
Optimal lifetime consumption and investment under

drawdown constraint

Romuald Elie∗ Nizar Touzi†

November 28, 2007

First version: October 21, 2006

Abstract

We consider the infinite horizon optimal consumption-investment problem under

the drawdown constraint, i.e. the wealth process never falls below a fixed fraction

of its running maximum. We assume that the risky asset is driven by the constant

coefficients Black and Scholes model. For a general class of utility functions, we provide

the value function in explicit form, and we derive closed-form expressions for the optimal

consumption and investment strategy.
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1 Introduction

Since the seminal papers of Merton [16, 17], there has been an extensive literature on the

problem of optimal consumption and investment decision in financial markets subject to

imperfections. The case of incomplete markets was first considered by Cox and Huang [4]

and Karatzas, Lehoczky and Shreve [13]. Cvitanić and Karatzas [5] considered the case

where the agent portfolio is restricted to take values in some given closed convex set. He

and Pagès [10] and El Karoui and Jeanblanc [8] extended the Merton model to allow for

the presence of labor income. Constantinides and Magill [3], Davis and Norman [7], and

Shreve and Soner [21] considered the case where the risky asset is subject to proportional

transaction costs. Ben Tahar, Soner and Touzi [2] considered the case where the sales of

the risky asset are subject to taxes on the capital gains.

In this paper, we study the infinite horizon optimal consumption and investment problem

when the wealth never falls below a fixed fraction of its current maximum. This is the

so-called drawdown constraint. Fund managers do offer this type of guarantee in order to

satisfy the aversion to deception of the investors.
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†Centre de Mathématiques Appliquées, Ecole Polytechnique Paris, touzi@cmap.polytechnique.fr.
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The drawdown constraint on the wealth accumulation of the fund manager was first

considered by Grossman and Zhou [9] for an agent maximizing the long term growth rate

of the expected utility of final wealth, with no intermediate consumption. Their main result

is that the optimal investment in the risky asset is an explicit constant proportion of the

difference between the current wealth and its running maximum. Cvitanic and Karatzas

[6] developed a beautiful martingale approach to the Grossman and Zhou [9] problem, with

zero interest rate, which makes the analysis much simpler and allows for a more general class

of price processes. Nevertheless, Klass and Nowicki [14] show that the strategy proposed

in Grossman and Zhou [9] does not retain its optimal long term growth property when

generalized to the discrete time setting. A general criticism that one may formulate about

the long term growth rate criterion is that it only provides the asymptotic optimal behavior

of the fund manager. In other words, there is no penalization for using an arbitrary strategy

as long as it coincides with the Grossman and Zhou [9] optimal strategy after some given

fixed point in time.

In a recent paper, Roche [19] studied the classical Merton problem, which consists in

maximizing the infinite horizon power utility of consumption, for a fund manager subject to

the drawdown constraint. The main contribution of [19] is to guess a solution of the dynamic

programming equation, and to provide some qualitative properties of the corresponding

optimal consumption-investment strategy. The homogeneity of the power utility is the

key-property in order to guess the candidate solution. Notice that Roche [19] does not

provide any argument to verify that his candidate solution is indeed the value function of

the optimal consumption-investment problem.

In this paper, we consider the infinite horizon utility maximization of future consump-

tion, under the drawdown constraint. Our problem has two differences with [19]. First,

the utility function is a general C1 increasing and strictly concave function whose asymp-

totic elasticity (see [15]) is bounded by some level depending on the drawdown parameter.

Second, following Cvitanić and Karatzas [6], we only address the zero interest rate set-

ting. Notice that, because the discounted value of the maximum wealth is different from

the discounted value of the maximum wealth, our setting does not correspond to a simple

reduction of the non-zero interest rate setting by usual discounting. We leave this more

general context to future work.

Our main result is to derive an explicit expression for the value function of the fund

manager, together with the optimal consumption and investment strategy. The key-idea in

order to guess the candidate solution is to pass from the dynamic programming equation

to the partial differential equation (PDE) satisfied by the dual indirect utility function.

The latter PDE being linear inside the state space domain, one can easily account for the

Neumann condition related to the drawdown constraint, and derive an explicit candidate

solution for any utility function. In order to prove that the thus derived candidate solution

is indeed the value function of our optimal consumption-investment problem, we use a

verification argument which requires a convenient transversality condition. The verification

argument is the main technical step where the above mentioned restrictions on the utility

functions are required.

For a general utility function, the qualitative properties of the optimal consumption and
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investment strategies of the problem turn out to be similar to those stated by Roche in

the power utility case. In particular, we find a utility-independent level of the drawdown

constraint above which the optimal investment in the risky security vanishes when the

maximum wealth is reached. In other words, for a large drawdown parameter, the investor

avoids to make the drawdown constraint more stringent by holding the current maximum

wealth process constant. Below this utility-independent level of the drawdown parameter,

the current maximum of the optimal wealth process is not flat.

The paper is organized as follows. Section 2 is devoted to the formulation of the problem.

Our solution approach is based on the verfication result reported in Section 3 which suggest

to seek for a solution by solving the corresponding dynamic programming equation. A

closed-form solution of this equation is obtained in Section 4. The main result of the paper

is reported in Section 5 and states that our candidate solution indeed coincides with the

value function of the utility maximization problem, and provides the corresponding optimal

investment and consumption policy. Section 6 is dedicated to the proof of the main theorem

by verifying that the candidate solution satisfies the conditions of the verification result.

2 Problem formulation

Throughout this paper, we consider a complete filtered probability space (Ω,F ,F = {Ft}t≥0,P)

endowed with a Brownian motion W = {Wt, 0 ≤ t ≤ T} with values in R.

The financial market consists of a non-risky asset, with process normalized to unity, and

one risky asset with price process defined by the Black and Scholes model :

dSt = σSt (dWt + λdt) ,

where σ > 0 is the volatility parameter, and λ ∈ R is a constant risk premium.

The normalization of the non-risky asset to unity is as usual a reduction of the model

obtained by taking this asset as a numéraire. Hence, all amounts are evaluated in terms of

their discounted values.

For any continuous process {Mt, t ≥ 0}, we shall denote by

M∗
t := sup

0≤r≤t
Mr , t ≥ 0 ,

the corresponding running maximum process, and we recall that

M∗ is non-decreasing and

∫ ∞

0
(M∗

t −Mt) dM
∗
t = 0 . (2.1)

2.1 Consumption-portfolio strategies and the drawdown constraint

We next introduce the set of consumption-investment strategies whose induced wealth

process X satisfies the drawdown constraint

Xt ≥ αX∗
t for every t ≥ 0 , a.s. , (2.2)

where α is some given parameter in the interval [0, 1).
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A portfolio strategy is an F−adapted process θ = {θt, t ≥ 0}, with values in R, satisfying

the integrability condition

∫ T

0
|θt|2dt < ∞ a.s. for all T > 0 . (2.3)

A consumption strategy is an F−adapted process C = {Ct, t ≥ 0}, with values in R+,

satisfying

∫ T

0
Ctdt < ∞ a.s. for all T > 0 . (2.4)

Here, θt and Ct denote respectively the amount invested in the risky asset and the con-

sumption rate at time t. By the self-financing condition, the wealth process induced by

such a pair (C, θ) is defined by

Xx,C,θ
t = x−

∫ t

0
Crdr +

∫ t

0
σθr (dWr + λdr) t ≥ 0 , (2.5)

where x is some given initial positive capital. We shall denote by Aα(x) the collection of all

such consumption-investment strategies whose corresponding wealth process satisfies the

drawdown constraint (2.2).

Remark 2.1 The set of admissible strategies Aα(x) is a relaxation of the set of strategies

considered by Cvitanić and Karatzas [6] in a no-consumption framework, in the sense that

we allow the drawdown constraint to be binding, see the subsequent subsection 2.2. Notice

however that our model corresponds to that of Grossman and Zhou [9] only in the zero

interest case setting. This is due to the simple fact that the discounted current maximum

wealth does not coincide with the maximum of the discounted wealth.

2.2 Admissible strategies with strict drawdown constraint

In this subsection, we consider the subset A0
α(X0) of all strategies (C, θ) ∈ Aα(X0) which

satisfy the strict drawdown condition

Xt > αX∗
t for every t ≥ 0 . (2.6)

For those strategies, one may define the consumption and the investment decisions in terms

of proportions of the difference Xt − αX∗
t :

ct =
Ct

Xt − αX∗
t

and πt =
θt

Xt − αX∗
t

. (2.7)

By the continuity of the processes X and X∗, it follows that the pair process (c, π) is

F−adapted, takes values in R+ × R and satisfies

∫ T

0
ctdt +

∫ T

0
|πt|2dt < ∞ a.s. for every T > 0 , (2.8)
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The following argument, adapted from Cvitanić and Karatzas [6], shows that for any

F−adapted processes (c, π) with values in R+ × R satisfying (2.8), the stochastic differ-

ential equation

dXt = (Xt − αX∗
t )

(

πt
dSt

St
− ctdt

)

, t ≥ 0 , (2.9)

has a unique explicit solution, given by (2.14) below, satisfying the strict drawdown con-

straint (2.6). Hence the subset A0
α(X0) can be described by the pair process (c, π) sat-

isfying (2.8) without refering to the drawdown constraint, and coincides with the set of

consumption-investment strategies considered in [6].

