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Abstract

A Greek weight associated to a parameterized random variable Z(λ) is a random

variable π such that ∇λE [φ (Z(λ))] = E [φ (Z(λ)) π] for any function φ. The impor-

tance of the set of Greek weights for the purpose of Monte Carlo simulations has been

highlighted in the recent literature. Our main concern in this paper is to device meth-

ods which produce the optimal weight, which is well-known to be given by the score,

in a general context where the density of Z(λ) is not explicitly known. To do this,

we randomize the parameter λ by introducing an a priori distribution, and we use

classical kernel estimation techniques in order to estimate the score function. By an

integration by parts argument on the limit of this first kernel estimator, we define an

alternative simpler kernel-based estimator which turns out to be closely related to the

partial gradient of the kernel-based estimator of E[φ(Z(λ))].

Similarly to the finite differences technique, and unlike the so-called Malliavin

method, our estimators are biased but their implementation does not require any ad-

vanced mathematical calculation. We provide an asymptotic analysis of the mean

squared error of these estimators, as well as their asymptotic distributions. For a

discontinuous payoff function, the kernel estimators outperforms the classical finite dif-

ferences one in terms of the asymptotic rate of convergence. This result is confirmed

by our numerical experiments.

Key words: Greek weights, Monte Carlo simulation, Non-parametric regression.
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Optimal Greek Weights by kernel estimation

1 Introduction

Let λ be some given parameter in R
d, and define the function

V φ(λ) := E [φ (Z(λ))] ,

where Z(.) is a parameterized random variable with values in R
n and φ : R

n → R is a

measurable function. In many applications, we are interested in the numerical computation

of the function V φ(λ) for some parameter λ0, together with the sensitivities of V φ with

respect to the parameter λ.

In particular, in the financial literature, V φ represents the no-arbitrage price of a contin-

gent claim, defined by the payoff φ (Z(λ)), in the context of a complete market with prices

measured in terms of the price of the non-risky asset (so that the model is reduced to the

zero-interest rate situation). The sensitivities of V φ with respect to the parameter λ are

called Greeks, and are widely used by the practitioners in their profit and loss analysis. In

the context of the Black-Scholes model, the derivative of the option price with respect to the

current underlying asset price is the so-called Delta, and represents the number of shares of

risky asset to be held at each time in order to realize a dynamic perfect hedge of the option.

The Gamma is the second derivative of the option price, with respect to the underlying

asset price. It is an indicator of the variation of the hedging portfolio. Another important

Greek is the so-called Vega (although not a Greek letter !) which is the derivative of the

option price with respect to the volatility coefficient (see e.g. Hull [11], for more details).

We observe that the case of Bermudean options (i.e. American options with finite possible

exercise times) is included in our framework by taking φ(Z(λ)) as the value of the option

at the first possible exercise time. The case of American options (with a continuous set of

exercise times) can be covered by a limit argument, but requires a small time asymptotic

analysis in order to control for the stability of the variance, see [7].

Given a numerical scheme for the computation of the function V φ, the first natural idea

for the numerical computation of the Greeks is the finite differences approximation of the

corresponding derivative. In addition to the generic standard error on the numerical compu-

tation of the expectation, this approximation leads to a biased estimator at a finite distance

and appears to be inefficient for discontinuous payoff functions φ. We refer to L’Ecuyer

and Perron [6], Detemple, Garcia and Rindisbacher [4] or Milstein and Tretyakov [13] for

a theoretical analysis of the rate of convergence of this estimator. Two direct methods

for computing the Greeks have been presented by Broadie and Glasserman [2] : (i) the

pathwise method, which consists in differentiating the random variable φ (Z(λ)) inside the

expectation operator, and (ii) the likelihood ratio method which reports the differentiation

on the distribution of Z(λ). The first method requires the computation of the gradient

of the payoff function φ, which is a serious limitation in practice as φ is typically highly

complicated or even not differentiable, see also Giles and Glasserman [5] for further devel-

opments in this direction. As for the second method (ii), it was (apparently) restricted to
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the very special cases where the distribution of Z(λ) is known explicitly. This difficulty was

overcome by Fournié, Lasry, Lebuchoux, Lions and Touzi [8] who exploited the Malliavin

integration-by-parts formula to show that, for smooth random variables Z(.),

∇λE[φ(Z(λ))] = E[φ(Z(λ))π] , (1.1)

where π, the so-called Greek weight, is a random variable independent of the pay-off function

φ. A quick overview of the notion of Greek weights is reported in Section 2. Further

developments of the results of [8] were obtained by Gobet and Kohatsu-Higa [10]. The

comparison of the above different methods is available in the survey paper of Kohatsu-Higa

and Montero [12].

An important observation is that the set of Greek weights which satisfy (1.1) is a convex

set of random variables. By an easy variance reduction argument, it is easily seen that

the score π∗ := ∇λ ln f
(

λ0, Z(λ0)
)

minimizes Var [φ(Z(λ))π], whenever the density f(λ, z)

of the random variable Z(λ) exists and is sufficiently smooth. In general, the use of the

Malliavin calculus does not lead to this optimal Greek weight, except in trivial cases where

the density f(λ, z) is explicitly known, which corresponds to the case covered by [2].

The main purpose of this paper is to focus on the use of the optimal Greek weight in order

to estimate the corresponding Greek by the Monte Carlo method. To do this, our main idea

is to randomize the parameter λ and to re-write V φ as a regression function :

V φ(λ) := E [φ(Z(Λ))|Λ = λ] ,

where Z(Λ) is a random variable with density ϕ(λ, z) := ℓ(λ0 − λ)f(λ, z), and ℓ(λ0 − .)

is some given randomizing distribution on the parameter λ around λ0. In other words,

the random variable Z(Λ)|Λ = λ has the same distribution as the random variable Z(λ)

defined by the density f(λ, z). We next assume that our observations consist of a family

{(Λi, Zi), 1 ≤ i ≤ N} of independent pairs (Λi, Zi) drawn in the density ϕ, and we define

various kernel estimators of the Greek

∇λE[φ(Z(λ))]|λ=λ0 = E
[

φ
(

Z(λ0)
)

s
(

λ0, Z(λ0)
)]

, (1.2)

where s(λ, z) := ∇λ ln f (λ, z) is the score function. The first natural idea is to notice that

E
[

φ
(

Z(λ0)
)

s
(

λ0, Z(λ0)
)]

= E
[

φ (Z(Λ)) s (Λ, Z(Λ)) | Λ = λ0
]

, (1.3)

which is a usual regression function. Thus, a two-steps estimation method is proposed :

we first perform a kernel-based estimator ŝ of the score function, and then we define a

kernel regression estimator of the Greek by substituting ŝ to s. In the sequel, the resulting

estimator is referred to as the double kernel-based estimator and is denoted by β̃.

