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Abstract

Following the framework of Çetin, Jarrow and Protter [4] we study the problem
of super-replication in presence of liquidity costs under additional restrictions on the
gamma of the hedging strategies in a generalized Black-Scholes economy. We find
that the minimal super-replication price is different from the one suggested by the
Black-Scholes formula and is the unique viscosity solution of the associated dynamic
programming equation. This is in contrast with the results of [4] who find that the
arbitrage free price of a contingent claim coincides with the Black-Scholes price. How-
ever, in [4] a larger class of admissible portfolio processes is used and the replication is
achieved in the L2 approximating sense.
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1 Introduction

Black-Scholes methodology for the pricing and hedging of options requires the market to
be frictionless and competitive. In other words, traders can trade any quantity of the asset
without changing its price and the trade is subject to no transaction costs and restrictions.
There has been numerous works to relax these assumptions as it is now well known that
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the markets do not operate frictionless and are not perfectly competitive (see, e.g., [2], [3],
[11], [12], [13], [14] [17] and [20]).

Relaxation of both the frictionless and competitive market hypotheses introduces the
notion of liquidity risk. Roughly speaking the liquidity risk is the additional risk due to the
timing and size of a trade. Recently, several authors have proposed a number of methods
to incorporate the liquidity risk into asset pricing theory (see [1], [4], [5], [6] and [27]). The
common characteristic of all these works is that the liquidity risk appears as some nonlinear
transaction cost which appears due to the imbalance between the supply and demand in
the financial market which is relevant if an agent is attempting to trade large volumes in a
short time.

In the literature dealing with the modeling of ‘liquidity risk’ one can clearly identify two
different approaches. In the first approach, the modeler concentrates on the effects of the
large trader’s portfolio on the price of the stock (see, e.g., [17, 26, 29, 28, 18]). The authors
postulate a feedback function that governs the dependence of the equilibrium stock price on
the portfolio actions of the large trader. We call this class of models ‘models of feedback
effects.’ The second class of models, e.g. [4, 5, 6, 27], ignores the feedback effects of the
trades and concentrates on the equalization of the supply and demand locally in time so
that trade volume does not have a lasting impact on the asset price. Consequently the
wealth process of a trader in an illiquid market can be decomposed into two components
such that one comes from the gains/losses due to the changes in the fundamental value of
the stock, which does not depend on the history of the trades, and the other is the liquidity
costs incurred over time due to the changes in the position. In other words this class of
models studies the behavior of price-taking traders in markets where the change of one’s
position has additional liquidity costs.

In this work we stay within the framework of second class of models. In particular, we
follow the model suggested by Çetin, Jarrow and Protter [4] who introduced the so-called
“supply curve” to model the asset price as a function of size and time. Starting with the
given supply curve for, say, the stock, the authors show in [4] that the existence of the
liquidity costs makes the trading strategies with infinite quadratic variation infeasible since
they incur infinite liquidity costs. One important consequence of their modeling is that the
continuous trading strategies of finite variation incur no liquidity costs; thus, the market
is approximately complete (in an L2-sense) if there exists a unique equivalent martingale
measure for the ‘marginal price process’ (see [4] for details). In particular, they show that
in a Black-Scholes type economy with liquidity costs the price of an option is given by the
standard Black-Scholes formula and the approximate hedging strategy can be obtained by
some appropriate averaging of the Black-Scholes hedge (see [5] for some further results and
numerical and empirical studies).

On the other hand, the liquidity model of [4] produces a nonzero liquidity premium for
options when considered in discrete time (see [6] and results therein). If one looks at the
self-financing condition in [4] in continuous time, which we recall in Section 2, one notices
that the self-financing condition is defined to be the limit of the self-financing conditions
in discrete time when the time step tends to zero. The discrete-time version of the self-
financing condition of [4] is very natural since the only assumption on the liquidity cost,
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other than measurability, is that the bigger the position to liquidate the larger is the
liquidity cost. Therefore, one naturally wonders what happens to the liquidity premium
when one passes to the continuous-time limit as it is shown by [4] that the pricing formulas
for the contingent claims in their model coincide with those in the frictionless markets.

We see this situation as a paradox of the liquidity model of [4] and argue in this paper
that the absence of the liquidity premium is linked to the choice of the set of admissible
strategies and show that one can find a nonzero liquidity premium in continuous time for
a set of admissible strategies appropriately defined.

The correct choice of an admissible set of strategies is crucial even in frictionless markets.
Indeed, in models of markets with no friction in discrete time, no conditions, other than
adaptability, is needed to impose on the trading strategies in order to solve the problems of
pricing, hedging and utility maximization. However, as soon as we consider the continuous-
time limit of these models, the price of any contingent claim becomes unbounded from
below (i.e., −∞) and the value function of the utility maximization problem will typically
be unbounded (i.e., ∞) as one can create arbitrage opportunities due to the existence of
doubling strategies. It is now well-known that this paradox can be solved by imposing
certain restrictions on the trading strategies, such as certain integrability or lower bound
assumptions on the strategies, The notion of admissibility in frictionless markets is now well-
understood as an integral part of financial modeling. We believe that the apparent paradox
in the model of [4] can be solved in a similar way by an appropriate choice of admissibility
condition in illiquid markets. The main purpose of this paper is to define a convenient set
of admissible strategies so that the liquidity cost does not vanish in the continuous-time
limit. This is achieved by placing constraints on the dynamics of the trading strategies and
their corresponding gamma processes as in [7]. In a recent paper, Gökay and Soner [19]
showed that the continuous time limit of the corresponding Binomial model yields exactly
the same pricing equation as in this paper. Since the trading strategies in the Binomial
model are not restricted, the convergence result of [19] supports our choice of admissible
strategies.

The restrictions that we place on the trading strategies in this paper can be seen as
a relaxation of the restrictions in [22]. First of all, we allow a trading strategy to have
infinite variation. More precisely, the admissible trading strategies form a larger subset of
semimartingales (see (2.2)). As seen, the finite variation part of a trading strategy consists
of a pure-jump component and an absolutely continuous component. The remaining infinite
variation part is an integral with respect to the marginal price process of the stock, which
is a martingale since we work under the unique risk-neutral measure for the marginal price
process. The integrand in the absolutely continuous part of the trading strategy can be
viewed as the rate of change of the trading strategy with respect to time while the integrand
in the infinite variation part can be seen as the rate of change with respect to the changes
in the stock price. As in [22] we assume these ‘derivatives’ are bounded (see Section 2
for the exact definitions). However, we do not impose uniform bounds over all admissible
strategies. The price to pay for this relaxation is that we are no longer happy with the
mere L2-convergence but price contingent claims using super-replication arguments. We
show that a trading strategy that attains the minimal super-replication cost is a perfect

3



replicating strategy and its cost of construction contains a liquidity premium, in contrast
with the results of [4].