The key ingredient for the construction of a solution to (2.9) is to introduce the process

X̃t := (Xt − αX∗
t ) (X∗

t )
α

1−α , t ≥ 0 . (2.10)

By Itô’s Lemma together with (2.1), it follows that

dX̃t = (X∗
t )

α
1−α

(

α

1 − α

(

Xt

X∗
t

− 1

)

dX∗
t + dXt

)

= X̃t [(λσπt − ct) dt + σπtdWt] . (2.11)

Since (c, π) satisfies (2.8), the latter linear SDE defines a unique solution given by:

X̃t = X̃0 exp

[
∫ t

0

(

−cr + λσπr −
1

2
|σπr|2

)

dr +

∫ t

0
σπrdWr

]

, t ≥ 0 , (2.12)

where

X̃0 = (1 − α)(X0)
1

1−α .

One also easily checks that

X̃∗
t = (1 − α) (X∗

t )
1

1−α , (2.13)

so that the unique solution of (2.9) is obtained by combining (2.10), (2.12) and (2.13):

X =

(

X̃ +
α

1 − α
X̃∗

)

(

X̃∗

1 − α

)−α

. (2.14)

Notice that X̃ is strictly positive. Then it follows from (2.10) that the process X defined

by (2.14) satisfies the strict drawdown constraint (2.6).

2.3 The optimal consumption-investment problem

We now formulate the optimal consumption-investment problem which will be the focus of

this paper. Throughout this paper, we consider a utility function

U : R+ → R C1, concave, satisfying U ′(0+) = ∞ and U ′(∞) = 0 . (2.15)
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For a given initial capital x > 0, the optimal consumption-investment problem under draw-

down constraint is defined by :

uα
0 := sup

(C,θ)∈Aα(x)
J(C, θ) where J(C, θ) := E

[
∫ ∞

0
e−βtU (Ct) dt

]

, (2.16)

and β > 0 is the subjective discount factor which expresses the preference of the agent for

the present.

For α = 0, u0
0 reduces to the classical Merton optimal consumption-investment problem.

We shall use the dynamic programming approach in order to derive an explicit solution of

the problem uα
0 . We then need to introduce the dynamic version of this problem :

uα(x, z) := sup
(C,θ)∈Aα(x,z)

J(C, θ) , (2.17)

where the pair (x, z), with x ≤ z, stands for the initial condition of the state processes

(X,Z) defined, for t ≥ 0, by

Zx,z,C,θ
t := z ∨

{

Xx,C,θ
}∗

t
and Xx,C,θ

t = x−
∫ t

0
Crdr +

∫ t

0
σθr (dWr + λdr) , (2.18)

and Aα(x, z) is the collection of all F−adapted processes (C, θ) satisfying (2.3)-(2.4) to-

gether with the drawdown constraint

Xx,C,θ
t ≥ αZx,z,C,θ

t , for all t ≥ 0 , (2.19)

almost surely. We also define A0
α(x, z) as the subset of consumption-investment strategies

in Aα(x, z) which satisfy the strict drawdown constraint

Xx,C,θ
t > αZx,z,C,θ

t , for all t ≥ 0 , (2.20)

almost surely. Clearly, avoiding the trivial case x = z = 0, this restricts the pair of initial

condition (x, z) to the closure Dα in (0,∞) × (0,∞) of the domain

Dα := {(x, z) : 0 < αz < x ≤ z} . (2.21)

For completeness, we observe that the value function uα can be easily shown to be concave

with respect to the x variable, see [19]. This result is not needed for the derivation of the

solution.

3 The verification result

The optimal consumption-investment problem (2.17) is in the class of stochastic control

problems studied in Barles, Daher and Romano [1]. The dynamic programming equation

is related to the second order operator

Lu := −βu+ sup
C≥0,θ∈R

[

LC,θu+ U(C)
]

where LC,θu := (θσλ− C)ux +
θ2σ2

2
uxx . (3.1)

Our approach for the derivation of the explicit solution, reported in the next section, is

based on the following verification result.
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Theorem 3.1 Let w be a C0
(

Dα

)

∩ C2,1 (Dα) function.

(i) If w satisfies −Lw ≥ 0 on Dα, and −wz(z, z) ≥ 0 for z > 0, then w ≥ uα.

(ii) Assume in addition that

1. Lw = 0 on Dα, and min {βw − V (wx),−wz} (z, z) = 0 for z > 0;

2. Lw = −βw+U(Ĉ)+LĈ,θ̂w on Dα, for some continuous functions Ĉ and θ̂, satisfying

Ĉ(αz, z) = θ̂(αz, z) = 0 , z ≥ 0 , (3.2)

and such that the stochastic differential equation

dX̂t = −Ĉ(X̂t, Ẑt)dt + σ θ̂(X̂t, Ẑt) (dWt + λdt) t ≥ 0 , Ẑt = z ∧ X̂∗
t ,

has a unique strong solution (X̂, Ẑ) for any initial condition (X̂0, Ẑ0) = (x, z) ∈ Dα

satisfying the strict drawdown constraint (2.20).

3. For every sequence of bounded stopping times (τn)n≥1 with τn → ∞ a.s., we have

lim inf
n→∞

E

[

e−βτnw
(

X̂τn , Ẑτn

)]

= 0.

Then, for (x, z) ∈ Dα, we have w(x, z) = uα(x, z) and (C∗
t , θ

∗
t ) :=

(

Ĉ, θ̂
)

(X̂t, Ẑt) is an

optimal consumption-investment strategy in A0
α(x, z) of the problem uα(x, z).

For the proof of this result, we isolate the following lemma which is interesting on its own.

Lemma 3.1 For z ≥ 0, we have uα(αz, z) = U(0)/β, and the corresponding optimal

consumption-investment strategies are given by (C∗, θ∗) = 0.

Proof. We first observe that for any (C, θ) ∈ Aα(αz, z), the corresponding wealth process

X is bounded from below (as X ≥ αZ ≥ αz). Let P
0 denote the equivalent martingale

measure which turns the process {W 0
t := Wt + λt, t ≥ 0} into a P

0−Brownian motion by

the Girsanov theorem. Since the consumption process is nonnegative, this implies that

the process {
∫ t
0 σθrdW

0
r , t ≥ 0} is a P

0−supermartingale as a local martingale which is

bounded from below.

By the dynamics of the wealth process, we have:
∫ t

0
Crdr = αz −Xt +

∫ t

0
σθrdW

0
r (3.3)

It then follows from the P
0−supermartingale property of the process {

∫ t
0 σθrdW

0
r , t ≥ 0}

together with the non-decrease of X∗ that

E
P
0

[
∫ t

0
Crdr

]

≤ E
P
0
[αz −Xt] = E

P
0
[αX∗

0 −Xt] ≤ E
P
0
[αX∗

t −Xt] ≤ 0,

where the last inequality follows from the drawdown constraint. This shows that the only

sustainable consumption from the initial condition (αz, z) is zero. We then deduce from

(3.3) that
∫ t

0
σθrdW

0
r = Xt − αz ≥ 0 ,
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which immediately implies the required result. 2

Proof of Theorem 3.1 We first observe that −Lw ≥ 0 implies

βw ≥ V (wx) ≥ U(0) , (3.4)

since V is a decreasing function and V (∞) = U(0). From Lemma 3.1, this shows that

w ≥ uα on Dα \ Dα. Then, in case (ii), combining −Lw = 0 with (3.2), we deduce

w = U(0)/β on Dα \ Dα, and the statement of the theorem is trivial on Dα \ Dα. From

now on, we fix a pair (x, z) ∈ Dα.

(i) Let (C, θ) be an arbitrary admissible consumption-investment strategy in Aα(x, z), set

(X,Z) :=
(

Xx,C,θ, Zx,z,C,θ
)

the solution of (2.18) with initial condition (X0, Z0) = (x, z),

and define the non-decreasing sequence of stopping times

τn := n ∧ inf
{

t > 0 : Xt − αZt < n−1
}

.

Denoting by τ∞ its limit in the a.s. sense, it follows from the same argument as in the

proof of Lemma 3.1 that

1{τ∞<∞}

∫ ∞

τ∞

Ctdt = 0 . (3.5)

Observe now that, by Itô’s formula, we obtain

e−βτnw (Xτn , Zτn) = w(x, z)+Mn +

∫ τn

0
e−βt

(

wz(Xt, Zt)dZt +
(

LCt,θtw − βw
)

(Xt, Zt)dt
)

where

Mn :=

∫ τn

0
e−βtθtσwx(Xt, Zt)dWt , n ≥ 0 .

