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Abstract

We prove a weak version of the dynamic programming principle for standard
stochastic control problems and mixed control-stopping problems, which avoids the
technical difficulties related to the measurable selection argument. In the Markov
case, our result is tailor-maid for the derivation of the dynamic programming equation
in the sense of viscosity solutions.
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1 Introduction

Consider the standard class of stochastic control problems in the Mayer form

V (t, x) := sup
ν∈U

E [f(Xν
T )|Xν

t = x] ,

where U is the controls set, Xν is the controlled process, f is some given function, 0 < T ≤ ∞
is a given time horizon, t ∈ [0, T ) is the time origin, and x ∈ Rd is some given initial condition.

This framework includes the general class of stochastic control problems under the so-called

Bolza formulation, the corresponding singular versions, and optimal stopping problems.
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A key-tool for the analysis of such problems is the so-called dynamic programming principle

(DPP), which relates the time−t value function V (t, .) to any later time−τ value V (τ, .) for

any stopping time τ ∈ [t, T ) a.s. A formal statement of the DPP is:

′′V (t, x) = v(t, x) := sup
ν∈U

E [V (τ,Xν
τ )|Xν

t = x] .′′ (1.1)

In particular, this result is routinely used in the case of controlled Markov jump-diffusions in

order to derive the corresponding dynamic programming equation in the sense of viscosity

solutions, see Lions [6, 7], Fleming and Soner [5], and Touzi [9].

The statement (1.1) of the DPP is very intuitive and can be easily proved in the deter-

ministic framework, or in discrete-time with finite probability space. However, its proof is

in general not trivial, and requires on the first stage that V be measurable.

The inequality ”V ≤ v” is the easy one but still requires that V be measurable. Our

weak formulation avoids this issue. Namely, under fairly general conditions on the controls

set and the controlled process, it follows from an easy application of the tower property of

conditional expectations that

V (t, x) ≤ sup
ν∈U

E [V ∗(τ,Xν
τ )|Xν

t = x] ,

where V ∗ is the upper semicontinuous envelope of the function V .

The proof of the converse inequality ”V ≥ v” in a general probability space turns out to

be difficult when the function V is not known a priori to satisfy some continuity condition.

See e.g. Bertsekas and Shreve [1], Borkar [2], and El Karoui [4].

Our weak version of the DPP avoids the non-trivial measurable selection argument needed

to prove the inequality V ≥ v in (1.1). Namely, in the context of a general control problem

presented in Section 2, we show in Section 3 that:

V (t, x) ≥ supν∈U E [ϕ(τ,Xν
τ )|Xt = x]

for every upper-semicontinuous minorant ϕ of V.

We also show that an easy consequence of this result is that

V (t, x) ≥ sup
ν∈U

E
[
V∗(τ

ν
n , Xν

τν
n
)|Xt = x

]
,

where τ ν
n := τ ∧ inf {s > t : |Xν

s − x| > n}, and V∗ is the lower semicontinuous envelope of

V .

This result is weaker than the classical DPP (1.1). However, in the controlled Markov jump-

diffusions case, it turns out to be tailor-maid for the derivation of the dynamic programming

equation in the sense of viscosity solutions. Section 5 reports this derivation in the context

of controlled diffusions.

Finally, Section 4 provides an extension of our argument in order to obtain a weak dynamic

programming principle for mixed control-stopping problems.
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2 The stochastic control problem

Let (Ω,F , P ) be a probability space, T > 0 a finite time horizon, and F := {Ft, 0 ≤ t ≤ T}
a given filtration of F , satisfying the usual assumptions. For every t ≥ 0, we denote by

Ft = (F t
s)s≥0 the right-continuous filtration generated by F measurable processes that are

independent of Ft, t ≥ 0.

We denote by T the collection of all F−stopping times. For τ1, τ2 ∈ T with τ1 ≤ τ2 a.s.,

the subset T[τ1,τ2] is the collection of all τ ∈ T such that τ ∈ [τ1, τ2] a.s. When τ1 = 0, we

simply write Tτ2 . We use the notations T t
[τ1,τ2] and T t

τ2
to denote the corresponding sets of

stopping times that are independent of Ft

For τ ∈ T and a subset A of a finite dimensional space, we denote by L0
τ (A) the collection

of all Fτ−measurable random variables with values in A. H0(A) is the collection of all

F−progressively measurable processes with values in A, and H0
rcll(A) is the subset of all

processes in H0(A) which are right-continuous with finite left limits.

In the following, we denote by Br(z) (resp. ∂Br(z)) the open ball (resp. its boundary) of

radius r > 0 and center z ∈ R`, ` ∈ N.