A related work on such trading restrictions can be found in Longstaff [22] who suggests a
uniform bound on the time derivative of trading strategies to study the optimal portfolios
in an illiquid market. More recently, Rogers and Singh [27] studied the Merton problem
under liquidity costs where they placed similar restrictions on the trading strategies.

Under our admissibility condition, we show in Proposition 3.1 that those strategies with
jumps are not optimal so that the super-hedging problem can be restricted to continuous
hedging strategies. This feature of our admissibility set is thus in agreement with the
conventional wisdom according to which it is better to place consecutive small trades rather
than a large one at once in illiquid markets. Our main result, Theorem 3.1, proves that
the super-replication price V is the unique viscosity solution of the dynamic programming
equation

−Vt − s2σ2

4`

[
−`2 +

(
(Vss + `)+

)2
]

= 0 . (1.1)

where the function ` > 0 is the liquidity index of the market defined in (2.4), below. In
fact, for more liquid markets ` is larger, with ` = ∞ referring to the complete Black-
Scholes model. Using this equation, it is easy to show that, unless the pay-off is affine, the
solution to this equation is strictly larger than the Black-Scholes price. Hence there is a
liquidity premium. This is proved in Corollary 3.1. Moreover, this liquidity premium can
be calculated numerically using available methods for the solutions of PDEs of type (1.1).

These results are proved by the techniques developed in a series of papers by Soner and
Touzi [30, 31, 32, 33], by Cheridito, Soner and Touzi in [7, 8] and by Cheridito, Soner,
Touzi and Victoir in [9].

Although the set of admissible strategies that we consider is motivated by technical inte-
grability conditions, our results are comforted by a formal description of the corresponding
hedging strategy which has a relevant financial interpretation. As we illustrate in Section
4 the optimal hedging strategy exhibits an asymmetry between the claims with convex and
concave payoffs. For derivatives with convex payoff the hedging strategy is of dynamic
Black-Scholes type. However, when the claim to be hedged has a concave payoff there are
two options for the trader: either employ a buy-and-hold strategy at a higher cost of con-
struction but no further liquidity costs, or employ a perfect Black-Scholes type replicating
strategy but expect liquidity costs growing over time. Depending on the market conditions
it might be cheaper to use the buy-and-hold type hedge than the replicating strategy when
the liquidity cost associated with the replicating strategy is expected to be high. In Section
4 we show that this decision should be based on the level of concavity of the value function
for the minimal super-replication price and give a precise level below which it is cheaper to
use a buy-and-hold strategy.

The outline of the paper is as follows. Section 2 formulates the problem. Section 3
presents the main results. Section 4 describes the formal hedging strategy. Section 5
shows the viscosity property of the dynamic programming equation. Section 6 discusses
the terminal condition, Section 7 finds the growth condition for the value function, while
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Section 8 shows the uniqueness of the solution. In the Appendix, we discuss the convexity
properties and an illustrative example.

2 Problem formulation

Throughout this paper, we fix a finite time horizon T > 0, and we consider a one-
dimensional Brownian motion W = {W (t) , 0 ≤ t ≤ T} defined on a complete probability
space (Ω,F ,P). We denote by F = {F(t) , 0 ≤ t ≤ T} the smallest filtration that contains
the filtration generated by W and satisfies the usual conditions.

2.1 The financial market

The financial market consists of two assets, and the objective of the investor is to optimally
allocate his wealth between these assets in order to hedge some contingent liability.

The first asset is non-risky. Without loss of generality, we normalize its price to unity,
which means that this asset is taken as the numéraire.

The risky asset is subject to liquidity cost. Following Çetin, Jarrow and Protter [4], we
account for the liquidity cost by modeling the price process of this asset as a function of
the exchanged volume. We thus introduce a supply curve

S (t, S(t), ν) ,

where ν ∈ R indicates the volume of the transaction, the process S(t) = S (t, S(t), 0) is the
marginal price process defined by the stochastic differential equation

dS(r)
S(r)

= µ (r, S(r)) dr + σ (r, S(r)) dW (r) (2.1)

and some given initial condition S(0), and S : R+ × R+ × R −→ R is a smooth function
representing the price per share for some given volume of transaction and the marginal price.
In addition to the technical conditions imposed in [4] on the supply curve, we assume for
each t and s,

∂S
∂ν

(t, s, 0) > 0.

In order to ensure that the stochastic differential equation (2.1) has a unique strong con-
dition, we assume that the coefficient functions µ, σ : [0, T ] × R+ −→ R satisfy the usual
local Lipschitz and linear growth conditions.

In order to exclude arbitrage opportunities, we assume the existence of an equivalent
martingale measure P0, i.e.

dS(r)
S(r)

= σ (r, S(r)) dW 0(r) ,

where W 0 is a standard Brownian motion under P0, so that the process S is a martingale
under P0.

We shall frequently move the time origin from zero to an arbitrary t ∈ [0, T ], and we
will denote by {St,s(r), r ∈ [t, T ]} the process defined by (2.1) and the initial condition
St,s(t) = s.
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2.2 Trading strategies

A trading strategy is defined by a pair (X, Y ) where X(t) denotes the wealth in the bank,
and Y (t) is the number of shares held at each time t in the portfolio. For reasons which
will be clear later, we restrict the process Y to be of the form

Y (r) =
N−1∑

n=0

yn1{r≥τn+1} +
∫ r

t
α(u)du +

∫ r

t
Γ(u)dSt,s(u) , (2.2)

so that it has finite quadratic variation. Here, t = τ0 < τ1 < . . . is an increasing sequence
of [t, T ]-valued F−stopping times, the random variable

N := inf{n ∈ N : τn = T}

indicates the number of jumps, yn is an Rd-valued, F(τn)−measurable random variable
satisfying yn1{τn=T} = 0; α and Γ are two F−progressively measurable real processes.

We will show in the next section that it is not optimal to have jumps in Y .
We continue by deriving the continuous-time dynamics of our state variables. This deriva-

tion follows the discrete-time argument of [4]. Let t = t0 < . . . < tn = T be a partition of
the interval [0, T ], and set δψ(ti) := ψ(ti)−ψ(ti−1) for any function ψ. By the self-financing
condition, it follows that

δX(ti) + δY (ti)S (ti, Sti , δY (ti)) = 0 , 1 ≤ i ≤ n .