Since −wz(z, z) ≥ 0, Z is a non-decreasing process and dZt = 0 whenever Xt < Zt, it

follows that the integral term with respect to Z is non-negative. Using in addition the fact

that −Lw ≥ 0, we get

w(x, z) ≥ e−βτnw (Xτn , Zτn) +

∫ τn

0
e−βtU(Ct)dt−Mn . (3.6)

Recall that wx is continuous on Dα. Then, it follows from the definition of τn that the

stopped process wx(X,Z) is a.s. continuous on [0, τn]. Since
∫ n
0 θ2

t dt <∞ a.s., this implies

that M is a local martingale. By the lower bound (3.4) on w, it follows from (3.6) that M

is uniformly bounded from below. Then M is a supermartingale. Taking expected values

in (3.6), and using again the lower bound (3.4) on w, this implies that

w(x, z) ≥ E

[
∫ τn

0
e−βtU(Ct)dt+

U(0)

β
e−βτn

]

.

By the monotone convergence theorem, this implies that

w(x, z) ≥ E

[
∫ τ∞

0
e−βtU(Ct)dt+

U(0)

β
e−βτ∞ 1{τ∞<∞}

]

= E

[
∫ ∞

0
e−βtU(Ct)dt

]
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by (3.5). Since(C, θ) is arbitrarily chosen in Aα(x, z), this proves that w(x, z) ≥ uα(x, z).

(ii) We denote (C∗
t , θ

∗
t ) := (Ĉ, θ̂)

(

X̂t, Ẑt

)

and (c∗t , π
∗
t ) :=

(

X̂t − αẐt

)−1
(C∗

t , θ
∗
t ), for any

t ≥ 0. Since (X̂, Ẑ) is assumed to satisfy the strict drawdown constraint, the sequence of

bounded stopping times

τ̂n := n ∧ inf
{

t > 0 : X̂t − αẐt < n−1 or Ẑt > n
}

−→
n→∞

∞ a.s.

By Condition (ii-1) of the theorem together with the fact that dZt = 0 whenever Xt < Zt,

it follows from Itô’s lemma that

w(x, z) = e−βτ̂nw
(

X̂τ̂n
, Ẑτ̂n

)

+

∫ τ̂n

0
e−βtU(C∗

t )dt − M̂n (3.7)

where

M̂n :=

∫ τ̂n

0
e−βtσ[θ̂wx](X̂t, Ẑt)dWt , n ≥ 0 .

Since wx and θ̂ are continuous on Dα, and the stopped process (X̂, Ẑ) takes values in a

compact subset of Dα, it follows that the process (θ̂wx)(X̂, Ẑ) is uniformly bounded on

[0, τ̂n]. Then M̂ is a martingale, and

w(x, z) = E

[

e−βτ̂nw
(

X̂τ̂n
, Ẑτ̂n

)]

+ E

[
∫ τ̂n

0
e−βtU(C∗

t )dt

]

. (3.8)

Since (τ̂n)n≥1 is a sequence of bounded stopping times converging to ∞ a.s., we may use

Condition (ii-3) of the theorem which, together with the monotone convergence theorem,

provides

w(x, z) = E

[
∫ ∞

0
e−βtU(C∗

t )dt

]

.

In view of (i), this implies that w = uα. 2

4 Guessing a candidate solution of the dynamic program-

ming equation

In this section, we derive an explicit candidate solution of the optimal consumption-

investment problem which satisfies the dynamic programming equation

Lu(x, z) = 0 , for (x, z) ∈ Dα ; (4.1)

min {βu− V (ux),−uz} (z, z) = 0 , for z > 0 . (4.2)

which corresponds to Conditions (i) and (ii-1) of Theorem 3.1. Our main result in the

subsequent Section 5 states that this candidate is indeed the value function of our problem

of interest, and derives the corresponding optimal consumption and investment policy. This

will be achieved by verifying the remaining conditions (ii-2)-(ii-3) of Theorem 3.1.
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We also observe that Condition (i) of Theorem 3.1 implies that uxx ≤ 0, i.e. the value

function is expected to be concave. Then, defining the Fenchel-Legendre transform

V (y) := sup
x≥0

(U(x) − xy) , (4.3)

we re-write the nonlinear operator L defined in (3.1) into:

Lu = βu− V (ux) +
λ2

2

u2
x

uxx
(4.4)

with maximizers

Ĉ = −V ′ (ux) =
(

U ′
)−1

(ux) and θ̂ := −λ
σ

ux

uxx
. (4.5)

4.1 The Fenchel-Legendre dual functions

The key-ingredient in order to derive the explicit solution in this paper is to introduce the

Fenchel-Legendre transforms of the value function uα with fixed z :

vα(y, z) := sup
αz≤x≤z

(uα(x, z) − xy) . (4.6)

Since the value function uα is concave in its first variable, it can indeed be recovered from

vα by the duality relation

uα(x, z) = inf
y∈R

(vα(y, z) + xy) . (4.7)

In the absence of drawdown constraint, the functions u0 is independent of the z variable

and the dual function

v0(y) := sup
x≥0

(

u0(x) − xy
)

can be obtained explicitly in terms of the density of the risk-neutral measure. This can be

seen by the following formal PDE argument: assuming that u0 is smooth and satisfies the

Inada conditions (u0)′(0+) = +∞, (u0)′(∞) = 0, it follows that

v0(y) = u0
(

[(u0)′]−1(y)
)

− y[(u0)′]−1(y) for y ≥ 0 , (4.8)

and v0(y) = ∞ for y < 0. Substituting in the dynamic programming equation (4.1), it

follows that v0 solves on (0,∞) the linear parabolic partial differential equation

L∗v(y) := v(y) − yvy(y) −
1

γ
y2vyy(y) =

1

β
V (y) , (4.9)

where we have introduced the parameter

γ :=
2β

λ2

10



which will play an important role throughout the paper. Under a convenient transversality

condition, this provides

v0(y) = E

[
∫ ∞

0
e−βtV

(

eβtYt

)

dt

]

where Yt := y exp

(

−λWt −
1

2
λ2t

)

. (4.10)

This result is well-known in the financial mathematics literature, and can be proved rigourously

by probabilistic arguments, see e.g. [12].

In this complete market setting, it is remarkable that the Fenchel transform v0 solves

a linear PDE. This is the key-observation in order to guess a candidate solution for the

optimal consumption-investment problem under drawdown constraint.

4.2 Guessing a candidate solution for the dual problem

We now derive the PDE satisfied by the Fenchel-Legendre transform v of a smooth solution

u of the dynamic programming equation (4.1)-(4.2).

Step 1: The PDE satisfied by the dual function v. We first introduce the functions

ϕ(z) := ux(z, z) and ψ(z) := ux(αz, z) , z > 0 .

For any z > 0, since we are seeking for a concave function u(., z), we expect that ϕ(z) ≤
ψ(z). Denoting by h(., z) the inverse of the function ux(., z), it follows from the definition

of the dual function v that

v(y, z) = u (h(y, z), z) − h(y, z)y if ux (h(y, z), z) = y ∈ [ϕ(z), ψ(z)] , (4.11)

v(y, z) = u(z, z) − yz if y ≤ ϕ(z) , (4.12)

v(y, z) = u(αz, z) − αyz if y ≥ ψ(z) . (4.13)

Notice that h(y, z) = −vy(y, z) by the classical gradient correspondence from the Fenchel

duality. In the situation of (4.11) where y ∈ [ϕ(z), ψ(z)], we obtain by a direct change of

variable in (4.1) that

L∗v(y, z) = V (y) for ϕ(z) < y < ψ(z) , (4.14)

where L∗ is the linear operator defined in (4.9). From the definition of the functions ϕ and

ψ, it follows from the Fenchel duality that

vy (ϕ(z), z) = −z for z > 0 , (4.15)

vy (ψ(z), z) = −αz for z > 0 . (4.16)

We also observe that

• for ϕ(z) < y < ψ(z), we have βu−V (ux) = (β(v − yvy) − V )◦ux =
(

λ2y2vyy/2
)

◦ux,

• and for y < ϕ(z), we have from (4.12) that vz(y, z) = ux(z, z) + uz(z, z) − y, and

therefore vz(ϕ(z), z) = uz(z, z) by the continuity of v implied by its convexity and

the definition of the function ϕ.

11



Hence, the boundary condition (4.2) is converted into

min {yvyy,−vz} (ϕ(z), z) = 0 for z > 0 . (4.17)

In the next step, we exhibit functions v(y, z), ϕ(z), ψ(z) which satisfy the ODE (4.14)

subject to the boundary conditions (4.15)-(4.16)-(4.17). We shall seek for such functions

with

ψ(z) = ∞ for every z ≥ 0 , (4.18)

which is consistent with the economic intuition of the problem: when the drawdown con-

straint binds, the investor can neither consume nor invest for the next entire future, see

Lemma 3.1, and therefore the marginal utility in this situation is expected to be infinite as

U ′(0) = ∞. Notice that this is by no means an assumption we are making, as we only have

to exhibit a candidate solution for which the conditions of our verification result, Theorem

3.1 hold.

