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Abstract

The classical Black–Scholes hedging strategy of a European contingent claim may re-
quire rapid changes in the replicating portfolio. One approach to avoid this is to im-
pose a priori bounds on the variations of the allowed trading strategies, called gamma
constraints. Under such a restriction, it is in general no longer possible to replicate
a European contingent claim, and super-replication is a commonly used alternative.
This paper characterizes the infimum of the initial capitals that allow an investor to
super-replicate the contingent claim by carefully choosing an investment strategy obey-
ing a gamma constraint. This infimum is shown to be the unique viscosity solution of
a nonstandard partial differential equation. Due to the lower gamma bound, the “in-
tuitive” partial differential equation is not parabolic and the actual equation satisfied
by the infimum is the parabolic majorant of this equation. The derivation of the vis-
cosity property is based on new results on the small time behavior of double stochastic
integrals.
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Problème de sur-réplication multi-dimensionel sous
contraintes gamma

Résumé

La stratégie de couverture classique d’une option européenne, dictée par le modèle de Black
et Scholes, peut conduire à des rebalancements rapides du portefeuille répliquant. Afin
d’éviter de telles situations indésirables, nous introduisons des contraintes spécifiques sur le
portefeuille, appelées contraintes gamma. Il n’est alors pas possible en général de répliquer
parfaitement l’option européenne. Par conséquent, nous considérons le problème de sur-
réplication qui consiste à la recherche du plus petit capital initial qui permet de faire face
à la variable aléatoire définie par l’option à la date terminale, par le biais d’une stratégie
de portefeuille vérifiant la contrainte gamma. Nous montrons que la fonction valeur de
ce problème est l’unique solution de viscosité d’une équation aux dérivées partielles non
standard. En particulier, la borne inférieure sur la gamma fait que l’opérateur “intuitif”
n’est pas parabolique, et le “bon” opérateur est en fait la plus petit majorant parabolique
de cette équation. L’écriture des équations aux dérivées partielles au sens de la viscosité
fait appel à des résultats nouveaux sur le comportement local des intégrales stochastiques
doubles.

Mots clés: contrainte gamma, sur-réplication, solutions de viscosité, majorant parabolique,
intégrales stochastiques doubles.
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1 Introduction

The classical Black–Scholes theory provides a mechanism for pricing and hedging contingent
claims depending on a risky asset. In this framework it is assumed that the price of the
risky asset follows a geometric Brownian motion

dS(t) = S(t) [µdt+ σdZ(t)]

for a Brownian motion Z and parameters µ ≥ 0, σ > 0, and that apart from the risky asset,
money can also be invested in a cash account, where it grows with a constant continuously
compounded interest rate, which, without loss of generality, can be assumed to be zero.
Then, investments in the cash account stay constant, and the price of the risky asset can
be written as

dS(t) = S(t)σdW (t) , (1.1)

where W is a Brownian motion under a probability measure that is equivalent to the
original one. For a finite time horizon T > 0, t ∈ [0, T ] and s ∈ (0,∞), we denote
by {St,s(r) , t ≤ r ≤ T} the solution to (1.1) with initial condition S(t) = s. Consider
a European contingent claim with time T payoff g(St,s(T ))) for a measurable function
g : (0,∞) → [0,∞) that is dominated by a polynomial. The Black–Scholes price

vBS(t, s) = E [g(St,s(T ))]

of the contingent claim is a smooth function of time t ∈ [0, T ) and the price of the underlying
risky asset s ∈ (0,∞). The Black–Scholes hedging portfolio consists of vBS

s (t, s) many shares
of the risky asset and the amount of money vBS(t, s)− vBS

s (t, s)s in the cash account. The
value of this portfolio at maturity is equal to the payoff of the contingent claim, that is,
the Black–Scholes hedging strategy replicates the contingent claim.

Several interesting constraints and deviations from the Black–Scholes model have been
studied in the literature, for example, short-selling constraints or stochastic volatility; we
refer to [3, 6, 7, 9, 10, 11, 18] and the references therein. Under such constraints or imper-
fections, it is in general no longer possible to replicate a given contingent claim. Usually,
one then tries to find a hedging portfolio that approximates the contingent claim in some
sense or super-replicates it.

In this paper we study the super-replication problem of a European contingent claim
under gamma constraints. We will allow the contingent claim to depend on several risky
assets whose prices can have stochastic volatility. But to simplify the notation in this
introduction, we here consider only one risky asset with price dynamics given by (1.1). In
the Black–Scholes framework, the contingent claim’s gamma is given by vBS

ss (t, s). It gives
the variation of vBS

s (t, s) due to the variation of the underlying risky asset. Note that by
Itô’s lemma, for r ∈ [t, T ],

vBS
s (r, St,s(r)) = vBS

s (t, s) +
∫ r

t
LvBS

s (u, St,s(u))du+
∫ r

t
vBS
ss (u, St,s(u))dSt,s(u) , (1.2)

where L is the Dynkin operator of St,s given by

Lϕ(t, s) =
∂

∂t
ϕ(t, s) +

1
2
σ2s2

∂2

∂s2
ϕ(t, s) .
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Motivated by (1.2), we consider self-financing trading strategies such that the process de-
scribing the number of shares of the risky asset held at time r ∈ [t, T ] can be written
as

Y (r) = a(r) +
∫ r

t
γ(u)dSt,s(u) (1.3)

for a progressively measurable finite variation process a and a progressively measurable
process γ such that the pair (a, γ) satisfies certain boundedness conditions to be specified
in Subsection 2.2. We then denote the associated trading strategy of the form (1.3) by
Y

(a,γ)
s,t and the corresponding wealth process with initial capital x ∈ R by

X
(a,γ)
t,s,x (r) = x+

∫ r

t
Y

(a,γ)
t,s (u)dSt,s(u) , r ∈ [t, T ] .

Now, a gamma constraint can be expressed as a restriction on the process γ. In this paper
we consider gamma constraints of the form

Γ∗ ≤ S2
t,s(r) γ(r) ≤ Γ∗ , for all r ∈ [t, T ] , (1.4)

where −∞ ≤ Γ∗ < Γ∗ ≤ ∞ are two fixed constants. By At,s we denote the set of all pairs
(a, γ) that satisfy the above conditions for the initial condition S(t) = s and some other
technical conditions described in Subsection 2.2. In view of the approximation results of
Leventhal and Skorokhod [13] and Bank and Baum [1], these technical conditions are very
important. A detailed discussion is given in Remark 3.11 below.

The infimum of all initial capitals that allow to super-replicate the contingent claim is
given by

v(t, s) := inf
{
x : X(a,γ)

t,s,x (T ) ≥ g (St,s(T )) for some (a, γ) ∈ At,s

}
, (1.5)

where the inequality is understood in the almost sure sense. The purpose of this paper
is to characterize the function v as the unique viscosity solution of a partial differential
equation together with a terminal condition. The equation will be derived from a dynamic
programming principle (DPP). Therefore, we will refer to it as the dynamic programming
equation (DPE) for v.

Note that if g is twice continuously differentiable and satisfies the gamma constraint

Γ∗ ≤ s2gss(s) ≤ Γ∗ for all s ∈ (0,∞) , (1.6)

then also,

s2vBS
ss (t, s) = s2

∂2

∂s2
E
[
g

(
s exp

{
σ[W (T )−W (t)]− 1

2
σ2[T − t]

})]
= E

[
(St,s(T ))2gss(St,s(T ))

]
∈ [Γ∗,Γ∗]

for all s ∈ (0,∞). Hence, it can be seen from (1.2) that the Black–Scholes strategy satisfies
the gamma constraint and therefore, vBS = v. For functions g that do not necessarily
satisfy the gamma constraint (1.6), the DPE for v derived in [15] for the one-dimensional
case with Γ∗ = −∞ is

min
{
−vt −

1
2
σ2s2vss ; Γ∗ − s2vss

}
= 0 . (1.7)
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(In fact, in [15], the gamma constraint svss ≤ Γ∗ is considered, which leads to a DPE
slightly different from (1.7). However, if the arguments of [15] are adapted to the gamma
constraint (1.4), one gets (1.7).) The equation (1.7) agrees with the intuition that the
solution of the problem consists in forgetting about the constraint as long as it is satisfied,
and a free boundary behavior whenever the constraint binds.

The same kind of reasoning, leads us to guess that the DPE associated to (1.5) (with
Γ∗ > −∞) is

F (s, vt, vss) := min
{
−vt −

1
2
σ2s2vss ; Γ∗ − s2vss ; s2vss − Γ∗

}
= 0 . (1.8)

However, one immediately observes that F (s, vt, vss) is not monotone in vss. Hence, we do
not expect the above equation to be the correct one, and indeed, it is not.

It follows from Theorem 3.6 below that the function v is a viscosity solution of the equation

F̂ (s, vt(t, s), vss(t, s)) = 0 ,

where F̂ (s, p, A) is the smallest function φ ≥ F which is decreasing in the A variable. We
give the following example to illustrate this point:

Example 1.1 Consider the problem in one dimension with Γ∗ = +∞, Γ∗ = 0, σ ≡ 1, and
with g(s) = s ∧ 1 for s ∈ (0,∞). Then,

F (s, vt, vss) = min{ −vt −
1
2
s2vss ; s2vss }. (1.9)

Notice that any function v satisfying F (s, vt, vss) = 0 in the viscosity sense also satisfies
vss ≥ 0 in the viscosity sense and is therefore convex. However, we claim that the minimal
super-replicating cost v in this example is equal to g. In particular, it is not convex. Indeed,
consider the following strategy: if s ≤ 1, then use initial capital x = s and buy and hold
one share of the risky asset. The resulting terminal wealth is XT = ST ≥ g(ST ). If s ≥ 1,
then with x = 1 buy no shares of the risky asset and hold the money in the cash account.
This leads to a terminal wealth of XT = 1 ≥ g(ST ). Hence, this strategy with x = g(s) is
super-replicating and therefore, v(s, t) ≤ g(s) for all (t, s) ∈ [0, T )× (0,∞).

The opposite inequality and consequently v = g follows from Theorem 3.6 and the fact
that g is a viscosity solution of the equation F̂ (s, vt, vss) = 0. Notice that v = g is not
a viscosity supersolution of s2vss = 0. So, we see in this example that v need not be a
viscosity solution of the equation (1.9). Also, v is in general not differentiable, and vss does
not necessarily satisfy the gamma constraint (1.4) in the viscosity sense.

In the literature, super-replication problems under constraints are usually approached
by duality. Then, the dual formulation turns out to be in the standard form, and it is
straightforward to arrive at the associated DPE. However, the usual techniques from this
literature do not apply in our setup, and we are currently not able to derive the correct
DPE for the problem (1.5) via convex duality techniques. In this paper, we continue with
the method developed by Soner and Touzi in [15], and later in [16] and [17], in order
to derive the DPE for (1.5). The main ingredients in this derivation are the two partial
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dynamic programming principles presented in Subsections 4.2 and 5.2 and a precise analysis
of the small time behavior of double stochastic integrals. This analysis is carried out in the
accompanying paper [4]. The results from [4] that are needed in this paper are reported in
the Appendix.

Notation. Equalities and inequalities between random variables are understood to hold in
the almost sure sense. By Md we denote the set of all d× d matrices with real coefficients.
AT is the transpose of a matrix A ∈ Md and Tr [A] its trace. The set Sd is the collection
of all symmetric matrices of Md. The subset of positive semi-definite symmetric matrices
will be denoted by Sd

+. For x ∈ Rd, we set

|x| :=
√
x2

1 + . . . x2
d

and for A ∈Md,
|A| := sup

x∈Rd,|x|≤1

Ax .

For a vector x ∈ Rd, diag [x] is the d×d-diagonal matrix with diagonal elements x1, . . . , xd.
For a function v on a subset Q of Rn, we denote by v∗ and v∗ the functions on Q given

by
v∗(x) = lim

r↘0
sup

y∈Q,|y−x|≤r
v(y) , x ∈ Q ,

and
v∗(x) = lim

r↘0
inf

y∈Q,|y−x|≤r
v(y) , x ∈ Q ,

respectively. v∗ is the smallest upper semicontinuous function majorizing v and is called
the upper semicontinuous envelope of v. v∗ is the largest lower semicontinuous function
minorizing v and is called the lower semicontinuous envelope of v.