Our next kernel estimator of the Greek is based on a convenient integration-by-parts in

(1.2). This leads to a much simpler estimator β̂ which turns out to be closely related to the

estimator β̌, obtained by direct differentiation of the classical kernel regression estimator
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of V φ(λ) = E
[

φ (Z(Λ)) | Λ = λ0
]

. These two estimators will be referred to as the single

kernel-based estimators.

Let us observe that, unlike the so-called Malliavin Greek technique, our suggested es-

timators are biased but do not require any advanced mathematical calculation for their

implementation. These two features are shared with the finite differences method. Also,

intuitively, the randomization of the parameter λ introduces an additional noise which may

imply that our estimators are less accurate than their classical competitors. Our numerical

results show indeed that the Malliavin Greek estimators are by far more accurate even in

the case of an Asian option where the Greek weight is not optimal. Therefore, the main

purpose of this paper is to provide a deep comparison between our estimators and the finite

differences ones.

Our three suggested estimators are defined precisely in Section 3, and their asymptotic

properties are discussed in Section 4. We show that β̂ and β̌ are asymptotically equivalent.

The asymptotic properties of β̃ are derived under stronger conditions on the pay-off function

φ and the kernel functions. The simultaneous choice of the bandwidth, and the number of

observations is also more restrictive in the latter case.

An important observation is that the two single kernel based estimators coincide if and

only if the randomizing distribution ℓ is a truncated exponential distribution. In this case,

by conveniently relating the support of the truncated exponential distribution to the kernel

bandwidth, we observe that the rate of convergence is independent of the dimension of the

parameter λ. We next solve the optimal choice of the randomizing distribution within this

class by minimizing the corresponding mean square error.

Our asymptotic results imply the following main property of the single kernel based es-

timators: for a discontinuous payoff function φ, the asymptotic rate of convergence of our

estimator is better than the classical finite differences one, whenever the order of the ker-

nel function is larger than some explicit threshold. In the case of a truncated exponential

randomizing distribution, with support related to the kernel bandwidth, the single kernel

based estimator has a better asymptotic rate of convergence whenever the order of the kernel

function is larger than four.

Some numerical results are reported in Section 5. We estimate the delta of an European

and an Asian digital call option. Our experiments show that the Malliavin-based estimators

defined in [8] or [2] are the most efficient, as documented by the previous literature. As pre-

dicted by our theoretical asymptotic results, the single-kernel based estimator outperforms

the finite differences one, but this is only observed for a large number of simulations. We

believe that this does not restrict the interest in our new suggested method as this is just

a matter of computer power, and the required number of simulations can be significantly

reduced by using variance reduction techniques. For instance, the technique of antithetic

variables applied to the randomizing density appears to be very efficient.
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2 The Greek weights set

Throughout this paper we consider a complete probability space (Ω,F , P ). Let Z(λ) be some

random variable, valued in R
n, depending on some finite dimensional parameter λ ∈ R

d,

and set

V φ(λ) := E [φ (Z(λ))] for φ ∈ L
∞(Rn,R) .

In order to simplify the presentation, we shall focus our attention on some fixed particular

value λ0 of λ, and we denote

Z0 := Z(λ0) .

The chief goal of this paper is to device efficient methods for the computation of the sensi-

tivity parameter

β0 := ∇λV
φ(λ0),

for arbitrary functions φ chosen from a suitable large class. We assume that the distribution

of Z(λ) is absolutely continuous with respect to the Lebesgue measure, and we denote by

f(λ, z) the associated density, i.e.

E [φ(Z(λ))] =

∫

φ(z)f(λ, z)dz for all φ ∈ L
∞(Rn,R) .

Under mild smoothness assumptions on the density f , we directly compute that

∇λV
φ(λ0) :=

∂V φ

∂λ
(λ0) = E

[

φ(Z0)S0
]

, S0 := s(λ0, Z0) ,

where the function s is independent of φ and is explicitly given by

s(λ, z) := ∇λ {ln f(λ, z)} .

This idea was introduced by Broadie and Glasserman [2] in the context of the Black-Scholes

model where the density f(λ, z) is explicitly known.

We shall always assume that

E
∣

∣S0
∣

∣

2
< ∞ . (2.1)

Under this condition, the set

W :=
{

π ∈ L
2(Ω,Rd) : ∇λV

φ(λ0) = E
[

φ(Z0)π
]

for all φ ∈ L
∞(Rn,R)

}

is not empty. From the arbitrariness of φ ∈ L
∞(Rn,R), it is immediately seen that

W =
{

π ∈ L
2(Ω,Rd) : E[π|Z0] = S0

}

,
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and therefore

Var
[

φ(Z0)π
]

= E
[

φ(Z0)2E[ππ′|Z0]
]

−∇V φ(λ0)∇V φ(λ0)′

≥ E
[

φ(Z0)2E[π|Z0]E[π|Z0]′
]

−∇V φ(λ0)∇V φ(λ0)′

= E
[

φ(Z0)2S0S0′
]

−∇V φ(λ0)∇V φ(λ0)′ = Var
[

φ(Z0)S0
]

.

Hence

S0 ∈ W is a minimizer of Var
[

φ(Z0)π
]

, π ∈ W .

Throughout this paper, we call S0 the optimal Greek weight. When the density function

f(λ, z) is not known, it was suggested in [8] to obtain (inefficient) Greek weights from the set

W by exploiting the integration by-parts-formula from Malliavin calculus. Our main objec-

tive is to derive Monte Carlo estimators of the Greek value β0, which asymptotically achieve

the minimum variance, by using methods from non-parametric statistics to approximate the

above optimal Greek weight S0.

3 Kernel estimation and optimal Greek weight

3.1 Randomization of the parameter

The main idea of this paper is to randomize the parameter λ in order to estimate the Greek

by the classical kernel estimation technique. This randomization can be exploited from

two viewpoints. First, one can use it in order to estimate the optimal Greek weight, i.e.

the score function. An alternative viewpoint is to take advantage of the smoothness of the

randomizing distribution in order to obtain an integration by parts formula similar to the

Malliavin integration by parts technique. This technique is well known in the non-parametric

statistics litterature, see eg [1].

