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Abstract

We study the small time path behavior of double stochastic integrals of the form∫ t

0
(
∫ r

0
b(u)dW (u))T dW (r), where W is a d-dimensional Brownian motion and b an

integrable progressively measurable stochastic process taking values in the set of d× d-
matrices. We prove a law of the iterated logarithm that holds for all bounded progres-
sively measurable b and give additional results under continuity assumptions on b. As
an application, we discuss a stochastic control problem that arises in the study of the
super-replication of a contingent claim under gamma constraints.
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1 Introduction

In this paper we study the small time path behavior of double stochastic integrals of the
form V b(t) =

∫ t
0

(∫ r
0 b(u)dW (u)

)T
dW (r), whereW is a d-dimensional Brownian motion and

b an integrable progressively measurable stochastic process taking values in the set of d×d-
matrices. We first proof a law of the iterated logarithm under general assumptions. Then,
we prove additional results under continuity assumptions on b. The results for V b can easily
be generalized to double stochastic integrals of the form

∫ t
0

(∫ r
0 b(u)dM(u)

)T
dM(r), for

d-dimensional martingales M(t) =
∫ t
0 m(r)dW (r) corresponding to regular enough matrix-

valued processes m.
Results on the small time path behavior of stochastic integrals can be applied to charac-

terize the set of all starting points from which a given controlled continuous-time stochastic
process can be driven into a target set at a pre-specified future time. It is shown in [7]
and [8] that under suitable conditions, the set of initial data from which a controlled state
process can be steered into a target set, satisfies a dynamic programming principle (DPP),
from which a dynamic programming equation (DPE) can be derived. Since in [7] and [8]
the control process is constrained to take values in a subset of Rd, the essential step in
the derivation of the DPE from the DPP is an analysis of the small time behavior of sin-
gle stochastic integrals. In [6], the problem of super-replicating a contingent claim under
gamma constraints is studied. This problem naturally leads to an analysis of the small
time behavior of double stochastic integrals. The results in [6] are obtained under the
assumptions that the contingent claim depends on only one underlying asset and that the
gamma constraint is an upper bound. In this paper, we provide a more extensive study
of the small time path behavior of double stochastic integrals than in [6] and discuss the
super-replication problem under upper and lower gamma constraints.

In Section 2, we establish the notation and discuss basic examples of double stochastic
integrals. The main results of the paper are stated and proved in Section 3, and in Section
4 it is shown how they can be used to find the super-replication price of a contingent
claim in the presence of gamma constraints that are more general than in [6]. We keep the
presentation in Section 4 simple by making strong assumptions. For a general treatment of
the super-replication problem under gamma constraints in a multi-dimensional framework,
we refer the reader to the accompanying paper [2].

2 Problem formulation and notation

Let (Ω,F , P ) be a complete probability space endowed with a filtration F := {F(t) , t ≥ 0}
that satisfies the usual conditions. We are interested in the small time behavior of double
stochastic integrals of the form

V b(t) :=
∫ t

0

(∫ r

0
b(u)dW (u)

)T

dW (r) , t ≥ 0 , (2.1)

where {W (t) , t ≥ 0} is a d-dimensional Brownian motion on the filtered probability space
(Ω,F ,F, P ), {b(t) , t ≥ 0} is an integrable F-progressively measurable stochastic process
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with values in Md, the set of d × d matrices with real components, and T denotes the
transposition of matrices.

In the easy case where {W (t) , t ≥ 0} is a one-dimensional Brownian motion and b(t) = β,
t ≥ 0, for some β ∈ R, we have

V b(t) =
β

2
(
W 2(t)− t

)
, t ≥ 0 .

It follows from the law of the iterated logarithm for Brownian motion that,

lim sup
t↘0

2V β(t)
h(t)

= β for every β ≥ 0 , (2.2)

where
h(t) := 2t log log

1
t
, t > 0 ,

and the equality in (2.2) is, as all other equalities and inequalities between random variables
in this paper, understood in the almost sure sense. On the other hand, it can be deduced
from the fact that almost all paths of a one-dimensional Brownian motion cross zero on all
time intervals (0, ε], ε > 0, that

lim sup
t↘0

2V β(t)
t

= −β for every β < 0 . (2.3)

The purpose of this paper is to derive formulae similar to (2.2) and (2.3) when W =
{W (t) , t ≥ 0} is a d-dimensional Brownian motion and b = {b(t) , t ≥ 0} a progressively
measurable matrix-valued stochastic process. Note that if b(t) = β, t ≥ 0, for some fixed
symmetric matrix β, then

2V b(t) = W (t)TβW (t)− Tr[β]t , t ≥ 0 ,

where Tr denotes the trace of a matrix. It is already not completely obvious if the formulae
(2.2) and (2.3) have analogs in this case and how they look like. In Section 3, we will prove
extensions of (2.2) and (2.3) for processes of the form (2.1).

By Id we denote the d × d identity matrix. For y ∈ Rn, we set |y| := (y2
1 + . . . + y2

n)1/2,
and for β ∈Md,

|β| := sup
y∈Rd,|y|=1

|βy| .

By Sd we denote the collection of all symmetric matrices of Md, and for all β ∈ Sd, we set

λ∗(β) := min{yTβy : y ∈ Rd , |y| = 1}, λ∗(β) := max{yTβy : y ∈ Rd , |y| = 1} .

Note that λ∗ and λ∗ are continuous, and therefore, measurable functions from Sd to R. We
endow the set Sd with the usual partial order

β ≥ α if and only if λ∗(β − α) ≥ 0 ,

and we set Sd
+ :=

{
β ∈ Sd : β ≥ 0

}
.
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3 Small time path behavior of double stochastic integrals

The main results of this section are Theorem 3.1 and Theorem 3.3. The Corollaries 3.7
and 3.8 are consequences of Theorem 3.1 and Theorem 3.3, respectively. Proposition 3.9,
whose proof is straightforward, is given because, along with the Corollaries 3.7 and 3.8, it
is needed in Section 4 of this paper and in the accompanying paper [2].