2 Problem formulation

In this section, we describe the model and the admissible trading strategies.

2.1 Model

We consider a financial market which consists of a cash account and d risky assets. Since we
are interested in almost sure super-replication, it is enough to specify the price dynamics
under a risk neutral probability measure P . Let T > 0 be a finite time horizon and
{W (t) , 0 ≤ t ≤ T} a d-dimensional Brownian motion on a complete probability space
(Ω,F , P ). By FW we denote the smallest filtration {FW (t) , 0 ≤ t ≤ T} that contains the
filtration generated by {W (t) , 0 ≤ t ≤ T} and satisfies the usual conditions. We take the
cash account as numéraire and assume that the prices of the risky assets evolve according
to the stochastic differential equation

dS(r) = diag [S(r)]σ (S(r)) dW (r) , (2.1)
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where σ is a Lipschitz-continuous, bounded, Md-valued mapping defined on (0,∞)d such
that σ(s) is invertible for all s ∈ (0,∞)d. By Exercise IX.2.10 of [14], the SDE (2.1) has
for all initial conditions

S(t) = s , (t, s) ∈ [0, T ]× (0,∞)d ,

a unique strong solution, which we denote by St,s. Note that every component St,s,i of St,s

satisfies

St,s,i(r) = si exp

 d∑
j=1

[∫ r

t
σij(St,s(u))dW j(u)− 1

2

∫ r

t
σ2

ij(St,s(u))du
] .

From this and Doob’s Lp-inequality (see e.g. Theorem II.1.7 in [14]), it can be deduced
that St,s is a martingale that satisfies

E

[
sup

t≤r≤T
|St,s(r)|p

]
<∞ , for all p ≥ 0 . (2.2)

Throughout this paper, we fix a parameter β ≥ 0, and for an FW -progressively measurable
process {H(r) , t ≤ r ≤ T} taking values in R, Rd or Md, we define

‖H‖β,∞
t,s :=

∥∥∥∥∥ sup
t≤r≤T

|H(r)|
1 + |St,s(r)|β

∥∥∥∥∥
L∞

.

2.2 Trading strategies and gamma constraints

Consider an economic agent that starts at time t with initial capital x and holds Y i(r)
shares of the i-th risky asset at time r ∈ [t, T ]. Assume that the stochastic integral∫ r
t Y (u)TdSt,s(u), r ∈ [t, T ], exists and trading is done in a self-financing way. Then,

the evolution of the economic agent’s wealth is given by

X(r) = x+
∫ r

t
Y (u)TdSt,s(u) , r ∈ [t, T ] . (2.3)

To introduce constraints on the variations of investment strategies Y , we require them to
be of the form

Y (r) =
N−1∑
n=0

yn1{τn≤r<τn+1} +
∫ r

t
α(u)du+

∫ r

t
γ(u)dSt,s(u) , (2.4)

where ‖Y ‖β,∞
t,s < ∞; t = τ0 ≤ τ1 ≤ . . . is an increasing sequence of [t, T ]-valued FW -

stopping times such that the random variable N := inf{n ∈ N : τn = T} is bounded; yn is
an Rd-valued, FW (τn)-measurable random variable satisfying yn1{τn=T} = 0 ; α is an FW -
progressively measurable, Rd-valued process such that ‖α‖β,∞

t,s <∞; and γ is an Sd-valued
stochastic process such that ‖γ‖β,∞

t,s <∞ and the ij component of γ is of the form

γij(r) =
N−1∑
n=0

zn
ij1{τn≤r<τn+1} +

∫ r

t
γ1

ij(u)du+
∫ r

t
γ2

ij(u)
TdW (u) , (2.5)
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where zn
ij is an FW (τn)-measurable random variable satisfying zn

ij1{τn=T} = 0 ; γ1
ij is an

FW -progressively measurable, R-valued process such that ‖γ1
i,j‖

β,∞
t,s < ∞; and γ2

ij is an
FW -progressively measurable process taking values in Rd such that ‖γ2

ij‖
β,∞
t,s <∞.

Under these assumptions, a trading strategy is determined by the choice of the control
ν := ((τn, yn)n≥0, α, γ). The set of admissible controls At,s is the collection of all such
controls which in addition obey to the following gamma constraint :

diag [St,s(r)] γ(r)diag [St,s(r)] ∈ K for all t ≤ r ≤ T , (2.6)

where K is a closed, convex, strict subset of Sd such that

0 ∈ int(K) . (2.7)

The boundedness conditions imposed on the strategies Y are crucial for the proof of the
viscosity supersolution property in Section 5. Without these conditions our main results,
Theorem 3.6 and Theorem 3.7 do not hold true. More details are given in Remark 3.11.

By {(
Xν

t,s,x, Y
ν
t,s

)
(r) , t ≤ r ≤ T

}
we denote the process defined by the dynamics (2.3) and (2.4), the initial conditionXν

t,s,x(t) =
x, and the control ν ∈ At,s. It can easily be deduced from (2.2) and the special form of our
controls that Xν

t,s,x is a square integrable martingale for all (t, s, x) ∈ [0, T ] × (0,∞)d × R
and ν ∈ At,s. In particular,

x = E
[
Xν

t,s,x(T )
]
. (2.8)

2.3 Value function

We now are in a position to define the stochastic control problem of interest. Consider a
European contingent claim with time T payoff g (St,s(T )) for some lower semicontinuous
function g : (0,∞) → [0,∞). The value function v of the super-replication problem of g
under the gamma constraint (2.6) is given by

v(t, s) := inf
{
x ∈ R : Xν

t,s,x(T ) ≥ g (St,s(T )) for some ν ∈ At,s

}
,

where we set inf ∅ := ∞.

Remark 2.1 For (t, s) ∈ [0, T )× (0,∞)d, let x ∈ R and ν ∈ At,s such that

Xν
t,s,x(T ) ≥ g(St,s(T )) .

By (2.8),
x = E

[
Xν

t,s,x(T )
]
≥ E [g(St,s(T )] .

This shows that

v(t, s) ≥ E [g(St,s(T )] ≥ 0 for all (t, s) ∈ [0, T )× (0,∞)d .
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3 Main results

3.1 Operators

We start by introducing the operators that will be used in our analysis. The Dynkin
operator associated to the process S is given by

Lϕ(t, s) := −L
(
s, ϕt(t, s), D2ϕ(t, s)

)
whereD2 denotes the second derivative with respect to the s-variables and L is the parabolic
operator

L(s, p, A) := −p− 1
2
Tr
[
σ(s)T diag [s]Adiag [s]σ(s)

]
. (3.1)

To express the constraint (2.6) as an inequality, we define for A ∈ Sd the signed distance
of A to the complement of K in Sd:

H(A) :=

{
inf{ |A−B| : B ∈ Sd \K} , if A ∈ K ,

− inf{ |A−B| : B ∈ K} , if A ∈ Sd \K
(3.2)

Since K is a non-empty, strict subset of Sd, −∞ < H(A) < ∞ for all A ∈ Sd. It is clear
that A is in K if and only if H(A) ≥ 0, and A is in the interior of K if and only if H(A) > 0.
Furthermore, it follows from the convexity of K that H is concave.

With this notation the d-dimensional analog of the operator in (1.8) can be written as

F (s, p, A) := min {L(s, p, A) , H(diag [s]Adiag [s])} . (3.3)

Note that F (s, p, A) is concave in (p,A) because the mappings (p,A) 7→ L(s, p, A) and
(p,A) 7→ H(A) are so. On the other hand, F (s, p, A) is in general not monotone in A.
Simply consider the following example:

Example 3.1 Let 0 ≤ Γ∗ ≤ ∞ and −∞ ≤ Γ∗ ≤ 0 be two symmetric matrices such that
all eigenvalues of Γ∗ − Γ∗ are strictly positive. Then,

K = [Γ∗,Γ∗] :=
{
A ∈ Sd : Γ∗ ≤ A ≤ Γ∗

}
is a closed convex subset of Sd that contains 0 in its interior. Γ∗ = −∞ (resp. Γ∗ = ∞)
means that there is no lower (resp. upper) constraint on the control process γ. If d = 1
and −∞ < Γ∗ < Γ∗ <∞, then

H(A) = min{ Γ∗ −A , A− Γ∗ } ,

and F (s, p, A) is not monotone in A.

3.2 Parabolic envelope

For any function φ : Sd → R, we define the function φ̂ : Sd → (−∞,∞] as follows:

φ̂(A) := sup
B∈Sd

+

φ(A+B) .
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Lemma 3.2 φ̂ is the smallest decreasing majorant of φ.

Proof.
1. The inequality φ̂ ≥ φ follows from the fact that 0 ∈ Sd

+.
2. Now, let A ≥ A′ be two ordered matrices in Sd. Then, Sd

+ ⊂ Sd
+ + (A′ − A), and

therefore,

φ̂(A′) = sup
B∈Sd

+

φ(A+ (A′ −A) +B)

= sup
B∈Sd

++(A′−A)

φ(A+B) ≥ sup
B∈Sd

+

φ(A+B) = φ̂(A) .

3. Let φ̃ be a decreasing mapping from Sd to (−∞,∞] such that φ̃ ≥ φ. Then, for all A ∈ Sd

and B ∈ Sd
+, we have φ̃(A) ≥ φ̃(A+B) ≥ φ(A+B). Hence, φ̃(A) ≥ supB∈Sd

+
φ(A+B) =

φ̂(A). 2

For a function φ : (0,∞)d × R× Sd → R, we define φ̂ by

φ̂(s, p, A) := sup
B∈Sd

+

φ(s, p, A+B) .

Lemma 3.3 Let s ∈ (0,∞)d. If φ(s, ., .) is concave, then so is φ̂(s, ., .).

Proof. First assume that there exists a pair (p1, A1) ∈ R×Sd such that φ̂(s, p1, A1) = ∞.
For every (p,A) ∈ R× Sd, there exists a (p2, A2) ∈ R× Sd such that

(p,A) =
1
2
(p1, A1) +

1
2
(p2, A2) .

By the definition of φ̂ and the concavity of φ(s, ., .),

φ̂(s, p, A) ≥ φ(s, p, A+
1
2
B) ≥ 1

2
φ(s, p1, A1 +B) +

1
2
φ(s, p2, A2)

for all B ∈ Sd
+, which implies that φ̂(s, p, A) = ∞. Hence, φ̂(s, p, A) = ∞ for all (p,A) ∈

R× Sd. In particular, φ̂(s, ., .) is concave.
If φ̂(s, p, A) <∞ for all (p,A) ∈ R×Sd, consider two pairs (p1, A1) and (p2, A2) in R×Sd,

and let λ ∈ (0, 1). For all ε > 0, there exist Bε
1 and Bε

2 in Sd
+ such that

φ̂(pi, Ai) ≤ φ(pi, Ai +Bε
i ) + ε for i = 1, 2 .

Then,

λφ̂(s, p1, A1) + (1− λ)φ̂(s, p2, A2)

≤ λφ(s, p1, A1 +Bε
1) + (1− λ)φ(s, p2, A2 +Bε

2) + ε

≤ φ (s, λp1 + (1− λ)p2, λ(A1 +Bε
1) + (1− λ)(A2 +Bε

2)) + ε

≤ φ̂ (s, λp1 + (1− λ)p2, λA1 + (1− λ)A2) + ε ,

and the required result is obtained by sending ε to zero. 2
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Since F (s, p, A) ≤ L(s, p, A) and L(s, p, A) is decreasing in A, it follows from Lemma 3.2
that F̂ (s, p, A) ≤ L(s, p, A) and F̂ is the smallest function above F that is monotone in
A. Therefore, we call it the parabolic envelope of F . By Lemma 3.3, F̂ (s, ., .) inherits the
concavity from F (s, ., .).