Step 2: General solution of the ODE (4.14) subject to (4.15)-(4.16). The homogeneous

equation, defined by ignoring the right hand-side of (4.14), has a linear space of solutions

spanned by v1(y) = y and v2(y) = y−γ . A general solution for the linear ODE is derived

by applying the technique of the variation of the constant. Direct calculations lead to

v(y, z) = a(z)y − b(z)y−γ +
2

λ2(1 + γ)
y

∫ ∞

ϕ(z)
V (ξ)ξγ−1(y ∨ ξ)−(1+γ)dξ , (4.19)

where the latter integral is finite because V (∞) = U(0) < ∞, and a, b are functions of z

to be determined by using the boundary conditions. Direct calculation leads to

vy(y, z) = a(z)+γb(z)y−(1+γ)+
2

λ2(1 + γ)

(

−γ y−(1+γ)

∫ y

ϕ(z)
V (ξ)ξγ−1dξ +

∫ ∞

y
V (ξ)ξ−2dξ

)

.

In view of (4.18), it follows from (4.16) that a(z) = −αz. We also easily express the function

b(z) in terms of ϕ(z) by using the boundary condition (4.15), and we update our candidate

solution:

v(y, z) = −αyz +
y

γ

(

ϕ(z)

y

)1+γ
(

(1 − α)z +
2

λ2(1 + γ)

∫ ∞

ϕ(z)
V (ξ)ξ−2dξ

)

+
2

λ2(1 + γ)

(

y−γ

∫ y

ϕ(z)
V (ξ)ξγ−1dξ + y

∫ ∞

y
V (ξ)ξ−2dξ

)

(4.20)

Step 3: Determining the marginal utility at the maximum ϕ(z). We now make use of

the boundary condition (4.17) in order to determine the function ϕ. Direct computation

provides:

ϕ(z)vyy (ϕ(z), z) = (1 + γ)(1 − α)z − 2

λ2

∫ ∞

ϕ(z)
−V ′(ξ)ξ−1dξ

and

vz (ϕ(z), z) =

(

1 − α

γ
− α

)

ϕ(z) +
ϕ′(z)

γ

[

(1 + γ)(1 − α)z − 2

λ2

∫ ∞

ϕ(z)
−V ′(ξ)ξ−1dξ

]

.

12



We continue our calculation by postulating that

ϕ(z) > 0 and ϕ′(z) < 0 for all z > 0 , (4.21)

a claim which will be verified by our candidate solution below. Then, the boundary condi-

tion (4.17) is equivalent to

(1 + γ)(1 − α)z − 2

λ2

∫ ∞

ϕ(z)
−V ′(ξ)ξ−1dξ = −(1 − α(1 + γ))+

ϕ(z)

ϕ′(z)
.

Introducing the inverse g := ϕ−1 which is well-defined under (4.21), we re-write the latter

equation into:

g(ζ) − φ(ζ) = −(1 − α[1 + γ])+

(1 − α)(1 + γ)
ζg′(ζ). (4.22)

where we have denoted

φ(ζ) :=
2

λ2(1 − α)(1 + γ)

∫ ∞

ζ
−V

′(ξ)

ξ
dξ for ζ > 0 . (4.23)

This leads to the two following cases.

Case A α ≥ (1+γ)−1, then the expression of g is immediately given by the last equation:

g(ζ) = φ(ζ) for ζ > 0 . (4.24)

Notice that this function is a decreasing map from (0,∞) in (0,∞), thus verifying (4.21)

for its inverse ϕ.

Case B α < (1 + γ)−1, then it follows from (4.22) that g satisfies the first order linear

ODE

g(ζ) +
1 − α(1 + γ)

(1 + γ)(1 − α)
ζg′(ζ) = φ(ζ), (4.25)

which provides a unique non-negative solution, as required by (4.21):

g(ζ) = φ(ζ) +
2

λ2(1 − α)(1 + γ)

∫ ζ

0

−V ′(ξ)

ξ

(

ξ

ζ

)

(1−α)(1+γ)
1−α(1+γ)

dξ

=
2

λ2(1 − α)(1 + γ)

∫ ∞

0

−V ′(ξ)

ξ

(

1 ∧ ξ

ζ

)

(1−α)(1+γ)
1−α(1+γ)

dξ,

where the second equality follows by interchanging the order of integration. The integra-

bility of the latter expression will be ensured by a condition on the asymptotic elasticity

of U , see Remark 5.1 below. Furthermore, it is now clear that g is a decreasing map from

(0,∞) to (0,∞), thus implying that (4.21) holds true.
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4.3 Candidate solution to the consumption-investment problem

We now use the explicit form (4.20) of the dual function v in order to derive an explicit

candidate solution for the consumption-investment problem under drawdown constraint.

By the duality relation between u and v, we have

u(x, z) = v ◦ f(x, z) + xf(x, z) (4.26)

where f(., z) is the inverse function of h(., z) = −vy(., z) given by

h(y, z) = αz+(1 − α) [z − φ(ϕ(z))]

(

ϕ(z)

y

)1+γ

+
2

λ2(1 + γ)

∫ ∞

ϕ(z)

−V ′(ξ)

ξ

(

y ∧ ξ
y

)1+γ

dξ ,

(4.27)

and we recall from the previous subsection that ϕ = g−1 is implicitly defined by:

λ2

2
(1 − α)(1 + γ) z =

∫ ∞

ϕ(z)
−V

′(ξ)

ξ
dξ + 1{α(1+γ)<1}

∫ ϕ(z)

0

−V ′(ξ)

ξ

(

ξ

ϕ(z)

)

(1−α)(1+γ)
1−α(1+γ)

dξ .

(4.28)

The invertibility of the above function h(., z) is clear from the expression (4.27) together

with the fact that z − φ(ϕ(z)) ≥ 0 implied by (4.28). Thus its inverse function f(., z) is a

strictly decreasing function from (αz, z] to [ϕ(z),∞) defined implicitly by

λ2

2
(1 + γ)(x− αz) =

∫ ∞

ϕ(z)

−V ′(ξ)

ξ

(

f(x, z) ∧ ξ
f(x, z)

)1+γ

dξ , (4.29)

+1{α(1+γ)<1}

(

ϕ(z)

f(x, z)

)1+γ ∫ ϕ(z)

0

−V ′(ξ)

ξ

(

ξ

ϕ(z)

)

(1−α)(1+γ)
1−α(1+γ)

dξ

Combining (4.26) with expressions (4.20), (4.28) and (4.29), some direct computation shows

that the candidate value function u is given by:

u(x, z) = f(x, z)

(

1 + γ

γ
(x− αz) +

1

β

∫ ∞

f(x,z)
V (ξ)ξ−2dξ

)

for (x, z) ∈ Dα . (4.30)

The candidate optimal consumption-investment strategy is directly obtained by means of

the maximizer (4.5) in the dynamic programming equation, as

Ĉ(x, z) = −V ′ (f(x, z)) , (x, z) ∈ Dα, (4.31)

and

θ̂(x, z) =
λ

σ
(1 + γ)(x− αz) − 2

λσ

∫ ∞

f(x,z)
−V ′(ξ)ξ−1dξ , (x, z) ∈ Dα . (4.32)

Since f(αz, z) = ∞, we finally observe that the optimal strategy vanishes on the drawdown

boundary Dα \Dα:

θ̂(αz, z) = Ĉ(αz, z) = 0 , z ≥ 0 , (4.33)

in agreement with lemma (3.1). Further analysis of the behavior of f will also reveal that

u(αz, z) =
U(0)

β
, z ≥ 0, (4.34)

see Proposition 6.1.
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5 The main result

This section reports our main result stating that the candidates (4.30)-(4.31)-(4.32) are

indeed the value function of our consumption-investment problem under drawdown con-

straint (2.17) and the corresponding optimal consumption and investment policy. We first

recall the notion of asymptotic elasticity introduced by Kramkov and Schachermayer [15]:

AE(U) := lim sup
x→∞

xU ′(x)

U(x)
.

Theorem 5.1 Let the utility function U satisfy (2.15), and assume that

AE(U) < 1 ∧ γ

(1 − α)(1 + γ)
.

Then uα coincides with the candidate defined by (4.30)-(4.34). Moreover, uα is a C0
(

Dα

)

∩
C2,1 (Dα) function, and for any initial data (X̂0, Ẑ0) = (x, z) ∈ Dα, the stochastic differ-

ential equation

dX̂t = −Ĉ(X̂t, Ẑt)dt + θ̂(X̂t, Ẑt)σ (dWt + λdt) , Ẑt := z ∨ X̂∗
t , (5.1)

has a unique strong solution with values (X̂t, Ẑt) ∈ Dα a.s., and the pair process (C∗, θ∗) :=

(Ĉ, θ̂)(X̂, Ẑ) ∈ A0
α(x, z) is a solution of the problem.