Theorem 3.1
a) Let {b(t) , t ≥ 0} be an Md-valued, F-progressively measurable process such that |b(t)| ≤ 1
for all t ≥ 0. Then

lim sup
t↘0

|2V b(t)|
h(t)

≤ 1 .

b) Let β ∈ Sd with largest eigenvalue λ∗(β) ≥ 0. If {b(t) , t ≥ 0} is a bounded, Sd-valued,
F-progressively measurable process such that b(t) ≥ β for all t ≥ 0, then

lim sup
t↘0

2V b(t)
h(t)

≥ λ∗(β) .

For the proof of Theorem 3.1 a) we need the following exponential estimate:

Lemma 3.2 Let λ and T be two positive parameters with 2λT < 1 and {b(t) , t ≥ 0} an
Md-valued, F-progressively measurable process such that |b(t)| ≤ 1, for all t ≥ 0. Then

E
[
exp

(
2λV b(T )

)]
≤ E

[
exp

(
2λV Id(T )

)]
.

Proof. We prove this lemma with a standard argument from the theory of stochastic
control. We define the processes

Y b(r) := Y (0) +
∫ r

0
b(u)dW (u) and Zb(t) := Z(0) +

∫ t

0
(Y b(r))TdW (r) , t ≥ 0 ,

where Y (0) ∈ Rd and Z(0) ∈ R are some given initial data. Observe that V b(t) = Zb(t)
when Y (0) = 0 and Z(0) = 0. We split the argument into three steps.
Step 1: It can easily be checked that

E
[
exp

(
2λZId(T )

)∣∣F(t)
]

= f
(
t, Y Id(t), ZId(t)

)
, (3.1)

where, for t ∈ [0, T ], y ∈ Rd and z ∈ R, the function f is given by

f(t, y, z) := E
[
exp

(
2λ
{
z +

∫ T

t
(y +W (r)−W (t))T dW (r)

})]
= exp (2λz) E

[
exp

(
λ{2yTW (T − t) + |W (T − t)|2 − d(T − t)}

)]
= µd/2 exp

[
2λz − dλ(T − t) + 2µλ2(T − t)|y|2

]
,

and µ := [1− 2λ(T − t)]−1. Observe that the function f is strictly convex in y and

D2
yzf(t, y, z) :=

∂2f

∂y∂z
(t, y, z) = g2(t, y, z) y , (3.2)
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where g2 := 8µλ3(T − t) f is a positive function of (t, y, z).

Step 2: For a matrix β ∈ Md, we denote by Lβ the Dynkin operator associated to the
process

(
Y β , Zβ

)
, that is,

Lβ := Dt +
1
2
Tr
[
ββTD2

yy

]
+

1
2
|y|2D2

zz + (βy)TD2
yz ,

where D. and D2
.. denote the gradient and the Hessian operators with respect to the indexed

variables. In this step, we intend to prove that for all t ∈ [0, T ], y ∈ Rd and z ∈ R,

max
β∈Md , |β|≤1

Lβf(t, y, z) = LIdf(t, y, z) = 0 . (3.3)

The second equality can be derived from the fact that the process

f
(
t, Y Id(t), ZId(t)

)
, t ∈ [0, T ] ,

is a martingale, which can easily be seen from (3.1). The first equality follows from the
following two observations: First, note that for each β ∈Md such that |β| ≤ 1, the matrix
Id − ββT is in Sd

+. Therefore, there exists a γ ∈ Sd
+ such that

Id − ββT = γ2 .

Since f is convex in y, the Hessian matrixD2
yyf is also in Sd

+. It follows that γD2
yyf(t, x, y)γ ∈

Sd
+, and therefore,

Tr[D2
yyf(t, x, y)]− Tr[ββTD2

yyf(t, x, y)] = Tr[(Id − ββT )D2
yyf(t, x, y)]

= Tr[γD2
yyf(t, x, y)γ] ≥ 0 . (3.4)

Secondly, it follows from (3.2) and the Cauchy-Schwartz inequality that, for all β ∈ Md

such that |β| ≤ 1,

(βy)TD2
yzf(t, y, z) = g2(t, y, z)(βy)T y ≤ g2(t, y, z)|y|2 = yTD2

yzf(t, y, z) . (3.5)

Together, (3.4) and (3.5) imply the first equality in (3.3).

Step 3: Let {b(t) , t ≥ 0} be an Md-valued, F-progressively measurable process such that
|b(t)| ≤ 1 for all t ≥ 0. We define the sequence of stopping times

τk := T ∧ inf
{
t ≥ 0 : |Y b(t)|+ |Zb(t)| ≥ k

}
, k ∈ N .

It follows from Itô’s lemma and (3.3) that

f(0, Y (0), Z(0)) = f
(
τk, Y

b(τk), Zb(τk)
)
−
∫ τk

0
Lb(t)f

(
t, Y b(t), Zb(t)

)
dt

−
∫ τk

0
[(Dyf)T b+ (Dzf)yT ]

(
t, Y b(t), Zb(t)

)
dW (t)

≥ f
(
τk, Y

b(τk), Zb(τk)
)

−
∫ τk

0
[(Dyf)T b+ (Dzf)yT ]

(
t, Y b(t), Zb(t)

)
dW (t) .
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Taking expected values and sending k to infinity, we get by Fatou’s lemma,

E
[
exp

(
2λZId(T )

)]
= f(0, Y (0), Z(0))

≥ lim inf
k→∞

E
[
f
(
τk, Y

b(τk), Zb(τk)
)]

≥ E
[
f
(
T, Y b(T ), Zb(T )

)]
= E

[
exp

(
2λZb(T )

)]
,

which proves the lemma. 2

Proof of Theorem 3.1.
a) Let T > 0 and λ > 0 be such that 2λT < 1. It follows from Doob’s maximal inequality
for submartingales and Lemma 3.2 that for all α ≥ 0,

P

[
sup

0≤t≤T
2V b(t) ≥ α

]
= P

[
sup

0≤t≤T
exp(2λV b(t)) ≥ exp(λα)

]
≤ exp (−λα) E

[
exp

(
2λV b(T )

)]
≤ exp (−λα) E

[
exp

(
2λV Id(T )

)]
= exp (−λα) exp (−λdT ) (1− 2λT )−

d
2 .