Summing up these equalities, it follows from direct manipulations that

X(T ) + Y (T )S(T ) = X(t) + Y (t)S(t)

−
n∑

i=1

[δY (ti)S (ti, Sti , δY (ti)) + (Y (t)S(t)− Y (T )S(T ))]

= X(t) + Y (t)S(t)−
n∑

i=1

[δY (ti)S(ti) + (Y (t)S(t)− Y (T )S(T ))]

−
n∑

i=1

δY (ti) [S (ti, Sti , δY (ti))− S (ti)]

= X(t) + Y (t)S(t) +
n∑

i=1

Y (ti−1)δS(ti)

−
n∑

i=1

δY (ti) [S (ti, Sti , δY (ti))− S (ti)] . (2.3)

The continuous-time dynamics of the process

Z := X + Y S

are obtained by taking limits in (2.3) as the time step of the partition max{(ti − ti−1), 1 ≤
i ≤ n} shrinks to zero. The last sum term in (2.3) is the term due to the liquidity cost.
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Under the smoothness assumption on ν 7−→ S(t, s, ν), it follows that

n∑

i=1

δY (ti) [S (ti, S(ti), Sti , δY (ti))− S (ti, S(ti), 0)]

−→
∫ T

t

d[Y, Y ]cr
4` (r, S(r))

+
N−1∑

k=0

yk
[
S

(
τk, S(τk), yk

)
− S (τk)

]

in probability, where

`(t, s) :=
[
4

∂S
∂ν

(t, s, 0)
]−1

. (2.4)

In view of the form of the continuous-time process Y in (2.2), this provides

Z(r) = Z(t) +
∫ r

t
Y (u)dS(u)−

∫ r

t

1
4` (r, S(r))

Γ(r)2σ (r, S(r))2 S(r)2dr (2.5)

−
N−1∑

k=0

yk
[
S

(
τk, S(τk), yk

)
− S (τk)

]
1{r<τk+1} .

In the absence of jumps in the portfolio process, the process Z approaches the classical
wealth process in frictionless markets for a large `. Therefore, we will refer to ` as the
liquidity index of the market.

In the absence of liquidity costs, the process Z represents the total value of the portfolio
of the investor. In the present setting, we assume that the investor is not subject to any
liquidity cost at the final time T . Then, although the process Z has no direct financial
interpretation, its final value Z(T ) is the total value of the investor portfolio at time T . A
discussion of initial and terminal liquidity costs is given in Remark 3.1.

2.3 Admissible trading strategies and the hedging problem

The purpose of the investor is to hedge without risk some given contingent claim

G = g (S(T )) for some function g : R+ −→ R .

In order to formulate the super-hedging problem in the context of our financial market with
liquidity cost, we need to restrict further the trading strategies as in [33].

For B, b ≥ 0, and for an F−progressively measurable process {H(r) , t ≤ r ≤ T} taking
values in R, we define

‖H‖B,b
t,s :=

∥∥∥∥∥ sup
t≤r≤T

|H(r)|
1 + |St,s(r)|B

∥∥∥∥∥
Lb(Ω,F ,P)

.

Throughout the paper, we fix B > 0. A trading strategy Y defined by (2.2) is said to be
admissible if there is a parameter b > 0 such that

‖N‖∞ < ∞ , ‖Y ‖B,∞
t,s + ‖Γ‖B,∞

t,s + ‖α‖B,b
t,s < ∞ ,
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and the process Γ is of the form

Γ(r) = Γ(t) +
∫ r

t
a(u)du +

∫ r

t
ξ(u)dW (u) , (2.6)

where a and ξ are two real-valued F−progressively measurable processes satisfying,

‖a‖B,b
t,s + ‖ξ‖B,2

t,s < ∞ .

Clearly a larger parameter B implies a larger admissible set. Hence, the parameter B can
be viewed as an indicator of market depth. We refer to [8] and [33] for a justification of
such restrictions. In addition, already discussed convergence result of the Binomial model
[19] provides further support for this class of trading strategies.

Also, notice that we use the framework of [33] where the restrictions on the drift terms
α and a are relaxed compared to [8]. This relaxation plays a crucial role in the present
paper because, in contrast with our previous work [8], the state variable Z in (2.5) exhibits
a jump term.

The collection of all admissible trading strategies Y = {Y (r), 0 ≤ r ≤ T} is denoted by
At,s. For every Y ∈ At,s, we denote by ZY

t,z the process defined by (2.5). The purpose of
this paper is to solve the super-hedging problem

V (t, s) := inf
{
z ∈ R : ZY

t,z(T ) ≥ g (St,s(T )) for some Y ∈ At,s

}
. (2.7)

Notice that this formulation ignores the liquidity cost both at the time origin t and the final
time T . As a consequence of Proposition 3.1 below, the elimination of the initial liquidity
cost does not entail any loss of generality, see Remark 3.1. However the absence of liquidity
cost at the final time is a standing assumption throughout the paper.

In the subsequent section, we will prove that we can restrict the portfolios to be contin-
uous, so that the above value function V coincides with

V cont(t, s) := inf
{
z ∈ R : ZY

t,z(T ) ≥ g (St,s(T )) for some Y ∈ Acont
t,s

}
, (2.8)

where Acont
t,s consists of all continuous portfolio processes in At,s.

3 Main results

We need the following mild technical conditions. The first assumption is needed to ensure
that the value function is locally bounded.

g is bounded from below and sup
s>0

g(s)
1 + s

< ∞ . (3.1)

Indeed, the lower bound on g is immediately inherited by V , and the affine growth condition
guarantees the existence of a trivial buy-and hold strategy which super-hedges the contin-
gent claim g (S(T )), thus producing a locally bounded upper bound for g, see Proposition
5.1 below.

We place the following standard condition on the volatility function,

σ is bounded and Lipschitz continuous. (3.2)
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The following condition on the liquidity function is needed for the comparison result of
Section 6,

` is locally Lipschitz continuous, and (3.3)

lδ := inf
{
`(t, s) : δ ≤ s ≤ δ−1, t ∈ [0, T ]

}
> 0 for every δ > 0 .

3.1 Optimality of continuous portfolios

In this subsection, we will first prove the optimality of continuous portfolio processes.
Intuitively, it is clear that in an illiquid market it is better to make consecutive small trades
instead of a large one. Then taking this idea to the limit, we formally see that jumps in the
portfolio are not optimal. The following result proves this intuition. From the technical
viewpoint, let us stress that the relaxation on the processes α and a plays a crucial role for
the next result so that our definition of the set of admissible strategies allows to preclude
jumps from optimal strategies, thus agreeing with the economic intuition.

Proposition 3.1 Assume (3.1), (3.2) and (3.3). Then, V cont = V .

Proof. Fix (t, s) in [0, T ) × (0,∞). The inequality V cont(t, s) ≥ V (t, s) is obvious as
Acont

t,s ⊂ At,s. To prove the reverse inequality, let z > V (t, s) and Y ∈ At,s be such that
Z(T ) ≥ g (S(T )) a.s.. We denote by τ1, . . . , τN the jump times of the portfolio process Y .
From the definition of admissible strategies, recall that ‖N‖∞ < ∞.

Let ε > 0 be given. We first start by eliminating the final jump at time τN . Notice that
ZY

t,z(T ) = ZY
τN ,ZτN

(T ) ≥ g(S(T )) a.s.. Then, with zN := z + ε, it follows from Lemmas 5.2

and 5.4 in [33] that ZYN
t,zN

(T ) ≥ g(S(T )) a.s., for some YN ∈ At,s with YN = Y on [t, τN )
and (YN , ΓN ) is continuous on (τN−1, T ].