Let ℓ : R
d −→ R be some given probability density function, with support containing the

origin in its interior, and set

ϕ(λ, z) := ℓ(λ0 − λ) f(λ, z) for λ ∈ R
d and z ∈ R

n ,

where λ0 is the parameter of interest. We consider a sequence

(Λi, Zi)1≤i≤N of N independent r.v. with distribution ϕ(λ, z) , (3.1)

so that, for any i ≤ N , ℓ(λ0 − .) is the density of Λi and f(Λi, .) is the conditional density

of Zi given Λi.

Remark 3.1 Notice that the simulation of (Λi, Zi)i≥1 can be performed easily even in cases

where the density ϕ can not be written explicitly. This applies typically to the case where

Z(λ) = XT (λ), for some integer T , where {Xt(λ), t ∈ N} is a Markov chain with given
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transition density. Then, for a given value of λ, the simulation of Z is easily feasible by

usual methods. However the marginal distribution of Z(λ) is typically very complicated so

that it is useless for the numerical computation of the score function s(λ, z).

In this section, we provide various estimation methods of β based on non-parametric kernel

methods. We then introduce the kernel function

K : R
d −→ R with

∫

K = 1 ,

whose precise properties will be detailed at the beginning of section 4.

3.2 A first kernel estimator of the Greek

The main idea is that the optimal weight S0 requires a priori the knowledge of the probability

density function f(λ, z) and the associated score function s(λ, z). Indeed, if these functions

were explicitly known, then a natural non-parametric estimator of the Greek β using the

observations (3.1) is :

β̄N :=
1

ℓ(0)Nhd

N
∑

i=1

φ(Zi) s(Λi, Zi) K

(

λ0 − Λi

h

)

. (3.2)

Although s is not explicitly known in our applications of interest, one could approximate it

by means of an additional kernel estimator based on another kernel function K defined on

R
n. We therefore introduce our first kernel-based estimator of β :

β̃N :=
1

ℓ(0)Nhd

N
∑

i=1

φ(Zi) ŝ
−i
N (Λi, Zi) K

(

λ0 − Λi

h

)

, (3.3)

where s−i
N is an approximation of s given by

ŝ−i
N (λ, z) :=

∂

∂λ
ln







1

ℓ(λ0 − λ) (N − 1)hd+n

N
∑

j=1,j 6=i

K

(

λ− Λj

h

)

H

(

z − Zj

h

)







=
ϕ̂λ

−i

ϕ̂−i
(λ, z) +

∇ℓ(λ− λ0)

ℓ(λ− λ0)
, (3.4)

and

ϕ̂−i(λ, z) :=
h−d−n

N − 1

N
∑

j=1,j 6=i

K

(

λ− Λj

h

)

H

(

z − Zj

h

)

, (3.5)

ϕ̂λ
−i(λ, z) := ∇λϕ̂

−i(λ, z) =
h−d−n−1

N − 1

N
∑

j=1,j 6=i

∇K
(

λ− Λj

h

)

H

(

z − Zj

h

)

. (3.6)

From a practical point of view, this estimator displays two drawbacks. First, its expression

involves a product of two (possibly multidimensional) kernels K and H. Thus, it suffers
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from the so-called ”curse of dimensionality”. Moreover, its calculation is time-consuming.

In the subsequent subsections, we introduce two alternative kernel estimators of β, which

involve a single kernel function and a single summation.

From a theoretical point of view, we shall see that this estimator achieves the same rate of

convergence as the two following ones but requires more stringent conditions, and involves

heavy calculations.

3.3 A simpler kernel estimator of the Greek

We continue our discussion under the condition that

the kernel function K has compact support. (3.7)

We still consider the natural estimator given by (3.2). For fixed h > 0, it follows from the

law of large numbers that

β̄N −→
N→∞

E
[

β̄N

]

=
1

ℓ(0)hd
E

[

φ(Z)s(Λ, Z) K

(

λ0 − Λ

h

)]

, P − a.s. (3.8)

where (Λ, Z) is a random variable with distribution ϕ(λ, z). Recalling the definition of s,

and integrating by parts with respect to the variables λ1, . . . , λd, we see that for h > 0

sufficiently small :

E
[

β̄N

]

=
1

ℓ(0)hd

∫

φ(z)K

(

λ0 − λ

h

)

ℓ(λ0 − λ)∇λf(λ, z) dλdz

=
h−d−1

ℓ(0)

∫

φ(z)

(

∇K
(

λ0 − λ

h

)

+ hK

(

λ0 − λ

h

) ∇ℓ
ℓ

(λ0 − λ)

)

ϕ(λ, z) dλ dz

=
1

ℓ(0)hd+1
E

[

φ(Z)

(

∇K
(

λ0 − Λ

h

)

+ hK

(

λ0 − Λ

h

) ∇ℓ
ℓ

(λ0 − Λ)

)]

,

where we used (3.7). This suggests the following simpler kernel estimator of the Greek β :

β̂N :=
1

ℓ(0)Nhd+1

N
∑

i=1

φ(Zi)

(

∇K
(

λ0 − Λi

h

)

+ hK

(

λ0 − Λi

h

) ∇ℓ
ℓ

(λ0 − Λi)

)

.(3.9)

The asymptotic properties of β̂N will be provided in Section 4.

3.4 Differentiating the kernel estimator of the price

We next start out from the natural kernel estimator of the price V φ(λ) :

V̂ φ
N (λ) :=

1

Nhd ℓ(λ0 − λ)

N
∑

i=1

φ(Zi)K

(

λ− Λi

h

)

.

Differentiating V̂ φ
N (λ) with respect to λ, we obtain our final kernel estimator of the Greek:

β̌N :=
1

ℓ(0)Nhd+1

N
∑

i=1

φ(Zi)

(

∇K
(

λ0 − Λi

h

)

+ hK

(

λ0 − Λi

h

) ∇ℓ
ℓ

(0)

)

. (3.10)
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Observe that our two estimators β̂N and β̌N are closely related by :

β̌N = β̂N +
1

ℓ(0)Nhd

N
∑

i=1

φ(Zi)K

(

λ0 − Λi

h

)(∇ℓ
ℓ

(0) − ∇ℓ
ℓ

(λ0 − Λi)

)

.

In particular,

β̌N = β̂N whenever ℓ : l 7→ ea0+a1·l1B(l) is a truncated exponential distribution, (3.11)

for some parameters a0 ∈ R, a1 ∈ R
d and some subset B of R

d containing the origin in its

interior.

The asymptotic properties of this third estimator will also be provided in Section 4.

4 Asymptotic results

We now compare the estimators defined in the previous section from the viewpoint of their

asymptotic distributions. The heavy asymptotic analysis of the double kernel-based esti-

mator is reported in [7], where it is shown to have the same asymptotic rate of convergence

as the single kernel-based estimators, under more stringent conditions. Since the practical

implementation of the double kernel-based estimator is in addition more time consuming,

the discussion of this section will focus on the single kernel-based estimators.