(3.6)

Now, take θ, η ∈ (0, 1), and set for all k ∈ N,

αk := (1 + η)2h(θk) and λk := [2θk(1 + η)]−1 .

It follows from (3.6) that for all k ∈ N,

P

[
sup

0≤t≤θk

2V b(t) ≥ (1 + η)2h(θk)

]
≤ exp

(
− d

2(1 + η)

)(
1 +

1
η

)d/2

(k log
1
θ
)−(1+η) .

Since
∞∑

k=1

k−(1+η) <∞ ,

it follows from the Borel–Cantelli lemma that, for almost all ω ∈ Ω, there exists a natural
number Kθ,η(ω) such that for all k ≥ Kθ,η(ω),

sup
0≤t≤θk

2V b(t, ω) < (1 + η)2h(θk) .

In particular, for all t ∈ (θk+1, θk],

2V b(t, ω) < (1 + η)2h(θk) ≤ (1 + η)2
h(t)
θ

.

Hence,

lim sup
t↘0

2V b(t)
h(t)

≤ (1 + η)2

θ
.

By letting θ tend to one and η to zero along the rationals, we conclude that

lim sup
t↘0

2V b(t)
h(t)

≤ 1 .
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On the other hand,

lim inf
t↘0

2V b(t)
h(t)

= − lim sup
t↘0

2V −b(t)
h(t)

≥ −1 ,

and the proof of part a) is complete.
b) There exists a constant c > 0 such that for all t ≥ 0,

cId ≥ b(t) ≥ β ≥ −cId , (3.7)

and an orthogonal d× d-matrix U such that

β̃ := UβUT = diag[λ∗(β), λ2, . . . , λd] ,

where λ∗(β) ≥ λ2 ≥ · · · ≥ λd are the ordered eigenvalues of the matrix β. Let

γ̃ := diag[3c, c, . . . , c] and γ := UT γ̃U .

It follows from (3.7) that for all t ≥ 0,

γ − β ≥ γ − b(t) ≥ 0 ,

which implies that

|γ − b(t)| ≤ |γ − β| = λ∗(γ − β) = λ∗(γ̃ − β̃) = 3c− λ∗(β) .

Hence, by part a),

lim sup
t↘0

2V γ−b(t)
h(t)

≤ 3c− λ∗(β) . (3.8)

Note that the transformed Brownian motion,

W̃ (t) := UW (t) , t ≥ 0 ,

is again a d-dimensional Brownian motion and

lim sup
t↘0

2V γ(t)
h(t)

= lim sup
t↘0

W (t)TγW (t)− Tr(γ)t
h(t)

= lim sup
t↘0

W̃ (t)T γ̃W̃ (t)− Tr(γ)t
h(t)

= lim sup
t↘0

W̃ (t)T γ̃W̃ (t)
h(t)

≥ lim sup
t↘0

3c
(W̃1(t))2

h(t)
= 3c .

(3.9)

It follows from (3.9) and (3.8) that

lim sup
t↘0

2V b(t)
h(t)

≥ lim sup
t↘0

2V γ(t)
h(t)

− lim sup
t↘0

2V γ−b(t)
h(t)

≥ 3c− (3c− λ∗(β)) = λ∗(β) ,

which proves part b) of the theorem. 2

In the next theorem we refine the statements of Theorem 3.1 under stronger assumptions.
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Theorem 3.3 Let {b(t) , t ≥ 0} be an Md-valued, F-progressively measurable process such
that ∫ t

0
|b(r)|2 dr <∞ for all t ≥ 0 .

Assume that b(0) is a deterministic element of Sd, and there exists a random variable ε > 0
such that almost surely,∫ t

0
|b(r)− b(0)|2 dr = O(t1+ε) for t↘ 0 . (3.10)

a) If λ∗(b(0)) ≤ 0, then

lim sup
t↘0

2V b(t)
t

= −Tr[b(0)] .

b) If λ∗(b(0)) ≥ 0, then

lim sup
t↘0

2V b(t)
h(t)

= λ∗(b(0)) .

Remark 3.4 Note that for deterministic ε > 0, condition (3.10) follows if there exists a
constant C > 0 such that

E
[
|b(t)− b(0)|2

]
≤ C t2ε , for t ≥ 0 . (3.11)

Indeed, if (3.11) is satisfied, then

E

[∫ 1

0

|b(r)− b(0)|2

r1+ε
dr

]
<∞ , therefore,

∫ 1

0

|b(r)− b(0)|2

r1+ε
dr <∞ ,

and we have for all t ∈ [0, 1],∫ t

0
|b(r)− b(0)|2 dr ≤

∫ t

0

|b(r)− b(0)|2

r1+ε
dr t1+ε ≤

∫ 1

0

|b(r)− b(0)|2

r1+ε
dr t1+ε .

To prove Theorem 3.3 we need the following

Lemma 3.5 Let {W (t) , t ≥ 0} be a d-dimensional Brownian motion and β ∈Md. Then

lim inf
t↘0

1
t

∣∣W (t)TβW (t)
∣∣ = 0 . (3.12)

Proof. It follows from the self-similarity property of {W (t) , t ≥ 0} that the Gaussian
sequence,

X(n) := en/2W (e−n) , n ∈ Z ,

is stationary, and the fact that

lim
n→∞

E
[
X(n)TX(0)

]
= 0 ,
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implies that it is ergodic (see e.g., Section V.3 in [5]). Hence, the sequence

Y (n) :=
∣∣X(n)TβX(n)

∣∣ = en
∣∣W (e−n)TβW (e−n)

∣∣ , n ∈ Z ,

is stationary and ergodic as well. Therefore, we can apply the ergodic theorem (see e.g.,
Theorem V.3.3 in [5]) to conclude that for all δ > 0,

lim
n→∞

1
n

n−1∑
j=0

1[0,δ](Y (j)) = E
[
1[0,δ](Y (0))

]
= P [Y (0) ≤ δ] > 0 .

This shows that
lim inf
n→∞

Y (n) = 0 ,

which implies (3.12). 2

Proof of Theorem 3.3.
Since b(0) is symmetric, we have for all t ≥ 0,

2V b(t) = 2V b(0)(t) + 2V b̃(t) = W (t)T b(0)W (t)− Tr[b(0)]t+ 2V b̃(t) , (3.13)

where
b̃(t) := b(t)− b(0) , t ≥ 0 .