Repeating the above procedure backward, we may eliminate all the jumps. Hence, with
z0 := z + ε‖N‖∞, there exists Y0 ∈ Acont

t,s such that Y t,z0,Y0(T ) ≥ g(S(T )) a.s.. Hence, z0 ≥
V cont(t, s). Since ε > 0 and z > V (t, s) are arbitrary, we conclude that V (t, s) ≥ V cont(t, s).

2

We close this subsection by discussing the initial and final liquidation costs.

Remark 3.1 The previous result on the continuity of the optimal portfolio also proves that
there is no initial liquidity cost. Indeed, suppose we start with a portfolio value different
than the optimal one. Then by shifting the initial wealth by ε, we can use the Proposition
5.1 of [31]. This shows that we can construct a super-replicating portfolio with an arbitrary
initial position in the risky asset as long as the initial wealth in the bank account is epsilon
larger.

The situation at the final time is different. At maturity, we are forced to liquidate. This
results in a liquidation cost. We chose to ignore this in our analysis. Including this cost will
make the liquidity premium even larger. Hence this assumption does not affect the chief
result of this paper; namely the existence of a liquidity cost. On the other hand, this final
liquidity cost can be driven to zero, if a nonzero amount of time is given for liquidation.
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The liquidity premium that we prove to exist, however, is due to continuous time trading.
Moreover, this premium can not be avoided by spreading our trades over time. This is the
motivation behind ignoring the final liquidity cost.

3.2 The dynamic programming equation characterization

In this subsection, we prove the viscosity property of the minimal super-replication cost.
Let V and V cont be as in (2.7) and (2.8).

Theorem 3.1 Assume (3.1), (3.2), (3.3) and that the payoff function g is continuous.
Then, V = V cont is the unique continuous viscosity solution of the dynamic programming
equation

−Vt + Ĥ (t, s, Vss) := sup
β≥0

(
−Vt − 1

2
s2σ2(Vss + β)− s2σ2

4`
(Vss + β)2

)
= 0 (3.4)

on [0, T )× (0,∞), satisfying the terminal condition V (T, .) = g and the growth condition

−C ≤ V (t, s) ≤ C(1 + s), (t, s) ∈ [0, T ]× R+, for some constant C > 0 . (3.5)

The proof of this theorem is completed in several steps. The viscosity property of the
value function and the terminal data follows from a general result proved in Theorem 3.2 of
the paper [33]. The growth condition (3.5) is derived in Section 5. Finally, the uniqueness
result follows from the comparison result of Section 6.

We close this subsection by several observations on the structure of the equation (3.4).
First, observe that the dynamic programming equation (3.4) is parabolic, i.e. non-increasing
in Vss, as all dynamic programming equations should be. Moreover, the differential operator
appearing on the left-hand side of (3.4) is the parabolic envelope of the first guess operator

−Vt + H (t, s, Vss) := −Vt − 1
2
s2σ2Vss − s2σ2

4`
V 2

ss .

We refer to [7] for more details on the construction of parabolic majorants Ĥ of H.
Finally, by direct manipulation, we see that the maximizer in the dynamic programming

equation (3.4) is given by

β̂(t, s) := (Vss(t, s) + `(t, s))− , (3.6)

so that we can rewrite the dynamic programming equation as (1.1).

3.3 Liquidity premium

Let VBS be the Black-Scholes price of the claim g. Clearly, V ≥ VBS and the liquidity
premium is the difference. Our next result states that liquidity premium is zero only for
affine pay-offs.

Corollary 3.1 Assume that the hypothesis of the previous theorem hold. Then, V = VBS

if and only if g is an affine function. Hence the liquidity premium is non-zero for all
non-trivial claims.
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Proof. By definition of Ĥ, it is easily seen that

−Vt −H
(
t, s, Vss + β̂

)
= 0

where β̂ ≥ 0 is given by (3.6). If V = V BS , then V is smooth and is a classical solution
both of the above equation and the Black-Scholes equation. This immediately implies that
β̂ = Vss = 0. Then g is affine. The reverse implication is trivial by verifying that affine
functions satisfies the PDE of V . 2

4 Formal description of an optimal hedging strategy

We now provide a formal description of an optimal hedging strategy for a payoff g(ST )
under liquidity costs. An illustrative example is studied in the Appendix 7.2. The analysis
of this section will be restricted to a formal discussion as we will ignore some admissibility
restrictions and regularity conditions.

For concreteness we work in the context of the classical Black-Scholes model, i.e. σ(t, s) ≡
σ, for some positive constant σ. This would also enable us to compare our results with the
classical Black-Scholes formula. We also assume that ` is independent of the t-variable.

4.1 Usual hedge

When the minimal super-replication cost V is a classical solution of (3.4) and if Ĥ(t, s, Vss(t, s)) =
H(t, s, Vss(t, s)) for all (t, s), then the usual hedge is replicating. We first state and prove
this result. Then, in the Appendix, we provide sufficient conditions on `.

First recall that Ĥ(t, s, Vss(t, s)) = H(t, s, Vss(t, s)) if and only if Vss(t, s) ≥ −`(t, s). This
condition is equivalent to the convexity of

V̂ (t, s) := V (t, s) +
∫ s

1

∫ s′

1
`(t, s′′) ds′′ds′.

Theorem 4.1 Let V be the value function. Assume that V̂ defined above is convex. Then,
V is smooth and it is a classical solution of (3.4). Moreover, the classical hedge Y (u) =
Vs(u, S(u)) is replicating.

Proof. We know that V is a viscosity solution of (3.4). Moreover, the convexity of V̂

defined above implies that optimizer β in (3.4) is zero and that (3.4) is locally uniformly
elliptic with a convex nonlinearity. Then, one can use the celebrated regularity result of
Evans [15] and Krylov & Safanov [23, 24] to conclude that V is smooth. Therefore, it is
a classical solution of (3.4). Since (3.4) is a parabolic equation in one space dimension,
one can prove this regularity result directly without referring to the deep regularity theory
of Evans & Krylov. Indeed, a fixed point argument using the results and the techniques
from the classic textbook of Ladyzhenskaya, Solonnikov and Uralceva [25] also yields this
regularity.

Moreover,
Vss(t, s) > −`(t, s), ∀ (t, s) (4.1)
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and (3.4) holds with Ĥ(t, s, Vss(t, s)) = H(t, s, Vss(t, s)). Then, by a standard application
of the Ito calculus, we can show that the classical hedge Y (u) = Vs(u, S(u)) is replicating.

2

In the Appendix 7.1, we discuss two sufficient conditions for (4.1).