Througout this note, we fix an integer d ∈ N, and we introduce the sets:

S := [0, T ]× Rd and S0 :=
{
(τ, ξ) : τ ∈ TT and ξ ∈ L0

τ (Rd)
}

.

We also denote by USC(S) (resp. LSC(S)) the collection of all upper-semicontinuous (resp.

lower-semicontinuous) functions from S to R.

The set of control processes is a given subset U0 of H0(Rk), for some integer k ≥ 1, so that

the controlled state process defined as the mapping:

(τ, ξ; ν) ∈ S × U0 7−→ Xν
τ,ξ ∈ H0

rcll(Rd) for some S with S ⊂ S ⊂ S0

is well-defined and satisfies:(
θ,Xν

τ,ξ(θ)
)
∈ S for all (τ, ξ) ∈ S and θ ∈ T[τ,T ].

Given a Borel function f : Rd −→ R and (t, x) ∈ S, we introduce the reward function

J : S× U −→ R:

J(t, x; ν) := E
[
f
(
Xν

t,x(T )
)]

(2.1)

which is well-defined for controls ν in

U :=
{

ν ∈ U0 : E|f(Xν
t,x(T ))| < ∞ ∀ (t, x) ∈ S

}
. (2.2)

We say that a control ν ∈ U is t-admissible if it is independent of Ft, and we denote by Ut

the collection of such processes. The stochastic control problem is defined by:

V (t, x) := sup
ν∈Ut

J(t, x; ν) for (t, x) ∈ S. (2.3)
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3 Dynamic programming for stochastic control prob-

lems

For the purpose of our weak dynamic programming principle, the following assumptions are

crucial.

Assumption A For all (t, x) ∈ S and ν ∈ Ut, the controlled state process satisfies:

A1 (Independence) The process Xν
t,x is independent of Ft.

A2 (Causality) For ν̃ ∈ Ut, if ν = ν̃ on A ⊂ F , then Xν
t,x = X ν̃

t,x on A.

A3 (Stability under concatenation) For every ν̃ ∈ Ut, and θ ∈ T t
[t,T ]:

ν1[0,θ] + ν̃1(θ,T ] ∈ Ut .

A4 (Consistency with deterministic initial data) For all θ ∈ T t
[t,T ], we have:

a. For P-a.e ω ∈ Ω, there exists ν̃ω ∈ Uθ(ω) such that

E
[
f
(
Xν

t,x(T )
)
|Fθ

]
(ω) ≤ J(θ(ω), Xν

t,x(θ)(ω); ν̃ω)

b. For t ≤ s ≤ T , θ ∈ T t
[t,s], ν̃ ∈ Us, and ν̄ := ν1[0,θ] + ν̃1(θ,T ], we have:

E
[
f
(
X ν̄

t,x(T )
)
|Fθ

]
(ω) = J(θ(ω), Xν

t,x(θ)(ω); ν̃) for P− a.e. ω ∈ Ω.

Remark 3.1 Assumption A3 above implies the following property of the controls set which

will be needed later:

A5 (Stability under bifurcation) For ν1, ν2 ∈ Ut, τ ∈ T t
[t,T ] and A ∈ F t

τ , we have:

ν̄ := ν11[0,τ ] + (ν11A + ν21Ac)1(τ,T ] ∈ Ut.

To see this, observe that τA := T1A + τ1Ac is a stopping time in T t
[t,T ], and ν̄ = ν11[0,τA) +

ν21[τA,T ] is the concatenation of ν1 and ν2 at the stopping time τA.

Iterating the above property, we see that for 0 ≤ t ≤ s ≤ T and τ ∈ T t
[t,T ], we have the

following extension: for a finite sequence (ν1, . . . , νn) of control in Ut with νi = ν1 on [0, τ),

and for a partion (Ai)1≤i≤n of Ω with Ai ∈ F t
τ for every i ≤ n:

ν̄ := ν11[0,τ) + 1[τ,T ]

n∑
i=1

νi1Ai
∈ Ut.

Our main result is the following weak version of the dynamic programming principle which

uses the following notation:

V∗(t, x) := lim inf
(t′,x′)→(t,x)

V (t′, x′), V ∗(t, x) := lim sup
(t′,x′)→(t,x)

V (t′, x′), (t, x) ∈ S.
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Theorem 3.1 Let Assumptions A hold true. Then for every (t, x) ∈ S, and for all family

of stopping times {θν , ν ∈ Ut} ⊂ T t
[t,T ]

V (t, x) ≤ sup
ν∈Ut

E
[
V ∗(θν , Xν

t,x(θ
ν))
]
. (3.1)

Assume further that J(.; ν) ∈ LSC(S) for every ν ∈ U0. Then, for any function ϕ : S −→ R:

ϕ ∈ USC(S) and V ≥ ϕ =⇒ V (t, x) ≥ sup
ν∈Uϕ

t

E
[
ϕ(θν , Xν

t,x(θ
ν))
]
, (3.2)

where Uϕ
t =

{
ν ∈ Ut : E

[
ϕ(θν , Xν

t,x(θ
ν))+

]
< ∞ or E

[
ϕ(θν , Xν

t,x(θ
ν))−

]
< ∞

}
.