We shall first show that the two single kernel-based estimators have equal asymptotic

rates of convergence. Then, we derive the optimal choice of the number of simulations

N and the bandwidth h of the kernel function K, by using the classical mean square

error minimization criterion. We next specialize the discussion to the case of a truncated

exponential randomizing distribution (3.11) with support defined by B := [−ε, ε]d. In this

setting, we observe that the rate of convergence of the kernel estimator is independent of

the dimension of the parameter λ for some convenient choice of ε in terms of the bandwidth

h. Finally, we discuss the optimal choice of the randomizing density ℓ within the class of

truncated exponential distribution, and we provide a quasi-explicit characterization of the

optimal truncated exponential randomizing distribution in the sense of the mean square

error criterion.

Before stating our results, we recall that the order of the kernel function K is defined as the

smallest non zero integer p such that there exist some integers (j1, . . . , jp), jk ∈ {1, . . . , d},
such that

∫

lα1
. . . lαrK(l)dl = 0 for 0 < r < p, αk ∈ {1, . . . , d}, and

∫

lj1 . . . ljpK(l)dl 6= 0.

Typically, if K is the product of d even univariate kernels, then it is of order p = 2 (at

least). The regularity hypothesis on the kernel function K will be the following.
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Assumption K The kernel function K : R
d → R is C1, compactly supported, satisfies

∫

K = 1, and is of order p ≥ 2.

In the subsequent subsections, we shall use the notation

ξp
K [ψ](λ, z) :=

(−1)p

p!

d
∑

j1,...,jp=1

(
∫

lj1 . . . ljpK(l)dl

)

∇p
λj1

...λjp
ψ(λ, z) , (4.1)

for every smooth function ψ defined on R
d×R

n. We shall also denote A⊗ := AA′ for every

matrix A.

4.1 Asymptotic results for the single kernel-based estimators

Our first result requires some regularity conditions on the density functions f and ℓ.

Assumption R1 For every z, the functions f(·, z) and ℓ are p + 1 times differentiable,

and for every integer i ≤ p, the function λ 7−→ ∇i
λ

{

ℓ(λ0 − λ)∇λf(λ, z)
}

is continuous at

λ0 uniformly with respects to z ∈ S, for some subset S s.t. Supp(φ) ⊂ int(S).

Proposition 4.1 Under Assumptions K and R1, as N → ∞ and h → 0, the bias and the

variance of β̂N satisfy

E

[

β̂N

]

− β ∼ C1h
p and Var

[

β̂N

]

∼ Σ

Nhd+2
, (4.2)

where

C1 :=
1

ℓ(0)

∫

ξp
K

[

ℓ(λ0 − .) fλ

]

(λ0, z)φ(z) dz and Σ :=
E[φ2(Z0)]

ℓ(0)

∫

∇K⊗. (4.3)

Proof. By definition of β̂N , we have E

[

β̂N

]

= E
[

β̄N

]

. By (3.8), this provides

ψ(h) := E

[

β̂N

]

=
1

ℓ(0)hd

∫

φ(z)ℓ(λ0 − λ)∇λf(λ, z)K

(

λ0 − λ

h

)

dλ dz

=
1

ℓ(0)

∫

φ(z)ℓ(hl) fλ(λ0 − hl, z)K(l)dl dz .

Clearly, ψ(0) =

∫

φ(z)fλ(λ0, z)dz = β. Moreover, since K has compact support, it

follows from Assumption R1 that the function ψ is p times differentiable at zero, with

derivatives obtained by differentiating inside the integral sign, so that its i−th iterated

derivative denoted ψ(i)(0) are given by

(−1)i

ℓ(0)

d
∑

j1,...,ji=1

(
∫

lj1 . . . lji
K(l) dl

)(
∫

φ(z)
[

∇i
λj1

,...,λji
{ℓ(λ0 − .) fλ}

]

(λ0, z) dz

)

for every 1 ≤ i ≤ p. Since p is the order of K, observe that ψ(i)(0) = 0 for every 1 ≤ i < p,

so that a Taylor expansion of ψ provides the first part of the proposition.
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As for the variance, we directly compute that

Var
[

β̂N

]

=
(v1 − v⊗2 )

Nh2d+2ℓ(0)2
,

where

v1 := E

[

φ(Z)2
(

∇K
(

λ0 − Λ

h

)

+ hK

(

λ0 − Λ

h

) ∇ℓ
ℓ

(λ0 − Λ)

)⊗
]

,

v2 := E

[

φ(Z)

(

∇K
(

λ0 − Λ

h

)

+ hK

(

λ0 − Λ

h

) ∇ℓ
ℓ

(λ0 − Λ)

)]

.

By a similar argument as in the first part of this proof, we compute that

v1 = hd

∫

φ2(z)

(

∇K (l) + hK (l)
∇ℓ
ℓ

(hl)

)⊗

ℓ(hl)f(λ0 − hl, z)dl dz

∼ hdℓ(0)

(
∫

∇K(l)⊗dl

)

E
[

φ2(Z0)
]

.

The required result follows by observing that v2 = O
(

hd+1
)

. 2

We are now ready for our first main result.

Theorem 4.1 (i) Let the conditions of Proposition 4.1 hold, and assume that

h −→ 0 and N hd+2 −→ ∞ as N → ∞ . (4.4)

Then, with Σ as in (4.3), we have
√
Nhd+2

(

β̂N − E[β̂N ]
)

−→ N (0,Σ) in distribution.

(ii) In addition to the above conditions, assume that

N hd+2+2p −→ 0 as N → ∞ . (4.5)

Then the bias vanishes and
√
Nhd+2

(

β̂N − β
)

−→ N (0,Σ) in distribution.

Proof. We shall prove this result by verifying the Lyapounov conditions (see e.g. Billingsley

(1968), p44). Let a be an arbitrary vector in R
d, and define, for every i = 1, . . . , N ,

Y N
i :=

1

Nhd+1ℓ(0)
φ(Zi)

(

∇K
(

λ0 − Λi

h

)

+ hK

(

λ0 − Λi

h

) ∇ℓ
ℓ

(λ0 − Λi)

)

XN
i := a′

(

Y N
i − E[Y N

i ]
)

.

In view of Proposition 4.1, the only condition which remains to check in order to verify the

Lyapounov conditions is the existence of δ > 2 such that

sup
N

1

σδ
N

N
∑

i=1

E[|XN
i |δ ] < +∞ where σ2

N := Var

[

N
∑

i=1

XN
i

]

. (4.6)

10
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In order to prove (4.6), we start by observing from (4.2) that

σ2
N ∼ 1

Nhd+2ℓ(0)
E[φ2(Z0)]

∫

|a′∇K(l)|2 dl .

