .

Theorem 4.1 Let p > 1 be given, and ℘π be a sequence of pairs of maps valued in R ∪
{−∞,∞} satisfying (4.1). Then, there is a constant C > 0 which only depends on (K, p)
such that :∥∥∥Ŷ π

ti − Y π
ti

∥∥∥
Lp

≤ C

|π|
max

0≤j≤n−1

{∥∥∥(Êπ
j − Eπ

j )
[
Ŷ π

tj+1

]∥∥∥
Lp

+
∥∥∥(Êπ

j − Eπ
j )
[
Ŷ π

tj+1
∆πWj+1

]∥∥∥
Lp

}
for all 0 ≤ i ≤ n.
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Proof. In the following, C > 0 will denote a generic constant, which only depends on
(K, p), that may change from line to line. Let 0 ≤ i ≤ n − 1 be fixed. We first compute
that :

Y π
ti − Y̌ π

ti = εi + Eπ
i

[
Y π

ti+1
− Ŷ π

ti+1

]
+∆π

i+1

{
f
(
ti, X

π
ti , Y

π
ti , (∆

π
i+1)

−1Eπ
i

[
Y π

ti+1
∆πWi+1

])
−f
(
ti, X

π
ti , Y̌

π
ti , (∆

π
i+1)

−1Eπ
i

[
Ŷ π

ti+1
∆πWi+1

])}
(4.5)

where

εi :=
(
Eπ

i − Êπ
i

) [
Ŷ π

ti+1

]
+ ∆π

i+1

{
f
(
ti, X

π
ti , Y̌

π
ti , (∆

π
i+1)

−1Êπ
i

[
Ŷ π

ti+1
∆πWi+1

])
−f
(
ti, X

π
ti , Y̌

π
ti , (∆

π
i+1)

−1Eπ
i

[
Ŷ π

ti+1
∆πWi+1

])}
.

From the Lipschitz property of f , we have :

‖εi‖Lp ≤ ηi := C
{∥∥∥(Êπ

i − Eπ
i )
[
Ŷ π

ti+1

]∥∥∥
Lp

+
∥∥∥(Êπ

i − Eπ
i )
[
Ŷ π

ti+1
∆πWi+1

]∥∥∥
Lp

}
.

Again, from the Lipschitz property of f , there exists an R × Rd-valued Fti-measurable
random variable (νi, ζi), essentially bounded by K, such that :

f
(
ti, X

π
ti , Y

π
ti , (∆

π
i+1)

−1Eπ
i

[
Y π

ti+1
∆πWi+1

])
− f

(
ti, X

π
ti , Y̌

π
ti , (∆

π
i+1)

−1Eπ
i

[
Ŷ π

ti+1
∆πWi+1

])
= νi

(
Y π

ti − Y̌ π
ti

)
+ (∆π

i+1)
−1ζi · Eπ

i

[(
Y π

ti+1
− Ŷ π

ti+1

)
∆πWi+1

]
.

Then, it follows from (4.5) and the Hölder inequality that :

(1−K|π|)
∣∣Y π

ti − Y̌ π
ti

∣∣ ≤ |εi|+ Eπ
i

∣∣∣(Y π
ti+1

− Ŷ π
ti+1

)
(1 + ζi ·∆πWi+1)

∣∣∣
≤ |εi|+

[
Eπ

i

∣∣∣Y π
ti+1

− Ŷ π
ti+1

∣∣∣p]1/p
[Eπ

i |1 + ζi ·∆πWi+1|q]1/q

≤ |εi|+
[
Eπ

i

∣∣∣Y π
ti+1

− Ŷ π
ti+1

∣∣∣p]1/p [
Eπ

i |1 + ζi ·∆πWi+1|2k
]1/2k

where q is the conjugate of p and k ≥ q/2 is an arbitrary integer. Recalling that Ŷ π
ti =

T℘π

i

(
Y̌ π

ti

)
and Y π

ti = T℘π

i

(
Y π

ti

)
, by (4.1), this provides

(1−K|π|)
∣∣∣Y π

ti − Ŷ π
ti

∣∣∣ ≤ |εi|+
[
Eπ

i

∣∣∣Y π
ti+1

− Ŷ π
ti+1

∣∣∣p]1/p [
Eπ

i |1 + ζi ·∆πWi+1|2k
]1/2k

(4.6)

by the 1−Lipschitz property of T℘π

i . Now, since ζi is Fti-measurable and bounded by K,
observe that :

Eπ
i |1 + ζi ·∆πWi+1|2k =

2k∑
j=0

(
2k

j

)
Eπ

i (ζi ·∆πWi+1)
j

=
k∑

j=0

(
2k

2j

)
Eπ

i (ζi ·∆πWi+1)
2j

≤ 1 + C|π| .
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We then get from (4.6) :

(1−K|π|)
∥∥∥Y π

ti − Ŷ π
ti

∥∥∥
Lp

≤ ‖εi‖Lp + (1 + C|π|)1/2k
∥∥∥Y π

ti+1
− Ŷ π

ti+1

∥∥∥
Lp

≤ ηi + (1 + C|π|)1/2k
∥∥∥Y π

ti+1
− Ŷ π

ti+1

∥∥∥
Lp

. (4.7)

For small |π|, it follows from this inequality that :∥∥∥Y π
ti+1

− Ŷ π
ti+1

∥∥∥
Lp

≤ 1
|π|

(1−K|π|)−1/|π| (1 + C|π|)1/(2k|π|) max
0≤j≤n−1

ηi

≤ C

|π|
max

0≤j≤n−1
ηj .

tu

Remark 4.2 In the particular case where the generator f does not depend on the control
variable z, Theorem 4.1 is valid for p = 1. This is easily checked by noticing that, in this
case, ζi = 0 in the above proof. tu

5 Regression error estimate

In this section, we focus on the regression procedure. Let (R,S) be a pair of random
variables. In both Examples 4.1 and 4.2, the regression estimator is based on the observation
that the regression function can be written in

r(x) := E [R|S = x] =
qR(x)
q1(x)

where qR(x) := E [R εx(S)] ,

and εx denotes the Dirac measure at the point x. Then, the regression estimation problem
is reduced to the problem of estimating separately qR(x) and q1(x), and the main difficulty
lies in the presence of the Dirac measure inside the expectation operator.