Lemma 3.4 The mapping
F̂ : (0,∞)d × R× Sd → R

is continuous.

Proof.
1. Lower semicontinuity: Let (s0, p0, A0) ∈ (0,∞)d×R×Sd and ε > 0. By definition of F̂
and continuity of F , there exists a B0 ∈ Sd

+ and a neighborhood U of (s0, p0, A0) such that
for all (s, p, A) ∈ U ,

F̂ (s0, p0, A0)− ε ≤ F (s0, p0, A0 +B0)−
ε

2
≤ F (s, p, A+B0) ≤ F̂ (s, p, A) ,

which proves that F̂ is lower semicontinuous.
2. Upper semicontinuity: Let (sk, pk, Ak)k≥1 be a sequence in (0,∞)d×R×Sd converging
to a point (s0, p0, A0) ∈ (0,∞)d × R× Sd. There exists for all k ≥ 1, a Bk ∈ Sd

+ such that

F (sk, pk, Ak +Bk) ≥ F̂ (sk, pk, Ak)−
1
k
≥ F (sk, pk, Ak)−

1
k
.

Since F (sk, pk, Ak)− 1/k converges to F (s0, p0, A0) and σ(s0) is assumed to be invertible,
it follows from the definition of F (3.3) and the form of L (3.1) that the sequence (Bk)k≥1

is bounded. Hence, there exists a subsequence Bkj
that converges to a B0 ∈ Sd

+. Then,

lim sup
j→∞

F̂ (skj
, pkj

, Akj
) ≤ lim sup

k→∞
F (skj

, pkj
, Akj

+Bkj
)

= F (s0, p0, A0 +B0) ≤ F̂ (s0, p0, A0) .

This shows that F̂ is upper semicontinuous. 2

3.3 Equation

Earlier results indicate that the value function v is a viscosity solution of the equation

F̂ (s, vt(t, s), D2v(t, s)) = 0 for (t, s) ∈ [0, T )× (0,∞)d , (3.4)

where F̂ is the parabolic majorant of the function F defined in (3.3).
This equation has to be complemented with an appropriate terminal condition. In the

next subsections, we will describe the terminal behavior and state the main results.
Note that the process S never reaches the lateral boundary. For this reason, we do not

need to specify lateral boundary conditions.

11



3.4 Terminal condition

It has already been observed in the literature that constraints on the hedging strategy can
lead to the situation that the limit

lim
t′↗T , s′→s

v(t′, s′)

exists but does not coincide with the function g. We refer to [3] and [7] for the case of
portfolio constraints and to [15] for the case of an upper gamma bound. The reason for this
phenomenon is the following : The gamma constraint induces restrictions on the function
v(t, s) on [0, T ) × (0,∞)d. If the function g does not fulfill corresponding restrictions, the
value function v will converge to the minimal function ĝ that is above g and satisfies the
restrictions.

Since the function H from (3.2) describing the gamma constraint is in general not de-
creasing, we will have to work with the function

Ĥ(A) := sup
B∈Sd

+

H(A+B) , A ∈ Sd .

As in Lemma 3.3, it can be shown that Ĥ inherits the concavity of H. Hence, it is either
R-valued and continuous or identically equal to ∞.

By G(g) we denote the set of all viscosity supersolutions of the equation

min
{
f − g ; Ĥ

(
diag [s]D2f(s)diag [s]

)}
= 0 , s ∈ (0,∞)d , (3.5)

and we define
ĝ(s) := inf

f∈G(g)
f(s) .

It can be made sure that ĝ is finite by making the assumption that there exists a finite
constant c∗ such that

g(s) ≤ G(s) := c∗ [1 + s1 + s2 + · · ·+ sd] , for all s ∈ (0,∞)d . (3.6)

Since by assumption (2.7), 0 ∈ K, it is clear that G ∈ G(g). Therefore,

ĝ also satisfies (3.6). (3.7)

Also, it follows from Perron’s method (see Section 4 in [5]) that ĝ is a viscosity solution
of (3.5). Moreover, for all t ∈ [0, T ), the investment process Y (r) = y := (c∗, . . . , c∗),
r ∈ [t, T ], is admissible, and the corresponding value process starting at x is given by

Xν
t,s,x(T ) = x+ yT (St,s(T )− s) = x+G(St,s(T ))−G(s).

Hence, for x = G(s), Xν
t,s,x(T ) = G(St,s(T )) ≥ g(St,s(T )), and therefore, v(t, s) ≤ G(s) for

all s ∈ (0,∞)d.
To prove our main results we will need that one of the two following conditions is fulfilled:

g is continuous and bounded (3.8)

12



or
g is lower semicontinuous, satisfies (3.6) and K = [Γ∗,diag [γ∗] ] , (3.9)

where [Γ∗,diag [γ∗] ] is a bounded interval of symmetric matrices as in Example 3.1, con-
taining the zero matrix in its interior. We require the upper bound in (3.9) to be a diagonal
matrix because of the following : The upper bound on γ induces

diag [s]D2ĝ(s)diag [s] ≤ Γ∗ ,

in the viscosity sense, which implies

D2ĝ(s) ≤ diag [s]−1 Γ∗diag [s]−1

in the viscosity sense. In the proof of Proposition 6.4 we will need Γ∗ to be of such a form
that the matrix-valued function diag [s]−1 Γ∗diag [s]−1 is the Hessian of a smooth function.
This is the case if and only if Γ∗ is equal to a diagonal matrix diag [γ∗], in which case the
smooth function can be taken as

U(s) := −
d∑

j=1

γ∗j log sj

Lemma 3.5
a) If g satisfies (3.8), then ĝ is also bounded.
b) Assume (3.9). Then

ĝ(s) = hconc(s) + U(s) ,

where hconc is the concave envelope of

h(s) = g(s)− U(s) .

Moreover, ĝ is locally Lipschitz continuous and it is twice continuously differentiable for
Lebesgue-almost every s ∈ (0,∞)d. In particular, it satisfies (3.5) Lebesgue-almost every-
where, and

diag [s]D2ĝ(s)diag [s] ≤ diag [γ∗] for Lebesgue-almost all s ∈ (0,∞)d .

Proof.
a) If g satisfies (3.8), then every constant that dominates g is a supersolution of (3.5).
Hence, ĝ is bounded.
b) Assume that (3.9) holds. Then, set g̃ = hconc + U . We claim that ĝ = g̃. Indeed, since
hconc is concave, it is Lebesgue-almost everywhere twice differentiable and D2hconc ≤ 0.
Therefore, diag [s] D2g̃ diag [s] ≤ diag [γ∗] in the viscosity sense. Also, it is clear that
g̃ ≥ g. Hence, by the definition of ĝ, it follows that g̃ ≥ ĝ. Since ĝ ∈ G(g), D2ĝ −
diag [s]−1 diag [γ∗] diag [s]−1 ≤ 0 in the viscosity sense, implying that ĝ − U is concave.
Since ĝ ≥ g, we have ĝ−U ≥ h. Therefore, it follows that ĝ−U ≥ hconc and consequently,
ĝ ≥ g̃.

To prove the regularity of ĝ, observe that hconc = ĝ(s)− U is concave in (0,∞)d. There-
fore, it is locally Lipschitz and twice differentiable Lebesgue-almost everywhere. The
same holds true for ĝ. At points of twice differentiability, (3.5) holds pointwise. Hence,
diag [s] D2ĝ diag [s] ≤ diag [γ∗] at points of twice differentiability. 2
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3.5 Viscosity characterization

The chief result of this paper is the following characterization of the function v. In addition
to characterizing v as the unique viscosity solution of the equation (3.4), we also describe
the exact terminal condition satisfied by v. In many cases, the characterization of the
terminal condition is the key to obtain an explicit solution by solving the Black–Scholes
equation with this modified terminal condition.

Theorem 3.6 (Viscosity Property) Assume that (3.8) or (3.9) holds. Then, v is a
continuous viscosity solution of (3.4) and there exists a constant C so that

|v(t, s)− ĝ(s)| ≤ C , for all (t, s) ∈ [0, T )× (0,∞)d . (3.10)

Theorem 3.7 (Terminal Condition) Assume that (3.8) or (3.9) holds. Then, v extends
to a continuous function v̂ on [0, T ]× [0,∞)d satisfying the terminal condition

v̂(T, s) = ĝ(s) , for all s ∈ (0,∞)d . (3.11)

In particular, ĝ is continuous.

To prove the Theorems 3.6 and 3.7 we will introduce a lower semicontinuous function v

on [0, T ]× [0,∞)d and an upper semicontinuous function v on [0, T ]× [0,∞)d such that

v ≤ v ≤ v on [0, T ]× (0,∞)d .

In Section 4 we show that v is a viscosity subsolution of the equation (3.4) and in Section
5 that v is a viscosity supersolution of (3.4). In Section 6 we show that

v(T, .) ≥ ĝ , v(T, .) ≤ ĝ

and there exists a constant C > 0 such that for all (t, s) ∈ [0, T ]× (0,∞)d,

v(t, s) ≥ ĝ(s)− C and v(t, s) ≤ ĝ(s) + C .

From the comparison result, Proposition 3.9 below, we can then deduce that v ≥ v, which
implies

v = v = v

and completes the proof of Theorems 3.6 and 3.7.
The following theorem shows that v is the unique solution of the equation (3.4) in a

certain class of functions.

Theorem 3.8 (Uniqueness) Assume that either (3.8) or (3.9) holds. Let w be a viscosity
solution of the equation (3.4) that satisfies the conditions (3.10),

w∗(T, s) ≤ ĝ(s) (3.12)

and
w∗(T, s) ≥ ĝ(s) . (3.13)

Then w = v.
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Uniqueness is an immediate consequence of the following comparison result, which will
be proved in Section 7.

Proposition 3.9 (Comparison) Assume that g satisfies (3.6). Suppose that u is an upper
semicontinuous viscosity subsolution of (3.4) and (3.12), and w is a lower semicontinuous
viscosity supersolution of (3.4) and (3.13). If there exists a constant C so that

u(t, s) ≤ ĝ(s) + C and w(t, s) ≥ ĝ(s)− C (3.14)

for all (t, s) ∈ [0, T )× (0,∞)d, then

u(t, s) ≤ w(t, s) for all (t, s) ∈ [0, T )× (0,∞)d .

Assumption (3.14) is essentially a growth condition. It can be slightly weakened by taking
C to be a sublinear function of s. Here we chose to work with a constant to simplify the
presentation. However, without an assumption of this type, comparison does not hold as
illustrated in the example below.

Example 3.10 Consider the equation (3.4) in one dimension with Γ∗ = 1, Γ∗ = −∞,
σ(s) ≡ σ and

g(s) = (s− log s− 1) 1[1,∞)(s) .

Note that for s > 1, s2g′′(s) = 1. Hence, ĝ = g. Since Γ∗ = −∞, equation (3.4) has the
form

min{ −vt −
1
2
σ2s2 vss ; 1− s2 vss } = 0 , (t, s) ∈ [0, T )× (0,∞) . (3.15)

Let f be the function defined by f(t) = 1 + (T − t) and set

u(t, s) := g (f(t)s) .

(i) First, consider the case σ = 0. Then, it can easily be checked that both functions u and
g are viscosity solutions of (3.15) and the terminal condition (3.11). Hence, comparison
does not hold. Notice that Condition (3.14) is not satisfied.
(ii) For σ > 0, the function u is a viscosity subsolution of (3.15) and (3.11). The Black–
Scholes solution

w(t, s) = E [g(St,s(T )] .

solves (3.15) and (3.11). Moreover, clearly w(t, s) ≤ s and, for t < T and sufficiently large
s, we have s < u(t, s). This provides another counterexample to comparison.