4.2 Buy-and-hold versus dynamic hedging

In this subsection, we discuss the general structure of the hedge. An illustrative example
with g(s) = s ∧ 1 will later be discussed in subsection 7.2. To simplify the discussion, we
assume that we the supply function is of the following form:

S (s, ν) := seαsν/4 so that `(s) =
1

αs2
,

Set

φ(t, s) :=
1
4α

[
σ2(t− T ) + 4 ln s

]
, (t, s) ∈ [0, T ]× R+ , (4.2)

so that φss + ` = 0.
Before turning to the description of a hedging strategy in the context of our financial

market with liquidity costs, we would like to discuss the asymmetry between concavity and
convexity from the point of view of superhedging. This will turn out to be the driving
intuition for our hedging strategy.

The Black-Scholes hedging theory in a complete market says that the optimal superhedg-
ing strategy of some contingent claim is in fact a perfect replicating strategy, and consists
in the dynamic strategy of holding at each time r, the number ∂V

∂s (r, Sr) of shares of the un-
derlying risky asset. In our context, this strategy is more expensive than in the frictionless
Black-Scholes model since it induces a non-zero gamma process, implying a penalization
on the wealth process.

A buy-and-hold strategy on some time interval [t, τ) is defined by Y (r) = Y (t) for every
r ∈ [t, τ). In particular, Γ = 0 on [t, τ), the wealth process is not subject to the liquidity
cost penalty, and it is given by the same expression as in the classical frictionless framework:

Z(r) = Z(t) + Y (t) (S(r)− S(t)) for r ∈ [t, τ) .

For a concave payoff, a trivial static superhedging strategy is available. Indeed, performing
the buy-and-hold strategy Y (t) = ∂g

∂s (S(t)) on [t, τ) (for a non-smooth g, let Yt be a measur-
able selection in the supergradient of g at S(t)), and starting from the capital Zt = g(S(t)),
it follows from the concavity of the payoff function g that

Z(τ) = Z(t) + Y (t) (S(τ)− S(t)) ≥ g (S(τ)) .

This discussion shows that, in our context of financial market with liquidity costs, when
the super-replication value is concave, there is a trade-off between
- paying a higher cost for a buy-and-hold strategy, thus avoiding the liquidity costs,
- performing the Black-Scholes replicating strategy but paying the liquidity costs.

12



The hedging strategy which will be described in the next subsection provides a precise
definition of the level of concavity below which the liquidity cost induced by a perfect
hedging strategy is so significant that it is cheaper to use a buy-and-hold strategy. In the
subsequent subsection we answer the question how a risk manager prefers a Black-Scholes
type replicating strategy over a buy-and-hold strategy by splitting the value of the option
into two parts and replicating one part by the classical Black-Scholes hedge while hedging
the other part by a combination of a buy-and-hold-strategy together with a classical hedge.
The latter is achieved by optimally separating the state space into regions in which one or
the other strategy is optimal.

4.3 Hedging under liquidity costs

In order to discuss the hedging strategy, we introduce the following open set:

C := {(t, s) ∈ [0, T )× (0,∞) : Vss(t, s) < −`(t, s)} .

Observe that on C, (1.1) reduces to

−Vt +
1
4
s2σ2(t, s)`(s) = 0 . (4.3)

Note that (V −φ)ss < 0 and (V −φ)t = 0 on C. This implies that (V −φ)tt = (V −φ)ts = 0
on C. Hence

(t, s) 7−→ (V − φ)(t, s) is concave and (V − φ)t = 0 on C . (4.4)

Given an arbitrary initial position (t, s) ∈ C, we define the exit time

θ := inf{u > t : (u, S(u)) 6∈ C} .

We now consider the initial capital V (t, s) at time t, together with the hedging strategy
{Y (u), t ≤ u < θ} defined by

Y (t) := Vs(t, s), Γ(u) := φss(u, S(u)), and α(u) := Lφs(u, S(u)) .

In words, this hedging strategy consists in dynamically replicating the value function φ, and
performing a buy-and-hold strategy in order to super-hedge the remaining value (V − φ).
Then, we directly calculate for τ ∈ (t, θ) that:

Z(τ) = V (t, s) +
∫ τ

t
Y (u)dS(u)− 1

4

∫ τ

t
`−1(S(u))Γ2(u)σ2(u, S(u))S2(u)du

= V (t, s) + Vs(t, s)(S(τ)− s) +
∫ τ

t

(∫ u

t
Lφs(r, S(r))dr + φss(r, S(r))dS(r)

)
dS(u)

−1
4

∫ τ

t
`(u, S(u))σ2S2(u)du

= (V − φ)(t, s) + (V − φ)s(t, s)[S(τ)− s] + φ (τ, S(τ))

−
∫ τ

t

(
Lφ(u, S(u)) +

1
4
`(u, S(u))σ2(u, S(u))S2(u)

)
du ,
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where we applied Itô’s lemma twice to the process φ(u, S(u)). We next observe that

Lφ = φt +
1
2
σ2s2φss = −1

4
`(t, s)σ2s2 on C .

Together with (4.4), this implies that

Z(τ) = (V − φ)(t, s) + (V − φ)s(t, s)[S(τ)− s] + φ (τ, S(τ))

≥ (V − φ) (τ, S(τ)) + φ (τ, S(τ)) = V (τ, S(τ)) .

This shows that the above defined strategy is a super-hedging strategy in C. Outside C,
one can show by Itô’s lemma that the hedging strategy consists in performing a perfect
replicating Black-Scholes strategy on the total value function V , i.e. Y (u) = Vs(u, S(u)).

In conclusion, the super-hedging strategy in our financial market with liquidity costs
is formally described by applying successively a perfect dynamic replicating Black-Scholes
strategy outside C and the above mixed strategy in C which consists in dynamically hedging
φ and super-hedging the difference (V − φ) by means of a buy-and-hold strategy .

5 Growth condition

In this section, we prove that the growth condition (3.1) placed on the pay-off g implies a
similar growth condition on the minimal super-replication prices, ṽ and v.

Proposition 5.1 Assume (3.1). Then, there is a constant C so that

−C ≤ V (t, s) ≤ C[1 + s], ∀ t ∈ [0, T ], s ≥ 0. (5.1)

Proof. Let −C be a lower bound for g. Fix any initial point (t, s), and let Y be a super-
replicating portfolio. Since the corresponding wealth process ZY is a supermartingale, we
have the following inequalities

Z(t) ≥ E[Z(T ) | Ft] ≥ E[g(St,s(T )) | Ft] ≥ −C.