While the kernel estimator is based on approximating the Dirac measure by a kernel
function with bandwidth shrinking to zero, the Malliavin estimator is suggested by an
alternative representation of qR(x) obtained by integrating up the Dirac measure to the
Heaviside function, see §6. In both cases, one defines an estimator :

r̃N (x, ω) :=
q̂R
N (x, ω)
q̂1N (x, ω)

, ω ∈ Ω ,

where q̂R
N (x, ω) and q̂1N (x, ω) are defined as the means on a sample of N independent copies

{A(i)(x, ω), B(i)(x, ω)}1≤i≤N of some corresponding random variables {A(x, ω), B(x, ω)} :

q̂R
N (x, ω) :=

1
N

N∑
i=1

A(i)(x, ω) and q̂1N (x, ω) :=
1
N

N∑
i=1

B(i)(x, ω) .
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In the Malliavin approach these random variables {A(x, ω), B(x, ω)} have expectation equal
to {qR(x), q1(x)}, see Theorem 6.1 below. Using the above definitions, it follows that :

VR(x) := N Var
[
q̂R
N (x)

]
= Var[A(x)] ,

V1(x) := N Var
[
q̂1N (x)

]
= Var[B(x)] .

(5.1)

In order to prepare for the results of §6, we shall now concentrate on the case where
E(A(x), B(x)) = (qR(x), q1(x)), so that (5.1) holds. A similar analysis can be performed
for the kernel approach, see Remark 5.1 below.

In view of Theorem 4.1, the Lp error estimate of |Ŷ π − Y π| is related to the Lp error on
the regression estimator. As mentioned in Remark 4.1, the regression error r̃N (S)− r(S) is
not guaranteed to be integrable. Indeed, the classical central limit theorem indicates that
the denominator q̂N [1](x) of r̃N (x) has a gaussian asymptotic distribution, which induces
integrability problems on the ratio q̂R

N (x)/q̂1N (x).
We solve this difficulty by introducing the a priori bounds

{
ρ(x), ρ(x)

}
on r(x) :

ρ(x) ≤ r(x) ≤ ρ(x) for all x ,

and we define the truncated estimators :

r̂N (x) := Tρ (r̃N (x)) := ρ(x) ∨ r̃N (x) ∧ ρ(x) .

We are now ready for the main result of this section.

Theorem 5.1 Let R and S be random variables valued respectively in R and Rd. Assume
that S has a density q1 > 0 with respect to the Lebesgue measure on Rd. For all x ∈
Rd, let

{
A(i)(x)

}
1≤i≤N

and
{
B(i)(x)

}
1≤i≤N

be two families of independent and identically
distributed random variables on R satisfying

E[A(i)(x)] = qR(x) and E[B(i)(x)] = q1(x) for all 1 ≤ i ≤ N .

Set γ(x) := |ρ− ρ|(x), and assume that

Γ(r, γ, V1, VR) :=
∫

Rd

γ(x)p−1
[
VR(x)1/2 + (|r(x)|+ γ(x))V1(x)1/2

]
dx < ∞ (5.2)

for some p ≥ 1. Then :

‖r̂N (S)− r(S)‖Lp ≤
(
2 Γ(r, γ, V1, VR) N−1/2

)1/p
.

Proof. We first estimate that :

‖r̂N (S)− r(S)‖p
Lp ≤ E [|r̃N (S)− r(S)|p ∧ γ(S)p]

= E

[∣∣∣∣εRN (S)− r(S)ε1N (S)
q̂1N (S)

∣∣∣∣p ∧ γ(S)p

]
(5.3)

where

εRN (x, ω) := q̂R
N (x, ω)− qR(x) and ε1N (x, ω) := q̂1N (x, ω)− q1(x) .
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For later use, we observe that :

‖εRN (x)‖L1 ≤ ‖εRN (x)‖L2 ≤ N−1/2VR(x)1/2 ,

‖ε1N (x)‖L1 ≤ ‖ε1N (x)‖L2 ≤ N−1/2V1(x)1/2 ,

by (5.1). Next, for all x ∈ Rd, we consider the event set

M(x) :=
{
ω ∈ Ω : |q̂1N (x, ω)− q1(x)| ≤ 2−1q1(x)

}
,

and observe that, for a.e. ω ∈ Ω,∣∣∣∣εRN (x, ω)− r(x)ε1N (x)
q̂1N (x, ω)

∣∣∣∣p ∧ γ(x)p ≤
∣∣∣∣2 εRN (x, ω)− r(x)ε1N (x)

q1(x)

∣∣∣∣p ∧ γ(x)p 1M(x)(ω)

+γ(x)p 1M(x)c(ω) . (5.4)

As for the first term on the right hand-side, we directly compute that for p ≥ 1 :∣∣∣∣2 εRN (x)− r(x)ε1N (x)
q1(x)

∣∣∣∣p ∧ γ(x)p ≤ 2
∣∣∣∣εRN (x)− r(x)ε1N (x)

q1(x)

∣∣∣∣ γ(x)p−1

so that

E

[∣∣∣∣2 εRN (S)− r(S)ε1N (S)
q1(S)

∣∣∣∣p ∧ γ(S)p 1M(S)

]
≤ 2

∫
Rd

E
∣∣εRN (x)− r(x)ε1N (x)

∣∣ γ(x)p−1dx

≤ 2
∫

Rd

(
‖εRN (x)‖L2 + ‖r(x)ε1N (x)‖L2

)
γ(x)p−1dx

= 2N−1/2

∫
Rd

(
VR(x)1/2 + |r(x)|V1(x)1/2

)
γ(x)p−1dx . (5.5)