Denote by Mj the j-th component of the d-dimensional local martingale
∫ r
0 b̃(u)dW (u),

r ≥ 0. It follows from assumption (3.10) that the quadratic variation process 〈Mj〉 satisfies
almost surely,

〈Mj〉 (r) =
∫ r

0

d∑
k=1

b̃2jk(u) du = O(r1+ε) for t↘ 0 .

By the Dambis–Dubins-Schwarz theorem (see e.g., Section V.1 in [4]), there exists a Brow-
nian motion Bj such that Mj(r) = Bj ◦ 〈Mj〉 (r), r ≥ 0. Hence, it follows from the law of
the iterated logarithm for Brownian motion that almost surely,

M2
j (r) = O(r1+ε/2) for r ↘ 0 .

This implies that almost surely,

〈
V b̃
〉

(t) =
∫ t

0

d∑
j=1

M2
j (r)dr = O(t2+ε/2) for t↘ 0 ,

and another application of the Dambis–Dubins-Scharz theorem yields

lim
t↘0

V b̃(t)
t

= 0 . (3.14)

a) If λ∗(b(0)) ≤ 0, then for all t ≥ 0,

W (t)T b(0)W (t) ≤ 0 ,
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and part a) of the theorem can be deduced from (3.13), (3.14) and Lemma 3.5.
b) If λ∗(b(0)) ≥ 0, it follows from Theorem 3.1 b) that

lim sup
t↘0

2V b(0)(t)
h(t)

≥ λ∗(b(0)) . (3.15)

To show that actually,

lim sup
t↘0

2V b(0)(t)
h(t)

= λ∗(b(0)) , (3.16)

we denote by λ∗(b(0)) = λ1 ≥ λ2 ≥ · · · ≥ λd the ordered eigenvalues of b(0). There
exists a positive integer k ≤ d such that λ1 ≥ · · · ≥ λk ≥ 0 and, in case that k < d,
0 > λk+1 ≥ · · · ≥ λd. Let U be an orthogonal d× d-matrix such that

Ub(0)UT = diag[λ1, λ2, . . . , λd] .

The process
W̃ (t) := UW (t) , t ≥ 0 ,

is a again a d-dimensional Brownian motion, and for all t ≥ 0,

lim sup
t↘0

2V b(0)(t)
h(t)

= lim sup
t↘0

W (t)T b(0)W (t)− Tr[b(0)]t
h(t)

= lim sup
t↘0

∑d
j=1 λj(W̃j(t))2

h(t)
≤ lim sup

t↘0

∑k
j=1 λj(W̃j(t))2

h(t)

≤ λ1 = λ∗(b(0)) ,

where the last inequality follows from Theorem 3.1 a). This and (3.15) imply (3.16), which,
along with (3.13) and (3.14), proves part b) of the theorem. 2

Our proof of Theorem 3.3 is based on the decomposition (3.13) and the estimate (3.14).
The next example shows that (3.14) need no longer be true if assumption (3.10) is replaced
by the condition that almost surely,

|b(t)− b(0)| → 0 as t→ 0 .

Whether Theorem 3.3, or some variant of it, can be proved under weaker assumptions, is
an open question.

Example 3.6 Let d = 1 and b(t) = 1/ log log log(1/t). Then,∫ t

0

∫ r

0
b(u)dW (u)dW (r) =W (t)

∫ t

0
b(r)dW (r)−

∫ t

0
b(r)W (r)dW (r)−

∫ t

0
b(r)dr

=W (t)
[
W (t)b(t)−

∫ t

0
W (r)db(r)

]
−
∫ t

0
b(r)dr

− 1
2

[
W 2(t)b(t)−

∫ t

0
W 2(r)db(r)−

∫ t

0
b(r)dr

]
=

1
2
W 2(t)b(t)−W (t)

∫ t

0
W (r)db(r)

+
1
2

∫ t

0
W 2(r)db(r)− 1

2

∫ t

0
b(r)dr .

(3.17)
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Clearly,
∫ t
0 b(r)dr = o(t), as t↘ 0. Since

b′(r) =
1
r

1
log 1

r

1
log log 1

r

(
1

log log log 1
r

)2

,

it follows from the law of the iterated logarithm for Brownian motion that for t↘ 0,∫ t

0
W 2(r)db(r) =

∫ t

0
W 2(r)b′(r)dr = O

(∫ t

0
r log log

1
r
b′(r)dr

)
= o

(∫ t

0
1dr
)

= o(t) .

Similarly, for t↘ 0,

W (t)
∫ t

0
W (r)db(r) = W (t)

∫ t

0
W (r)b′(r)dr

= O

(√
t log log

1
t

∫ t

0

√
r log log

1
r
b′(r)dr

)

= o

(√
t log log

1
t

∫ t

0
r−

1
2dr

)
= o

(
t

√
log log

1
t

)
.

Since

t

√
log log

1
t

= o

(
t

log log 1
t

log log log 1
t

)
, as t↘ 0 ,

it follows from (3.17) that

lim sup
t↘0

∫ t
0

∫ r
0 b(u)dW (u)dW (r)

t
log log 1

t

log log log 1
t

= lim sup
t↘0

1
2W

2(t)b(t)

t
log log 1

t

log log log 1
t

= 1 .

2

The next two corollaries are straightforward consequences of the Theorems 3.1 and 3.3,
respectively.