Remark 3.11 Consider the Black–Scholes prices

vBS(t, s) = E [g(St,s(T ))] and v̂BS(t, s) = E [ĝ(St,s(T ))]

corresponding to g and ĝ, respectively. Obviously, vBS ≤ v̂BS, and vBS(t, s) < v̂BS(t, s)
if P [g(St,s(T )) < ĝ(St,s(T ))] > 0. Note that v̂BS(T, .) = ĝ. Also, Lv̂BS(t, s) = 0, which
implies

F̂ (s, v̂BS
t (t, s), D2v̂BS(t, s)) ≤ L(s, v̂BS

t (t, s), D2v̂BS(t, s)) = 0
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for all (t, s) ∈ [0, T )× (0,∞)d. Hence, v̂BS is a viscosity subsolution of (3.4) and (3.12). If
(3.8) or (3.9) holds, then it can also be shown that there exists a constant C ≥ 0 such that

v̂BS(t, s) ≤ ĝ(s) + C for all (t, s) ∈ [0, T )× (0,∞)d .

Hence, it follows from Proposition 3.9 that

v̂BS(t, s) ≤ v(t, s) for all (t, s) ∈ [0, T )× (0,∞)d .

However, if the class of trading strategies is larger than At,s, it can happen that v ≤ vBS

and the Theorems 3.6 and 3.7 are no longer valid. For instance, it follows from Lemma A.3
of [13] that if the number of jumps N in the definition (2.4) is only required to be finite but
not bounded, then for every ε > 0, g(St,s(T )) can be super-replicated with initial capital
vBS(t, s) + ε and a strategy of the form (2.4) with α = 0 and γ = 0. Theorem 4.4 of [1]
shows that if ‖α‖β,∞

t,s is not required to be finite, then for every ε > 0, g(St,s(T )) can be
super-replicated with initial capital vBS(t, s) + ε and a strategy of the form (2.4) without
jumps and with γ = 0.

4 Viscosity subsolution property

We here prove the subsolution property for a convenient upper semicontinuous majorant v
of v. It will follow from the results in Sections 5, 6 and 7 that v = v if either (3.8) or (3.9)
is satisfied.

4.1 The function v

For ν = ((τn, yn)n≥0, α, γ) ∈ At,s, we define

‖ν‖β,∞
t,s := max

{
‖N‖L∞ ; ‖Y ‖β,∞

t,s ; ‖α‖β,∞
t,s ; ‖γ‖β,∞

t,s ; max
i,j

∥∥γ1
ij

∥∥β,∞
t,s

; max
i,j

∥∥γ2
ij

∥∥β,∞
t,s

}
.

To define v, we consider for every M > 0, the set

AM
t,s :=

{
ν ∈ At,s : ‖ν‖β,∞

t,s ≤M
}
,

and we introduce the associated stochastic control problem

vM (t, s) := inf
{
x ∈ R : Xν

t,s,x(T ) ≥ g (St,s(T )) for some ν ∈ AM
t,s

}
. (4.1)

Clearly, we have

At,s =
⋃

M>0

AM
t,s , and therefore, v(t, s) = inf

M>0
vM (t, s) .

The function v is defined by

v(t, s) := inf
M>0

(vM )∗(t, s) , (t, s) ∈ [0, T ]× [0,∞)d .

Since v is an infimum of upper semicontinuous functions, it is upper semicontinuous as well,
and therefore, v ≥ v∗.
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4.2 Partial dynamic programming principle

Lemma 4.1 Let t ∈ [0, T ), s ∈ (0,∞)d, x ∈ R and θ a [t, T ]-valued FW -stopping time. Let
M1,M2 > 0 and ν ∈ AM1

t,s , such that

Xν
t,s,x(θ) > vM2 (θ, St,s(θ)) .

Then there exists a control ν̂ ∈ AM1+M2
t,s such that

X ν̂
t,s,x(T ) ≥ g (St,s(T )) .

Proof. Set (ς, ξ) := (St,s(θ), Xν
t,s,x(θ)). It can be deduced from the definition of the

control problem (4.1) and a measurable selection argument, that there exists a control
ν̃ ∈ AM2

θ,ς,ξ such that
X ν̃

θ,ς,ξ(T ) ≥ g (Sθ,ς(T )) . (4.2)

This step is not trivial. For more details we refer the reader to [17]. Next, let Ŷ be given
by

Ŷ (r) := 1{t≤r<θ}Y
ν
t,s(r) + 1{θ≤r≤T}Y

ν̃
θ,ς(r)

and note that the corresponding control ν̂ is in AM1+M2
t,s . It follows from (4.2) that

X ν̂
t,s,x(T ) = X ν̃

θ,ς,ξ(T ) ≥ g (Sθ,ς(T )) = g (St,s(T )) ,

which proves the lemma. 2

4.3 Proof of the viscosity subsolution property

Theorem 4.2 If g satisfies (3.6), then the function v is a viscosity subsolution of the
equation

F̂
(
s, vt(t, s), D2v(t, s)

)
= 0 on [0, T )× (0,∞)d.

Proof. By (2.8) and assumption (3.6), 0 ≤ v(t, s) ≤ G(s) for all (t, s) ∈ [0, T ) × (0,∞)d.
In particular, v is finite. Let (t0, s0) ∈ [0, T ) × (0,∞)d and ϕ ∈ C∞([0, T ] × [0,∞)d) such
that

0 = (v − ϕ)(t0, s0) > (v − ϕ)(t, s) for all (t, s) 6= (t0, s0) ,

Assume that for some matrix B ∈ Sd
+,

l(t0, s0) := −Lϕ(t0, s0)−
1
2
Tr[σT (s0) diag [s]B diag [s]σ(s0)] > 0 ,

and
h(t0, s0) := diag [s0]

(
D2ϕ(t0, s0) +B

)
diag [s0] ∈ int(K) .

In the following steps we will obtain a contradiction.
1. Observe that the functions l and h inherit the smoothness of ϕ. Consider the following
neighborhood of (t0, s0):

N :=
{

(t, s) ∈ [0, T )× (0,∞)d ∩B1(t0, s0) : l(t, s) > 0 and h(t, s) ∈ int(K)
}
,
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where B1(t0, s0) is the closed unit ball in Rd+1 around (t0, s0). Choose a constant M1 ≥ 2
such that for each fixed pair (t̂, ŝ) ∈ N , all the functions

Dϕ(t, s) +B(s− ŝ) , LDϕ(t, s) , D2ϕ(t, s) +B

max
ij

|LD2
ijϕ(t, s)| , max

ij
|(DD2

ijϕ(t, s))T diag [s]σ(s)|

are bounded by M1 on N . By definition, v = infM>0(vM )∗. Therefore, it can be deduced
from the fact that (t0, s0) is a strict maximizer of v − ϕ, ∂N is compact and (vM )∗ − ϕ is
upper semicontinuous for all M , that there exists an η > 0 and an M2 > 0 such that

(vM2)∗(t, s) ≤ ϕ(t, s)− 4η for all (t, s) ∈ ∂N .

2. Let M3 := M1 +M2. There exists a (t̂, ŝ) ∈ N such that

vM3(t̂, ŝ) ≥ (vM3)∗(t0, s0)− η ≥ v(t0, s0)− η = ϕ(t0, s0)− η ≥ ϕ(t̂, ŝ)− 2η . (4.3)

We set Ŝ := St̂,ŝ and consider the stopping time

θ := inf
{
t ≥ t̂ : (t, Ŝ(t)) 6∈ N

}
.

Then, θ > t̂ and (θ, Ŝ(θ)) ∈ ∂N because the process Ŝ is almost surely continuous. There-
fore,

(vM2)∗(θ, Ŝ(θ)) ≤ ϕ(θ, Ŝ(θ))− 4η . (4.4)

3. Set
(τ̂0, τ̂1, τ̂2) = (t̂, θ, T ) , ŷ0 := Dϕ(t̂, ŝ) , ŷ1 := 0 ,

α̂(r) := 1{t̂≤r<θ}LDϕ(r, Ŝ(r)) and γ̂(r) := 1{t̂≤r<θ}(D
2ϕ(r, Ŝ(r)) +B) .

By our choice of M1, the corresponding control ν̂ is in AM1

t̂,ŝ
4. Consider the initial capital

x̂ := vM3(t̂, ŝ)− η , (4.5)

and denote (X̂, Ŷ ) :=
(
X ν̂

t̂,ŝ,x̂
, Y ν̂

t̂,ŝ

)
. Then,

X̂(θ)− vM2

(
θ, Ŝ(θ)

)
= vM3(t̂, ŝ)− η +

∫ θ

t̂
Ŷ (r)TdŜ(r)− vM2

(
θ, Ŝ(θ)

)
≥ ϕ(t̂, ŝ)− 3η +

∫ θ

t̂
Ŷ (r)TdŜ(r)− vM2

(
θ, Ŝ(θ)

)
by (4.3). Using (4.4) and Itô’s lemma, we see that

X̂(θ)− vM2

(
θ, Ŝ(θ)

)
≥ ϕ(t̂, ŝ)− 3η +

∫ θ

t̂
Ŷ (r)TdŜ(r)− ϕ

(
θ, Ŝ(θ)

)
+ 4η

= −
∫ θ

t̂
Lϕ(r, Ŝ(r))dr +

∫ θ

t̂

(∫ r

t̂
BdŜ(u)

)T

dŜ(r) + η

=
∫ θ

t̂
l(r, Ŝ(r))dr +

1
2
(Ŝ(θ)− ŝ)TB(Ŝ(θ)− ŝ) + η .
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Since B ∈ Sd
+, this provides

X̂(θ)− vM2(θ, Ŝ(θ)) ≥
∫ θ

t̂
l(r, Ŝ(r))dr + η ≥ η ,

by definition of θ as the first exit time from N . Hence, it follows from Lemma 4.1 that
vM3(t̂, ŝ) ≤ x̂, contradicting (4.5). 2

5 Viscosity supersolution property

In this section, we prove that a convenient lower semicontinuous function v ≤ v is a viscosity
supersolution of the DPE (3.4). It will follow from results in the next sections that v = v

if (3.8) or (3.9) holds.

5.1 A weak formulation of the super-replication problem

For technical reasons, we here also consider controls that are not necessarily adapted to
the filtration generated by the Brownian motion driving the price process S. Let W̃ be
a Brownian motion on a filtered probability space (Ω̃, F̃ , F̃ =

{
F̃(t) , t ∈ [0, T ]

}
, P̃ ) that

satisfies the usual conditions.
For all (t, s) ∈ [0, T ] × (0,∞)d and M > 0, we define S̃t,s and AM

t,s(Ω̃) on (Ω̃, F̃ , F̃, P̃ )
like St,s and AM

t,s are defined on (Ω,F ,FW , P ). For x ∈ R and a control ν̃ ∈ AM
t,s(Ω̃), the

processes Ỹ ν̃
t,s and X̃ ν̃

t,s,x are defined analogously to Y ν
t,s and Xν

t,s,x.
Note that since S̃t,s is the unique strong solution of the SDE (2.1) with driving Brownian

motion W̃ , it is adapted to the filtration FW̃ generated by W̃ . But, the control processes
in AM

t,s(Ω̃) and therefore, Ỹ ν̃
t,s and X̃ ν̃

t,s,x are not necessarily adapted to FW̃ .
For M > 0, we define the relaxed stochastic control problem

vM (t, s) := inf
{
x ∈ R : X̃ ν̃

t,s,x(T ) ≥ g(S̃t,s) for some (Ω̃, F̃ , F̃, P̃ ) and ν̃ ∈ AM
t,s(Ω̃)

}
,

and the functions

ṽ(t, s) := inf
M>0

vM (t, s) , (t, s) ∈ [0, T )× (0,∞)d ,

and
v(t, s) := ṽ∗(t, s) , (t, s) ∈ [0, T ]× [0,∞)d .

By definition, v is lower semicontinuous, and obviously, v(t, s) ≤ v(t, s) on [0, T )× (0,∞)d.