The second term on the right hand-side of (5.4) is estimated by means of the Tchebytchev
inequality :

E
[
γ(S)p1Mc(S)

]
= E

[
E
(
γ(S)p1Mc(S)|S

)]
= E [γ(x)pP (M(S)c|S)]

= E
[
γ(x)pP

(
2|q̂1N (S)− q1(S)| > q1(S)|S

)]
≤ 2 E

[
γ(x)pq1(S)−1E|q̂1N (S)− q1(S)|

]
≤ 2 E

[
γ(x)pq1(S)−1Var[q̂1

N(S)]1/2
]

= 2N−1/2

∫
Rd

γ(x)pV1(x)1/2dx . (5.6)

The required result follows by plugging inequalities (5.4), (5.5) and (5.6) into (5.3). tu

Remark 5.1 Observe from the above proof, that the error estimate of Theorem 5.1 could
have been written in terms of

∥∥εRN (x)
∥∥

L1 and
∥∥ε1N (x)

∥∥
L1 instead of N−1/2VR(x)1/2 and

N−1/2V1(x)1/2. In that case, the estimate of Theorem 5.1 reads :

‖r̂N (S)− r(S)‖p
Lp ≤ 2

∫
Rd

γ(x)p−1
[∥∥εRN (x)

∥∥
L1 + (|r(x)|+ γ(x))

∥∥ε1N (x)
∥∥

L1

]
dx ,
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a result which does not require the assumption E(A(x), B(x)) = (qR(x), q1(x)). In the
kernel approach,

∥∥εRN (x)
∥∥

L1 and
∥∥εRN (x)

∥∥
L1 will typically go to zero as N tends to infinity.

A detailed study of the above quantity is left to future researches. tu

6 Malliavin Calculus based regression approximation

In this section, we concentrate on the Malliavin approach for the approximation of the
conditional expectation Eπ

i as introduced in Example 4.2. We shall assume throughout
this section that

b , σ ∈ C∞b and inf
{
ξ∗σ(x)ξ : ξ ∈ Rd and |ξ| = 1

}
> 0 for all x ∈ Rd . (6.1)

For sake of simplicity, we shall also restrict the presentation to the case of regular sampling :

∆π
i = ti − ti−1 = |π| for all 1 ≤ i ≤ n .

6.1 Alternative representation of conditional expectation

We start by introducing some notations. Throughout this section, we shall denote by Jk

the subset of Nk whose elements I = (i1, . . . , ik) satisfy 1 ≤ i1 < . . . < ik ≤ d. We extend
this definition to k = 0 by setting J0 = ∅.

Let I = (i1, . . . , im) and J = (j1, . . . , in) be two arbitrary elements in Jm and Jn. Then
{i1, . . . , im} ∪ {j1, . . . , jn} = {k1, . . . , kp} for some max{n,m} ≤ p ≤ min{d,m + n}, and
1 ≤ k1 < . . . < kp . . . ≤ d . We then denote I ∨ J := (k1, . . . , kp) ∈ Jp.

Given a matrix-valued process h, with columns denoted by hi, and a random variable F ,
we denote

Sh
i [F ] :=

∫ ∞

0
Fhi

t · dWt for i = 1, . . . , k, and Sh
I [F ] := Sh

i1 ◦ . . . ◦ S
h
ik

[F ]

for I = (i1, . . . , ik) ∈ Jk, whenever these stochastic integrals exist in the Skorohod sense.
We extend this definition to k = 0 by setting Sh

∅ [F ] := F . Similarly, for I ∈ Jk, we set :

Sh
−I [F ] := Sh

Ī [F ] where Ī ∈ Jd−k and I ∨ Ī is the unique element of Jd .

Let ϕ be a C0
b (Rd

+), i.e. continuous and bounded, mapping from Rd
+ into R. We say that

ϕ is a smooth localizing function if

ϕ(0) = 1 and ∂Iϕ ∈ C0
b (Rd

+) for all k = 0, . . . , d and I ∈ Jk .

Here, ∂Iϕ = ∂kϕ/∂xi1 . . . ∂xik . For k = 0, Jk = ∅, and we set ∂∅ϕ := ϕ. We denote by L
the collection of all smooth localization functions.

With these notations, we introduce the set H(Xπ
ti) (1 ≤ i ≤ n− 1) as the collection of all

matrix-valued L2(F1) processes h satisfying∫ ∞

0
DtX

π
tihtdt = Id and

∫ ∞

0
DtX

π
ti+1

htdt = 0 (6.2)
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(here Id denotes the identity matrix of Md) and such that, for any affine function a :
Rd −→ R,

Sh
I

[
a (∆πWi+1)ϕ

(
Xπ

ti

)]
is well-defined in D1,2 for all I ∈ Jk , k ≤ d and ϕ ∈ L .

(6.3)

For later use, we observe that by a straightforward extension of Remark 3.4 in [7], we
have the representation :

Shi
[
a (∆πWi+1)ϕ

(
Xπ

ti − x
)]

=
d∑

j=0

(−1)j
∑
J∈Jj

∂Jϕ
(
Xπ

ti − x
)
Shi
−J [a (∆πWi+1)] , (6.4)

for any affine function a : Rd −→ R .
Moreover, it follows from that (6.1), that Xπ

ti ∈ D∞ for each i ∈ {1, . . . , n}, where the
Malliavin derivatives can be computed recursively as follows :

DtX
π
t1 = σ (Xπ

0 )1t≤t1

DtX
π
ti = DtX

π
ti−1

+ |π|∇b
(
Xπ

ti−1

)
(DtX

π
ti−1

)

+
d∑

j=1

∇σj
(
Xπ

ti−1

)
(DtX

π
ti−1

)∆πW j
i + σ

(
Xπ

ti−1

)
1t∈(ti−1,ti] .