Before proceeding to the proof of this result, we report the following consequence.

Corollary 3.1 Let the conditions of Theorem 3.1 hold. For (t, x) ∈ S, let {θν , ν ∈ Ut} ⊂
T t

[t,T ] be a family of stopping times such that Xν
t,x1[t,θν ] is L∞−bounded for all ν ∈ Ut. Then,

sup
ν∈Ut

E
[
V∗(θ

ν , Xν
t,x(θ

ν))
]
≤ V (t, x) ≤ sup

ν∈Ut

E
[
V ∗(θν , Xν

t,x(θ
ν))
]
. (3.3)

Proof The right-hand side inequality is already provided in Theorem 3.1. It follows from

standard arguments, see e.g. Lemma 3.5 in [8], that we can find a sequence of continuous

functions (ϕn)n such that ϕn ≤ V∗ ≤ V for all n ≥ 1 and such that ϕn converges pointwise

to V∗ on [0, T ] × Br(0). Set φN := minn≥N ϕn for N ≥ 1 and observe that the sequence

(φN)N is non-decreasing and converges pointwise to V∗ on [0, T ]× Br(0). Applying (3.2) of

Theorem 3.1 and using the monotone convergence Theorem, we then obtain:

V (t, x) ≥ lim
N→∞

E
[
φN(θν , Xν

t,x(θ
ν))
]

= E
[
V∗(θ

ν , Xν
t,x(θ

ν))
]
.

2

Proof of Theorem 3.1 1. Let ν ∈ Ut be arbitrary and set θ := θν . The first assertion

is a direct consequence of Assumption A4-a. Indeed, it implies that, for P-almost all ω ∈ Ω,

there exists ν̃ω ∈ Uθ(ω) such that

E
[
f
(
Xν

t,x(T )
)
|Fθ

]
(ω) ≤ J(θ(ω), Xν

t,x(θ)(ω); ν̃ω) .

Since, by definition, J(θ(ω), Xν
t,x(θ)(ω); ν̃ω) ≤ V ∗(θ(ω), Xν

t,x(θ)(ω)), it follows from the tower

property of conditional expectations that

E
[
f
(
Xν

t,x(T )
)]

= E
[
E
[
f
(
Xν

t,x(T )
)
|Fθ

]]
≤ E

[
V ∗ (θ, Xν

t,x(θ)
)]

.

2. Let {(ti, xi), i ≥ 1} := Qd+1 ∩ S, and let ε > 0 be given. Then there is a sequence

(νi,ε)i≥1 ⊂ U0 such that:

νi,ε ∈ Uti and J(ti, xi; ν
i,ε) ≥ V (ti, xi)− ε, for every i ≥ 1. (3.4)
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By the lower-semicontinuity of J(.; νi,ε), together with the upper-semicontinuity of ϕ, we

may find a sequence (ri)i≥1 of positive scalars so that

ϕ(ti, xi)− ϕ(t′, x′) ≥ −ε and J(ti, xi; ν
i,ε)− J(t′, x′; νi,ε) ≤ ε for (t′, x′) ∈ Bi, i ≥ 1 ,

where

Bi := {(t′, x′) ∈ S : t′ ∈ [ti − ri, ti], |x′ − xi| ≤ ri} , i ≥ 1 .

By (3.4) together with the fact that V ≥ ϕ, this implies by :

J(t′, x′; νi,ε) ≥ J(ti, xi; ν
i,ε)−ε ≥ V (ti, xi)−2ε ≥ ϕ(ti, xi)−2ε ≥ ϕ(t′, x′)−3ε on Bi . (3.5)

Set A1 := B1, C0 := ∅, and define the sequence

Ai+1 := Bi+1 \ Ci where Ci := Ci−1 ∪ Ai, i ≥ 1.

With this construction, it follows from (3.5) that the countable family (Ai)i≥1 satisfies

∪iAi = S, Ai ∩ Aj = ∅ for i 6= j, and J(t′, x′; νi,ε) ≥ ϕ(t′, x′)− 3ε on Ai ⊂ Bi. (3.6)

4. We now prove (3.2). Set An := ∪i≤nAi, n ≥ 1. Given ν ∈ Ut, we define

νε,n
s := 1[t,θ](s)νs + 1(θ,T ](s)

(
νs1(An)c(θ,Xν

t,x(θ)) +
n∑

i=1

1Ai
(θ, Xν

t,x(θ))ν
i,ε
s

)
, for s ∈ [t, T ].