This theorem is proved by verifying that the candidate u satisfies all the conditions of

the verification Theorem 3.1. The rather technical proof of the result is reported to Section

6. We outline that the particular case of a power utility function, treated in Section 6.3.2,

is of interest in itself since the form of the corresponding value function is much more

tractable. In particular, as explained in the next remark, it provides a convenient control

on the growth of the candidate value function u, used to verify the transversality condition

(ii-3) of Theorem 3.1.

Remark 5.1 By Lemma 6.5 in [15], it follows from the condition on the asymptotic elas-

ticity of U that there exists a constant Kp such that

U(x) ≤ Kp

(

1 +
xp

p

)

, x ≥ 0 , where p := AE(U) . (5.2)

Furthermore, since U and V satisfy the relation

U(x) = V
(

(−V ′)−1(x)
)

+ x (−V ′)−1(x) , x ≥ 0,

where both terms on the right hand side are positive, it follows from (5.2) together with

the fact that U ′(∞) = 0 that is

lim sup
y→0

−V ′(y)y
1

1−p < ∞ .

This condition ensures the existence of the integral terms in (4.28) and (4.29) and imply

that our candidates are well defined.
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Figure 1: Value function uα(x, 1) versus the wealth x for different α

0

1

2

3

4

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

x

I
n
v
e
s
tm
e
n
t

Figure 2: Investment θ versus the wealth x for different α
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Remark 5.2 From the expression (4.32) of the optimal investment policy together with

(4.28), we see that

θ̂(z, z) = 0, for z ≥ 0 if and only if α ≥ (1 + γ)−1,

so that the dynamics of the optimal wealth process on {X̂t = Ẑt} is dX̂t = −C∗
t dt. Since the

consumption process is non-negative, this means that the optimal wealth process decreases

immediatey when it hits the current maximum Ẑ. In other words, the process Ẑ. = Ẑ0

is flat. This behavior was already observed in [19] and shows that for a large drawdown

parameter α, the investor anticipates that reaching its current maximum of wealth will

increase the floor imposed by the drawdown constraint, and therefore chooses to consume

instead of investing in the risky asset. This observation is consistent with the results of

Roche [19]. Notice however that the optimal investment strategy derived by [9] does not

exhibit this behavior, as their model considers an agent maximizing the long term growth

rate of expected utility of its final wealth, with no utility from intermediate consumption.

We conclude this section by reporting some numerical examples in the case of the utility

function

U(x) := xp1 + xp2 , x ≥ 0,

with p1 = 0.2 and p2 = 0.3. Our main objective is to comment on the effect of the

drawdown parameter α ∈ [0, 1). We therefore consider the following set of parameters

(σ, λ, β) = (1, 3, 3) which statisfies the asymptotic elasticity condition of the theorem for

all α ∈ [0, 1), i.e. for α = 0. In the following figures we plot the value function, the

optimal investment strategy and the optimal consumption strategy for various values of

α and for fixed z = 1. Since these functions are defined on [α, 1], the value of the draw-

down parameter α is identified on the graph as the starting point of the curve on the x−axis.

As expected, Figure 1 shows that the value function uα is decreasing in α. Figure 2 shows

that investment in the risky asset decreases with α. We also observe that near x = αz,

i.e. when the drawdown constraint nearly binds, the slope does not depend on α. We next

comment on the behavior of the optimal investment strategy on both sides of the threshold

α = (1 + γ)−1:

- When α < (1+γ)−1 = 0.6, the curves θ̂(., 1) are clearly Lipschitz in x in agreement with

the subsequent Lemma 6.2. For large wealth x, the agent is more reluctant to invest in the

risky asset as α increases. When the wealth process approaches its maximum, the amount

invested in the risky asset even decreases for large α. The optimal consumption strategy,

reported in Figure 3, is increasing in α for large values of wealth while it is decreasing

otherwise.

- When α ≥ (1+γ)−1 = 0.6, the curves θ̂(., 1) are only locally Lipschitz in x as the gradient

near x = 1 approaches ∞. This is again in agreement with the subsequent Lemma 6.2. We

also observe that θ̂(1, 1) = 0 implying that the current maximum process of the optimal

wealth is flat, see Remark 5.2. In other words since Z0 = X0 is fixed, this case reduces to

a problem of optimal consumption-investment with state constraint X. ∈ [αX0,X0] on the

wealth process. As for the optimal consumption strategy, it is now clearly decreasing in α.
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Figure 3: Consumption C(x, 1) versus the wealth x for different α

6 Proof of Theorem 5.1

This section is devoted to the proof of Theorem 5.1. We shall check the candidate value

function u and the optimal consumption-investment strategy (Ĉ, θ̂) defined by (4.30)-(4.31)-

(4.32) satisfy all the hypothesis of the verification theorem 3.1. The regularity property

and Condition (ii-1) are given by Proposition 6.1, and conditions (ii-2) and (ii-3) follow

respectively from Proposition 6.2 and Proposition 6.3.

Throughout this section, the utility function is assumed to satisfy the asymptotic elasticity

condition of Theorem 5.1:

AE(U) < 1 ∧ γ

(1 − α)(1 + γ)
. (6.1)

In particular, this ensure that the candidates solution u of (4.30)-(4.31)-(4.32) are well

defined, see Remark 5.1.

6.1 Regularity of the candidate value function

The following proposition collects the regularity properties of the candidate function u given

by (4.30), needed for the application of the verification Theorem 3.1. By construction, this

ensures that the candidate solution u is a classical solution of the dynamic programming

equation (4.1)-(4.2).
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Proposition 6.1 The candidate value function u ∈ C0
(

Dα

)

∩ C2,1 (Dα) and satisfies

Lu = 0 on Dα , and min {βu− V (ux),−uz} (z, z) = 0 , for z > 0 . (6.2)

The proof of this proposition requires the use of the following regularity result on the

function f defined implicitly by (4.29).

Lemma 6.1 The function f ∈ C1 (Dα) and, for any (x, z) ∈ Dα, we have :

fx(x, z)

f(x, z)
= −

(

(γ + 1)(x− αz) +
γ

β

∫ ∞

f(x,z)

V ′(s)

s
ds

)−1

, (6.3)

fz(x, z)

f(x, z)
= α

(

1 +

[

γ ∧ 1 − α

α

](

ϕ(z)

f(x, z)

)γ+1
)

fx(x, z)

f(x, z)
. (6.4)

Proof. By construction, the function f defined as the inverse of h satisfies

f (h(y, z), z) = y , for y ≥ ϕ(z) , and h (f(x, z), z) = x , for (x, z) ∈ Dα . (6.5)

By definition, the function h(., z) and its inverse f(., z) are C1 and decreasing, for any z > 0.

Direct computation then leads to (6.3). We also observe that h ∈ C1,1({(y, z), y ≥ ϕ(z)})
and that we have

0 ≤ hz(y, z) = α+ [αγ ∧ (1 − α)]

(

ϕ(z)

y

)γ+1

≤ α(1 + γ) , y ≥ ϕ(z) . (6.6)

Therefore, h and f are increasing in z. Collecting the monotonicity properties of f , we

have:

f is decreasing in x, increasing in z, and ϕ : z 7→ f(z, z) is decreasing,

recall that ϕ satisfies (4.21). In order to prove that f ∈ C1(Dα), we shall prove that f is

differentiable in each variable with continuous partial derivatives.

1. In this step, we show that f ∈ C0(Dα), which implies that fx ∈ C0(Dα) by (6.3). For

(x, z) ∈ Dα, we study separately two alternative cases:

• If x < z, for l′ small enough, (x, z + l′) ∈ Dα and we deduce from (6.6) that

h(f(x, z + l′), z) − x = h(f(x, z + l′), z) − h(f(x, z + l′), z + l′) ≤ α(1 + γ) l′ −→
l′→0

0 .

Therefore, since f(x, z + l′) ≥ ϕ(z) from the monotonicity of f , combining (6.5) and the

continuity of f(., z), we obtain

f(x, z + l′) − f(x, z) = f(h(f(x, z + l′), z), z) − f(x, z) −→
l′→0

0 . (6.7)

Moreover, notice that (x+ l, z + l′) ∈ Dα for sufficiently small l, and we have

f(x+ l, z + l′) − f(x, z) = fx(xl, z + l′) l + f(x, z + l′) − f(x, z) (6.8)
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for some xl ∈ [x, x+ l]. Now, since f is monotonic in both variables, we deduce from (6.3)

that f and fx are bounded on any compact subset of Dα containing (x, z). Therefore,

combining (6.7) and (6.8), we deduce that f is continuous at point (x, z).

• If x = z, we have, for any l and l′ satisfying (z + l, z + l′) ∈ Dα,

f(z + l, z + l′) = fx(zl, z + l′)(l′ − l) + ϕ(z + l′) , for some zl ∈ [z + l, z + l′] .