In particular, for t ∈ (ti−1, ti), we obtain that DtX
π
ti = σ

(
Xπ

ti−1

)
. Let hi be the Md−valued

process defined :

hi,t |π|

:=


σ(Xπ

ti−1
)−1 on t ∈ [ti−1, ti)

−σ(Xπ
ti)
−1
(
Id + |π|∇b(Xπ

ti) +
∑d

j=1∇σj(Xπ
ti)∆

πW j
i+1

)
on t ∈ [ti, ti+1)

0 elsewhere.

(6.5)

Since b, σ, σ−1 ∈ C∞b by (6.1), one easily checks that hi satisfies (6.2)-(6.3) and therefore
lies in H(Xπ

ti).

Remark 6.1 For later use, let us observe that, for all s1, . . . , s` ∈ [ti−1, ti+1], it follows
from (6.1) that :

sup
ti−1≤t≤ti+1

{
‖hi,t‖Lp + ‖Ds1,...,s`

hi,t‖Lp

}
≤ Cp|π|−1 , (6.6)

for some constant Cp which does not depend on |π|. Moreover, for any affine function a :
Rd −→ R, and all 1 ≤ k, i ≤ d,

Shi

{k} [a (∆πWi+1)] = a (∆πWi+1)hk
i,ti−1

·∆πWi + a (∆πWi+1)hk
i,ti ·∆

πWi+1

−a (∆πWi+1)
∫ ti+1

ti

Trace
(
Dth

k
i,ti

)
dt

−
∫ ti+1

ti

∇a · hk
i,tidt ,
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so that we also deduce the estimates :∥∥∥Shi

{k} [a (∆πWi+1)]
∥∥∥

Lp
≤ Cp|π|−1/2 ,

∥∥∥Ds1,...,s`
Shi

{k} [a (∆πWi+1)]
∥∥∥

Lp
≤ Cp|π|−1 . (6.7)

tu

We now provide a slight extension of Corollary 3.1 in [7] which will be the starting point
for our conditional expectation estimator.

Theorem 6.1 Let % be a real-valued mapping and ξ be a (vector) random variable indepen-
dent of σ(Xπ

ti , 1 ≤ i ≤ n) with R := %(Xπ
ti+1

, ξ)a (∆πWi+1) ∈ L2, for some affine function
a : Rd −→ R . Then, for all localizing functions ϕ, ψ ∈ L :

E
[
R | Xπ

ti = x
]

=
E
[
QR [hi, ϕ] (x)

]
E [Q1 [hi, ψ] (x)]

(6.8)

where

QR [hi, ϕ] (x) := Hx(Xπ
ti)%(X

π
ti+1

, ξ)Shi
[
a (∆πWi+1)ϕ

(
Xπ

ti − x
)]

,

and Shi = Shi

(1,...,d). Moreover, if qπ
i denotes the density of Xπ

ti, then :

qπ
i (x) = E

[
Q1 [hi, ϕ] (x)

]
.

Remark 6.2 The above theorem holds for any random variable F ∈ D∞, instead of the
particular affine transformation of the Brownian increments a(∆πWi+1). One only has
to change the definition of L accordingly in order to ensure that the involved Skorohod
integrals are well-defined. However, we shall see in Section 6.2 that we only need this char-
acterization for the affine functions ak(x) = 1k=0 + xk1k≥1, 0 ≤ k ≤ d. Indeed, writing
Ŷ π

ti+1
as %(Xπ

ti+1
, ζ), we are interested in computing Eπ

i [Ŷ π
ti+1

] = Eπ
i [Ŷ π

ti+1
a0(∆πWi+1)] and

Eπ
i [Ŷ π

ti+1
∆πW k

i+1] = Eπ
i [Ŷ π

ti+1
ak(∆πWi+1)], 1 ≤ k ≤ d, see also the definition of Ri after

(6.12). tu

6.2 Application to the estimation of Êπ

The algorithm is inspired from the work of [9] and [21]. We consider nN copies (Xπ(1)
, . . . ,

Xπ(nN)
) of the discrete-time process Xπ on the grid π, where N is some positive integer.

Set

Ni := {(i− 1)N + 1, . . . , iN} , 1 ≤ i ≤ n .

For ease of notation, we write Xπ(0)
for Xπ. We consider the approximation scheme (4.2)-

(4.3)-(4.4) with an approximation of conditional expectation operator Eπ
i suggested by

Theorem 6.1. At each time step ti of this algorithm, we shall make use of a the subset Xi
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:= (Xπ(j)
, j ∈ Ni). The independence of the Xi’s is crucial as explained in Remark 6.3

below.

Initialization : For j ∈ {0} ∪ Nn, we set :

Ŷ π(j)

1 := Y π(j)

1 = g
(
Xπ(j)

1

)
. (6.9)

Backward induction : For i = n, . . . , 2, we set, for j ∈ {0} ∪ Ni−1 :

Y̌ π(j)

ti−1
= Êπ(j)

i−1

[
Ŷ π(j)

ti

]
+ |π|f

(
ti−1, X

π(j)

ti−1
, Y̌ π(j)

ti−1
, Ẑπ(j)

ti−1

)
Ŷ π(j)

ti−1
:= T℘π(j)

i−1

(
Y̌ π(j)

ti−1

)
(6.10)

Ẑπ(j)

ti−1
=

1
|π|
Êπ(j)

i−1

[
Ŷ π(j)

ti ∆πW
(j)
i

]
(6.11)

The approximations of the conditional expectations Êπ(j)

i−1 [·] are obtained as follows.
1. We first compute the estimator suggested by Theorem 6.1 :

Ẽπ(j)

i−1

[
R

(j)
i

]
:=

Q̂R
(j)
i

[
h

(j)
i−1, ϕ

] (
Xπ(j)

ti−1

)
Q̂1
[
h

(j)
i−1, ϕ

] (
Xπ(j)

ti−1

) (6.12)

where, for Ri = Ŷ π
ti a (∆πWi) and a : Rd −→ R is an affine function,

Q̂R
(j)
i

[
h

(j)
i−1, ϕ

]
(Xπ(j)

ti−1
) :=

1
N

∑
l∈Ni

H
Xπ(j)

ti−1

(Xπ(l)

ti−1
)Ŷ π(l)

ti Sh
(l)
i

[
a
(
∆πW

(l)
i+1

)
ϕ(Xπ(l)

ti−1
−Xπ(j)

ti−1
)
]

Q̂1
[
h

(j)
i−1, ϕ

]
(Xπ(j)

ti−1
) :=

1
N

∑
l∈Ni

H
Xπ(j)

ti−1

(Xπ(l)

ti−1
)Sh

(l)
i

[
ϕ(Xπ(l)

ti−1
−Xπ(j)

ti−1
)
]
.