5.2 Partial dynamic programming principle

Lemma 5.1 Let W̃ be a d-dimensional Brownian motion on a filtered probability space
(Ω̃, F̃ , F̃ =

{
F̃(t) , t ∈ [0, T ]

}
, P̃ ) that satisfies the usual conditions. Let (t, s) ∈ [0, T ) ×

(0,∞)d, x ∈ R, M > 0 and ν̃ ∈ AM
t,s(Ω̃) such that

X̃ ν̃
t,s,x(T ) ≥ g(S̃t,s(T )) . (5.1)

Then, for every [t, T ]-valued F̃-stopping time θ,

X̃ ν̃
t,s,x(θ) ≥ vM

(
θ, S̃t,s(θ)

)
.
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Proof. Let

(ς, ξ) :=
(
S̃t,s, X̃

ν̃
t,s,x

)
(θ) ,

and denote by µ the probability measure P̃ ◦ (θ, ς, ξ)−1 on [t, T ]×Rd+1. Since X̃ ν̃
t,s,x(T ) =

X̃ ν̃
θ,ς,ξ(T ) and S̃t,s(T ) = S̃θ,ς(T ) , it follows from (5.1) that

1 = P̃
[
X̃ ν̃

t,s,x(T ) ≥ g
(
S̃t,s(T )

)]
= P̃

[
X̃ ν̃

θ,ς,ξ(T ) ≥ g
(
S̃θ,ς(T )

)]
=

∫
[t,T ]×Rd+1

P̃
[
X̃ ν̃

θ,ς,ξ(T ) ≥ g
(
S̃θ,ς(T )

)
| (θ, ς, ξ) = (t′, s′, x′)

]
dµ(t′, s′, x′)

=
∫

[t,T ]×Rd+1

P̃
[
X̃ ν̃

t′,s′,x′(T ) ≥ g
(
S̃t′,s′(T )

)]
dµ(t′, s′, x′) .

Hence, for µ-almost all (t′, s′, x′) ∈ [t, T ]× Rd+1, the control ν̃ satisfies

P̃
[
X̃ ν̃

t′,s′,x′(T ) ≥ g
(
S̃t′,s′(T )

)]
= 1 .

Now, observe that the control corresponding to the restricted strategy Ỹ ν̃
t,s|[t′,T ] belongs to

AM
t′,s′(Ω̃). Therefore, we can conclude that for µ-almost all (t′, s′, x′) ∈ [t, T ]× Rd+1,

x′ ≥ vM (t′, s′) ,

which shows that X̃ ν̃
t,s,x(θ) ≥ vM (θ, S̃t,s(θ)). 2

5.3 Properties of vM

Lemma 5.2 Assume that g satisfies (3.6) for a constant c∗ > 0. Then, for all M ≥ c∗,
vM is a finite, lower semicontinuous function and existence holds for the problem vM .

Proof. For all M ≥ c∗, vM (t, s) is dominated by the function G(s) from (3.6). Together
with (2.8), this shows that vM is finite.

Next, we show that for all M ≥ c∗, existence holds for vM . So, fix M ≥ c∗, (t, s) ∈
[0, T )× (0,∞)d and set

x := vM (t, s) , xk := x+
1
k
, k ≥ 1 .

By definition of the problem vM , there exists for all k ≥ 1, a d-dimensional Brownian motion
W k on a filtered probability space (Ωk,Fk,Fk, P k) that satisfies the usual conditions and
a control νk ∈ AM

t,s(Ω
k) such that

Xνk

t,s,xk
(T ) ≥ g(Sk

t,s(T )) . (5.2)

By Lemma 5.3 below, there exists a d-dimensional Brownian motion W̃ on a filtered prob-
ability space (Ω̃, F̃ , F̃, P̃ ) that satisfies the usual conditions and a control ν̃ ∈ AM

t,s(Ω̃)
such that, possibly after passing to a subsequence, (Sk

t,s, X
νk

t,s,xk
)k≥1 converges weakly to

(S̃t,s, X
ν̃
t,s,x). Therefore, it follows from (5.2) that

X̃ ν̃
t,s,x(T ) ≥ g(S̃t,s(T )) .
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To show that v is lower semicontinuous, we let (tk, sk)k≥1 be a sequence converging to (t, s),
and assume that

xk := vM (tk, sk) → x for some x ∈ R .

Again, it can be shown that there exists a d-dimensional Brownian motion W̃ on a filtered
probability space (Ω̃, F̃ , F̃, P̃ ) that satisfies the usual conditions and a control ν̃ ∈ AM

t,s(Ω̃)
such that

X̃ ν̃
t,s,x(T ) ≥ g(S̃t,s(T )) .

This shows that x ≥ vM (t, s). Hence, vM is lower semicontinuous. 2

Lemma 5.3 Let x ≥ 0 and M > 0. For every k ≥ 1, let W k be a d-dimensional Brownian
motion on a filtered probability space (Ωk,Fk,Fk, P k) that satisfies the usual conditions
and νk a control in AM

t,s(Ω
k). Then there exists a d-dimensional Brownian motion W̃

on a filtered probability space (Ω̃, F̃ , F̃, P̃ ) that satisfies the usual conditions and a control
ν̃ ∈ AM

t,s(Ω̃) such that, possibly after passing to a subsequence, (Sk
t,s, X

νk

t,s,x)k≥1 converges
weakly to (S̃t,s, X̃

ν̃
t,s,x).

Proof. For the sake of notational simplicity we assume that d = 1. The case d > 1 works
analogously. Let W ′ be a one-dimensional Brownian motion on a filtered probability space
(Ω′,F ′,F′, P ′) that satisfies the usual conditions and ν a control in AM

t,s(Ω
′). Recall that ν

is specified by the processes

M−1∑
n=0

yn1[τn,τn+1) , α ,
M−1∑
n=0

zn1[τn,τn+1) , γ
1 and γ2

Hence, we can identify ν with the process(∫ .

t

M−1∑
n=0

yn1[τn,τn+1)(u)du ,
∫ .

t
α(u)du ,

∫ .

t

M−1∑
n=0

zn1[τn,τn+1)(u)du ,
∫ .

t
γ1(u)du ,

∫ .

t
γ2(u)du

)

and view it as a random variable with values in (C[t, T ])5, where C[t, T ] denotes the space
of continuous functions on [t, T ] endowed with the uniform topology. Then, it follows from
Proposition XIII.1.5 in [14] that the sequence (νk)k≥1 is tight, and it can be shown along
the lines of the proof of Theorem 7.10 in [12] that there exists a Brownian motion W̃

on a filtered probability space (Ω̃, F̃ , F̃, P̃ ) that satisfies the usual conditions and a control
ν̃ ∈ AM

t,s(Ω̃) such that, possibly after passing to a subsequence, (νk, Sk
t,s, X

νk
t,s,x)k≥1 converges

weakly to (ν̃, S̃t,s, X̃
ν̃
t,s,x). 2

5.4 Proof of the viscosity supersolution property

Theorem 5.4 Assume that g satisfies (3.6) for a constant c∗ > 0. Then for all M ≥ c∗,
vM is a viscosity supersolution of the equation

F̂
(
s, vt(t, s), D2v(t, s)

)
= 0 on [0, T )× (0,∞)d .
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Proof. Fix an M ≥ c∗. By Lemma 5.2, vM is finite and lower semicontinuous for all
M ≥ c∗. Consider a (t0, s0) ∈ [0, T )×(0,∞)d together with a test function ϕ ∈ C∞([0, T ]×
[0,∞)d) such that

0 = (vM − ϕ)(t0, s0) = min
(t,s)∈[0,T ]×[0,∞)d

(vM − ϕ)(t, s) .

The proof is complete if we can show that there exists a B ∈ Sd
+ such that

−Lϕ(t0, s0)−
1
2
Tr
[
σT (s0)diag [s0]B diag [s0]σ(s0)

]
≥ 0,

and
diag [s0]

(
D2ϕ(t0, s0) +B

)
diag [s0] ∈ K .

1. Set x0 := vM (t0, s0). By Lemma 5.2, there exists a d-dimensional Brownian motion
W̃ on a filtered probability space (Ω̃, F̃ , F̃, P̃ ) satisfying the usual conditions and a control
ν̃ ∈ AM

t0,s0
(Ω̃) such that

X̃ ν̃
t0,s0,x0

(T ) ≥ g(S̃t0,s0(T )) .

For the rest of the proof we denote

(S̃, Ỹ , X̃) = (S̃t0,s0 , Ỹ
ν̃
t0,s0

, X̃ ν̃
t0,s0,x0

) .

Let τ̃1 be the first jump time after t0 appearing in the control ν̃ and define

θ := τ̃1 ∧ inf
{
r > t0 : S̃(r) /∈ s0 eB1(0)

}
,

where B1(0) is the closed unit ball in Rd around 0 and the exponential and product are
taken component-wise. For all η > 0, set

θη := θ ∧ (t0 + η) ,

and notice that θη > t0 P̃ -almost surely. By the partial dynamic programming principle of
Lemma 5.1,

X̃ (θη) ≥ vM
(
θη, S̃(θη)

)
. (5.3)

Since vM ≥ ϕ, it follows from (5.3) that

x0 +
∫ θη

t0

Ỹ (r)T S̃(r)− ϕ
(
θη, S̃(θη)

)
≥ 0 .

By twice applying Itô’s lemma, it follows that∫ θη

t0

l(r)dr +
∫ θη

t0

(
c+

∫ r

t0

a(u)du+
∫ r

t0

b(u)dS̃(u)
)T

dS̃(r) ≥ 0 , (5.4)

where

l(r) := −Lϕ
(
r ∧ θ, S̃(r ∧ θ)

)
a(r) := α̃(r ∧ θ)− L(Dϕ)

(
r ∧ θ, S̃(r ∧ θ)

)
b(r) := γ̃(r ∧ θ)−D2ϕ

(
r ∧ θ, S̃(r ∧ θ)

)
.
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and

c := ỹ0 −Dϕ(t0, s0) .

Note that, by our choice of the stopping time θ, the processes l, a and b are bounded.
Hence, there exists a constant C1 > 0 such that for all η > 0,∣∣∣∣∫ θη

t0

l(r)dr
∣∣∣∣ ≤ C1 η . (5.5)

Moreover, the process

m(r) := 1{r<θ}diag
[
S̃(r)

]
σ(S̃(r)) , r ∈ [t0, T ] ,

satisfies the continuity assumption (A.3) of Proposition A.3 at t0 for ε = 0. Therefore, it
follows from Proposition A.3 that for every constant ε > 0, almost surely,

lim
η↘0

η−3/2+ε

∫ θη

t0

(∫ r

t0

a(u)du
)T

dS̃(r)

= lim
η↘0

η−3/2+ε

∫ t0+η

t0

(∫ r

t0

a(u)du
)T

m(r)dW̃ (r) = 0 . (5.6)

It can easily be checked that S̃ is almost surely Hölder-continuous of order 1/3. Hence,
the process m satisfies the continuity assumption (A.1) of Theorem A.1 for ε = 2/3, and it
follows from Theorem A.1.a that there exists a constant C2 > 0 such that

lim sup
η↘0

1
η log log 1

η

∣∣∣∣∣
∫ θη

t0

(∫ r

t0

b(u)dS̃(u)
)T

dS̃(r)

∣∣∣∣∣
= lim sup

η↘0

1
η log log 1

η

∣∣∣∣∣
∫ t0+η

t0

(∫ r

t0

b(u)m(u)dW̃ (u)
)T

m(r)dW̃ (r)

∣∣∣∣∣ ≤ C2 . (5.7)

2. By the Dambis–Dubins-Schwarz Theorem (see e.g. Theorem V.I.6 in [14]), there exists
a Brownian motion Z such that∫ θη

t0

cT dS̃(r) =
∫ θη

t0

cT m(r)dW̃ (r) = Z

(∫ θη

t0

∣∣cTm(r)
∣∣2 dr) .