Corollary 3.7 Let {M(t) , t ≥ 0} be an Rd-valued martingale defined by

M(t) :=
∫ t

0
m(r)dW (r) , t ≥ 0 ,

where {m(t) , t ≥ 0} is an Md-valued, F-progressively measurable process such that∫ t

0
|m(r)|2dr <∞ for all t ≥ 0 ,

and there exists a random variable ε > 0 so that almost surely,∫ t

0
|m(r)−m(0)|2 dr = O(t1+ε) for t↘ 0 . (3.18)
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a) Let {b(t) , t ≥ 0} be a bounded Md-valued, F-progressively measurable process such that
for all t ≥ 0,

∣∣m(0)T b(t)m(0)
∣∣ ≤ 1. Then

lim sup
t↘0

2
h(t)

∣∣∣∣∣
∫ t

0

(∫ u

0
b(u)dM(u)

)T

dM(r)

∣∣∣∣∣ ≤ 1 .

b) Let β be a bounded, F(0)-measurable, Sd-valued random variable with λ∗(β) ≥ 0. If
{b(t) , t ≥ 0} is a bounded, Sd-valued, F-progressively measurable process such that for all
t ≥ 0,

m(0)T b(t)m(0) ≥ β ,

then

lim sup
t↘0

2
h(t)

∫ t

0

(∫ r

0
b(u)dM(u)

)T

dM(r) ≥ λ∗(β) .

Proof. It can easily be checked that∫ t

0

(∫ r

0
b(u)m(u)dW (u)

)T

m(r)dW (r) =
∫ t

0

(∫ r

0
c(u)dW (u)

)T

dW (r) +R1(t) +R2(t) ,

where

c(t) := m(0)T b(t)m(0) ,

R1(t) :=
∫ t

0

(∫ r

0
b(u) [m(u)−m(0)] dW (u)

)T

m(0)dW (r) and

R2(t) :=
∫ t

0

(∫ r

0
b(u)m(u)dW (u)

)T

[m(r)−m(0)] dW (r) .

As in the proof of Theorem 3.3 it can be deduced from assumption (3.18) and the Dambis–
Dubins-Schwarz theorem that

lim
t↘0

R1(t)
t

= lim
t↘0

R2(t)
t

= 0 .

In particular,

lim
t↘0

R1(t)
h(t)

= lim
t↘0

R2(t)
h(t)

= 0 .

Now, part a) of the corollary follows from Theorem 3.1 a). Furthermore, by conditioning
on σ(β), we can assume that β is deterministic and deduce part b) of the corollary from
Theorem 3.1 b). 2

Corollary 3.8 Let {M(t) , t ≥ 0} be an Rd-valued martingale defined by

M(t) =
∫ t

0
m(r)dW (r) , t ≥ 0 ,

where {m(t) , t ≥ 0} is an Md-valued, F-progressively measurable process such that∫ t

0
|m(r)|2dr <∞ for all t ≥ 0 .
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Let {b(t) , t ≥ 0} be a bounded, Md-valued, F-progressively measurable process such that
b(0) is Sd-valued, and assume there exists a random variable ε > 0 such that almost surely,∫ t

0
|m(r)−m(0)|2 dr = O(t1+ε) and

∫ t

0
|b(r)− b(0)|2 dr = O(t1+ε) for t↘ 0 .

a) If λ∗(m(0)T b(0)m(0)) ≤ 0, then

lim sup
t↘0

2
t

∫ t

0

(∫ r

0
b(u)dM(u)

)T

dM(r) = −Tr[m(0)T b(0)m(0)] .

b) If λ∗(m(0)T b(0)m(0)) ≥ 0, then

lim sup
t↘0

2
h(t)

∫ t

0

(∫ r

0
b(u)dM(u)

)T

dM(r) = λ∗(m(0)T b(0)m(0)) .

Proof. As in the proof of Corollary 3.7 we decompose∫ t

0

(∫ r

0
b(u)m(u)dW (u)

)T

m(r)dW (r)

into ∫ t

0

(∫ r

0
c(u)dW (u)

)T

dW (r) +R1(t) +R2(t) ,

where

c(t) := m(0)T b(t)m(0) ,

1
t
R1(t) :=

1
t

∫ t

0

(∫ r

0
b(u) [m(u)−m(0)] dW (u)

)T

m(0)dW (r) → 0 , for t↘ 0 ,

1
t
R2(t) :=

1
t

∫ t

0

(∫ r

0
b(u)m(u)dW (u)

)T

[m(r)−m(0)] dW (r) → 0 , for t↘ 0 .

It follows from the assumptions that c satisfies almost surely,∫ t

0
|c(r)− c(0)|2 dr = O(t1+ε) for t↘ 0 ,

and by conditioning on σ(c(0)), we can assume that c(0) is deterministic. Then, the corol-
lary follows from Theorem 3.3. 2

Proposition 3.9 Let {a(t) , t ≥ 0} and {m(t) , t ≥ 0} be two F-progressively measurable
processes taking values in Rd and Md, respectively. Assume that {a(t) , t ≥ 0} is bounded,∫ t

0
|m(r)|2 dr <∞ for all t ≥ 0 ,

and there exists a (0, 1]-valued random variable ε such that almost surely,∫ t

0
r2 |m(r)|2 dr = O(t3−ε) for t↘ 0 . (3.19)

Then,

lim
t↘0

t−3/2+ε

∫ t

0

(∫ r

0
a(u)du

)T

m(r)dW (r) = 0 .
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Remark 3.10 It can easily be shown that

sup
t≥0

E
[
|m(t)|2

]
<∞ (3.20)

implies condition (3.19) for every constant ε ∈ (0, 1]. Indeed, it follows from (3.20) that for
every constant ε ∈ (0, 1],

E

[∫ 1

0

|m(r)|2

r1−ε
dr

]
<∞ and therefore,

∫ 1

0

|m(r)|2

r1−ε
dr <∞ .

Moreover, for all t ∈ [0, 1],∫ t

0
r2 |m(r)|2 dr ≤

∫ 1

0

|m(r)|2

r1−ε
dr t3−ε .

Proof of Proposition 3.9.
Denote X(t) =

∫ t
0

(∫ r
0 a(u)du

)T
m(r)dW (r), t ≥ 0. By assumption (3.19), the quadratic

variation process 〈X〉 satisfies almost surely,

〈X〉 (t) = O(t3−ε) for t↘ 0 .

Now, the proposition can be deduced from the Dambis–Dubins-Schwarz theorem. 2

4 Applications to stochastic control

In this section we show how results on the small time behavior of stochastic integrals can be
applied to derive partial differential equations from gamma constraints on hedging strate-
gies. Since these partial differential equations will be derived from a dynamic programming
principle (DPP), we refer to them as dynamic programming equations (DPE).