2. We next use the sequence ℘π of a priori bounds on Y , see Section 4, together with the
induced sequences <π and =π, to improve the above estimator :

Êπ(j)

i−1

[
Ŷ π(j)

ti

]
:= T<π(j)

i−1

(
Ẽπ(j)

i−1

[
Ŷ π(j)

ti

])
and

Êπ(j)

i−1

[
Ŷ π(j)

ti ∆πW
(j)
i

]
:= T=π(j)

i−1

(
Ẽπ(j)

i−1

[
Ŷ π(j)

ti ∆πW
(j)
i

])
.

Final step : For i = 1, the conditional expectations Êπ
i−1[·] = Êπ

0 [·] are computed by the
usual empirical mean :

Êπ
0

[
R

(0)
1

]
:=

1
N

∑
l∈N1

R
(l)
1 . (6.13)

Remark 6.3 Notice that by construction, for each i= 1, . . . , n−1 and k ∈Ni, (Ŷ π(k)

ti , Ẑπ(k)

ti )

can be written as a square integrable function of Xπ(k)

ti and ζ :=
(
∆πW (j), j ∈

⋃
l≥i+1Nl

)
.

This is precisely the reason why our simulation scheme uses n independent sets of N simu-
lated paths. Indeed, this ensures that the above random variable ζ is independent of F (k)

1 ,
and therefore we fall in the context of Theorem 6.1. tu
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The following provides an estimate of the simulation error in the above algorithm.

Theorem 6.2 Let p > 1 and ϕ ∈ L satisfying

d∑
k=0

∑
I∈Jk

∫
Rd

|u|4p+2 ∂Iϕ(u)2du < ∞ .

Consider the function ϕπ(x) = ϕ(|π|−1/2x) as a localizing function in (4.2)-(4.3)-(4.4)-
(6.12). Let ℘π, <π, =π be the bounds defined by Lemma 3.3. Then :

lim sup
|π|→0

max
0≤i≤n

|π|p+d/4N1/2
∥∥∥Ŷ π

ti − Y π
ti

∥∥∥p

Lp
< ∞ .

The above estimate is obtained in two steps. First, Theorem 4.1 reduces the problem
to the analysis of the regression simulation error. Next, for 1 ≤ i ≤ n, the result follows
from Theorem 6.3 which is the main object of the subsequent paragraph. The case i = 0 is
trivial as the regression estimator (6.13) is the classical empirical mean.

Remark 6.4 In the particular case where the generator f does not depend on the control
variable z, the above proposition is valid with p = 1. This follows from Remark 4.2. tu

Remark 6.5 In the previous proposition, we have introduced the normalized localizing
function ϕπ(x) = ϕ(π−1/2x). This normalization is necessary for the control of the error
estimate as |π| tends to zero. An interesting observation is that, in the case where R is of
the form %(Xπ

ti+1
, ζ)a (∆πWi+1) for some affine function a : Rd −→ R, this normalization is

in agreement with [7] who showed that the minimal integrated variance within the class of
separable localization functions is given by ϕ̂(x) = exp(−η̂ · x) with

(η̂i)2 =
E

[{
R
∑d−1

k=0(−1)k
∑

i/∈I∈Jk
Sh
−I [a (∆πWi+1)]

∏
j∈I η̂

j
}2
]

E

[{
R
∑d−1

k=0(−1)k
∑

i/∈I∈Jk
Sh
−(I∨i) [a (∆πWi+1)]

∏
j∈I η̂

j
}2
] , 1 ≤ i ≤ d .

Indeed, we will show in Lemma 6.1 below that Sh
I [a (∆πWi+1)] is of order |π|−|I|/2, and

therefore the above ratio is of order |π|−1. tu

6.3 Analysis of the regression error

According to Theorem 5.1, the Lp estimate of the regression error depends on the integrated
standard deviation Γ defined in (5.2). In order to analyze this term, we start by

Lemma 6.1 For any integer m = 0, . . . , d, I ∈ Jm, and any affine function a : Rd −→ R,
we have :

lim sup
|π|→0

|π|m/2 max
1≤i≤n−1

∥∥∥Shi
I [a (∆πWi+1)]

∥∥∥
Lp

< ∞ ,

for all p ≥ 1.
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Proof. Let d ≥ j1 > . . . > jm ≥ 1 be m integers, and define Ik := (jm−k, . . . , j1). For ease
of presentation, we introduce process h̃i := |π|hi, and we observe that Shi

I = |π|mSh̃i
I , by

linearity of the Skorohod integral. We shall also write Sh̃i
I for Sh̃i

I [a (∆πWi+1)]. In order to
prove the required result, we intend to show that

for all integers 0 ≤ ` ≤ k ≤ m− 1 and all τ := (s1, . . . , s`) ∈ [ti−1, ti+1]` ,∥∥∥DτS
h̃i
Ik

∥∥∥
Lp
≤ Cp|π|(k−`)/2 , (6.14)

where Cp is a constant which does not depend on π, and, τ = ∅, DτF = F , whenever
` = 0. We shall use a backward induction argument on the variable k. First, for k = m−1,
(6.14) follows from (6.7). We next assume that (6.14) holds for some 1 ≤ k ≤ m − 1, and
we intend to extend it to k − 1. We first need to introduce some notations. Let S` be the
collection of all permutations σ of the set (1, . . . , `). For σ ∈ S` and some integer u ≤ `, we
set τσ

u := (sσ(1), . . . , sσ(u)) and τ̄σ
u := (sσ(u+1), . . . , sσ(`)), with the convention τσ

0 = τ̄σ
` = ∅.