We next estimate by the Minkowski inequality and (4.2) that

∥

∥XN
i

∥

∥

δ
≤

∥

∥a′Y N
i

∥

∥

δ
+
∣

∣a′E[Y N
i ]
∣

∣

=
∥

∥a′Y N
i

∥

∥

δ
+

1

N

∣

∣

∣
a′E[β̂N ]

∣

∣

∣

≤
∑d

i=1

∥

∥

∥
φ(Z)ai

(

∇iK
(

λ0−Λ
h

)

+ hK
(

λ0−Λ
h

)

∇iℓ
ℓ (λ0 − Λ)

)
∥

∥

∥

δ

Nhd+1ℓ(0)
+ O

(

1

N

)

≤ Const

(

hd/δ

Nhd+1
+

1

N

)

,

where the last estimate is obtained by a Taylor expansion with respect to the h variable, in

the neighborhood of the origin, following the method used in the proof of Proposition 4.1.

Hence,

1

σδ
N

N
∑

i=1

E

[

|XN
i |δ
]

≤ Const N
hd

(Nhd+1)δ
(Nhd+2)δ/2 ≤ Const

(Nhd)(δ−2)/2
,

and condition (4.6) is satisfied when Nhd → ∞, as assumed in (4.4). Therefore,
∑N

i=1X
N
i

is asymptotically gaussian, with a variance matrix given by σ2
N . By the arbitrariness of

a ∈ R
d, the required result follows from the Cramer-Wold device, see e.g. Theorem 25.5

p405 in [3]. 2

We next turn to the estimator β̌ which was defined as the gradient, with respect to λ, of

the kernel based estimator V̂ φ
N (λ) of the function V φ

N (λ). The asymptotic properties of this

estimator are obtained by following the techniques of the previous proofs and require the

following regularity condition on the densities f and ℓ.

Assumption R2 For every z, the functions f(·, z) and ℓ are p + 1 times differentiable,

and for every integer integer i ≤ p, the function λ 7−→ ∇i
λ

{

ℓ(λ0 − λ)f(λ, z)
}

is continuous

at λ0 uniformly with respects to z ∈ S, for some subset S s.t. Supp(φ) ⊂ int(S).

Proposition 4.2 Under Assumptions K and R2, as N → ∞ and h → 0, the bias and the

variance of β̌N satisfy

E[β̌N ] − β ∼ C2h
p and Var[β̌N ] ∼ Σ

Nhd+2
,

where Σ is given by (4.3), and

C2 :=
1

ℓ(0)

∫
(

ξp
K [ϕλ] +

∇ℓ
ℓ

(0) ξp
K [ϕ]

)

(λ0, z)φ(z) dz .

11
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Proof. The proof is essentially similar to that of Proposition 4.1. Recall that the estimators

β̌N and β̂N are related by :

β̌N = β̂N +
1

ℓ(0)Nhd

N
∑

i=1

φ(Zi)K

(

λ0 − Λi

h

)(∇ℓ
ℓ

(0) − ∇ℓ
ℓ

(λ0 − Λi)

)

. (4.7)

We start by analyzing the bias term. Recall from the proof of Proposition 4.1 that :

E

[

β̂N

]

=
1

ℓ(0)

∫

φ(z)ℓ(hl)fλ(λ0 − hl, z)K (l) dl dz .

We then deduce from (4.7) that :

E
[

β̌N

]

=
1

ℓ(0)

∫

φ(z)

(

ϕλ(λ0 − hl, z) +
∇ℓ
ℓ

(0)ϕ(λ0 − hl, z)

)

K(l) dl dz .

We now observe that Assumption R2 allows to derive an expansion in the h variable of the

above expression, near the origin, up to the order p. The coefficients of the expansion are

obtained by simple differentiation inside the integral sign. Finally, since p is the order of

the kernel K, it is easily seen that the coefficients of hi, i < p, in this expansion vanish, and

the only non-zero coefficient is that of hp.

The variance of β̌N is also treated by the same argument as in the proof of Proposition 4.1,

and the dominant term in the expansion of the variance is easily seen to be the same as in

that proof. 2

Proposition 4.2 says that β̂N and β̌N have the same asymptotic variance, and the orders

of their asymptotic biases are the same. Our next result states that these two estimators

have exactly the same asymptotic distribution.

Theorem 4.2 (i) Let the conditions of Proposition 4.2 hold, and assume further that (4.4)

holds. Then, with Σ as in (4.3), we have
√
Nhd+2

(

β̌N − E[β̌N ]
)

−→ N (0,Σ) in distribution.

(ii) Let (4.5) hold, in addition to the above conditions. Then the bias vanishes and :

√
Nhd+2

(

β̌N − β
)

−→
N→∞

N (0,Σ) in distribution .

Proof. Define the sequence

Y N
i :=

1

Nhd+1ℓ(0)
φ(Zi)

(

∇K
(

λ0 − Λi

h

)

+ hK

(

λ0 − Λi

h

) ∇ℓ
ℓ

(0)

)

,

and follow the lines of the proof of Theorem 4.1. 2

4.2 Optimal choice of N and h

The two single kernel-based estimators β̂N and β̌N have similar asymptotic properties. They

both have a bias of order hp, a variance of order 1/(Nhd+2) and a convergence in distribution

at the rate
√
Nhd+2. Therefore, the determination methods of the optimal N and h will

12
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be similar for both of them, and we only detailed calculations for the estimator β̂N . Let

the conditions of Proposition 4.1 hold. Then (4.2) holds, and we calculate an asymptotic

equivalent for the mean square error between β̂N and β

MSE(β̂N ) := E

[

|β̂N − β|2
]

∼ Tr(Σ)

Nhd+2
+ h2p|C1|2 .

Minimizing the MSE in h, we get the asymptotically optimal bandwidth selector :

ĥ =

(

(d+ 2)Tr(Σ)

2p|C1|2N

)1/(d+2p+2)

. (4.8)

Note that ĥ is of order N−1/(d+2p+2), leading to an MSE of order N−2p/(d+2p+2). Similarly,

the asymptotically optimal bandwidth selector for β̌N is

ȟ =

(

(d+ 2)Tr(Σ)

2p|C2|2N

)1/(d+2p+2)

. (4.9)

These results imply an asymptotic theoretical choices for h relative to N , but we may still

encounter difficulties in the numerical calculation of h. Even if the optimal order of h were

known, we still need to evaluate the associated constant coefficients. From our empirical

experiments, we observed that the accuracy of our estimators depends heavily on the choice

of the bandwidth h, as usual in kernel estimation.