Therefore similar arguments as above combined with the continuity of ϕ lead to the conti-

nuity of f on Dα.

2. We now prove that f is differentiable with respect to z with continuous partial deriv-

atives. Take (x, z) ∈ Dα and l′ such that (x, z + l′) ∈ Dα. Combining f(x, z) ≥ ϕ(z + l′)

with (6.5), we deduce

1

l′
{f(x, z + l′) − f(x, z)} =

1

l′
{f(x, z + l′) − f(h(f(x, z), z + l′, z + l′))}

= fx(xl′ , z + l′)
1

l′
{h(f(x, z), z) − h(f(x, z), z + l′)} ,

for some xl′ ∈ [x, x+ l′]. Since fx ∈ C0(Dα) and hz(f(x, z), .) is continuous, we obtain

1

h′
{f(x, z + h′) − f(x, z)} −→

h′→0
−fx(x, z) hz(f(x, z), z) .

Finally, combining (6.3) and (6.6), simple computations lead to (6.4) and fz inherits the

continuity of f on Dα. 2

We are now ready for the

Proof of Proposition 6.1 We only need to prove the regularity properties of the can-

didate value function u, as (6.2) is satisfied by the construction of u in Section 4.2.

By Lemma 6.1, f ∈ C1 (Dα), and we deduce from (4.30) that u ∈ C1 (Dα). Direct

computation leads to ux = f on Dα and therefore u ∈ C2,1 (Dα). We now prove that

u ∈ C0
(

Dα

)

.

Combining (4.30) with the definition of f , it follows from an integration by part argument,

u(x, z) =
γ

β

∫ f(x,z)

ϕ(z)

V (s)

s

(

s

f(x, z)

)γ

ds+ V ◦ ϕ(z)

(

ϕ(z)

f(x, z)

)γ

(6.9)

+ 1{α<(1+γ)−1}
2

λ2(1 − α)(1 + γ)

∫ ζ

0

−V ′(ξ)

ξ

(

ξ

ζ

)

(1+α)(1+γ)
1−α(1+γ)

dξ , (x, z) ∈ Dα .

Since the function V ′ is negative, V is bounded from below by V (∞) = U(0), and we

deduce from (6.9) that u ≥ U(0)/β.

Fix now z0 > 0, ǫ > 0 and let C0 be a compact subset of R
+ containing z0. Observe that

there exists a constant M such that |V (y) − U(0)| ≤ βǫ/2 for y ≥ M . Since ϕ and V

are continuous functions and therefore bounded on compact sets, we deduce from (6.9) the

existence of a constant K > 0 satisfying

u(x, z) ≤
(

K

f(x, z)

)γ

+
U(0)

β
+
ǫ

2
, (x, z) ∈ Dα , z ∈ C0 . (6.10)
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Observe now that, since V ′ is a negative function, we derive from (6.3),

−fx(x, z)

f(x, z)
≥ 1

(γ + 1)(x− αz)
, (x, z) ∈ Dα .

Integrating this inequality on the interval [x, z], we obtain, up to the composition with the

exponential function,

f(x, z) ≥ ϕ(z)[(1 − α)z]1/(1+γ) (x− αz)−1/(1+γ) , (x, z) ∈ Dα .

Therefore, there exists η > 0 such that, for any (x, z) ∈ Dα with z ∈ C0 and |x− αz| < η,

we have f(x, z) > K(ǫ/2)−1/γ , which plugged in (6.10) leads to

U(0)

β
≤ u(x, z) ≤ U(0)

β
+ ǫ .

Since this is true for any ε > 0, u ∈ C0
(

Dα

)

.

2

6.2 The wealth process with optimal feedback policy

Given an initial condition (x, z) ∈ Dα, we consider the stochastic differential equation

dX̂t = −Ĉ(X̂t, Ẑt)dt + θ̂(X̂t, Ẑt)σ (dWt + λdt) , (6.11)

where we used the previous notation Ẑt := z ∨ X̂∗
t , t ≥ 0.

Proposition 6.2 The stochastic differential equation (6.11) has a unique strong solution

(X̂, Ẑ) for any initial condition (x, z) ∈ Dα. Moreover,

(i) (Ĉ, θ̂) satisfies (3.2), and the pair process (C∗, θ∗) := (Ĉ, θ̂)(X̂t, Ẑt) ∈ A0
α(x, z) so that

(X̂, Ẑ) satisfies the strict drawdown constraint (2.20).

(ii) If α ≥ 1/(1 + γ), the running maximum process is flat, i.e. Ẑt = z for every t ≥ 0.

This result is based on the following lemmas whose proofs are reported later on.

Lemma 6.2 If α < 1/(1+ γ), then θ̂ is Lipschitz on Dα and Ĉ is locally Lipschitz on Dα.

Lemma 6.3 If α ≥ 1/(1 + γ),then, for every fixed z > 0, Ĉ(., z) and θ̂(., z) are locally

Lipschitz on (αz, z) and θ̂(x, z) = O(
√
z − x ) near the ray {(x, z) ∈ Dα , x = z}.

Lemma 6.4 The functions Ĉ and θ̂ satisfy

lim sup
xցαz

Ĉ(x, z)

x− αz
< ∞ and lim sup

xցαz

θ̂(x, z)

x− αz
< ∞ . (6.12)

Proof of Proposition 6.2 We first observe that, in order to prove item (i) of the propo-

sition, it is sufficient to show that (C∗, θ∗) ∈ Aα(x, z). Indeed, it follows from lemma 6.4

together with the continuity of the functions Ĉ, θ̂ that

∫ T

0

Ĉ(X̂t, Ẑt)

X̂t − αẐt

dt +

∫ T

0

∣

∣

∣

∣

∣

θ̂(X̂t, Ẑt)

X̂t − αẐt

∣

∣

∣

∣

∣

2

dt < ∞ a.s. for every T > 0 .
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Then the strict drawdown constraint is satisfied by the construction of Section 2.2.

We now prove the remaining claims of the proposition by considering the two alternative

situations isolated by lemmas 6.2 and 6.3.

Case 1 Let α < 1/(1 + γ). We first extend continuously Ĉ and θ̂ to {(x, z) : x ≤ z} by

setting them equal to zero, so that θ̂ and Ĉ are respectively Lipschitz and locally Lipschitz,

see Lemma 6.2.

1. In this step, we show that the stochastic differential equation

dX̄t = θ̂(X̄t, Z̄t)σ (dWt + λdt) (6.13)

has a unique strong solution. To see this, we consider the map G(t,x) := θ̂ (x(t), z ∨ x∗(t))

defined on R+ × C0(R+), for fixed z > 0. Since θ̂ is Lipschitz, We directly estimate, for

t ≥ 0 and x,y ∈ C0(R+), that

|G(t,x) −G(t,y)| ≤ K {|x(t) − y(t)| + |z ∨ x∗(t) − z ∨ y∗(t)|} ≤ 2K |x − y|∗t ,

where K > 0 is the Lipschitz constant of θ̂. This proves that G is functional Lipschitz

in the sense of Protter [18]. The existence and uniqueness of a strong solution to (6.13)

follows from Theorem 7 p 197 in [18].

2. Since Ĉ is locally Lipschitz on Dα and Ĉ(αz, z) = 0 for z > 0, a similar argument to

the above Step 1 shows that local existence and uniqueness hold for the stochastic differ-

ential equation (6.11). Recalling that Ĉ ≥ 0, it follows from (4.33) that 0 ≤ αz ≤ X̂ ≤ X̄

which shows that there is no explosion of the local solution. Hence (X̂, Ẑ) is the unique

strong global solution to (6.11).

Case 2 Let α ≥ 1/(1 + γ). The first crucial observation in this case is that θ̂(z, z) = 0

by (4.32) and the definition of ϕ. Since Ĉ is non-negative, this shows that any possible

solution of the stochastic differential equation (6.11) exhibits a flat component Ẑt = z, for

every t ≥ 0. We are then reduced to studying the stochastic differential equation

dX̂t = −Ĉ(X̂t, z)dt + θ̂(X̂t, z)σ (dWt + λdt) , (6.14)

where z > 0 is now a fixed parameter. Moreover, it follows from (4.33) that any possible

solution of (6.14) must satisfy αz ≤ X̂ ≤ z. In view of these bounds, we only need to prove

local existence and uniqueness for (6.14). This is guaranteed by Lemma 6.3 and Proposition

2.13 p 291 in [11]. 2

Proof of Lemma 6.2 Notice from lemma 6.1 that θ̂ and Ĉ are in C1(Dα). In particular,

this implies that Ĉ is locally Lipschitz on Dα. It remains to prove the Lipschitz property

of θ̂.

Set ρ := γ/(1 − α(1 + γ)) and observe that 0 < ρ < γ under the condition of the lemma.