Let ` ≤ k − 1 be fixed. By direct computation, we see that :∥∥∥DτS
h̃i
Ik−1

∥∥∥
Lp

≤
∑
σ∈S`

∑̀
u=0

∥∥∥Dτσ
u
Sh̃i

Ik

∥∥∥
L2p

∥∥∥Dτ̄σ
u
Sh̃i

jm−k+1

∥∥∥
L2p

+
∫ ti+1

ti−1

∥∥∥Dτσ
u
DtS

h̃i
Ik

∥∥∥
L2p

∥∥∥Dτ̄σ
u
h̃

jm−k+1

t

∥∥∥
L2p

dt

by Cauchy-Schwarz inequality. By (6.7) and the induction hypothesis (6.14), this provides :

∥∥∥DτS
h̃i
Ik+1

∥∥∥
Lp

≤ C
∑
σ∈S`

(
|π|(k−`)/2|π|1/2 +

`−1∑
u=0

|π|(k−u)/2 + |π|
∑̀
u=0

|π|(k−u−1)/2

)

≤ C
∑
σ∈S`

(
|π|(k+1−`)/2 +

`−1∑
u=0

|π|(k+1−`)/2 +
∑̀
u=0

|π|(k+1−`)/2

)
= C|π|(k+1−`)/2 ,

where C is a generic constant, independent of |π| and i, with different values from line to
line. tu

Lemma 6.2 Let µ be a map from Rd into R with polynomial growth :

sup
x∈Rd

|µ(x)|
1 + |x|m

< ∞ , for some m ≥ 1 .

Let ϕ ∈ L be such that :

d∑
k=0

∑
I∈Jk

∫
Rd

|u|m ∂Iϕ(u)2du < ∞ .

Let Ri+1 := %
(
Xπ

ti+1
, ζ
)
a (∆πWi+1) for some deterministic function %, some affine function

a : Rd −→ R, and some random variable ζ independent of Fπ
1 . Assume that Ri+1 ∈ L2+ε
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for some ε > 0. Then,

lim sup
|π|→0

max
1≤i≤n

|π|d/2 ‖Ri+1‖−2
L2+ε

∫
Rd

µ(x)V π
i,Ri+1

(x)dx < ∞ ,

where

V π
i,Ri+1

(x) = Var
[
QRi+1 [hi, ϕ

π](x)
]

and ϕπ(x) := ϕ
(
|π|−1/2x

)
.

Proof. We shall write Shi
I for Shi

I [a (∆πWi+1)]. We first estimate that :

V π
i,Ri+1

(x) ≤ E
[(
QRi+1 [hi, ϕ

π](x)
)2]

= E

[
Hx(Xπ

ti)R
2
i+1

{
Shi

[
a (∆πWi+1)ϕπ(Xπ

ti − x)
]}2
]

≤ 2
d∑

j=0

∑
J∈Jj

E

[
Hx(Xπ

ti)R
2
i+1

{
∂Jϕ

π
(
Xπ

ti − x
)
Shi
−J

}2
]

where we used (6.4). For ease of notation, we introduce the parameter η > 0 such that
2(1 + η)2 = 2 + ε and η̄ := 1 + 1/η is the conjugate of 1 + η. Applying twice the Hölder
inequality, we see that :∫

Rd

µ(x)V π
i,Ri+1

(x)dx ≤ 2
d∑

j=0

∑
J∈Jj

E

[
R2

i+1

{
Shi
−J

}2
∫

Rd

Hx(Xπ
ti)µ(x)∂Jϕ

(
Xπ

ti − x
)2
dx

]

≤ 2 ‖Ri+1‖2
L2+ε

d∑
j=0

∑
J∈Jj

∥∥∥Shi
−J

∥∥∥2

L2η̄(1+η)
AJ

i (6.15)

where

AJ
i :=

∥∥∥∥∫
Rd

Hx(Xπ
ti)µ(x)∂Jϕ

π
(
Xπ

ti − x
)2
dx

∥∥∥∥
Lη̄

.

By definition of ϕπ, we observe that ∂Jϕ
π(x) = |π|−|J |/2∂Iϕ(|π|−1/2x). It then follows from

a direct change of variable together with the polynomial growth condition on µ that :

AJ
i = |π|d/2−|J |

∥∥∥∥∥
∫

Rd
+

µ(Xπ
ti − |π|

1/2x)∂Jϕ (x)2 dx

∥∥∥∥∥
Lη̄

≤ C |π|d/2−|J |

∥∥∥∥∥
∫

Rd
+

(
1 +

m∑
k=0

(
k

m−k

) ∣∣Xπ
ti

∣∣k ∣∣∣|π|1/2x
∣∣∣m−k

)
∂Jϕ (x)2 dx

∥∥∥∥∥
Lη̄

≤ C |π|d/2−|J |

{∫
Rd

+

∂Jϕ (x)2 dx+ 2C
∥∥Xπ

ti

∥∥m

Lmη̄

∫
Rd

+

|x|m ∂Jϕ (x)2 dx

}
Notice that the right hand-side term is finite by our assumption on the localizing function.
Since max1≤i≤n

∥∥Xπ
ti

∥∥
Lmη̄ is bounded uniformly in π by (3.2), this proves that |AJ

i | ≤
C|π|d/2−|J |. Plugging this into (6.15), we obtain :∫

Rd

µ(x)V π
i,Ri+1

(x)dx ≤ C ‖Ri+1‖2
L2+ε

d∑
j=0

∑
J∈Jj

|π|d/2−|J |
∥∥∥Shi

−J

∥∥∥2

L2η̄(1+η)
,
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and the required result follows from Lemma 6.1 (recall that | − J | = d − |J |), see the
definitions in §6.1. tu

Theorem 6.3 Let Ri+1 := %
(
Xπ

ti+1
, ζ
)
a (∆πWi+1) for some deterministic function %, some

affine function a : Rd −→ R, and some random variable ζ independent of Fπ
1 . Assume

that

ρ
i
(Xπ

ti) ≤ ri(Xπ
ti) := Eπ

i [Ri+1] ≤ ρi(X
π
ti)

for some ρi = (ρ
i
, ρi) with polynomial growth :

sup
x∈Rd

max
1≤i≤n

∣∣∣ρ
i
(x)
∣∣∣+ |ρi(x)|

1 + |x|m
< ∞ , for some m ≥ 0 .