4.3 The case of a uniform randomizing distribution

We first study further the case where the randomizing density is uniform on the sphere of

R
d centered at 0 with radius ǫ :

ℓ(l) 7→ 1

(2ǫ)d
1[−ǫ,ǫ](l) .

Observe that this is a particular example from the truncated exponential distributions (3.11)

for which the single kernel density estimators coincide :

β̂N = β̌N =
(2ǫ)d

Nhd+1

N
∑

i=1

φ(Zi)∇K
(

λ0 − Λi

h

)

.

Without loss of generality, we assume that the kernel K has support on [−1, 1]d. We first

rewrite Assumption R1 in the setting of this section.

Assumption R3 For every z, the function f(·, z) is p + 1 times differentiable, and for

every integer i ≤ p + 1, the function λ 7−→ ∇i
λf(λ, z) is continuous at λ0 uniformly with

respects to z ∈ S, for some subset S s.t. Supp(φ) ⊂ int(S).

Proposition 4.3 Let Assumptions K and R3 hold. Then, as N → ∞, h → 0 and ǫ → 0

with ǫ ≥ h, we have

E

[

β̂N

]

− β ∼ Cuh
p and Var

[

β̂N

]

∼ N−1h−d−2ǫd Σu , (4.10)

13
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where

Cu :=

∫

ξp
K [fλ] (λ0, z)φ(z) dz and Σu := 2d

E[φ2(Z0)]

∫

∇K⊗. (4.11)

Proof. The proof is similar to the one of proposition 4.1. Denoting by 1d the vector of R
d

with unit component, we rewrite

E

[

β̂N

]

=
1

hd+1

∫

Rn

φ(z)

(

∫ λ0+ǫ1d

λ0−ǫ1d

∇K
(

λ0 − λ

h

)

f(λ, z) dλ

)

dz

=
1

h

∫

Rn

φ(z)

(

∫

[− ǫ
h

, ǫ
h
]d
∇K(u)f(λ0 − uh, z) du

)

dz.

Since ǫ ≥ h and K is supported on [−1, 1]d, we may replace in our last term the integration

on [− ǫ
h ,

ǫ
h ]d by an integration on R

d, which is necessary to get the convergence of our

estimator to β0. Then, as in the proof of proposition 4.1, an integration by parts followed

by Taylor expansions gives us the expected equivalent of the bias. The same argument

applies for the computation of the variance of β̂N . 2

Sending ǫ to zero, we obtain the same asymptotic properties as in Proposition 4.1, as long

as ǫ ≥ h. Therefore, the asymptotic optimal ǫ is simply the bandwidth h. The kernel-based

estimator β̂u
N , associated with this optimal uniform density ℓ is then given by

β̂u
N :=

2d

Nh

N
∑

i=1

φ(Zi)∇K
(

λ0 − Λi

h

)

, (4.12)

and satisfies

E

[

β̂u
N

]

− β ∼ Cuh
p and Var

[

β̂u
N

]

∼ N−1h−2 Σu , (4.13)

with Cu and Σu defined in (4.11). Minimizing the corresponding mean square error, we

obtain the optimal bandwidth

hu :=

(

TrΣu

p|Cu|2N

)
1

2p+2

. (4.14)

As in the study of the previous estimators, we also obtain a central limit theorem for the

estimator β̂u
N .

Theorem 4.3 (i) Let the conditions of Proposition 4.3 hold in the particular case where

ǫ = h, and assume further that

h −→ 0 and N h2 −→ ∞ as N → ∞ . (4.15)

Then, with Σu as in (4.11), we have
√
Nh2

(

β̂u
N − E[β̂u

N ]
)

−→ N (0,Σu) in distribution.

(ii) If in addition Nh2p+2 → 0, then the bias vanishes and :

√
Nh2

(

β̂u
N − β

)

−→ N (0,Σu) in distribution.

A remarkable feature of the above asymptotic result is that the rate of convergence is

independent of the dimension d of the parameter λ0.

14
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4.4 The case of a truncated exponential randomizing distribution

In this subsection, we specialize the discussion to the one-dimensional case, and we consider

a truncated exponential randomizing distribution:

ℓ(l) := θ
eθl

eθǫ − e−θǫ
1[−ǫ,ǫ](l) ,

with the parameter θ ∈ R, so that the two single kernel estimators associated to this density

coincide:

β̌N = β̂N =
1

ℓ(0)Nhd+1

N
∑

i=1

φ(Zi)

(

∇K
(

λ0 − Λi

h

)

+ θhK

(

λ0 − Λi

h

))

.

Using the same line of arguments as in Proposition 4.3 , we see that, under Assumptions K

and R3, as N → ∞, h→ 0 and ǫ→ 0 with ǫ ≥ h, we have

E

[

β̂N

]

− β ∼ Ceh
p and Var

[

β̂N

]

∼ N−1h−3ǫ Σe , (4.16)

where Σe := Σu defined in (4.11) and

Ce :=
(−1)p

p!

(
∫

upK(u)du

) p+1
∑

k=1

(

p

k − 1

)(
∫

∇k
λf(λ0, z)φ(z) dz

)

(−θ)p−k+1 .(4.17)

Again, the asymptotic optimal ǫ is simply the bandwidth h and the kernel-based estimator

β̂e
N , associated with this optimal exponential density is given by

β̂e
N :=

eθh − e−θh

θNh2

N
∑

i=1

φ(Zi)

(

∇K
(

λ0 − Λi

h

)

+ θhK

(

λ0 − Λi

h

))

. (4.18)

The optimal bandwidth is obtained by minimizing the corresponding mean square error:

he :=

(

TrΣe

p|Ce|2N

)
1

2p+2

, (4.19)

which leads to the following MSE :

MSE
(

β̂e
N

)

= 2(p + 1)p
− p

p+1

[

|Ce|2 (TrΣe)
p
]

1

p+1 N
− p

p+1 . (4.20)

As in Theorem 4.3, a central limit theorem for the estimator β̂e
N can be derived.

Remark 4.1 From the asymptotic viewpoint, the estimators based on the truncated ex-

ponential randomizing density differ by their bias, as the constants Ce depends on θ while

the variance Σe = Σu is independent of θ. The optimal truncated exponential randomizing

density is then obtained by minimizing the squared bias, defined by the polynomial func-

tion C2
e , with respect to θ. In our numerical experiments of Section 5, this minimization is

performed by classical Newton-Raphson iterations.