Hence, it follows from (5.4), (5.5), (5.6), (5.7) and the law of the iterated logarithm for
Brownian motion (see e.g. Theorem II.1.9 in [14]) that cTm(t0) = 0, which by our assump-
tion that σ(s0) is invertible, implies

c = 0 . (5.8)

3. By (5.8), we can rewrite (5.4) as∫ θη

t0

l(r)dr +
∫ θη

t0

(∫ r

t0

a(u)du+
∫ r

t0

b(u)dS̃(u)
)T

dS̃(r) ≥ 0 . (5.9)
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It follows from (5.9), (5.5) and (5.6) that

lim inf
η↘0

1
η log log 1

η

∫ θη

t0

(∫ r

t0

b(u)dS̃(u)
)T

dS̃(r) ≥ 0 . (5.10)

Since b is right-continuous, it follows from (5.10) and Theorem A.1.b that

m(t0)T b(t0)m(t0) ∈ Sd
+ . (5.11)

Since σ(s0) is invertible, this implies that b(t0) ∈ Sd
+, and it follows from the gamma

constraint (2.6) that

diag [s0] (D2ϕ(t0, s0) + b(t0))diag [s0] ∈ K .

By the boundedness and continuity of the process l, we obtain from (5.9) and (5.6) that

−Lϕ(t0, s0) = l(t0) ≥ lim sup
η↘0

1
η

∫ θη

t0

(∫ r

t0

−b(u)dS̃(u)
)T

dS̃(r) . (5.12)

Since b is of the form (2.5), it satisfies the continuity assumption (A.2) of Theorem A.2.
Hence, we get from (5.11) and Theorem A.2 that

lim sup
η↘0

1
η

∫ θη

t0

(∫ r

t0

−b(u)dS̃(u)
)T

dS̃(r)

= lim sup
η↘0

1
η

∫ t0+η

t0

(∫ r

t0

−b(u)m(u)dW̃ (u)
)T

m(r)dW̃ (r)

=
1
2
Tr
[
m(t0)T b(t0)m(t0)

]
=

1
2
Tr
[
σ(s0)T diag [s0] b(t0)diag [s0]σ(s0)

]
.

Together with (5.12), this shows that

−Lϕ(t0, s0)−
1
2
Tr
[
σ(s0)T diag [s0] b(t0)diag [s0]σ(s0)

]
≥ 0 ,

which completes the proof. 2

Corollary 5.5 If g satisfies (3.6), then v is a viscosity supersolution of the equation

F̂
(
s, vt(t, s), D2v(t, s)

)
= 0 on [0, T )× (0,∞)d .

Proof. The corollary can be deduced from Theorem 5.4 with the following argument
borrowed from Remark 6.3 of [5], see also Proposition 2.3 of [19].

Let (t0, s0) ∈ [0, T )× (0,∞)d and ϕ ∈ C∞([0, T ]× [0,∞)d) such that

0 = (v − ϕ)(t0, s0) < (v − ϕ)(t, s) for all (t, s) 6= (t0, s0) .

Let B1(0) be the closed unit ball in Rd and denote

Q := [0,
t0 + T

2
]× s0e

B1(0) ,
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where the product and exponential are take component-wise. By definition of v, there exists
a sequence (tk, sk)k≥1 in Q such that

(tk, sk) → (t0, s0)

and
vk(tk, sk) → v(t0, s0) .

For all k ≥ 1, let (tk, sk) be a minimizer of vk − ϕ on Q. Then, necessarily,

(tk, sk) → (t0, s0) . (5.13)

Indeed, assume that there exists a subsequence (tkj
, skj

)j≥1 of (tk, sk)k≥1 that converges to
a point (t, s) ∈ Q. Then,

0 = (v − ϕ)(t0, s0)

= lim
j→∞

(vkj − ϕ)(tkj
, skj

)

≥ lim inf
j→∞

(vkj − ϕ)(tkj
, skj

)

≥ (v − ϕ)(t, s) .

Hence, (t, s) = (t0, s0), and (5.13) follows. By (5.13), there exists a k0 ≥ 1 such that (tk, sk)
is a local minimizer of vk − ϕ for all k ≥ k0. Hence, Theorem 5.4 implies that

F̂ (sk, ϕt(tk, sk), D
2ϕ(tk, sk)) ≥ 0 , for all k ≥ k0 .

By Lemma 3.4, F̂ is continuous. Therefore, by sending k to ∞, we get

F̂ (s0, ϕt(t0, s0), D2ϕ(t0, s0)) ≥ 0 ,

which proves the corollary. 2

6 Terminal condition

In the previous sections, we proved that if g satisfies (3.6), then v is a viscosity subsolution
and v a viscosity supersolution of equation (3.4). Here, our objective is to show that if one
of the conditions (3.8) or (3.9) holds, then

V := v(T, .) and V := v(T, .)

satisfy the terminal condition
V = V = ĝ , (6.1)

and there exists a constant C such that for all (t, s) ∈ [0, T )× (0,∞)d,

v(t, s) ≥ ĝ(s)− C and v(t, s) ≤ ĝ(s) + C . (6.2)

We first prove the lower bound V ≥ ĝ and then the upper bound V ≤ ĝ. The lower
bound can be proved under (3.6). For the proof of the upper bound we need that either
(3.8) or (3.9) is satisfied, and the proof is different in the two cases. The inequalities (6.2)
are trivial under (3.8) and can be deduced more or less directly from (6.1) under (3.9).
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6.1 Lower bound under (3.6)

Proposition 6.1 If g is lower semicontinuous and satisfies (3.6), then V is a viscosity
supersolution of (3.5). In particular, V ≥ ĝ.

Proof. 1. Let s0 ∈ (0,∞). Assumption (3.6) insures that

v(t, s) ≤ ṽ(t, s) ≤ v(t, s) ≤ G(s) for all (t, s) ∈ [0, T )× (0,∞)d ,

and by the definition of v, there exists a sequence (tk, sk)k≥1 in [0, T )× (0,∞)d converging
to (T, s0) such that

ṽ(tk, sk) → v(T, s0) = V (s0) .

There exists for all k ≥ 1, a filtered probability space (Ωk,Fk,Fk, P k) satisfying the usual
conditions with a d-dimensional Brownian motion W k and a control νk ∈

⋃
M>0AM

t,s(Ω
k)

such that
Xνk

tk,sk,xk
(T ) ≥ g(Sk

tk,sk
(T )) ,

where xk := ṽ(tk, sk) + 1/k. By (2.8),

xk = Ek
[
Xνk

tk,sk,xk
(T )
]
≥ Ek

[
g(Sk

tk,sk
(T ))

]
= E [g(Stk,sk

(T ))] ,

and obviously,
Stk,sk

(T ) → s0 almost surely. (6.3)

Since, g is lower semicontinuous, it follows from (6.3) that

lim inf
k→∞

g(Stk,sk
(T )) ≥ g(s0) .

Therefore, Fatou’s lemma implies

V (s0) = lim
k→∞

xk ≥ lim inf
k→∞

E [g(Stk,sk
(T ))] ≥ g(s0) .

2. Let (s0, ψ) ∈ (0,∞)d × C[0,∞)d be such that

0 = (V − ψ) (s0) = min
s∈[0,∞)d

(V − ψ) (s) .

Choose a sequence (tk, sk)k≥1 which converges to (T, s0), such that tk < T and

lim
k→∞

ṽ(tk, sk) = V (s0) .

For all k ≥ 1, we define the function wk on [tk, T ] × [0,∞)d as the lower semicontinuous
envelope of the function ṽ restricted to [tk, T ) × (0,∞)d. Then wk = ṽ∗ = v on (tk, T ] ×
[0,∞)d but we do not know whether wk is equal to v on {tk} × [0,∞)d. However, we
can replace 0 by tk in Corollary 5.5 and deduce that wk is a viscosity supersolution of the
equation (3.4) on [tk, T )× (0,∞)d. Define the auxiliary test function

ϕk(t, s) := ψ(s)− |s− s0|4 +
T − t

T − tk
.
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and denote by B1(0) the closed unit ball in Rd around 0. For all k ≥ 1, let (tk, sk) be a
minimizer of wk − ϕk on [tk, T ]× s0e

B1(0). Note that

(wk − ϕk)(tk, sk) = (wk − ψ)(tk, sk) + |sk − s0|4 − 1 → −1 as k →∞ .

Hence, for k large enough,
(wk − ϕk)(tk, sk) < 0 .

On the other hand,

(wk − ϕk)(T, s) = V (s)− ψ(s) + |s− s0|4 ≥ 0 for all s ∈ (0,∞)d .

Hence, tk ∈ [tk, T ) for large enough k. Now, let s∗ ∈ (0,∞)d such that, possibly after
passing to a subsequence, sk → s∗. Then,

|s∗ − s0|4 = lim
k→∞

|sk − s0|4

≤ lim inf
k→∞

{
(wk − ϕk)(tk, sk)− (wk − ϕk)(tk, sk) + |sk − s0|4

}
= lim inf

k→∞

{
(wk − ψ)(tk, sk)− (wk − ψ)(tk, sk) +

T − tk
T − tk

+ |sk − s0|4 −
T − tk
T − tk

}
≤ lim inf

k→∞

{
(V − ψ)(s0)− (V − ψ)(s∗)− tk − tk

T − tk

}
≤ 0 .

This shows that (tk, sk) → (T, s0) as k → ∞. Since wk is a viscosity supersolution of
F̂ (s, vt, D

2v) = 0 on [tk, T )× (0,∞)d, we have

F̂ (sk, ϕ
k
t (tk, sk), D

2ϕk(tk, sk)) ≥ 0 ,

and in particular,

Ĥ
(
diag [sk] (D

2ψ(sk)−D2 |sk − s0|4)diag [sk]
)
≥ 0 ,

which, by continuity of Ĥ, implies

Ĥ
(
diag [s0]D2ψ(s0)diag [s0]

)
≥ 0 .

Hence, V is a viscosity supersolution of (3.5), and therefore, V ≥ ĝ. 2

The next result provides more detailed information about the lower bound if the convex
set K is bounded from below by a matrix of the form −a∗Id, where a∗ is a constant and Id
the d× d-identity matrix.

Corollary 6.2 Assume g satisfies (3.6) and for some constant a∗, A ≥ −a∗Id for every
A ∈ K. Then, there exists a constant C such that

v(t, s) ≥ ĝ(s)− C(T − t) on [0, T )× (0,∞)d .
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Proof. In view of the previous lemma, it suffices to show that there exists a constant C
so that v is a viscosity supersolution of the equation

−vt(t, s) + C = 0 . (6.4)

To prove (6.4), consider (t0, s0) ∈ [0, T ) × (0,∞)d and a test function ϕ ∈ C∞([0, T ] ×
[0,∞)d) so that

0 = (v − ϕ)(t0, s0) = min
(t,s)∈[0,T ]×[0,∞)d

(v − ϕ)(t, s) .

By Corollary 5.5, we have

F̂ ((t0, s0), ϕt(t0, s0), D2ϕ(t0, s0)) ≥ 0 ,

which implies that there exists a B ∈ Sd
+ such that

−ϕt(t0, s0)−
1
2
Tr
[
σ(s0)T diag [s0]

(
D2ϕ(t0, s0) +B

)
diag [s0]σ(s0)

]
≥ −1 (6.5)

and
H
(
diag [s0] (D2ϕ(t0, s0) +B)diag [s0]

)
≥ −1 . (6.6)

It follows from the assumption and (6.6) that

diag [s0] (D2ϕ(t0, s0) +B)diag [s0] ≥ −(a∗ + 1)Id .

Hence, by (6.5),

−ϕt(t0, s0) ≥ −1− 1
2
(a∗ + 1)Tr

[
σ(s0)Tσ(s0)

]
.

Since σ is bounded, this implies that

−ϕt(t0, s0) ≥ −C

for some positive constant C that is independent of (t0, s0). 2

Note that the hypothesis of the previous corollary holds under the assumption (3.9).
Under the assumption (3.8), v(t, s) and ĝ are bounded.

6.2 Upper bound under (3.8)

Note that in the proof of the following proposition we need the continuity of g.

Proposition 6.3 Assume (3.8). Then, V ≤ ĝ.