Let p ≥ 1 be arbitrary, consider some localizing function ϕ ∈ L satisfying :
d∑

k=0

∑
I∈Jk

∫
Rd

|u|2pm+2 ∂Iϕ(u)2du < ∞ ,

and set ϕπ(x) := ϕ(|π|−1/2x). Let Ẽπ
i [Ri+1] be defined as in (6.12), with localizing function

ϕπ, and consider the truncated regression estimator Êπ
i [Ri+1] := Tρi

i

(
Ẽπ

i [Ri+1]
)
. Then,

lim sup
|π|→0

max
1≤i≤n

|π|d/4N1/2
∥∥∥(Êπ

i − Eπ
i

)
[Ri+1]

∥∥∥p

Lp
< ∞ .

Proof. Set γi := ρi − ρ
i

and observe that γi inherits the polynomial growth of ρi. With
the notations of Lemma 6.2, it follows from Theorem 5.1 that :∥∥∥(Êπ

i − Eπ
i

)
[Ri+1]

∥∥∥p

Lp
≤ 2N−1/2Γ

(
ri, γi, V

π
i,1, V

π
i,Ri+1

)
,

provided that the right hand-side is finite. The rest of this proof is dedicated to the
estimation of this term. From the polynomial growth condition on ρi, we estimate that :

Γ
(
ri, γi, V

π
i,1, V

π
i,Ri+1

)
≤ C

∫
Rd

(1 + |x|)mpV π
i,Ri+1

(x)1/2 + C

∫
Rd

(1 + |x|)mpV π
i,1(x)

1/2 .

We only consider the first term on the right hand-side, as the second one is treated similarly.
In order to prove the required result, it is sufficient to show that :

lim sup
|π|→0

max
1≤i≤n

|π|d/4

∫
Rd

(1 + |x|)mpV π
i,Ri+1

(x)1/2 < ∞ .

Let φ(x) = Cφ(1 + |x|2)−1 with Cφ such that
∫

Rd φ(x)dx = 1. By the Jensen inequality, we
get : ∫

Rd

(1 + |x|)mpV π
i,Ri+1

(x)1/2 ≤ C

∫
Rd

φ(x)
(
φ−2(x)

(
1 + |x|2mp

)
V π

i,Ri+1
(x)
)1/2

≤ C

(∫
Rd

(
1 + |x|2mp+2

)
V π

i,Ri+1
(x)
)1/2

.

The proof is completed by appealing to Lemma 6.2. tu
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7 Extension to reflected backward SDE’s

The purpose of this section is to extend our analysis to reflected backward SDE’s in the case
where the generator f does not depend on the z variable. We then consider K- Lipschitz
functions f : [0, 1] × Rd × R −→ R and g : Rd −→ R, for some K > 0, and we let (Y, Z,A)
be the unique solution of :

Yt = g(X1) +
∫ 1

t
f (s,Xs, Ys) ds−

∫ 1

t
Zs · dWs +A1 −At (7.1)

Yt ≥ g(Xt) , 0 ≤ t ≤ 1 , (7.2)

such that Yt ∈ L2, for all 0 ≤ t ≤ 1, Z ∈ L2([0, 1]) and A is a non-decreasing cadlag process
satisfying : ∫ 1

0
(Yt − g(Xt)) dAt = 0 .

We refer to [14] for the existence and uniqueness issue.

7.1 Discrete-time approximation

It is well-known that Y admits a Snell envelope type representation. We therefore introduce
the discrete-time counterpart of this representation :

Y π
1 = g (Xπ

1 ) , (7.3)

Y π
ti−1

= max
{
g
(
Xπ

ti−1

)
, Eπ

i−1

[
Y π

ti

]
+ f

(
ti−1, X

π
ti−1

, Y π
ti−1

)
∆π

i

}
, 1 ≤ i ≤ n . (7.4)

Observe that our scheme differs for [4], who consider the backward scheme defined by

Ỹ π
ti−1

= max
{
g
(
Xπ

ti−1

)
, Eπ

i−1

[
Ỹ π

ti + f
(
ti, X

π
ti , Ỹ

π
ti

)
∆π

i

] }
, 1 ≤ i ≤ n ,

instead of (7.4). By direct adaptation of the proofs of [4], we obtain the following estimate
of the discretization error. Notice that it is of the same order than in the non-reflected
case.

Theorem 7.1 For all p ≥ 1,

lim sup
|π|→0

|π|−1/2 sup
0≤i≤n

∥∥Y π
ti − Yti

∥∥
Lp < ∞ .

Proof. For 0 ≤ i ≤ n, we denote by Θπ
i the set of stopping times with values in {ti, . . . , tn =

1}, and we define :

Rπ
ti := ess sup

τ∈Θπ
i

Eπ
ti

g(Xτ ) + |π|
n−1∑
j=i

1τ>tjf
(
tj , Xtj , Ytj

)
Lπ

ti := ess sup
τ∈Θi

Eπ
ti

[
g(Xτ ) +

∫ τ

ti

f (s,Xs, Ys) ds
]
, 0 ≤ i ≤ n .
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From Lemma 2 (a) in [4], we have :

lim sup
|π|→0

|π|−1/2 max
0≤i≤n

∥∥Lπ
ti − Yti

∥∥
Lp < ∞ . (7.5)

A straightforward adaptation of Lemma 5 in [4] leads to

lim sup
|π|→0

|π|−1/2 max
0≤i≤n

∥∥Rπ
ti − Lπ

ti

∥∥
Lp < ∞ . (7.6)

In order to complete the proof, we shall show that :

lim sup
|π|→0

|π|−1/2 max
0≤i≤n

∥∥Y π
ti −Rπ

ti

∥∥
Lp < ∞ . (7.7)

We first write Y π
ti in its Snell envelope type representation :

Y π
ti := ess sup

τ∈Θπ
i

Eπ
ti

g(Xπ
τ ) + |π|

n−1∑
j=i

1τ>tjf
(
tj , X

π
tj , Y

π
tj

) .