Notice that {(θ,Xν
t,x(θ)) ∈ Ai} ∈ F t

θ as a consequence of the independence Assumption A1.

Then, it follows from the stability under concatenation Assumption A3 and Remark 3.1 that

νε,n ∈ Ut. Then, using Assumptions A4-b, A2, and (3.6), we deduce that:

E
[
f
(
Xνε,n

t,x (T )
)
|Fθ

]
1An

(
θ,Xν

t,x(θ)
)

=
n∑

i=1

J(θ,Xν
t,x(θ); ν

i,ε)1Ai

(
θ,Xν

t,x(θ)
)

≥
n∑

i=1

(
ϕ(θ, Xν

t,x(θ))− 3ε
)
1Ai

(
θ, Xν

t,x(θ)
)

=
(
ϕ(θ, Xν

t,x(θ))− 3ε
)
1An

(
θ, Xν

t,x(θ)
)
,

which, by definition of V and the tower property of conditional expectations, implies

V (t, x) ≥ J(t, x; νε,n)

= E
[
E
[
f
(
Xνε,n

t,x (T )
)
|Fθ

]]
≥ E

[(
ϕ
(
θ,Xν

t,x(θ)
)
− 3ε

)
1An

(
θ, Xν

t,x(θ)
)]

+ E
[
f
(
Xν

t,x(T )
)
1(An)c

(
θ, Xν

t,x(θ)
)]

.

Since f
(
Xν

t,x(T )
)
∈ L1, it follows from the dominated convergence theorem that:

V (t, x) ≥ −3ε + lim inf
n→∞

E
[
ϕ(θ,Xν

t,x(θ))1An

(
θ,Xν

t,x(θ)
)]

= −3ε + lim
n→∞

E
[
ϕ(θ, Xν

t,x(θ))
+1An

(
θ,Xν

t,x(θ)
)]

− lim
n→∞

E
[
ϕ(θ, Xν

t,x(θ))
−1An

(
θ,Xν

t,x(θ)
)]

= −3ε + E
[
ϕ(θ,Xν

t,x(θ))
]
,
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where the last equality follows from the monotone convergence theorem, due to the fact that

either E
[
ϕ(θ,Xν

t,x(θ))
+
]

< ∞ or E
[
ϕ(θ,Xν

t,x(θ))
−] < ∞. The proof of (3.2) is completed

by the arbitrariness of ν ∈ Ut and ε > 0. 2

Remark 3.2 (Lower-semicontinuity condition I) It is clear from the above proof that it

suffices to prove the lower-semicontinuity of (t, x) 7→ J(t, x; ν) for ν in a subset Ũ0 of U0

such that supν∈Ũt
J(t, x; ν) = V (t, x). In most applications, this allows to reduce to the case

where the controls are essentially bounded or satisfy a strong integrability condition.

Remark 3.3 (Lower-semicontinuity condition II) In the above proof, the lower-semicontinuity

assumption is only used to construct the balls Bi on which J(ti, xi; ν
i,ε) − J(·; νi,ε) ≤ ε.

Clearly, it can be alleviated, and it suffices that the lower-semicontinuity holds in time from

the left, i.e.

lim inf
(t′,x′)→(ti,xi), t′≤ti

J(t′, x′; νi,ε) ≥ J(ti, xi; ν
i,ε).

Remark 3.4 (The Bolza formulation) Consider the stochastic control problem under the

so-called Lagrange formulation:

V (t, x) := sup
ν∈Ut

E
[∫ T

t

Y ν
t,x,1(s)g

(
s, Xν

t,x(s), νs

)
ds + Y ν

t,x,1(T )f
(
Xν

t,x(T )
)]

,

where

dY ν
t,x,y(s) = −Y ν

t,x,y(s)k
(
s, Xν

t,x(s), νs

)
ds , Y ν

t,x,y(t) = y > 0 .

Then, it is well known that this problem can be converted into the Mayer formulation (2.3)

by increasing the state process to (X, Y, Z), where

dZν
t,x,y,z(s) = Y ν

t,x,y(s)g
(
s, Xν

t,x(s), νs

)
ds , Zν

t,x,y,z(t) = z ∈ R ,

and considering the value function

V̄ (t, x, y, z) := sup
ν∈Ut

E
[
Zν

t,x,y,z(T ) + Y ν
t,x,y(T )f

(
Xν

t,x(T )
)]

= yV (t, x) + z .