Since fx and V ′ are negative functions, we have

θ̂x(x, z) =
λ

σ

(

1 + γ − γ

β

fx(x, z)

f(x, z)
[V ′ ◦ f ](x, z)

)

≤ λ

σ
(1 + γ) , (x, z) ∈ Dα . (6.15)
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Notice that, combining the definition of f and (6.3), we get

β

γ

f(x, z)

fx(x, z)
=

(

ϕ(z)

f(x, z)

)1+γ ∫ ϕ(z)

0

V ′(ξ)

ξ

(

ξ

ϕ(z)

)1+ρ

dξ +

∫ f(x,z)

ϕ(z)

V ′(ξ)

ξ

(

ξ

f(x, z)

)1+γ

dξ

≤
∫ f(x,z)

0

V ′(ξ)

ξ

(

ξ

f(x, z)

)1+ρ

dξ , (x, z) ∈ Dα , (6.16)

since ϕ(z) ≤ f(x, z) and γ ≤ ρ. Now, since V ′ is a negative increasing function, we deduce

f(x, z)

fx(x, z)[V ′ ◦ f ](x, z)
≥ γ

β

∫ f(x,z)

0

1

ξ

(

ξ

f(x, z)

)1+ρ

dξ =
γ

β(1 + ρ)
> 0 . (6.17)

Combining this inequality with (6.15), we deduce that the function θx is bounded on Dα.

Similarly we compute that, for (x, z) ∈ Dα,

θ̂z(x, z) = −λ
σ

(

α(γ + 1) +
γ

β

fz(x, z)

f(x, z)
[V ′ ◦ f ](x, z)

)

≥ −λ
σ
α(γ + 1) ,

since fz and −V ′ are positive functions. Combining (6.3) and (6.4), we compute

f(x, z)

fz(x, z)
= − 1

α

(

γ

(

ϕ(z)

f(x, z)

)1+γ

+ 1

)−1
f(x, z)

fx(x, z)
≥ − 1

α(γ + 1)

f(x, z)

fx(x, z)
, (6.18)

for (x, z) ∈ Dα. We then deduce from (6.17) that θ̂z is bounded from above and that θ̂ is

a Lipschitz function on Dα. Since, for any z > 0, θ̂(αz+, z) = 0 = θ̂(αz, z), the function θ̂

is in fact Lipschitz on Dα. 2

Proof of lemma 6.3 For any fixed z > 0, we deduce from lemma 6.1 that θ̂(., z) and

Ĉ(., z) are C1 and therefore locally Lipschitz on (αz, z). Observe now that, combining

(4.32) with the definition of f in (4.29), we get

θ̂(x, z) =
2

σλ

∫ f(x,z)

ϕ(z)

−V ′(ξ)

ξ

(

ξ

f(x, z)

)1+γ

dξ .

Observe also that the definitions (4.28)-(4.29) of ϕ and f lead to

z − x = (1 − α)z − 2

λ2(1 + γ)

∫ ∞

ϕ(z)

−V ′(ξ)

ξ

[

(

ξ

f(x, z)

)1+γ

∧ 1

]

dξ .

=
2

λ2(1 + γ)

∫ f(x,z)

ϕ(z)

−V ′(ξ)

ξ

[

1 −
(

ξ

f(x, z)

)1+γ
]

dξ .

To conclude, we see that, near x = z, we have f(x, z) ∼ ϕ(z) and therefore

θ(x, z)2

z − x
∼ −2(1 + γ)V ′ ◦ ϕ(z)

σ2

ϕ(z)
f(x,z) − 1

(

ϕ(z)
f(x,z)

)1+γ
− 1

∼ −2V ′ ◦ ϕ(z)

σ2
.

2
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Proof of lemma 6.4 Notice that y := f(x, z) ∼ ∞ near x = αz. Then, by Remark 5.1

together with the expression of h in (4.27), we have, for some constant K,

lim sup
xցαz

Ĉ(x, z)

x− αz
= lim sup

yր∞

−V ′(y)

h(y, z) − αz
. ≤ lim sup

yր∞
K

y−1/(1−p)

max(y−1/(1−p), y−1−γ)
≤ K .

The analogue property for θ̂ follows by the same line of argument. 2

6.3 Transversality condition

We finally turn to the proof of the transversality condition (ii-3) of Theorem 3.1.

Proposition 6.3 Given (x, z) ∈ Dα, let (X̂, Ẑ) be the unique strong solution to the sto-

chastic differential equation (6.11). Then, for every sequence of bounded stopping times

(τn)n≥1 with τn → ∞ a.s., we have

lim inf
n→∞

E

[

e−βτnu
(

X̂τn , Ẑτn

)]

= 0.

The proof of this result is organized in the following subsections as follows. Lemma 6.5

shows that the transversality condition holds under a convenient growth condition on the

candidate value function. Lemma 6.6 states that the latter growth condition holds in the

particular case of a power utility function. By the comparison result of Lemma 6.7, we

shall conclude that this growth condition is inherited by any utility function satisfying our

asymptotic elasticity condition (6.1).

6.3.1 Growth condition on the value function

Lemma 6.5 Let w : Dα −→ R be such that there exist K > 0 and 0 < δ < γ/(1 + γ)

satisfying

|w(x, z)| ≤ K
(

1 + (x− αz)δz
α

1−α
δ
)

, (x, z) ∈ Dα .

Given (x, z) ∈ Dα, let (C, θ) ∈ A0
α(x, z) be a consumption-investment strategy satisfying

the strict drawdown condition, and set (X,Z) :=
(

XC,θ, ZC,θ
)

. Assume in addition that

π :=
θ

X − αZ
is uniformly bounded on R+ × Ω.

Then, for every sequence of bounded stopping times (τn)n≥1 with τn → ∞ a.s. we have

lim inf
n→∞

E

[

e−βτnw (Xτn , Zτn)
]

= 0.

Proof. Denoting by c := C/(X − αZ), it follows from the representation (2.12) together

with the condition of the lemma that

|w(Xt, Zt)| ≤ K

(

1 +Nt exp

{

−
∫ t

0
δ

(

cr − λσπr + (1 − δ)
(σπr)

2

2

)

dr

})

, t > 0,
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where N := E
(∫ .

0 σδπtdt
)

is the exponential martingale defined by the dynamics

dNt = Nt σδπt dWt,

recall that π is uniformly bounded. Direct computation shows that

ηs := β + δ

(

cs − λσπs + (1 − δ)
(σπs)

2

2

)

≥ λ2

2

[

γ + δ

(

(1 − δ)

(

σπs

λ
− 1

1 − δ

)2

− 1

(1 − δ)

)]

≥ λ2

2

(

γ − δ

1 − δ

)

=: 2η > 0 ,

since δ < γ/(1 + γ) by the condition of the lemma. Therefore:

E

[

e−βτnw (Xτn , Zτn)
]

≤ K E

[

e−βτn + e−2ητnNτn

]

. (6.19)

Furthermore, for any ε > 0, it follows from the Hölder inequality:

E
[

e−2ητnNτn

]

≤
∥

∥

∥
e−2ητn+ ε

2

R τn
0 |σδπt|2dt

∥

∥

∥

L1+ε−1
E

[

E
(

(1 + ε)σδ

∫ .

0
πtdWt

)

τn

](1+ε)−1

=
∥

∥

∥
e−2ητn+ ε

2

R τn
0 |σδπt|2dt

∥

∥

∥

L1+ε−1

≤
∥

∥

∥
e−(2η+ ε

2
σ2δ2‖π‖2

∞)τn

∥

∥

∥

L1+ε−1
.

Hence for a sufficiently small ε > 0, we deduce from (6.19) that

E

[

e−βτnw
(

X̃τn , Z̃τn

)]

≤ K
(

E

[

e−βτn

]

+
∥

∥e−ητn
∥

∥

L1+ε−1

)

,

and the required result follows from the dominated convergence theorem by sending n to

infinity. 2

6.3.2 Particular case of a power utility function

In this subsection we specialize the discussion to the case where the utility function and

the corresponding dual are given by

Up(x) :=
xp

p
, Vp(y) =

y−q

q
x, y > 0 and

1

p
− 1

q
= 1 , (6.20)

where p := AE(Up) is a given parameter satisfying (6.1).

The solution of the drawdown problem for this particular type of utility function is much

more tractable. We first observe that the function ϕ defined implicitly by (4.28) rewrites

explicitly, for any z > 0, as

ϕp(z) = [bα(1 − α)z]p−1 , with bα :=
β(1 + γ)

γ(1 − p)2

[

1 ∧ γ

(1 − α)(1 + γ)
− p

]

. (6.21)
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Remark 6.1 The parameter b0 corresponds to the optimal consumption rate in the Merton

problem without drawdown constraint. In particular, Assumption 6.1, which is equivalent

to bα > 0, is weaker than the so called merton condition b0 > 0, and reduces to it when

α = 0.

Remark now that the value function uα
p given by (2.17) inherits the homogeneity prop-

erty from the power utility function Up, so that uα
p (x, z) = uα

p (x/z, 1) zp, for (x, z) ∈ Dα.