Proof. We will show that if g satisfies (3.8), then V is a viscosity subsolution of (3.5). On
the other hand, ĝ is a viscosity supersolution of the same equation. Moreover, we assume
that g is bounded. Therefore, V − ĝ is bounded, and we can apply a comparison result
for the equation (3.5), to conclude that V ≤ ĝ (see Remark 7.6). In the remainder of this
proof, we show that V is a viscosity subsolution of (3.5).
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Consider a pair (s0, ψ) ∈ (0,∞)d × C∞([0,∞)d) such that

0 =
(
V − ψ

)
(s0) = max

[0,∞)d

(
V − ψ

)
and

ψ(s0) > g(s0) . (6.7)

For k ≥ 1, set

ϕk(t, s) := ψ(s) + |s− s0|4 + k(T − t) , (t, s) ∈ [0, T ]× [0,∞)d .

Fix B ∈ Sd
+ and assume that there exists a k ≥ 1 such that

F (s, ϕk
t (t, s), D

2ϕk(t, s) +B) > 0 (6.8)

on the set
Q1/k := [T − 1/k, T ]× s0e

B1/k(0) ,

where B1/k(0) is the closed ball of radius 1/k around 0 in Rd and the product and expo-
nential are taken component-wise. Then,

−Lϕk(t, s)− 1
2
Tr
[
σ(s)T diag [s]B diag [s]σ(s)

]
> 0

and
H
(
diag [s]

(
D2ϕk(s) +B

)
diag [s]

)
> 0 ,

for all (t, s) ∈ Q1/k. In the following steps we derive a contradiction to (6.8).
1. There exists a constant M1 ≥ 2 such that for each fixed pair (t̂, ŝ) ∈ Q1/k, all the
functions

Dϕk(t, s) +B(s− ŝ) , LDϕk(t, s) , D2ϕk(t, s) +B

max
ij

|LD2
ijϕ

k(t, s)| , max
ij

|(DD2
ijϕ

k(t, s))T diag [s]σ(s)|

are bounded by M1 on Q1/k.
2. Since g is continuous, it can be deduced from v = infM>0(vM )∗ and (6.7) that there
exist η ∈ (0, 1/k] and M2 > 0 such that

(vM2)∗ ≤ ϕk − 4η

on the parabolic boundary

∂pQη :=
(
[T − η, T ]× ∂

(
s0e

Bη(0)
)
∪
(
{T} × s0e

Bη(0)
))

of the set Qη = [T − η, T ]× s0e
Bη(0).

3. Set M3 := M1 +M2. There exists a (t̂, ŝ) ∈ Qη such that

vM3(t̂, ŝ) ≥ (vM3)∗(T, s0)− η ≥ v(T, s0)− η = ϕk(T, s0)− η ≥ ϕk(t̂, ŝ)− 2η .
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Denote Ŝ := St̂,ŝ and introduce the stopping time

θ := inf
{
r ≥ t̂ | Ŝ(r) ∈ ∂pQη

}
.

Then, (θ, Ŝ(θ)) ∈ ∂pQη because the process Ŝ is almost surely continuous. Therefore,

(vM2)∗(θ, Ŝ(θ)) ≤ ϕk(θ, Ŝ(θ))− 4η .

4. Set
(τ̂0, τ̂1, τ̂2) = (t̂, θ, T ) , ŷ0 := Dϕ(t̂, ŝ) , ŷ1 := 0 ,

α̂(r) := 1{t̂≤r<θ}LDϕ
k(r, Ŝ(r)) and γ̂(r) := 1{t̂≤r<θ}(D

2ϕk(r, Ŝ(r)) +B) .

Then, the corresponding control ν̂ is in AM1

t̂,ŝ
.

5. Consider the initial capital
x̂ := vM3(t̂, ŝ)− η .

Proceeding as in Step 4 of the proof of Theorem 4.2, we obtain that

X ν̂
t̂,ŝ,x̂

(θ) ≥ vM2

(
θ, Ŝ(θ)

)
+ η ,

which is in contradiction to the partial dynamic programming result of Lemma 4.1.
Hence, there exists for all k ≥ 1 a (tk, sk) ∈ Q1/k such that

F
(
sk, ϕ

k
t (tk, sk), D2ϕk(tk, sk) +B

)
≤ 0 ,

and therefore,

min
{
L(sk, ϕ

k
t (tk, sk), D2ϕk(tk, sk) +B) ; H(diag [sk] (D2ϕk(tk, sk) +B)diag [sk])

}
= min

{
k − 1

2
Tr
[
σ(sk)T diag [sk]

(
D2
{
ψ(sk) + |sk − s0|4

}
+B

)
diag [sk]σ(sk)

]
;

H
(
diag [sk]

(
D2
{
ψ(sk) + |sk − s0|4

}
+B

)
diag [sk]

)}
≤ 0 .

This shows that for large enough k,

H
(
diag [sk] (D2

{
ψ(sk) + |sk − s0|4

}
+B)diag [sk]

)
≤ 0 .

It follows that
H(diag [s0] (D2ψ(s0) +B)diag [s0]) ≤ 0 ,

and since B was arbitrary,

Ĥ(diag [s0]D2ψ(s0)diag [s0]) ≤ 0 .

2
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6.3 Upper bound under (3.9)

Proposition 6.4 Assume (3.9). Then there exists a constant C such that

v(t, s) ≤ ĝ(s) + C(T − t), for all (t, s) ∈ [0, T ]× [0,∞)d .

Proof. Fix a (t0, s0) ∈ [0, T ) × (0,∞)d. By Lemma 3.5.b, the function ĝ − U is concave,
where U(s) = −

∑d
j=1 γ∗j log sj . Therefore, there exists a vector z ∈ Rd such that

ĝ(s)− U(s) ≤ ĝ(s0)− U(s0) + zT (s− s0) for all s ∈ (0,∞)d .

Hence, the function
f(s) := ĝ(s0)− U(s0) + U(s) + zT (s− s0)

dominates ĝ. Since 0 ≤ ĝ ≤ G, there exists a C∞-approximation f̃ of f that dominates ĝ
such that f̃(s0) = ĝ(s0), all derivatives of f̃ are bounded and

diag [s]D2f̃(s)diag [s] ∈ K

for all s ∈ (0,∞)d. Now, let the control ν be given by

(τ0, τ1) := (t0, T ) , y0 := Df̃(s0) ,

α(r) := LDf̃ (St0,s0(r)) , γ(r) := D2f̃ (St0,s0(r)) for r ∈ [t0, T ] .

Then, by twice applying Itô’s lemma, we obtain for all x0 ≥ 0,

Xν
t0,s0,x0

(T )− f̃(St0,s0(T ))

= x0 − f̃(s0)−∫ T

t0

1
2
Tr
[
σ(St0,s0(r))

T diag [St0,s0(r)]D
2f̃(St0,s0(r))diag [St0,s0(r)]σ(St0,s0(r))

]
dr

≥ x0 − f̃(s0)−
∫ T

t0

1
2
Tr
[
σT (St0,s0(r)) diag [γ∗]σ(St0,s0(r))

]
dr

≥ x0 − f̃(s0)− C(T − t0) .

for some constant C that does not depend on (t0, s0). For x0 = f̃(s0) + C(T − t0), we get

Xν
t0,s0,x0

(T ) ≥ f̃ (St0,s0(T )) ≥ ĝ (St0,s0(T )) ≥ g (St0,s0(T )) .

Since all the derivatives of f̃ are bounded, there exists a constant M ≥ 1 such that ν ∈
AM

t0,s0
, and therefore,

vM (t0, s0, y0) ≤ x0 = f̃(s0) + C(T − t0) = ĝ(s0) + C(T − t0) .

An inspection of the above argument shows that there exists a neighborhood N of (t0, s0)
and a constant M̂ ≥M such that

vM̂ (t, s) ≤ ĝ(s) + C(T − t) ,

for all (t, s) ∈ N . This implies

v(t, s) ≤ ĝ(s) + C(T − t)

for all (t, s) ∈ [0, T )× (0,∞)d, and the proposition is proved. 2
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7 Comparison result

In this section, we prove the comparison result, Proposition 3.9. Although this comparison
is valid for more general nonlinear equations, we work here with the specific equation under
consideration to simplify the presentation.

Our proof uses standard techniques from the theory of viscosity solutions. We start by
recalling the notion of a strict viscosity supersolution. We will then establish the comparison
result when the viscosity supersolution is strict, and deduce Proposition 3.9 from there.

7.1 Strict viscosity supersolutions

Definition 7.1 For a non-negative constant η, we say that a function w is an η-strict
viscosity supersolution of the equation (3.4) if

F̂
(
s0, ϕt(t0, s0), D2ϕ(t0, s0)

)
> η ,

for all (t0, s0) ∈ [0, T )× (0,∞)d and ϕ ∈ C∞([0, T ]× [0,∞)d) such that

0 = (w∗ − ϕ)(t0, s0) = min
(t,s)∈[0,T ]×[0,∞)d

(w∗ − ϕ)(t, s) .

In Section II.4 in [8], it is shown that an equivalent definition is obtained by allowing
(t0, s0) to be a local instead of a global minimum of w∗ − ϕ.

The first step in the proof of Proposition 3.9 is to find a strict viscosity supersolution of
the equation (3.4).

Lemma 7.2 Assume (3.6). Then, the function

w1(t, s) := (T − t) + c∗ [1 + s1 + . . .+ sd]

is an η1-strict viscosity supersolution of equation (3.4) for some η1 > 0, and w1 ≥ ĝ.

Proof. The inequality w1 ≥ ĝ follows from (3.7). It follows from (2.7) that H(0) > 0, and
therefore,

F̂ (s, w1
t (t, s), D

2w1(t, s)) ≥ F (s, w1
t (t, s), D

2w1(t, s))

= min {1 , H(0)} =: 2η1 > 0 .

2

Lemma 7.3 Let w0 be a lower semicontinuous viscosity supersolution of the equation

F̂
(
s, w0

t (t, s), D
2w0(t, s)

)
= 0 . (7.1)

Furthermore, let w1 be a lower semicontinuous η-strict viscosity supersolution of the equa-
tion (7.1) for some η ≥ 0.

Then, for all µ ∈ (0, 1), the function wµ := (1 − µ)w0 + µw1 is a µη-strict viscosity
supersolution of the equation (7.1).
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Proof. We only need and prove this result for the case where w1 ∈ C2([0, T ) × (0,∞)d).
The general case can be treated as in [2, page 39]. For µ ∈ (0, 1), let (t0, s0) ∈ [0, T )×(0,∞)d

and ϕ ∈ C∞([0, T ]× [0,∞)d) such that

0 = (wµ − ϕ)(t0, s0) = min
(t,s)∈[0,T ]×[0,∞)d

(wµ − ϕ)(t, s) .

Then, (t0, s0) is a minimizer of the difference w0 − ψ, where

ψ := (1− µ)−1
(
ϕ− µ w1

)
.

Therefore,
F̂
(
s0, ψt(t0, s0), D2ψ(t0, s0)

)
≥ 0

because w0 is a viscosity supersolution of (7.1). Note that ϕ = (1 − µ)ψ + µ w1, and by
Lemma 3.3, the function F̂ (s0, ., .) is concave. Therefore,

F̂
(
s0, ϕt(t0, s0), D2ϕ(t0, s0)

)
≥ (1− µ)F̂

(
s0, ψt(t0, s0), D2ψ(t0, s0)

)
+ µF̂

(
s0, w

1
t (t0, s0), D

2w1(t0, s0)
)

> µ η .

2

7.2 Proof of the comparison result

Proposition 7.4 Assume (3.6). Suppose u is an upper semicontinuous viscosity subsolu-
tion of (3.4) and w a lower semicontinuous η-strict viscosity supersolution of (3.4) for some
η > 0. Furthermore, assume that there exists a constant C so that

u(t, s) ≤ ĝ(s) + C and w(t, s) ≥ ĝ(s)− C for all (t, s) ∈ [0, T )× (0,∞)d . (7.2)

Then, u(T, .) ≤ ĝ(.) ≤ w(T, .) implies that u(t, s) ≤ w(t, s) on [0, T )× (0,∞)d.