Remark 4.2 Notice that, in both cases, the choice of the radius ǫ of ℓ depends on the

kernel function K only through its support. For instance, if supp(K) = [−M,M ]d, then

the optimal radius is ǫ = Mh.
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4.5 Comparison with the finite differences estimators

We first start by recalling the finite differences estimators. For ease of presentation, we let

d = 1. The finite differences estimator of the parameter β0 := ∇λE[φ(Z(λ0))] is based on

the finite differences approximation of the gradient

∇λE[φ(Z(λ0))] ∼ E[φ(Z(λ0 + αε))] − E[φ(Z(λ0 − (1 − α)ε))]

ε
,

where ε > 0 is a "small" parameter, and α ∈ [0, 1]. The values α = 0, 0.5 and 1 corre-

spond respectively to the backward, centered and forward finite difference. The above finite

difference approximation suggests the following finite differences estimator of β :

β̂FD
N =

1

Nε

N
∑

i=1

(

φ
[

Zi(λ0 + αε)
]

− φ
[

Zi(λ0 − (1 − α)ε)
])

.

The asymptotic properties of these estimators were first studied by L’Ecuyer and Perron

(1994). In the case where λ 7→ φ[Z(λ)] ∈ C3
b (Rd), when N → ∞ and ε→ 0 with N1/4ε→ 0,

they obtained a parametric rate of convergence :

√
N
(

β̂FD
N − β

)

−→
N→∞

N (0,Σα) in distribution, for α = 0 ,
1

2
and 1 .

When the payoff function φ has a countable number of discontinuities, Detemple, Garcia

and Rindisbacher (2005) obtained the following central limit theorems :

For α =
1

2
, when N1/5 ε→ 0 , N2/5

(

β̂FD
N − β

)

−→
N→∞

N (0,Σα) in distribution.

For α = 0, 1 , when N1/3 ε→ 0 , N1/3
(

β̂FD
N − β

)

−→
N→∞

N (0,Σα) in distribution.

In the general case d ≥ 1, the finite differences estimators are defined componentwise, and

therefore, the rate of convergence is not affected by the dimension d of the parameter λ0.

The main objective of this paragraph is to provide an asymptotic comparison of the single-

kernel based estimator with the finite differences one. The key point of our single-kernel

based estimators is that the differentiation with respect to the parameter λ is reported on

the density of Z(λ) so that our asymptotic results do not involve the regularity of the pay-off

function φ. For any pay-off function φ, and when N hd+2p+2 −→ 0, we derived in Theorems

4.1 and 4.2 that

√
Nhd+2

(

β̂N − β
)

−→
N→∞

N (0,Σ) in distribution,

where p is the order of the kernel function. Minimizing the corresponding MSE, we ob-

tained in Section 4.2 an optimal h of order N−1/(d+2p+2) which, of course, almost satisfies

the condition required in the convergence in distribution. Therefore, taking a bandwidth

h of order N−1/(d+2p+2)−2δ/(d+2) with δ > 0 sufficiently small leads to a convergence in

distribution at rate N r with r := p/(d+2p+2) − δ > 0. Therefore, the single-kernel based
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estimators, with kernel of order p > 2d + 4 and δ sufficiently small, achieve a convergence

rate of order r > 2/5. Hence, they outperform all the finite differences estimators in the

case of discontinuous payoffs.

Notice that, by taking kernel functions of order p sufficiently large, we can obtain a

convergence rate in distribution as close as desired to the parametric rate
√
N .

Remark 4.3 Consider the optimized kernel estimators β̂u
n and β̂e

n, based on uniform or

exponential density ℓ on the sphere with radius h, as derived in section 4.3. Then, for

Nh2p+2 → 0, we obtain a rate of convergence of
√
Nh2. Therefore, in order to outperform

the finite differences estimators of a Greek associated to a discontinuous payoff function φ,

one just needs to use a kernel function of order p > 4.

5 Numerical results

In this section, we present some numerical results obtained in the Black-Scholes model :

Sx
t := x exp

[(

r − σ2

2

)

t+ σWt

]

, t ≥ 0, x > 0 ,

where W is a standard Brownian motion on (Ω,F ,P) with values in R, and r ∈ R, σ > 0

are two given constants. We focus on the estimation of the so-called Delta :

β := ∇xE[φ(Zx)] ,

where Zx = Sx
T for an European option and Zx =

∫ T
0 Sx

t dt for an Asian option. As in the

previous sections, we denote by f(x, .) the density of Zx.

We simulate independent observations Xi distributed in the (optimal) exponential ran-

domizing distribution ℓ on the sphere centered at S0 = x with radius h, as derived in section

4.4. The single-kernel based estimator β̂e
N is therefore given by (4.18).

5.1 Computation of the optimal bandwidth

As the "bumping" parameter ǫ for the finite differences estimator, the bandwidth in kernel

estimation needs to be chosen carefully. The asymptotic results of Section 4 provide the

expression of the asymptotic optimal bandwidth. For the truncated exponential randomizing

distribution, we obtain

he =

(

Σe

pC2
e N

)
1

2p+2

,

where Σe = 2 E[φ2(Zx)]
∫

(∇K)2 and

Ce :=
(−1)p

p!

(
∫

upK(u)du

) p+1
∑

k=1

(

p

k − 1

)

E

[

φ(Zx)
∇k

xf(x,Zx)

f(x,Zx)

]

(−θ)p−k+1

17
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Given a kernel function K, the coefficient Σe can be estimated by a standard Monte Carlo

procedure. We next focus on the estimation of the parameter

Ek := E

[

φ(Zx)
∇k

xf(x,Zx)

f(x,Zx)

]

.

for a given k ∈ {1, . . . , p+ 1}.
(i) Let Zx = Sx

T = x eY , where Y has a normal distribution with mean m := (r − σ2

2 )T

and variance Σ := σ2T . Then, it is easily checked that :

∇k
xf(x, z) =

[

k
∑

i=0

ak
i d(x, z)

i

]

f(x, z)

xk

where

d(x, z) :=
ln z − lnx−m

Σ
, (5.1)

and the coefficients (aj
i )(i,j)∈{0,...,k}2 are given by

a0
i = 1{i=0} , aj+1

i = aj
i−1 − j aj

i − i+ 1

Σ
aj

i+1 , (5.2)

with the convention aj
i = 0 for i < 0 and i > j. Hence :

Ek =
1

xk
E

[

φ(Zx)

(

k
∑

i=0

ak
i d(x,Z

x)i

)]

,

and this parameter can be estimated by a straightforward Monte Carlo procedure.