In particular, V (t, x) = V̄ (t, x, 1, 0). The first assertion of Theorem 3.1 implies

V (t, x) ≤ sup
ν∈Ut

E
[
Y ν

t,x,1(θ
ν)V (θν , Xν

t,x(θ
ν)) +

∫ θν

t

Y ν
t,x,1(s)g

(
s, Xν

t,x(s), νs

)
ds

]
. (3.7)

Given a upper-semicontinuous minorant ϕ of V , the function ϕ̄ defined by ϕ̄(t, x, y, z) :=

yϕ(t, x)+z is an upper-semicontinuous minorant of V̄ . From the second assertion of Theorem

3.1, we see that for a family {θν , ν ∈ Ut} ⊂ T t
[t,T ],

V (t, x) ≥ sup
ν∈U ϕ̄

t

E
[
ϕ̄
(
θν , Xν

t,x(θ
ν), Y ν

t,x,1(θ
ν), Zν

t,x,1,0(θ
ν)
)]

= sup
ν∈U ϕ̄

t

E
[
Y ν

t,x,1(θ
ν)ϕ(θν , Xν

t,x(θ
ν)) +

∫ θν

t

Y ν
t,x,1(s)g

(
s, Xν

t,x(s), νs

)
ds

]
. (3.8)
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Remark 3.5 (Infinite Horizon) Infinite horizon problems can be handled similarly. Follow-

ing the notations of the previous Remark 3.4, we introduce the infinite horizon stochastic

control problem:

V ∞(t, x) := sup
ν∈Ut

E
[∫ ∞

t

Y ν
t,x,1(s)g

(
s, Xν

t,x(s), νs

)
ds

]
.

Then, it is immediately seen that V ∞ satisfies the weak dynamic programming principle

(3.7)-(3.8).

4 Dynamic programming for mixed control-stopping

problems

In this section, we provide a direct extension of the dynamics programming principle of

Theorem 3.1 to the larger class of mixed control and stopping problems.

In the context of the previous section, we define for a Borel function f : Rd −→ R and

(t, x) ∈ S the reward J̄ : S× Ū × T[t,T ] −→ R:

J̄(t, x; ν, τ) := E
[
f
(
Xν

t,x(τ)
)]

, (4.1)

which is well-defined for every control ν in

Ū :=
{

ν ∈ U0 : E
[

sup
t≤s≤T

|f(Xν
t,x(s))|

]
< ∞ ∀ (t, x) ∈ S

}
.

The mixed control-stopping problem is defined by:

V̄ (t, x) := sup
(ν,τ)∈Ūt×T t

[t,T ]

J̄(t, x; ν, τ) , (4.2)

where Ūt is the subset of elements of Ū that are independent of Ft.

The key ingredient for the proof of (4.6) is the following property of the set of stopping

times TT :

For all θ, τ1 ∈ T t
T and τ2 ∈ T t

[θ,T ], we have τ11{τ1<θ} + τ21{τ1≥θ} ∈ T t
T . (4.3)

In order to extend the result of Theorem 3.1, we shall assume that the following version of

A4 holds:

Assumption A4’ For all (t, x) ∈ S, (ν, τ) ∈ Ūt × T t
[t,T ] and θ ∈ T t

[t,T ], we have:

a. For P-a.e ω ∈ Ω, there exists (ν̃ω, τ̃ω) ∈ Ūθ(ω) × T θ(ω)
[θ(ω),T ] such that

E
[
f
(
Xν

t,x(τ)
)
|Fθ

]
(ω) ≤ J(θ(ω), Xν

t,x(θ)(ω); ν̃ω, τ̃ω)
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b. For t ≤ s ≤ T , θ ∈ T t
[t,s], (ν̃, τ̃) ∈ Ūs × T s

[s,T ], τ̄ := τ1{τ<θ} + τ̃1{τ≥θ}, and ν̄ :=

ν1[0,θ] + ν̃1(θ,T ], we have:

E
[
f
(
X ν̄

t,x(τ̄)
)
|Fθ

]
(ω) = J(θ(ω), Xν

t,x(θ)(ω); ν̃, τ̃) for P−a.e. ω ∈ Ω.