4.1 Super-replication under gamma constraints

For the sake of simplicity of presentation, we here consider a financial market that consists
of only two tradable assets. Markets with more assets are considered in the accompanying
paper [2]. Let T > 0 be a finite time horizon, {W (t) , t ∈ [0, T ]} a one-dimensional Brownian
motion and FW =

{
FW (t) , t ∈ [0, T ]

}
the smallest filtration that contains the filtration

generated by {W (t) , t ≥ 0} and satisfies the usual conditions. We take the first asset as
numéraire and assume that the price of the second one is given by

S(r) := S0 exp
{(

µ− σ2

2

)
r + σW (r)

}
, r ∈ [0, T ] ,

for some constants S0 > 0, µ ∈ R and σ > 0. By possibly passing to an equivalent
probability measure, we can assume that µ = 0. Then, given S(t) = s for some (t, s) ∈
[0, T )× (0,∞), the further evolution of S is

S(r) := s exp
{
σ[W (r)−W (t)]− σ2

2
(r − t)

}
, r ∈ [t, T ] . (4.1)
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A self-financing trading strategy that is only based on information coming from observa-
tions of the price {S(r) , r ∈ [0, T ]}, can be described by an FW -progressively measurable
process {Y (r) , r ∈ [t, T ]} that is integrable with respect to {S(r) , r ∈ [t, T ]} and denotes
the number of shares of the second asset held at any given time. Then, the wealth process
is given by

X(r) = X(t) +
∫ r

t
Y (u)dS(u) , r ∈ [t, T ] , (4.2)

and the number of shares of the first asset held at time r is X(r)− Y (r)S(r).
We consider a contingent claim with a time T pay-off given by g(S(T )), where g : (0,∞) →

[0,∞) is a measurable function such that g(S(T )) ∈ L1(P ). For the corresponding Black–
Scholes hedging strategy

{
Y BS(r) , r ∈ [t, T ]

}
we have,

E [g(S(T ))|F(t)] +
∫ T

t
Y BS(r)dS(r) = g(S(T )) ,

that is, starting with initial capital E [g(S(T ))|F(t)] at time t, the Black–Scholes strategy
replicates the contingent claim. If one requires the hedging strategy to satisfy constraints
other than conditions that exclude arbitrage opportunities, one cannot hope that the con-
tingent claim is still replicable, but in many cases, it is possible to super-replicate it with
finite initial wealth. A gamma constraint is a restriction on the variation of the hedging
strategy due to changes in the underlying asset. To be able to express gamma constraints
more explicitly, we require the process Y to be of the form

Y (r) = y +
∫ r

t
α(u)du+

∫ r

t
γ(u)dS(u) , r ∈ [t, T ] , (4.3)

for y ∈ R and α, γ bounded, FW -progressively measurable processes. Then, a self-
financing trading strategy is determined by the starting value y and a pair of bounded,
FW -progressively measurable processes ν = (α, γ). By a gamma constraint we mean a
restriction on the process γ. In the following we consider gamma constraints of the form:

Γ∗ ≤ S2(r)γ(r) ≤ Γ∗ , r ∈ [t, T ] , (4.4)

where Γ∗ < Γ∗ are two given constants. We call a control process ν = (α, γ) admissible if
α and γ are bounded, FW -progressively measurable processes and γ satisfies the constraint
(4.4).

To emphasize the dependence on the initial data, we denote by
(
St,s, X

ν
t,s,x,y, Y

ν
t,s,y

)
the

processes given by (4.1), (4.2) and (4.3) corresponding to the admissible control ν and
the initial data

(
St,s, X

ν
t,s,x,y, Y

ν
t,s,y

)
(t) = (s, x, y). The collection of admissible controls

ν is denoted by At,s. From the boundedness of α and γ it can be deduced that for all

ν ∈ At,s, supt≤r≤T E
[{
Y ν

t,s,y(r)St,s(r)
}2
]
<∞, and therefore, Xν

t,s,x,y is a square-integrable
martingale. In particular, admissible controls do not lead to arbitrage.

The problems

w(t, s, y) := inf
{
x : Xν

t,s,x,y(T ) ≥ g (St,s(T )) for some ν ∈ A
}

(4.5)
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and

v(t, s) := inf
y∈R

w(t, s, y) (4.6)

= inf
{
x : Xν

t,s,x,y(T ) ≥ g (St,s(T )) for some y ∈ R and some ν ∈ A
}
,

can both be viewed as stochastic target problems. Problem (4.5) is very similar to the one
treated in [7] and leads to the study of the small time behavior of single stochastic integrals.
In problem (4.6), Y is no longer a state variable, and one is naturally led to an analysis of
the small time behavior of double stochastic integrals.

In the next two subsections we derive DPE’s for w and v. Our main objective is to show
how one can find these DPE’s and where results on the small time behavior of stochastic
integrals are needed. To avoid the use of the theory of viscosity solutions and lengthy
approximation arguments, we will make some strong assumptions along the way. In par-
ticular, we will assume that the infima in (4.5) and (4.6) are attained and the functions w
and v are smooth. Also, we will only show that w and v are supersolutions of the corre-
sponding DPE’s. A more detailed discussion of the super-replication problem under gamma
constraints and rigorous proofs without simplifying assumptions can be found in [2].

4.2 DPE for the value function w

We derive the DPE for w in three steps.

Step 1: Dynamic programming principle. We assume that for each (t, s, y) ∈ [0, T ) ×
(0,∞)× R, there exists an admissible control ν = (α, γ) such that

Xν
t,s,x,y(T ) ≥ g (St,s(T )) , where x = w(t, s, y) .