(ii) In practice, the distribution function is unknown, and the calculation of the previous

paragraph can not be used to estimate Ek. We suggest to mimic the same principle as the

usual Silverman’s rule-of-thumb in kernel estimation (see Scott (1992) e.g.) : let m̂ and Σ̂

be two given estimates of the mean the variance ln(Zx/x), respectively, and define d̂(x, z)

and (âj
i )(i,j)∈{0,...,k}2 by substituting (m̂, Σ̂) to (m,Σ) in (5.1)-(5.2); then the coefficient Ek

is approximated by

Êk =
1

xp
E

[

φ(Zx)

(

k
∑

i=0

âk
i d̂(x,Z

x)i

)]

.

Once the coefficients Ek estimated for 1 ≤ k ≤ p+ 1, the parameter θ is chosen through a

numerical minimization, see Remark 4.1. In the particular case of an uniform randomizing

distribution (θ = 0), remark that only the estimation of Ep+1 is necessary.

Therefore, the numerical procedure is divided in three steps: first, we estimate the terms

detailed in the previous subsection Σe, Ek, m̂ and Σ̂e through a Monte Carlo procedure with

very few simulations. Then, we calibrate the parameter θ by minimization and we deduce

the exponential optimal theoretical bandwidth . Finally we estimate the delta of the option

by means of a single-kernel based estimator with the estimated bandwidth.

Remark 5.1 The numerical effort dedicated to the calculation of the optimal bandwidth

parameter h is also encountered in the classical finite differences method, as the optimal

bumping parameter ǫ involves some a priori numerical simulations.
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5.2 Numerical comparison of the estimators

We present here numerical results obtained for the estimation of the delta of an European

and an Asian at-the-money digital calls, i.e. with a payoff of the form φ(s) = 1s>K . Since

this payoff function is discontinuous, the results of Section 4.5 show that the single-kernel

based estimator achieves a better rate of convergence than the finite differences estimators,

whenever the kernel has order p > 4. The main object of this section is to verify the

empirical validity of these asymptotic results.

In order to compare their behavior, each estimator has been computed 200 times and

their empirical distributions have been approximated by classical smoothing non parametric

estimation.

Our numerical experiments are performed with the following values of the parameters :

S0 = 120, r = 0, σ = 0.2, T = 1, and K = 120 .

We use the following polynomial kernel functions of order 2, 4 and 6, respectively, with

support on [−1, 1] :

K2(u) =
3

4
(1 − u2) ,

K4(u) =
15

32
(1 − u2)(3 − 7u2) ,

K6(u) =
105

256
(1 − u2)(33u4 − 30u2 + 5) .

From the viewpoint of computing time, kernel based or finite differences estimations with

the same number of simulations are comparable. All the numerical tests have been realized

in Visual C++ on a Pentium 4 xeon 3 GHz processor with 1 Gb of RAM.

European Digital Call Option In the context of the Black-Scholes model, it was ob-

served by [8] that the optimal weight for European options can be obtained by means of

the Malliavin integration by part formula, and coincides with the likelihood estimator intro-

duced by [2]. Therefore, we are not hoping to compete with the the Malliavin-based Monte

Carlo estimator.

From our numerical experiments, we observed that the gain from using kernel estimators

based on an exponential rather than a uniform randomizing distribution ℓ was very poor,

especially when the order of the kernel function increases. From a numerical viewpoint, the

gain obtained at most counter-balanced the numerical price of the minimization procedure.

The examples presented here are therefore based on a uniform randomization distribution

ℓ.

The distributions of the different estimators based on N = 106 simulations are reported in

Figure 1. The good performance of the Malliavin estimator is confirmed by our numerical

experiments. However, we observe surprisingly that the three kernel based estimators are

less accurate than the centered finite differences one, although their numerical computing
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 Figure 1: Delta of an European Digital Call, N = 1 Million
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Figure 2: Delta of an European Digital Call, N = 1 Billion

times are comparable, of the order of 2 seconds. According to Section 4.5, the kernel of

order 6 should perform better than the other ones, but this is not the case here. Actually,

the terms Ce and Σe are such that the constant term of the mean square error increases
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very fast with the variability of K, which naturally increases with its order. For example,

the MSE of the estimator based on the kernel of order 4 is ten times bigger than the one of

the finite differences one, although they have the same rate of convergence. Furthermore,

the optimal bandwidth h increases with the order of the kernel, so that the asymptotic

approximations become less accurate.

In order to further investigate this effect, we increase the number of simulations. Figure

2 shows the distribution of the finite differences estimator and the kernel based estimator

of order 6 based on N = 109 simulations where each simulation takes approximately 30

minutes on our computer. In this case, we observe that the kernel based estimator of

order 6 truly outperforms the finite differences one: its bias and its variance are two times

smaller. This confirms the theoretical asymptotic results obtained in section 4.5. We do

not consider that the high number of simulations required is a serious restriction since it is

just a matter of computer power or time given to the simulation. Furthermore, the good

performance of the kernel based estimators of high order can be observed for a smaller

number of simulation if we use in addition variance reduction technique. For example,

by performing the antithetic variable technique with respect to the randomizing density

ℓ, we observe that the kernel based estimator of order 6 outperforms the finite differences

estimator with 6 ∗ 107 simulations, corresponding to a computer time of about 2 minutes.

0,0277 0,0282 0,0287 0,0292 0,0297

K2 K4 K6 Malliavin FD "True value"

 

Figure 3: Delta of an Asian Digital Call, N = 1 Million

Asian Digital Call Option We next investigate the case of an Asian option, where the

Malliavin integration by parts formula does not lead to the optimal weight, see [8]. The
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distribution of the different estimators based on N = 106 simulations are reported in Figure

3, where the "true value" of the Greek has been approximated by an unbiased Malliavin

estimation with a very large number of simulations. Even if the Malliavin weight is not

optimal, the Malliavin estimator still outperforms the other estimators. As for the European

digital call, the finite differences estimator outperforms the kernel based estimators but one

simply requires more simulations in order to make the kernel estimator of order 6 more

efficient than the finite differences one.

Conclusion (numerical results) Other tests realized with different parameters, payoff

functions or randomizing densities lead to rather similar results. Our kernel based estimator

with order p > 4 of the delta of a digital option outperforms asymptotically the finite

differences one, but one requires a large number of simulation to verify this fact empirically.

Nevertheless, the high number of simulations required can be significantly reduced by means

of variance reduction techniques. When the density of the underlying is unknown and the

pay-off function is irregular, the Malliavin based estimator is still more efficient than the

others. Nevertheless, in general, Malliavin weights are very difficult to derive analytically

and this is precisely the advantage of the other estimators which are straightforward to

implement.
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