Theorem 4.1 Let Assumptions A1, A2, A3 and A4’ hold true. Then for every (t, x) ∈ S,

and for all family of stopping times {θν , ν ∈ Ūt} ⊂ T t
[t,T ]:

V̄ (t, x) ≤ sup
(ν,τ)∈Ūt×T t

[t,T ]

E
[
1{τ<θν}f(Xν

t,x(τ)) + 1{τ≥θν}V̄
∗(θν , Xν

t,x(θ
ν))
]
. (4.4)

Assume further that the map (t, x) 7−→ J̄(t, x; ν, τ) satisfies the following lower-semicontinuity

property

lim inf
t′↑t,x′→x

J̄(t′, x′; ν, τ) ≥ J̄(t, x; ν, τ) for every (t, x) ∈ S and (ν, τ) ∈ Ū × T . (4.5)

Then, for any function ϕ ∈ USC(S) with V̄ ≥ ϕ:

V̄ (t, x) ≥ sup
(ν,τ)∈Ūϕ

t ×T t
[t,T ]

E
[
1{τ<θν}f(Xν

t,x(τ)) + 1{τ≥θν}ϕ(θν , Xν
t,x(θ

ν))
]
, (4.6)

where Ūϕ
t =

{
ν ∈ Ūt : E

[
ϕ(θν , Xν

t,x(θ
ν))+

]
< ∞ or E

[
ϕ(θν , Xν

t,x(θ
ν))−

]
< ∞

}
.

For simplicity, we only provide the proof of Theorem 4.1 for optimal stopping problems,

i.e. in the case where Ū is reduced to a singleton. The dynamic programming principle for

mixed control-stopping problems is easily proved by combining the arguments below with

those of the proof of Theorem 3.1.

Proof (for optimal stopping problems) We omit the control ν from all notations, thus

simply writing Xt,x(.) and J̄(t, x; τ). Inequality (4.4) follows immediately from the tower

property together with Assumptions A4’-a, recall that J̄ ≤ V̄ ∗.

We next prove (4.6). Arguying as in Step 2 of the proof of Theorem 3.1, we first observe

that, for every ε > 0, we can find a countable family Āi := (ti − ri, ti] × Ai ⊂ S, together

with a sequence of stopping times τ i,ε in T ti
[ti,T ], i ≥ 1, satisfying

∪iĀi = S, Āi ∩ Āj = ∅ for i 6= j, and J̄(·; τ i,ε) ≥ ϕ− 3ε on Āi. (4.7)

Set Ān := ∪i≤nĀi, n ≥ 1. Given two stopping times θ, τ ∈ T t
[t,T ], it follows from (4.3) and

Assumption A1 that

τn,ε := τ1{τ<θ} + 1{τ≥θ}

(
T1(Ān)c (θ,Xt,x(θ)) +

n∑
i=1

τ i,ε1Āi
(θ,Xt,x(θ))

)
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is a stopping time in T t
[t,T ]. We then deduce from the tower property together with Assump-

tions A4’-b and (4.7) that

V̄ (t, x) ≥ J̄(t, x; τn,ε)

≥ E
[
f
(
Xν

t,x(τ)
)
1{τ<θ} + 1{τ≥θ} (ϕ(θ, Xt,x(θ))− 3ε)1Ān(θ,Xt,x(θ))

]
+E

[
1{τ≥θ}f(Xt,x(T ))1(Ān)c(θ, Xt,x(θ))

]
.

By sending n →∞ and arguing as in the end of the proof of Theorem 3.1, we deduce that

V̄ (t, x) ≥ E
[
f (Xt,x(τ))1{τ<θ} + 1{τ≥θ}ϕ(θ, Xt,x(θ))

]
− 3ε,

and the result follows from the arbitrariness of ε > 0 and τ ∈ T[t,T ]. 2

5 Application to controlled diffusions

In this section, we show how the weak DPP of Theorem 3.1 allows to derive the correponding

dynamic programming equation in the sense of viscosity solutions. We refer, to Crandal,

Ishii and Lions [3] and Fleming and Soner [5] for a presentation of the general theory of

viscosity solutions.

For simplicity, we specialize the discussion to the context of controlled Markov diffusions

driven by Brownian motions. Clearly the same technology can be adapted to optimal stop-

ping, impulse control or mixed problems, and for controlled Markov jump-diffusions.

We take (Ω,F , F, P) to be the d-dimensional canonical filtered space equipped with the

Wiener measure and denote by ω or ω̃ a generic point. The Brownian motion is thus defined

as W (ω) = (ωt)t≥0.

We let U be a closed subset of Rk, k ≥ 1, and µ : S×U −→ Rd and σ : S×U −→ Md two

Lipschitz continuous functions. Here Md denotes the set of d-dimensional square matrices.