Before proceeding to the proof of this proposition, let us show how it allows to complete
the proof of the main comparison result.

Proof of Proposition 3.9. We use the technique of the proof of Theorem 2.7 in [2, page
38]. Let u be an upper semicontinuous viscosity subsolution of (3.4) such that

u(T, .) ≤ ĝ(.) and u(t, s) ≤ ĝ(s) + C on [0, T )× (0,∞)d ,

and w a lower semicontinuous viscosity supersolution of (3.4) such that

w(T, .) ≥ ĝ(.) and w(t, s) ≥ ĝ(s)− C on [0, T )× (0,∞)d .

Let w1 be the η1-strict viscosity supersolution of (3.4) defined in Lemma 7.2. Then, it
follows from Lemma 7.3 that

wµ := (1− µ)w + µw1
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is a µη1-strict viscosity supersolution of (3.4) satisfying

wµ(T, s) ≥ ĝ(s) and wµ(t, s) ≥ ĝ(s)− (1− µ)C for all (t, s) ∈ [0, T )× (0,∞)d .

We are then in the context of Proposition 7.4 and can conclude that wµ(t, s) ≥ u(t, s) on
[0, T )× (0,∞)d. The required result follows by sending µ to zero. 2

In preparation of the proof of Proposition 7.4, we provide the following technical condi-
tions satisfied by F̂ .

Lemma 7.5 There exist a positive constant C and a function h : [0,∞] → [0,∞] with
limx→0 h(x) = 0 such that ∣∣∣F̂ (s, p, A)− F̂ (s, p′, A)

∣∣∣ ≤ |p− p′| , (7.3)

F̂ (s, p, A)− F̂ (s, p, A+B) ≤ C Tr[diag [s]Bdiag [s]] , (7.4)

F̂ (s′, α(t− t′), A′)− F̂ (s, α(t− t′), A) ≤ h
(
α|s− s′|2 + |s− s′|

)
, (7.5)

for all (t, s), (t′, s′) ∈ [0, T ) × (0,∞)d, α > 1, p ∈ R, B ∈ Sd
+, and (A,A′) ∈ Sd × Sd

satisfying

−3α

(
Id 0
0 Id

)
≤

(
A 0
0 −A′

)
≤ 3α

(
Id −Id
−Id Id

)
. (7.6)

Proof. These conditions are classical in the theory of viscosity solutions, and are satisfied
by a large class of second order nonlinear partial differential equations, see [5]. The inequal-
ities (7.3) and (7.4) can be verified directly. Inequality (7.5) can be shown as in Example
3.6 of the User’s Guide [5]. 2

Proof of Proposition 7.4. We adapt the general procedure reported in [5].
1. For ε, α > 0, consider the upper semicontinuous function

Φ(ε,α)(t, t′, s, s′) := u(t, s)− w(t′, s′)− ε(l(s) + l(s′))− 1
2
α
(
(t− t′)2 + (s− s′)2

)
,

where

l(s) :=
d∑

j=1

[sj − log sj ] ,

and set
φε(t, s) := Φ(ε,α)(t, t, s, s)

(note that φε is independent of α). In view of (7.2),

φε(t, s) = u(t, s)− w(t, s)− 2εl(s) ≤ 2C − 2εl(s),

which shows that

max
[0,T ]×[0,∞)d

φε(t, s) = φε(tε, sε) for some (tε, sε) ∈ [0, T ]× (0,∞)d .
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In Step 2 below, we will prove that

tεk
= T for some sequence (εk)k≥1 with εk > 0 and εk → 0 . (7.7)

Using this, we arrive at

u(t, s)− w(t, s) = φεk(t, s) + 2 εk l(s)

≤ φεk(T, sεk
) + 2 εk l(s)

= u(T, sεk
)− w(T, sεk

)− 2 εk l(sεk
) + 2 εk l(s)

≤ u(T, sεk
)− w(T, sεk

) + 2 εk l(s)

by the non-negativity of l. Since u(T, .) ≤ w(T, .), this shows that

u(t, s)− w(t, s) ≤ 2 εk l(s) for all (t, s) ∈ [0, T )× (0,∞)d ,

and the required result follows by sending k to infinity.
2. In order to prove (7.7), we assume to the contrary that there is a constant ε > 0 such
that

tε < T for all 0 < ε ≤ ε ,

and we work towards a contradiction.
Set

Φ̂(ε,α)(t, t′, s, s′) := Φε,α(t, t′, s, s′)− 1
2
[(t− tε)2 + (t′ − tε)2]−

1
4
[|s− sε|4 + |s′ − sε|4],

and φ̂ε(t, s) := Φ̂(ε,α)(t, t, s, s). Then, (tε, sε) is a strict maximizer of φ̂ε. By Proposition 3.7
in [5], for every ε ≤ ε, there exists a sequence αk →∞ and local maximizers (tk, t′k, sk, s

′
k)

of Φ̂(ε,αk) satisfying (
tk, t

′
k, sk, s

′
k

)
−→ (tε, tε, sε, sε) as k →∞

and
αk

(
(tk − t′k)

2 + (sk − s′k)
2
)
→ 0 as k →∞ .

In particular, for ε sufficiently small and αk sufficiently large, tk < T and t′k < T . We now
apply Theorem 3.2 in [5] to the sequence of local maxima (tk, t′k, sk, s

′
k) of Φ̂(ε,αk). Then,

for sufficiently large αk, there exist two symmetric matrices Ak, A
′
k ∈ Sd such that,

(Ak, A
′
k) satisfies (7.6) ,(

pk + (tk − tε), qk, Ak + εD2l(sk) +Q(sk − sε)
)
∈ J

2,−
u(tk, sk),(

pk − (t′k − tε), q′k, A
′
k − εD2l(s′k)−Q(s′k − sε)

)
∈ J

2,+
w(t′k, s

′
k) ,

where

pk := αk

(
tk − t′k

)
, Q(z) = 2 z ⊗ z + |z|2Id,

qk := αk(sk − s′k) + (sk − sε)|sk − sε|2 + εDl(sk),

q′k := αk(sk − s′k)− (s′k − sε)|s′k − sε|2 − εDl(s′k).
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Here, J2,+
v(t, s) and J

2,−
v(t, s) denote the closed second order superjet and subjet of the

function v at the point (t, s), see [5] for the definition.
Since u is a viscosity subsolution of (3.4) ,

F̂
(
sk, pk + (tk − tε), Ak + εD2l(sk) +Q(sk − sε)

)
≤ 0.

Also, the positivity of D2l and Q, together with (7.3) and (7.4), imply

F̂ (sk, pk, Ak) ≤ F̂
(
sk, pk + (tk − tε), Ak + εD2l(sk) +Q(sk − sε)

)
+|tk − tε|+ C Tr

(
diag [sk] [εD2l(sk) +Q(sk − sε)]diag [sk]

)
,

≤ |tk − tε|+ Ĉ[ε+ |sk − sε|2|sk|2],

for some constant Ĉ. In the last step we used the fact that diag [s]D2l(s)diag [s] = Id, the
identity matrix.

We proceed as above and use the fact that w is an η-strict viscosity supersolution of (3.4).
The result is,

F̂
(
s′k, pk, A

′
k

)
≥ η − |t′k − tε| − Ĉ[ε+ |s′k − sε|2|s′k|2] .

Combining the last two inequalities, we get

F̂
(
s′k, pk, A

′
k

)
−F̂ (sk, pk, Ak) ≥ η−|tk−tε|−|t′k−tε|−Ĉ[2ε+ |sk−sε|2|sk|2+ |s′k−sε|2|s′k|2].

Therefore,
lim inf
k→∞

[
F̂
(
s′k, pk, A

′
k

)
− F̂ (sk, pk, Ak)

]
≥ η − 2Ĉε . (7.8)

On the other hand, since Ak, A
′
k satisfy (7.6), it follows from (7.5) that

F̂
(
s′k, pk, A

′
k

)
− F̂ (sk, pk, Ak) ≤ h

(
αk[|sk − s′k|2] + |sk − s′k|

)
. (7.9)

Since αk[|sk−s′k|2]+ |sk−s′k| tends to zero as k approaches infinity, (7.9) is in contradiction
to (7.8) for ε < η/(2Ĉ). Hence, (7.7) has to hold. 2

Remark 7.6 Note that, when g is continuous, the above comparison proof also applies to
the equation (3.5):

min{f(s)− g(s) , Ĥ(diag [s]D2f(s)diag [s])} = 0 ,

and then yields that if u is a viscosity subsolution and w is a viscosity supersolution such
that u− w is bounded, then u ≤ w.

Appendix: Small time behavior of double stochastic integrals

We here report results from [4] on the small time path behavior of double stochastic integrals
that are needed in Section 5. In this appendix, {W (t) , t ≥ 0} is a d-dimensional Brownian
motion on a filtered probability space (Ω,F ,F = {F(t) , t ≥ 0} , P ) satisfying the usual
conditions. The filtration F can be bigger than the smallest filtration that satisfies the
usual conditions and contains the filtration generated by W .

For B ∈ Sd, we denote by λ∗(B) the largest eigenvalue of B. Note that λ∗ is a continuous,
and therefore, measurable function from Sd to R.
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Theorem A.1 Let {M(t) , t ≥ 0} be an Rd-valued martingale defined by

M(t) :=
∫ t

0
m(r)dW (r) , t ≥ 0 ,

where {m(t) , t ≥ 0} is a bounded, Md-valued, F-progressively measurable process such that
there exists a random variable ε > 0 so that almost surely,∫ t

0
|m(r)−m(0)|2 dr = O(t1+ε) for t↘ 0 . (A.1)

a) Let {b(t) , t ≥ 0} be a bounded, Md-valued, F-progressively measurable process such that
for all t ≥ 0,

∣∣m(0)T b(t)m(0)
∣∣ ≤ 1. Then

lim sup
t↘0

1
t log log 1

t

∣∣∣∣∣
∫ t

0

(∫ u

0
b(u)dM(u)

)T

dM(r)

∣∣∣∣∣ ≤ 1 .

b) Let B be a bounded, F(0)-measurable, Sd-valued random variable with λ∗(B) ≥ 0. If
{b(t) , t ≥ 0} is a bounded, Sd-valued, F-progressively measurable process such that for all
t ≥ 0,

m(0)T b(t)m(0) ≥ B ,

then

lim sup
t↘0

1
t log log 1

t

∫ t

0

(∫ r

0
b(u)dM(u)

)T

dM(r) ≥ λ∗(B) .

Theorem A.2 Let {M(t) , t ≥ 0} be an Rd-valued martingale defined by

M(t) =
∫ t

0
m(r)dW (r) , t ≥ 0 ,

where {m(t) , t ≥ 0} is a bounded, Md-valued, F-progressively measurable process. Let
{b(t) , t ≥ 0} be a bounded, Md-valued, F-progressively measurable process with b(0) ∈ Sd,
and assume that there exists a random variable ε > 0 such that almost surely,∫ t

0
|m(r)−m(0)|2 dr = O(t1+ε) and

∫ t

0
|b(r)− b(0)|2 dr = O(t1+ε) for t↘ 0 . (A.2)

If m(0)T b(0)m(0) ≤ 0, then

lim sup
t↘0

2
t

∫ t

0

(∫ r

0
b(u)dM(u)

)T

dM(r) = −Tr[m(0)T b(0)m(0)] .

Proposition A.3 Let {a(t) , t ≥ 0} be a bounded, Rd-valued, F-progressively measurable
process and {m(t) , t ≥ 0} an Md-valued, F-progressively measurable process such that∫ t

0
|m(r)|2 dr <∞ for all t ≥ 0 ,
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and there exists a (0, 1]-valued random variable ε such that almost surely,∫ t

0
r2 |m(r)|2 dr = O(t3−ε) for t↘ 0 . (A.3)

Then,

lim
t↘0

t−3/2+ε

∫ t

0

(∫ r

0
a(u)du

)T

m(r)dW (r) = 0 .
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