Hence we have the lower bound.
To derive the upper bound, we use the bound g(s) ≤ C(1 + s), s > 0, for some C > 0, of

(3.1). Since V (T, s) = g(s), it only remains to derive this upper bound for t < T . Consider
the buy-and-hold strategy consisting in holding an amount C on the bank and C shares
of the risky asset until the maturity T , i.e. Y (u) = C. Clearly, ZY is super-replicating.
Notice that this buy-and-hold strategy induces a liquidity cost at the initial time t. As in
Proposition 3.1, this liquidity cost can be avoided within our set of admissible strategies,
see also Remark 3.1. Hence, for every ε > 0, one can find a super-replicating strategy with
initial cost ε + C(1 + s), and therefore V (t, s) ≤ C(1 + s) for every t ∈ [0, T ). 2

6 Uniqueness

To complete the proof of the main Theorem 3.1, we need to prove a comparison result for
(3.4). Due to the quadratic nonlinearity in (3.4), standard results do not directly apply to
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this equation. Moreover, due to the lack of homogeneity in the s-variable, the techniques
used in [2] do not apply either. However, we use the special structure of the equation coming
from the fact that it is one dimensional, and consider the following equivalent equation.

− A(t, s) Vt + F (t, s, Vss) = 0, (6.1)

where
A(t, s) :=

4`(t, s)
s2σ2(t, s)

, F (t, s, Vss) :=
[
`2(t, s)− (

(Vss + `(t, s))+
)2

]
. (6.2)

Proposition 6.1 Let Condition (3.2) and (3.3) hold, and let w̃ be a lower semi-continuous
supersolution of (6.1) and w be an upper semi-continuous subsolution of (6.1). Further
assume that w̃ and w satisfy the growth condition (5.1) and the boundary conditions

w(T, s) ≤ w̃(T, s), ∀ s ≥ 0, (6.3)

w(t, 0) ≤ w̃(t, 0), ∀ t ∈ [0, T ]. (6.4)

Then, w ≤ w̃ on [0, T ]× R+.

Proof.
1. Set

ψ(t, s) := w(t, s)− w̃(t, s).

The goal is to show that ψ ≤ 0 on [0, T ] × R+. We suppose to the contrary and assume
that there exists (t0, s0) ∈ [0, T ] × R+ such that ψ(t0, s0) > 0. Since ψ ≤ 0 on the
parabolic boundary ({T} × R+) ∪ ([0, T ]× {0}) and ψ is upper semi-continuous, it is clear
that t0 < T and s0 > 0. Moreover, again by the upper semi-continuity, for any compact
subset K ⊂ [0, T ]× R+ containing (t0, s0) there exists δ > 0 so that we have

sup
K

ψ = sup
N∩K

ψ where N := [0, T − 2δ]× [2δ, δ−1) .

2. Following the usual trick in the theory of viscosity solutions [10], we construct a strict
super-solution to (6.1). In view of the previous step, we only need this property on the
domain N .

For γ ≥ 1, we set
η(t, s) := [s ln(s) + γ] (T − t + 1).

so that, for (t, s) ∈ N

I[η](t, s) := −A(s)ηt(t, s) + F (s, ηss(t, s))

= A(s)[s ln(s) + γ]− (T − t + 1)2

s2
− 2`(s)(T − t + 1)

s

=
1
s2

(
4`(s)

σ2(t, s)
[s ln(s) + γ]− (T − t + 1)2 − 2s`(s)(T − t + 1)

)

=
1
s2

(
4`(s)

σ2(t, s)
[s ln(s) + γ]− c− cs`(s)

)

≥ `(s)
s2σ2(t, s)

(
[2γ − σ2(t, s)

`(s)
c] + [4s ln(s) + 2γ − cσ2(t, s)s]

)
.
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By conditions (3.2) and (3.3),

sup
N

{
σ2(t, s)

`(s)
+ σ2(t, s)

}
< ∞.

Hence, there is γ ≥ 1 so that
c[η] := inf

N
I[η] > 0.

Let C be the constant in (5.1). We can choose γ ≥ 1 so that in addition to above inequality,
we also have

η(t, s) ≥ C[1 + s] ≥ max{ w(t, s) ; w̃(t, s) }. (6.5)

3. For µ ∈ [0, 1] set
wµ := (1− µ) w̃ + µ η.

Let I[·] be defined as in the previous step. Then, by the concavity of F , on N ,

I[wµ] ≥ (1− µ) I[w̃] + µ I[η] ≥ µ c[η].

Hence, wµ is a strict super-solution of (6.1) on N .
4. Set

ψµ(t, s) := w(t, s)− wµ(t, s).

In step 1, we assumed that ψ(t0, s0) > 0. Hence for µ sufficiently small we also have
ψµ(t0, s0) > 0. In view of (6.4), (6.3) and (6.5), ψµ ≤ 0 on the parabolic boundary
({T} × R+)(∪[0, T ] × {0}). Also for all µ > 0, the growth of η is faster than linear and
by (5.1) and step 1, we conclude that ψµ attains its maximum at some point (tµ, sµ) ∈
[0, T − 2δ]× [2δ, (2δ)−1) ⊂ N :

ψµ(tµ, sµ) = sup
N

ψµ = sup
[0,T ]×[0,∞)

ψµ.

Fix µ > 0 satisfying above.
5. Let µ be as above and for α > 0, consider the auxiliary function

Φα,µ(t, s; t̄, s̄) := w(t, s)− wµ(t̄, s̄)− α

2
[|t− t̄|2 + |s− s̄|2].

In view of the previous step, for all small µ > 0 and sufficiently large α ≥ 1, there is a max-
imizer (tα,µ, sα,µ, t̄α,µ, s̄α,µ) of Φα,µ. Moreover, as α tends to infinity, (tα,µ, sα,µ, t̄α,µ, s̄α,µ)
approaches to (tµ, sµ, tµ, sµ). Since (tµ, sµ) ∈ [0, T − 2δ]× [2δ, (2δ)−1) ⊂ N , for all large α,
(tα,µ, sα,µ, t̄α,µ, s̄α,µ) ∈ N ×N .

Also,

lim
α→∞ α [|tα,µ − t̄α,µ|2 + |sα,µ − s̄α,µ|2] = 0, cµ := sup

α>1
[|sα,µ|+ |s̄α,µ|] < ∞. (6.6)

6. By the Crandall-Ishii Lemma (see [10] or Section V.6 in [16]), there are aα,µ ≤ bα,µ such
that

(qα, pα, aα,µ) ∈ D+(1,2)w(tα,µ, sα,µ), (qα, pα, bα,µ) ∈ D−(1,2)wµ(t̄α,µ, s̄α,µ),
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qα := α [tα,µ − t̄α,µ], pα := α [sα,µ − s̄α,µ],

and the sets D−(1,2), D+(1,2) are defined in [10, 16]. Formally, qα is the generalized time
derivative, pα is the generalized space derivative and aα,µ, bα,µ are the generalized second
derivatives. We now use the viscosity property of w and wµ to obtain,

−A(tα,µ, sα,µ)qα + F (tα,µ, sα,µ, aα,µ) ≤ 0, (6.7)

−A(t̄α,µ, s̄α,µ)qα + F (t̄α,µ, s̄α,µ, bα,µ) ≥ µc[η]. (6.8)