By U0, we denote the collection of all square integrable progressively measurable processes

with values U . For every ν ∈ U0, the stochastic differential equation:

dX(r) = µ (r, X(r), νr) dr + σ (r, X(r), νr) dWr, t ≤ r ≤ T, (5.1)

has a unique strong solution Xν
τ,ξ satisfying Xν

τ,ξ(τ) = ξ, for any initial condition (τ, ξ) ∈
S := {(τ, ξ) ∈ S0 : E [|ξ|2] < ∞}, satisfying

E
[

sup
τ≤r≤T

|Xν
t,x|2
]

< ∞. (5.2)

The performance criterion J , and the value function V are defined by (2.1)-(2.3) for a

Borel function f with quadratic growth. It follows that U = U0 and the lower-semicontinuity

assumption on J follows from standard estimates. Moreover, it is easily checked that V is

locally bounded.
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Proposition 5.1 Under the above assumptions, the value function V satisfies the weak

dynamic programming principle (3.1)-(3.2).

Proof Conditions A1, A2 and A3 from Assumption A are obviously satisfied in the present

context. It remains to check that A4 holds true. For ω ∈ Ω and r ≥ 0, we denote ωr := ω.∧r

and Trω := ω.+r − ωr. Fix (t, x) ∈ S, ν ∈ Ut, θ ∈ T t
[t,T ], and observe that, by the flow

property,

E
[
f
(
Xν

t,x(T )
)
|Fθ

]
(ω) =

∫
f
(
X

ν(ωθ(ω)+Tθ(ω)(ω))

θ(ω),Xν
t,x(θ)(ω) (T )(Tθ(ω)(ω))

)
dP(Tθ(ω)(ω))

=

∫
f
(
X

ν(ωθ(ω)+Tθ(ω)(ω̃))

θ(ω),Xν
t,x(θ)(ω) (T )(Tθ(ω)(ω̃))

)
dP(ω̃)

= J(θ(ω), Xν
t,x(θ)(ω); ν̃ω)

where, ν̃ω(ω̃) := ν(ωθ(ω) + Tθ(ω)ω̃) is an element of Uθ(ω). This already proves A4-a. As for

A4-b, note that if ν̄ := ν1[0,θ]+ ν̃1(θ,T ] with ν̃ ∈ Us and θ ∈ T t
[t,s], then the same computations

imply

E
[
f
(
X ν̄

t,x(T )
)
|Fθ

]
(ω) =

∫
f
(
X

ν̃(ωθ(ω)+Tθ(ω)ω̃)

θ(ω),Xν
t,x(θ)(ω) (T )(Tθ(ω)ω̃)

)
dP(ω̃),

where we used the flow property together with the fact that Xν
t,x = X ν̄

t,x on [t, θ] and that

the dynamics of X ν̄
t,x depends only on ν̃ after θ. Now observe that ν̃ is independent of Fs

and therefore on ωθ(ω) since θ ≤ s P− a.s. It follows that

E
[
f
(
X ν̄

t,x(T )
)
|Fθ

]
(ω) =

∫
f
(
X

ν̃(Tθ(ω)ω̃)

θ(ω),Xν
t,x(θ)(ω)(T )(Tsω̃)

)
dP(ω̃)

= J(θ(ω), Xν
t,x(θ)(ω); ν̃) .

2

Remark 5.1 It can be similarly proved that A4’ holds true, in the context of mixed control-

stopping problems.

Let us now introduce the Hamiltonian of the control problem:

H(t, x, p, A) := inf
u∈U

Hu(t, x, p, A), (t, x, p, A) ∈ [0, T ]× Rd × Rd ×Md,

where for u ∈ U and (t, x, p, A) ∈ S× Rd ×Md,

Hu(t, x, p, A) := −〈µ(t, x, u), p〉 − 1

2
Tr [(σσ′)(t, x, u)A] ,

and σ′ is the transpose of the matrix σ. Notice that the operator H is upper-semicontinuous.

However, since the set U may be unbounded, it may fail to be continuous. We therefore

introduce the corresponding lower-semicontinuous envelope:

H∗(z) := lim inf
z′→z

H(z′) for z = (t, x, p, A) ∈ S× Rd ×Md.

Since V is locally bounded, the semicontinuous envelopes V∗ and V ∗ are finite.
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Corollary 5.1 The following holds:

(i) V ∗ is a viscosity subsolution of

−∂tV
∗ + H∗(., DV ∗, D2V ∗) ≤ 0 on [0, T )× Rd.

(ii) V∗ is a viscosity supersolution of

−∂tV∗ + H(., DV∗, D
2V∗) ≥ 0 on [0, T )× Rd.