Therefore, we naturally expect the function Ĉp defined in (4.5) to satisfy Ĉp(x, z) =

Ĉp(x/z, z) z, for (x, z) ∈ Dα. Indeed, denoting fp the function defined implicitly by (4.29),

direct calculation reveals that the function (x, z) 7→ −[V ′
p ◦ fp](x, z)/(x − αz) reduces to a

function of the single variable x/z:

fp(x, z) =
(

(x− αz)F−1
p

(x

z

))−1+p
where Fp(ξ) := α+ (1 − α)

bα
ξ

(

1 − b0
ξ

1 − b0
bα

)
λ2

2(1−p)2
b−1
0

(6.22)

is invertible as a C1 strictly increasing function from [b+0 , bα] to [α, 1]. Notice that the case

b0 = 0 is also covered by this expression as it can be seen by passing to the limit in (6.22)

that:

Fp(ξ) = α+ (1 − α)
bα
ξ

exp

[

1 − α

αγ

(

1 − bα
ξ

)]

whenever b0 = 0 .

For any (x, z) ∈ Dα, we deduce from (6.22) that the candidate value function up given by

(4.30) reduces to

up(x, z) :=

(

γ + 1

γ
+

(1 − p)2

βp
F−1

p

(x

z

)

)

[

F−1
p

(x

z

)]p−1
(x− αz)p , (6.23)

and the candidate optimal consumption-investment policy (Ĉp, θ̂p) given by (4.31)-(4.32)

is:

Ĉp(x, z) := (x− αz)F−1
(x

z

)

and θ̂p(x, z) := (x− αz)

(

λ

σ
(γ + 1) − 2

σλ
(1 − p)F−1

(x

z

)

)

.

Remark 6.2 The above solution agrees with the candidate solution derived by [19] in the

case of possibly positive interest rates. Therefore, Theorem 5.1 confirms that the candi-

date solution derived by [19] is indeed the solution of the optimal consumption-investment

problem.

We now provide some control on the growth of the candidate value function up which

allows to apply lemma 6.5 and leads to the transversality condition in the power utility

case.

Lemma 6.6 Let up be the candidate solution defined in (6.23). Then, for any z0 > 0, there

exists K0 > 0 such that

0 ≤ up(x, z) ≤ K0 (x− αz)δ z
α

1−α
δ , (x, z) ∈ Dα , z ≥ z0 . (6.24)

with δ :=
[

1 − α ∧ 1
1+γ

]

p.
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Proof. We first observe that, on the boundary Dα \Dα, up = 0 and the estimate (6.24)

is straightforward. Plugging (6.22) and (6.23) in relation ux = f , we easily derive

∇xup(x, z) = fp(x, z) = up(x, z)

(

γ + 1

γ
(x− αz) +

(1 − p)2

βp
F−1

(x

z

)

(x− αz)

)−1

,

for (x, z) ∈ Dα, where ∇xup denotes the partial derivative of up with respect to x. Since

F−1 is an increasing function and F−1(1) = bα where bα is defined in (6.21), we get

∇xup(x, z)

up(x, z)
≥
[

γ

1 + γ
∨ (1 − α)

]

p (x− αz)−1 , (x, z) ∈ Dα . (6.25)

Integrating this inequality on the interval [x, z], we obtain, up to the composition with the

exponential function

up(z, z)

up(x, z)
≥
(

(1 − α)z

x− αz

)δ

, (x, z) ∈ Dα . (6.26)

By homogeneity, we now observe that up(z, z) = up(1, 1) z
p, for any z > 0, and therefore

relation p− δ ≤ α δ/(1 − α) directly leads to (6.24). 2

6.3.3 A comparison result

Lemma 6.7 Let U0 and U1 be two utility functions satisfying (2.15) and the asymptotic

elasticity condition (6.1). Let u0 and u1 be the corresponding candidate value functions

defined by (4.30). Then U0 ≤ U1 implies u0 ≤ u1.

Proof. Since U0 ≤ U1, their Fenchel transforms denoted V0 and V1 satisfy also V0 ≤ V1.

Set ∆ := (V1−V0) and Vǫ := V0+ε∆, for 0 ≤ ǫ ≤ 1, and denote ϕǫ, fǫ and uε the associated

functions defined in section 4.2. Observe first that all these functions are differentiable in ǫ.

We shall denote by ∇ǫ the gradient operator with respect to ǫ. We intend to prove that uε

is an increasing function of ǫ on [0, 1], which implies the required result.

For ease of notation, we introduce ρ := γ/(1 − α(1 + γ)) ∈ R ∪ {∞} and the operator Γ

defined for (V, f, ϕ) ∈ C1(R+,R+) × R
+ × R

+ by

Γ[V, f, ϕ] :=

∫ ∞

f

−V ′(ξ)

ξ
dξ+

∫ f

ϕ

−V ′(ξ)

ξ

(

ξ

f

)1+γ

dξ+1n
α< 1

1+γ

o(ϕ
f

)1+γ ∫ ϕ

0

−V ′(ξ)

ξ

(

ξ

ϕ

)1+ρ

dξ.

so that, by (4.29), fε is defined by

Γ[Vε, fε, ϕε](x, z) =
1 + γ

γ
β(x− αz) , (x, z) ∈ Dα , (6.27)

and by (4.28), the function ϕǫ is implicitly defined by

Γ[Vǫ, ϕǫ, ϕǫ](z) =
1 + γ

γ
β(1 − α)z , z > 0. (6.28)

Differentiating the latter expression with respect to ε, we see that

Γ[∆, ϕǫ, ϕǫ] =
∇ǫϕǫ

ϕǫ

(

1n
α< 1

1+γ

o(1 + ρ)

∫ ϕε

0

−V ′
ε (ξ)

ξ

(

ξ

ϕε

)1+ρ

dξ − 1n
α≥ 1

1+γ

oV ′
ε ◦ ϕε

)

.

(6.29)
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We next differentiate (6.27) with respect to ε, and use (6.29), to derive:

(1 + γ)
∇ǫfǫ

fε

(

Γ[Vε, fε, ϕε] +

∫ ∞

fε

V ′
ε (ξ)

ξ
dξ

)

= Γ[∆, fε, ϕε] (6.30)

−
[

αγ

1 − α
∧ 1

](

ϕε

fε

)1+γ

Γ[∆, ϕε, ϕε] .

We now differentiate (4.30), which in this context is

uε =
fε

β

(

1 + γ

γ
β(x− αz) +

∫ ∞

fε

Vε(ξ)

ξ2
dξ

)

,

with respect to ǫ, and deduce from integration by part arguments that:

β
∇εuε

fε
=

∇ǫfǫ

fε

(

1 + γ

γ
β(x− αz) +

∫ ∞

fε

V ′
ε(ξ)

ξ
dξ

)

+

∫ ∞

fε

∆(ξ)

ξ2
dξ .

Using (6.27), (6.29) and (6.30), this provides

β
∇εuε

fε
=

1

1 + γ

[

αγ

1 − α
∧ 1

](

ϕε

fε

)1+γ ∫ ∞

ϕε

∆(ξ)

ξ2
dξ +

γ

1 + γ

∫ fε

ϕε

∆(ξ)

ξ2

(

ξ

ϕε

)1+γ

dξ

+
γ

1 + γ

∫ ∞

fε

∆(ξ)

ξ2
dξ + 1n

α< 1
1+γ

o ρ

1 + ρ

(

ϕε

fε

)1+γ ∫ ϕε

0

∆(ξ)

ξ2

(

ξ

ϕε

)1+ρ

dξ ,

for any ǫ ∈ [0, 1]. We now observe that all the above integrals are positive since ∆ =

V1 − V0 ≥ 0. Combined with fε ≥ 0, this shows that uε is non-decreasing in ε and we

deduce u0 ≤ u1. 2

We can now turn to the

Proof of Proposition 6.3. Since U satisfies (6.1), we recall from (5.2) that U ≤ U0
p where

U0
p = Kp(1 +Up) and p := AE(U) satisfies (6.1). Denoting u0

p the candidate value function

associated to the utility function U0
p , we deduce from Lemma 6.7 that u ≤ u0

p. Simple

computations show that the marginal utilities f0
p and fp associated to the candidate value

function u0
p and up are related by f0

p = Kpfp leading to u0
p = Kp(1 + up). Since u ≤ u0

p, we

deduce from Lemma 6.6 that

0 ≤ u(x, z) ≤ K0Kp(1 + z
α

1−α
δ(x− αz)δ) , (x, z) ∈ Dα ,

with δ :=
[

1 − α ∧ 1
1+γ

]

p < γ/(1 + γ) according to (6.1). We finally observe that (4.32)

leads to

θ̂(x, z) ≤ λ

σ
(1 + γ)(x− αz) , (x, z) ∈ Dα ,

so that Lemma 6.5 concludes the proof. 2
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