By the Lipschitz conditions on f and g , we then estimate that :

∣∣Rπ
ti − Y π

ti

∣∣ ≤ C ess sup
τ∈Θi

Eπ
i |Xπ

τ −Xτ |+ |π|
n∑

j=i

Eπ
i

(
|π|+

∣∣∣Xtj −Xπ
tj

∣∣∣+ ∣∣∣Ytj − Y π
tj

∣∣∣)


≤ C

{
Eπ

i

[
max
i≤j≤n

∣∣∣Xtj −Xπ
tj

∣∣∣]

+|π|
n∑

j=i

Eπ
i

(
|π|+

∣∣∣Ytj −Rπ
tj

∣∣∣+ ∣∣∣Rπ
tj − Y π

tj

∣∣∣)
 .

It follows from the arbitrariness of i, that for each integer i ≤ ` ≤ n :

Eπ
i

∣∣Rπ
t`
− Y π

t`

∣∣ ≤ C

{
Eπ

i

[
max
i≤j≤n

∣∣∣Xtj −Xπ
tj

∣∣∣]

+|π|
n∑

j=i

Eπ
i

(
|π|+

∣∣∣Ytj −Rπ
tj

∣∣∣+ ∣∣∣Rπ
tj − Y π

tj

∣∣∣)
 .

Using the discrete time version of Gronwall’s Lemma, we therefore obtain :

∣∣Rπ
ti − Y π

ti

∣∣ ≤ C

Eπ
i

[
max
i≤j≤n

∣∣∣Xtj −Xπ
tj

∣∣∣]+ |π|
n∑

j=i

Eπ
i

(
|π|+

∣∣∣Ytj −Rπ
tj

∣∣∣)
 ,

for some constant C independent of π. (7.7) is then obtained by using (3.2)-(7.5)-(7.6). tu
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7.2 A priori bounds on the discrete-time approximation

Consider the sequence of maps

℘π
i (x) = απ

i + βπ
i |x| , 0 ≤ i ≤ n ,

where the (απ
i , β

π
i ) are defined as in Lemma 3.3. Observe that ℘π

i ≥ ℘π
i+1 ≥ |g|, 0 ≤ i ≤ n−1.

Let ℘π = {(g, ℘π
i )}0≤i≤n. Then, it follows from the same arguments as in Lemma 3.3,

that :

T℘π

i

(
Y π

ti

)
= Y π

ti , 0 ≤ i ≤ n .

In particular, this induces similar bounds on Eπ
i−1

[
Y π

ti

]
by direct computations.

7.3 Simulation

As in the non-reflected case, we define the approximation Ŷ π of Y π by :

Ŷ π
1 = g (Xπ

1 ) ,

Y̌ π
ti−1

= Êπ
i−1

[
Y π

ti

]
+ f

(
ti−1, X

π
ti−1

, Y̌ π
ti−1

)
∆π

i (7.8)

Ŷ π
ti−1

= T℘π

i−1

(
Y̌ π

ti−1

)
=
(
g(Xπ

ti−1
) ∨ Y̌ π

ti−1

)
∧ ℘π

i−1(X
π
ti−1

) , 1 ≤ i ≤ n ,

where Êπ is some approximation of Eπ.
With this construction, the estimation of the regression error of Theorem 4.1 immediately

extends to the context of reflected backward SDE’s approximation. In particular, we obtain
the same Lp error estimate of the regression approximation as in the non-reflected case :

Theorem 7.2 Let p ≥ 1 be given. Then, there is a constant C > 0 which only depends on
(K, p) such that :∥∥∥Ŷ π

ti − Y π
ti

∥∥∥
Lp

≤ C

|π|
max

0≤j≤n−1

∥∥∥(Êπ
j − Eπ

j )
[
Ŷ π

tj+1

]∥∥∥
Lp

for all 0 ≤ i ≤ n.

From this theorem, we can now deduce an estimate of the Lp error Ŷ π − Y π in the case
where Êπ is defined as in Section 6.2. Let ϕ ∈ L satisfying

d∑
k=0

∑
I∈Jk

∫
Rd

|u|4p+2 ∂Iϕ(u)2du < ∞ ,

for some p ≥ 1. Consider the approximation Ŷ π obtained by the above simulation scheme,
where Êπ is defined as in Section 6.2 with normalized localizing function ϕπ(x) = ϕ(|π|−1/2x).
Then, we have the following Lp estimate of the error due to the regression approximation :

lim sup
|π|→0

max
0≤i≤n

|π|p+d/4N1/2
∥∥∥Ŷ π

ti − Y π
ti

∥∥∥p

Lp
< ∞ .
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[8] P. Briand, B. Delyon, and J. Mémin (2001). Donsker-type theorem for BSDE’s,
Electronic Communications in Probability, 6, 1-14.

[9] J. F. Carrière (1996). Valuation of the Early-Exercise Price for Options using Sim-
ulations and Nonparametric Regression, Insurance : mathematics and Economics,
19, 19-30.

[10] D. Chevance (1997). Numerical Methods for Backward Stochastic Differential Equa-
tions, in Numerical methods in finance, Edt L.C.G. Rogers and D. Talay, Cambridge
University Press, 232-244.

[11] E. Clément, D. Lamberton, and P. Protter (2002). An analysis of a least squares
regression method for American option pricing, Finance and Stochastics, 6, 449-472.
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