Moreover, as in page 217 in [16], we can show that aα,µ, bα,µ satisfy |aα,µ| + | ≤ bα,µ| ≤ α

and [
aα,µ 0
0 − bα,µ

]
≤ 3α

[
1 −1
−1 1

]
. (6.9)

Using (6.6), (6.9) and the local Lipschitz property of the coefficients (3.2)-(3.3), we will
show in Lemma 6.1 below that there is a constant Cµ such that

|A(tα,µ, sα,µ)−A(t̄α,µ, s̄α,µ)| |qα| ≤ Cµα
(|tα,µ − t̄α,µ|2 + |sα,µ − s̄α,µ|2)(6.10)

−F (tα,µ, sα,µ, aα,µ) + F (t̄α,µ, s̄α,µ, bα,µ) ≤ Cµ

(
α|tα,µ − t̄α,µ|2 + α|sα,µ − s̄α,µ|2

+|tα,µ − t̄α,µ|+ |sα,µ − s̄α,µ|)(6.11)

7. Subtract (6.7) from (6.8) and then use (6.10). The result is,

µ c[η] ≤ Cµα [|tα,µ − t̄α,µ|2 + |sα,µ − s̄α,µ|2].

We let α tend to infinity and use (6.6). This implies that µc[η] ≤ 0. However, this
contradicts the fact that µ and c[η] are strictly positive. Hence, there is no (t0, s0) as in
step 1. Therefore, ψ ≤ 0 on [0, T ]× R+. 2

We complete the above proof by proving the technical estimate (6.10).

Lemma 6.1 Assume (3.2)-(3.3), then (6.10) holds for all α ≥ 1.

Proof.
1. In view of (3.2) and (3.3), the coefficient A defined by (6.2) is locally Lipschitz on N .
Since by 6.6 sα,µ and s̄α,µ are uniformly bounded in α, there exists a constant, Cµ possibly
depending on µ so that

|A(tα,µ, sα,µ)−A(t̄α,µ, s̄α,µ)| |qα| ≤ Cµ [|tα,µ − t̄α,µ|+ |sα,µ − s̄α,µ|] |qα|
= Cµ α

[
|tα,µ − t̄α,µ|2 + |sα,µ − s̄α,µ| |tα,µ − t̄α,µ|

]

≤ Cµ α
[
|tα,µ − t̄α,µ|2 + |sα,µ − s̄α,µ|2

]

2. We continue by proving the second inequality in (6.10). To simplify the presentation,
we suppress the superscripts in our notation, i.e. s = sα,µ, a = aα,µ etc. By the definition
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of F , (6.2),

−F (tα,µ, sα,µ, aα,µ) + F (t̄α,µ, s̄α,µ, bα,µ)

= −F (t, s, a) + F (t̄, s̄, b)

= `2(t̄, s̄)− `2(t, s) + (a + `(t, s))+2 − (b + `(t̄, s̄))+2

= Cµ (|tα,µ − t̄α,µ||sα,µ − s̄α,µ|) + (a + `(t, s))+2 − (b + `(t̄, s̄))+2.

If (a + `(t, s))+2 − (b + `(t̄, s̄))+2 ≤ 0, then the proof of the required estimate is complete.
We then continue to proof the estimate in the case

(a + `(t, s))+2 − (b + `(t̄, s̄))+2 > 0 . (6.12)

Since the matrix inequality (6.9) implies that a ≤ b, it follows from the increase of the
function z 7−→ z+ that

(a + `(t, s))+2 − (b + `(t̄, s̄))+2

=
(
(a + `(t, s))+ − (b + `(t̄, s̄))+

) (
(a + `(t, s))+ + (b + `(t̄, s̄))+

)

≤ (
(a + `(t, s))+ − (b + `(t̄, s̄))+

) (
(b + `(t, s))+ + (b + `(t̄, s̄))+

)

≤ ((a− b) + Cµ(|s− s̄|+ |t− t̄|)) (|b|+ Cµ)

3. We will now use again the restriction (6.9) to estimate the right hand side of the final
inequality in step 2. We already know that (6.9) implies that a ≤ b, but it is stronger than
that. Indeed, multiply (6.9) by a general two vector (x, y) both from right and left. The
result is,

ax2 − by2 ≤ 3α(x− y)2, ∀ x, y ∈ R1.

By choosing x = y, we obtain a ≤ b. But this choice may not be optimal and by calculus
we conclude that

a− b ≤ − b2

3α + b
.

4. Observe that the above estimates implies that b2

3α+b ≥ Cµ(|t − t̄| + |s − s̄|) contradicts
(6.12). Hence b2

3α+b ≤ Cµ(|t− t̄|+ |s− s̄|). Since |b| ≤ α, this implies that

b2 ≤ Cµα (|t− t̄|+ |s− s̄|).

with a possibly different constant denoted by Cµ again. We substitute this into the estimate
of step 2. The result is

(a + `(t, s))+2 − (b + `(t̄, s̄))+2

≤ Cµ(|t− t̄|+ |s− s̄|) (|b|+ Cµ)

≤ Cµ(|t− t̄|+ |s− s̄|) + Cµ|b| (|t− t̄|+ |s− s̄|)
≤ Cµ(|t− t̄|+ |s− s̄|) + Cµ

[|b|2 + 1
]

(|t− t̄|+ |s− s̄|)
≤ Cµ(|t− t̄|+ |s− s̄|) + Cµ [Cµα (|t− t̄|+ |s− s̄|) + 1] (|t− t̄|+ |s− s̄|)
≤ Cµ

(|t− t̄|+ |s− s̄|+ α |s− s̄|2 + α |t− t̄|2) .

2
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7 Appendix

7.1 Sufficient Conditions for (4.1)

In the following two remarks, we state conditions that imply (4.1). Set

L(s) := s
√

`(s).

Our arguments below require polynomial type growth conditions on the functions related
to the second derivative of the value function. Here we avoid these technical discussions
and we simply assume the appropriate growth condition. However, they could be easily
verified in all interesting examples.

Remark 7.1 Set
h(t, s) :=

sσ

2
√

`(s)
Vss(t, s).

Suppose that s2Lss/L is bounded from above, the claim g is convex and h is polynomially
growing. Then, the minimal super-replicating cost V is convex. In particular, (4.1) holds.

Since g is convex, (4.1) holds on an open set including {T} × [0,∞). On this subset,

0 = −Vt − σ2s2

4`(s)
(Vss)2 − σ2s2

2
Vss. (7.1)

Then,
0 = −Vt − h2(t, s)− σL(s)h.