Let τ be an FW -stopping time with values in (t, T ]. For each δ > 0, we define τδ := τ∧(t+δ),
and we set (ŝ, x̂, ŷ) :=

(
St,s, X

ν
t,s,x,y, Y

ν
t,s,y

)
(τδ). It can be deduced from

Xν
τδ ,ŝ,x̂,ŷ(T ) ≥ g (Sτδ ,ŝ(T ))

that x̂ ≥ w (τδ, ŝ, ŷ), that is,

w(t, s, y) +
∫ τδ

t
Y ν

t,s,y(r)dSt,s(r) ≥ w
(
τδ, St,s(τδ), Y ν

t,s,y(τδ)
)
. (4.7)

Step 2: Application of Itô’s lemma. We further assume that the value function w is smooth.
Then, we can apply Itô’s lemma in (4.7) to get for all δ > 0:

−
∫ τδ

t
ξ(r)dr −

∫ τδ

t
ψ(r)dSt,s(r) ≥ 0 , (4.8)

where

ξ(r) := Gνw
(
r ∧ τ, St,s(r ∧ τ), Y ν

t,s,y(r ∧ τ)
)
,

ψ(r) := (ws + γwy)
(
r ∧ τ, St,s(r ∧ τ), Y ν

t,s,y(r ∧ τ)
)
− Y ν

t,s,y(r ∧ τ) ,
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and Gν is the Dynkin operator associated to the two-dimensional process (S, Y ν):

Gνw(t, s, y) := wt(t, s, y) + α(t)wy(t, s, y) (4.9)

+
1
2
σ2s2wss(t, s, y) +

1
2
γ(t)2σ2s2wyy(t, s, y) + γ(t)σ2s2wsy(t, s, y) .

If we set

τ := inf
{
r ≥ t : |Y ν

t,s,y(r)− y|+ | logSt,s(r)− log s| > K
}
∧ T ,

for some constant K > 0, then the processes ξ and ψ are bounded.

Step 3: Small time path behavior of single stochastic integrals. Since ξ is bounded, it follows
from (4.8) that there exists a constant L > 0 such that∫ r

t
−ψ(u)dSt,s(u) =

∫ r

t
−ψ(u)St,s(u)σdW (u) ≥ −L(r − t) for all r ∈ [t, τ ] . (4.10)

By the Dambis–Dubins-Schwarz theorem, there exists a Brownian motion {B(r) , r ≥ 0}
such that ∫ r

t
−ψ(u)dSt,s(u) = B

(∫ r

t
ψ2(u)S2

t,s(u)σ
2du

)
, r ∈ [t, T ] .

Hence, it follows from (4.10) and the law of the iterated logarithm for Brownian motion
that for all ε, δ > 0,

P [|ψ(u)| ≥ ε for all u ∈ [t, t+ δ]] = 0 .

By the definition of ψ and the gamma constraint (4.4) on the process γ, this provides

−SΓ (−wy(t, s, y)) ≤ s2(y − ws(t, s, y)) ≤ SΓ (wy(t, s, y)) , (4.11)

where SΓ is the support function of the interval [Γ∗,Γ∗] defined by

SΓ(u) := sup
Γ∗≤c≤Γ∗

u c , u ∈ R .

Since ψ is bounded, we can take expected values in (4.8) and divide by δ to obtain

E
[
−1
δ

∫ τδ

t
ξ(r)dr

]
≥ 0 ,

which, in the limit δ → 0, implies that

−Gw(t, s, y) := sup
{
−G(a,c)w(t, s, y) : a ∈ R and Γ∗ ≤ s2c ≤ Γ∗

}
≥ 0 , (4.12)

where G(a,c) is given by (4.9). Combining (4.11) and (4.12), we obtain

G
(
s, y, wt(t, s, y), Dw(t, s, y), D2w(t, s, y)

)
:=

min
{
−Gw(t, s, y) ; s2y − [s2ws − SΓ(−wy)](t, s, y) ; −s2y + [s2ws + SΓ(wy)](t, s, y)

}
≥ 0 .

With similar arguments to the ones used to show the subsolution property in [7], it can be
proved that w is also a subsolution of the equation

G
(
s, y, wt(t, s, y), Dw(t, s, y), D2w(t, s, y)

)
= 0 . (4.13)

We omit this proof because it has nothing to do with the small time behavior of stochastic
integrals.
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4.3 DPE for the value function v

For the derivation of the DPE for v we have to restrict the control processes further by
requiring that γ is right-continuous and for all t ∈ [0, T ], there exists an ε > 0 such that
almost surely, ∫ r

0
|γ(u+ t)− γ(t)|2 du = O(r1+ε) for r ↘ 0 . (4.14)

Again, we proceed in three steps.

Step 1: Dynamic programming. We assume that for each (t, s) ∈ [0, T ) × (0,∞), there is
an admissible control (y, ν) = (y, α, γ) such that

Xν
t,s,x,y(T ) ≥ g (St,s(T )) , where x = v(t, s) ,

For a (t, T ]-valued FW -stopping time τ and δ > 0, we set τδ := τ ∧ (t+ δ). As in Subsection
4.2, it can be shown that

v(t, s) +
∫ τδ

t
Y ν

t,s,y(r)dSt,s(r) ≥ v (τδ, St,s(τδ)) . (4.15)

Step 2: Application of Itô’s lemma. Again, we assume that the value function v is smooth.
Then, we can twice apply Itô’s lemma in (4.15) to get for all δ > 0:

−
∫ τδ

t
ξ(r)dr −

∫ τδ

t

{
ζ +

∫ r

t
φ(u)du+

∫ r

t
ψ(u)dSt,s(u)

}
dSt,s(r) ≥ 0 , (4.16)

where

ξ(r) := Lv (r ∧ τ, St,s(r ∧ τ)) ,
ζ := vs(t, s)− y ,

φ(r) := Lvs (r ∧ τ, St,s(r ∧ τ))− α(r) ,

ψ(r) := vss (r ∧ τ, St,s(r ∧ τ))− γ(r) ,

and L is the Dynkin operator associated to the process S:

Lv(t, s) := vt(t, s) +
1
2
σ2s2vss(t, s) .

If we set

τ := inf {r ≥ t : | logSt,s(r)− log s| > K} ,

for some constant K > 0, then the processes ξ, φ and ψ are bounded.