Proof 1. We start with the supersolution property. Assume to the contrary that there

is (t0, x0) ∈ [0, T )× Rd together with a smooth function ϕ : [0, T )× Rd −→ R satisfying

0 = (V∗ − ϕ)(t0, x0) < (V∗ − ϕ)(t, x) for all (t, x) ∈ [0, T )× Rd, (t, x) 6= (t0, x0),

such that (
−∂tϕ + H(., Dϕ, D2ϕ)

)
(t0, x0) < 0. (5.3)

Set

φ(t, x) := ϕ(t, x)− |t− t0|2 − |x− x0|4,

and observe that (φ, ∂tφ,Dφ, D2φ)(t0, x0) = (ϕ, ∂tϕ, Dϕ,D2ϕ)(t0, x0). In particular, (5.3)

can be expressed in terms of φ:(
−∂tφ + H(., Dφ, D2φ)

)
(t0, x0) < 0.

Then there exist u ∈ U and r > 0, with t0 + r < T , such that(
−∂tφ + Hu(., φ, Dφ,D2φ)

)
(t, x) < 0 for all (t, x) ∈ Br(t0, x0). (5.4)

Let (tn, xn)n be a sequence in Br(t0, x0) such that (tn, xn, V (tn, xn)) → (t0, x0, V∗(t0, x0)),

and let Xn
· := Xu

tn,xn
(·) denote the solution of (5.1) with constant control ν = u and initial

condition Xn
tn = xn, and consider the stopping time

θn := inf {s ≥ tn : (s, Xn
s ) /∈ Br(t0, x0)} .

Applying Itô’s formula to φ(·, Xn), and using (5.4) and (5.2), we see that

φ(tn, xn) = E
[
φ(θn, X

n
θn

)−
∫ θn

tn

[
∂tφ−Hu(., Dφ, D2φ)

]
(s, Xn

s )ds

]
≤ E

[
φ(θn, X

n
θn

)
]
.

Now observe that ϕ ≥ φ + 2η on ∂Br(t0, x0) for some η > 0. Hence, the above inequality

implies that φ(tn, xn) ≤ E
[
ϕ(θn, X

n
θn

)
]
− η. Since (φ − V )(tn, xn) → 0, we can then find n

large enough so that

V (tn, xn) ≤ E
[
ϕ(θn, X

n
θn

)
]
− η for sufficiently large n ≥ 1.
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On the other hand, it follows from (3.2) that:

V (tn, xn) ≥ sup
ν∈Utn

E
[
ϕ(θn, X

ν
tn,xn

(θn))
]

≥ E
[
ϕ(θn, X

n
θn

)
]
,

which is the required contradiction.

2. We now prove the subsolution property. Assume to the contrary that there is (t0, x0) ∈
[0, T )× Rd together with a smooth function ϕ : [0, T )× Rd −→ R satisfying

0 = (V ∗ − ϕ)(t0, x0) > (V ∗ − ϕ)(t, x) for all (t, x) ∈ [0, T )× Rd, (t, x) 6= (t0, x0),

such that (
−∂tϕ + H∗(., Dϕ, D2ϕ)

)
(t0, x0) > 0. (5.5)

We can then find r > 0 such that t0 + r < T and(
−∂tϕ + Hu(., Dϕ, D2ϕ)

)
(t, x) > 0 for every u ∈ U and (t, x) ∈ Br(t0, x0). (5.6)

Since (t0, x0) is a strict maximizer of the difference V ∗ − ϕ, it follows that

−2η := max
∂Br(t0,x0)

(V ∗ − ϕ) < 0. (5.7)

Let (tn, xn)n be a sequence in Br(t0, x0) such that (tn, xn, V (tn, xn)) → (t0, x0, V
∗(t0, x0)).

For an arbitrary control νn ∈ Utn , let Xn := Xνn

tn,xn
denote the solution of (5.1) with initial

condition Xn
tn = xn, and set

θn := inf {s ≥ tn : (s, Xn
s ) /∈ Br(t0, x0)} .

We may assume without loss of generality that

|(V − ϕ)(tn, xn)| ≤ η for all n ≥ 1. (5.8)

Applying Itô’s formula to ϕ(·, Xn) and using (5.6) together with (5.2) leads to

ϕ(tn, xn) = E
[
ϕ(θn, X

n
θn

)−
∫ θn

tn

[
∂tϕ−Hνn

(., Dϕ, D2ϕ)
]
(s, Xn

s )ds

]
≥ E

[
ϕ(θn, X

n
θn

)
]
.

Now observe that ϕ ≥ V ∗ + 2η on ∂Br(t0, x0) by (5.7). Hence, the above inequality implies

that ϕ(tn, xn) ≥ E
[
V ∗(θn, X

n
θn

)
]
+ 2η, which implies by (5.8) that:

V (tn, xn) ≥ E
[
V ∗(θn, X

n
θn

)
]
+ η for n ≥ 1.

Since νn ∈ Utn is arbitrary, this contradicts (3.1) for n ≥ 1 fixed. 2
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