By a direct calculation,

0 = −ht − sσ

2
√

`(s)
(h2)ss − sσ2

2
√

`(s)
(Lh)ss

= −ht − sσ√
`(s)

[
hhss + (hs)2

]− sσ2

2
√

`(s)
[Lhss + Lshs + Lssh]

= −ht − sσ

2
√

`(s)
[Vss + `]hss − a(t, s) hs + b(t, s) h,

where

a(t, s) =
sσ

2
√

`(s)
[2hs + σLs] , b(s) := − sσ2

2
√

`(s)
Lss = −σ2

2
s2Lss(s)

L(s)
.

We assume that h(T, ·) ≥ 0 and b(s) is bounded from below. Hence, by the Feynman-Kac
representation of linear equations (or equivalently by the classical maximum principle), we
conclude that h is non-negative. Hence, the value function is convex on the open set (7.1)
holds. By iterating the procedure, we conclude that this open set is the whole space and
V is convex. 2
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Remark 7.2 Set
H(t, s) :=

sσ

2
√

`(s)
[Vss(t, s) + `(s)] .

Suppose that L2(s) = s2`(s) is concave, the claim gss(s) ≥ −`(t, s) and H is polynomially
growing. Then, the minimal super-replicating cost V satisfies (4.1).

Again (7.1) holds on an open set including {T} × [0,∞). We rewrite it as

0 = −Vt +
σ2L2(s)

4
− σ2s2

4`(s)
(Vss + `(s))2.

Then,

0 = −Ht − sσ

2
√

`(s)

[
H2 − σ2L2

4

]

ss

= −Ht − sσ

2
√

`(s)

[
2HHss + 2(Hs)2 − σ2

4
(L2)ss

]

≤ −Ht − sσ

2
√

`(s)

[
2HHss + 2(Hs)2

]
.

Again, we conclude by using the maximum principle or equivalently the Feynman-Kac
representation. 2

7.2 An Example

In this subsection, we provide a simple example in which the buy-and-hold regime is non-
empty. Since Theorem 4.1 and Remark 7.1 imply that for convex terminal data hedging is
classical, we study the simplest concave pay-off: namely,

g(s) := s ∧ 1,

with supply curve as in the previous section, i.e.,

`(s) = 1/(αs2), φ(t, s) =
1
4α

[
σ2(t− T ) + 4 ln s

]
.

For brevity, we will not provide all technical details of the subsequent arguments. However,
we believe that these arguments can be turned into a rigorous proof with some care.

Since the claim g has a concave discontinuity at s = 1 and the equation (3.4) is degenerate
for sufficiently negative second derivatives, we expect that the value function inherits this
property on some interval (t∗, T ]. Then, (t, 1) ∈ C for t ∈ (t∗, T ). Since on C (1.1) has the
form (4.3), a direct calculation implies that

V (t, 1) = 1 + φ(t, 1), ∀ t ∈ [t∗, T ].

We continue by constructing the value function using this additional boundary condition.
We also use the intuition that C = (t∗, T )×{1}. Indeed, let t∗ < T to be chosen below and
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v+ be the solution of dynamic programming equation (3.4) on the domain (t∗, T )× (1,∞)
with boundary condition

v+(T, s) = g(s) = 1, s ≥ 1, and v+(t, 1) = V (t, 1) = 1 + φ(t, 1), t > t∗.

Observe that the boundary condition at s = 1 formally implies that v+
ss(t, 1) = −`(1).

This together with the terminal condition and the arguments of Remark 7.2 imply that
v+
ss(t, s) ≥ −`(s) and v+ is smooth. Similarly, we define v− as the solution of (3.4) on the

domain (t∗, T )× (0, 1) with boundary condition

v−(T, s) = g(s) = s, s ≤ 1, and v−(t, 1) = V (t, 1) = 1 + φ(t, 1), t > t∗.

The same argument implies that v−ss(t, s) ≥ −`(s) as well. Set

v+
s (1+, t) := lim

s↓1
v+
s (s, t), v−s (1−, t) := lim

s↑1
v−s (s, t).

Observe that v+
s (1+, T ) = 0 and v−s (1+, T ) = 1. Let t∗ be the smallest time point such that

v+
s (1+, t) < v−s (1−, t), ∀ t ∈ (t∗, T ].

We formally expect that t∗ < T . Then,

V̄ (t, s) := v+(t, s)1{s≥1} + v−(t, s)1{s≤1},

has a concave first order discontinuity at s = 1. Using this fact, one may directly show that
V̄ is a viscosity solution of (3.4) on (t∗, T )× (0,∞), although it is discontinuous at s = 1.
Then, by the comparison result for (3.4), V̄ is equal to the value function V on this region.
For t < t∗, the value function satisfies the condition (4.1) and it is a smooth solution.

Given the above structure of the value function, we can construct a hedge along the
lines described in the previous section. However, in this example C = (t∗, T ) × {1} and
this simplifies the construction. Indeed, with an initial point t0 > t∗, s0 = 1, choose
δ ∈ (v+

s (1+, t0), v−s (1−, t0)). Set

ψ(t, s) := 1 + (δ− φs(t, 1))(s− 1) + φ(t, s) = 1 + (δ− 1/α)(s− 1) +
1
4α

[
σ2(t− T ) + 4 ln s

]
,

so that ψ solves the equation (7.1) and equivalently (3.4). Moreover, for each t ≥ t0 set

L(t) := max
{
s > 1 : ψs(t, s′) ≥ v+

s (t, s′)), ∀ s′ ∈ (1, s)
}

,

R(t) := min
{
s > 1 : ψs(t, s′) ≤ v−s (t, s′)), ∀ s′ ∈ (s, 1)

}
.

Now define the hedge by Y (u) = ψs(u, S(u)), until the exit time τ1 of the process (u, S(u))
from the domain (R(t), L(t)).

It is clear that Y (τ1) = Vs(τ1, S(τ1)) and by the calculations of subsection 4.2,

Z(τ1) = ψ(τ1, S(τ1)) > V (τ1, S(τ1)).

After the exit time τ1, we set Y (u) := Vs(u, S(u)) until the next stopping time S(τ2) = 1.
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We would like to continue this process. For that we need Y (τ2) to be strictly in the interval
(v+

s (1+, τ2), v−s (1−, τ2)) but in fact Y (τ2) is equal to one of the end points. However,

Z(τ2)− V (τ2, S(τ2)) = Z(τ1)− V (τ1, S(τ1)) > Z(t0)− V (t0, 1) = 0,

Moreover, by the results of [33] (see also Remark 3.1), we may change the portfolio value
Y (τ2) to any value (in particular, to a point in the interval (v+

s (1+, τ2), v−s (1−, τ2)) ) with
arbitrarily small cost which can be covered by the gains Z(τ2)−V (τ2, S(τ2)). Hence, we may
reiterate the process to replicate this particular claim from any initial data (t0, 1). From
any other initial data we simply follow the usual hedge until the stopping time S(τ) = 1.
Then, we use the above procedure.
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[12] Cvitanić, J. and Ma, J. (1996). Hedging options for a large investor and forward-
backward SDEs, Ann. Appl. Prob., 6, 370–398.
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