Step 3: Small time path behavior of double stochastic integrals. It follows from the bound-
edness of ξ that there exists a constant C1 > 0 such that for all δ > 0,

|
∫ τδ

t
ξ(r)dr| ≤ C1 δ . (4.17)
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From the boundedness of φ and Proposition 3.9 it can be deduced that

lim
δ↘0

1
δ
|
∫ τδ

t

∫ r

t
φ(u)dudSt,s(r)| = lim

δ↘0

1
δ
|
∫ t+δ

t

∫ r

t
φ(u)duSt,s(r)σdW (r)| = 0 . (4.18)

Furthermore, since almost all paths of St,s are Hölder-continuous of order 1/3, it follows
from Corollary 3.7 a) that

lim sup
δ↘0

1
h(δ)

|
∫ τδ

t

∫ r

t
ψ(u)dSt,s(u)dSt,s(r)|

= lim sup
δ↘0

1
h(δ)

|
∫ t+δ

t

∫ r

t
ψ(u)St,s(u)σdW (u)St,s(r)σdW (r)| < ∞ .

(4.19)

It can be seen from (4.16) together with (4.17), (4.18) and (4.19) that

lim sup
δ↘0

1√
h(δ)

∫ τδ

t
ζdSt,s(r) ≤ 0 ,

from which it can be derived by the Dambis–Dubins-Schwarz theorem and the law of the
iterated logarithm for Brownian motion that ζ = 0. Therefore, (4.16), (4.17) and (4.18)
imply that

lim sup
δ↘0

1
h(δ)

∫ τδ

t

∫ r

t
ψ(u)dSt,s(u)dSt,s(r) ≤ 0 . (4.20)

Since ψ is right-continuous, it follows from (4.20) and Corollary 3.7 b) that ψ(t) ≤ 0. Note
that by the definition of ψ and the gamma constraint (4.4),

Γ∗ ≤ s2(vss(t, s)− ψ(t)) ≤ Γ∗ . (4.21)

By the boundedness and continuity of ξ, we obtain from (4.16) and (4.18) that

ξ(t) ≤ lim inf
δ↘0

1
δ

∫ τδ

t

∫ r

t
−ψ(u)dSt,s(u)dSt,s(r) . (4.22)

Since v is smooth, the process vss(r, St,s(r)) is almost surely locally Hölder-continuous of
order 1/3. Hence, since γ satisfies (4.14), the process ψ satisfies (4.14) as well. Therefore,
we can apply Corollary 3.8 a) to conclude that

lim inf
δ↘0

1
δ

∫ τδ

t

∫ r

t
−ψ(u)dSt,s(u)dSt,s(r)

= lim inf
δ↘0

1
δ

∫ t+δ

t

∫ r

t
−ψ(u)St,s(u)σdW (u)St,s(r)σdW (r)

=
1
2
σ2s2ψ(t) ,

which together with (4.22) shows that

ξ(t) ≤ 1
2
σ2s2ψ(t) ,
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that is,

−vt(t, s)−
1
2
σ2s2(vss(t, s)− ψ(t)) ≥ 0 . (4.23)

Combined, (4.21) and (4.23) yield the following:

F̂
(
vt(t, s), s2vss(t, s)

)
:= sup

β≥0
F
(
vt(t, s), s2vss(t, s) + β

)
≥ 0 ,

where

F (p,A) := min
{
−p− 1

2
σ2A ; Γ∗ −A ; A− Γ∗

}
.

In [2] it is proved under weaker assumptions and with more general control processes that
the value function v is a viscosity solution of the equation

F̂
(
vt(t, s), s2vss(t, s)

)
= 0 . (4.24)

4.4 Discussion of the assumptions and related literature

Using approximation arguments, it can be shown that w is a viscosity solution of the DPE
(4.13) without the assumption that it is always a minimum and smooth (see [7] for more
details). Under additional continuity conditions on γ it can also be shown that v is a
viscosity supersolution of the DPE (4.24) without assuming that it is always a minimum
and smooth. For instance, with the arguments of Section 5 of [2] it can be shown without
assumptions on v that it is a viscosity supersolution of (4.24) if γ is required to be of the
form

γ(r) = z +
∫ r

t
γ1(u)du+

∫ r

t
γ2(u)dW (u) , r ∈ [t, T ] , (4.25)

for z ∈ R and γ1, γ2 progressively measurable processes, and suitable boundedness condi-
tions are satisfied. It is an open problem whether the supersolution property of v can be
shown without continuity assumptions on γ like (4.25) or (4.14). Another open problem is
whether the value function v corresponding to trading strategies of the form (4.3) with γ

of the form (4.25) is also a subsolution of (4.24).
However, assume that g is continuous and let vBS(t, s) = E [g(St,s(T ))] be the Black–

Scholes price of g(St,s(T )). Then it follows from the comparison result, Proposition 3.9, in
[2] that v ≥ vBS on [0, T ) × (0,∞), and v > vBS on [0, T ) × (0,∞) whenever the function
g(s) + Γ∗ log s is not concave. On the other hand, without boundedness assumptions on
the process α in (4.3), it follows from Theorem 4.4 in [1] that v ≤ vBS on [0, T ) × (0,∞)
irrespective of the form of g.

To allow for a proof of a partial dynamic programming principle that is needed in the
proof of the subsolution property of the value function, the control processes in [2] are also
permitted to contain finitely many jumps. More precisely, the trading strategies in [2] are
of the form

Y (r) =
N−1∑
n=0

yn1{τn≤r<τn+1} +
∫ r

t
α(u)du+

∫ r

t
γ(u)dSt,s(u) , r ∈ [t, T ] , (4.26)
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where t = τ0 ≤ τ1 ≤ . . . is an increasing sequence of [t, T ]-valued FW -stopping times
such that the random variable N := inf{n ∈ N : τn = T} is bounded, all yn are FW (τn)-
measurable random variables and α, γ are FW -progressively measurable processes satisfying
certain boundedness and continuity conditions (see Subsection 2.2 in [2]).

Denote by vjumps the value function corresponding to this class of trading strategies. It
is shown in [2] that vjumps is the unique viscosity solution of (4.24) in a certain class of
functions. Again, for continuous g, it follows from the comparison result, Proposition 3.9
in [2] that vjumps ≥ vBS on [0, T ) × (0,∞), and vjumps > vBS on [0, T ) × (0,∞) whenever
g + Γ∗ log(s) is not concave. On the other hand, if the number of jumps N in (4.26) is
only required to be finite but not bounded, then it follows from Lemma A.3 in [3] that
vjumps ≤ vBS on [0, T )× (0,∞) for all g.
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