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Abstract

We define (d, n)−coherent risk measures as set-valued maps from L∞d into IRn sat-
isfying some axioms. We show that this definition is a convenient extension of the
real-valued risk measures introduced by Artzner, Delbaen, Eber and Heath (1998). We
then discuss the aggregation issue, i.e. the passage from IRd−valued random port-
folio to IRn−valued measure of risk. Necessary and sufficient conditions of coherent
aggregation are provided.

1 Introduction

The concept of coherent risk measures together with its axiomatic characterization was

introduced by Artzner, Delbaen, Eber and Heath (1998, ADEH) in a finite probability

space, and further extended by Delbaen (2000) to the general probability space framework.

In the above mentioned papers, the risky portfolio under consideration is a given real-

valued random variable. A risk measure ρ is then defined as a map from L∞ into IR

satisfying some coherency axioms, so that for any X ∈ L∞, ρ(X + ρ(X)) = 0, i.e. the

deterministic amount ρ(X) cancels the risk of X. The extension of this map to unbounded

random variables is discussed in Delbaen [3].

In this paper, we focus on the more realistic situation where the risky portfolio is an

IRd−valued random variable. We assume that a partial ordering � on IRd is given. The

specification of � accounts for some frictions on the financial market such as transaction

costs, liquidity problems, irreversible transfers, etc...

We first provide an extension of the axiomatic characterization of ADEH to this multi-

dimensional framework. Given an integer n ≤ d, we define (d, n)−coherent risk measure

(consistent with �) as a set-valued map R from L∞d into IRn satisfying some convenient

axioms. When n = d = 1, we recover the results of [3] by setting R = [ρ,∞).
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Our definition of vector-valued coherent risk measures allows for n < d, i.e. the risk of

the IRd−valued random variable is required to be cancelled by IRn−deterministic portfolios.

This is related to an aggregation problem. The second part of this paper then concentrates

on this issue. We study two alternative methods of aggregation.

(i) portfolio aggregation : Given an (n, n)−coherent risk measure, and a deterministic

function f : IRd −→ IRn, we provide necessary and sufficient conditions for the set-valued

map R ◦ f to be a (d, n)−coherent risk measure,

(ii) risk aggregation : Given a (d, d)−coherent risk measure, and a deterministic function

g : IRd −→ IRn, we provide necessary and sufficient conditions for the set-valued map cl[g◦R]

to be a (d, n)−coherent risk measure.

The paper is organized as follows. Section 2 contains our definition of vector-valued

coherent risk measure. Section 3 reports the geometric and topological properties implied

by the suggested definition, and needed for the subsequent analysis. Section 4 provides

the dual representation of vector-valued coherent risk measures. In section 5, we discuss

the problem of relevancy, a notion which is closely related to the no-arbitrage condition.

Finally, the above mentioned aggregation issue is addressed in sections 6 and 7.

Notations. Throughout this paper, we shall denote by xi the i−th component of an

element x of a finite dimensional vector space. We shall denote by 1i the i−th canonical

basis vector defined by 1i
j = 1 if i = j, zero otherwise, and we set 1 :=

∑
i 1

i the vector

with unit components.

The latter notation should not be confused with the indicator function 1A of a set A.

The closure, the interior, and the relative interior of a set will be denoted respectively by

cl[·], int[·], and ri[·].
Given a subset A ⊂ IRd, we shall denote by Lp

d(A) the collection of A−valued random

variables with finite Lp−norm. We shall use the simplified notation Lp
d := Lp

d(IR
d), Lp(A)

:= Lp
1(A), and Lp := Lp(IR). As usual, L0 and L∞ stand respectively for the set of all

measurable functions, and all essentially bounded functions.

2 Vector-valued Coherent Risk Measures on L∞d

2.1 The general framework

Let (Ω,F , IP ) be a probability space. In this paper we study the financial risk induced

by a random portfolio from the point of view of the regulator/supervisor. In mathematical

words, a (random) portfolio is a vector-valued random variable X on the probability space

(Ω,F , IP ). We shall restrict our attention to portfolios in L∞d , the space of all equivalence

classes of (essentially) bounded IRd-valued random variables. We intend to extend the no-
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tion of coherent risk measure to the multi-dimensional case. Real-valued coherent measures

of risk have been introduced by ADEH [2]; see also Delbaen [3] for the general probability

space setting.

2.2 Portfolio ordering

Portfolios in L∞d are (partially) ordered according to the following rule. Let K be a closed

convex cone of IRd such that

IRd
+ ⊂ K and K 6= IRd .(2.1)

The closed convex cone K induces the partial ordering � on IRd by x � 0 iff x ∈ K.

We extend naturally the partial ordering � to L∞d by :

X � 0 iff X ∈ K P − a.s.

With this definition the condition IRd
+ ⊂ K means that any portfolio x with non-negative

entries is non-negative in the sense of the partial ordering �. We assume further that K

satisfies the substitutability condition :

for all i = n + 1, . . . , d : −1i + α11 and 1i − β11 ∈ K for some α, β > 0 .(2.2)

Condition (2.2) means that any position on each entry i > n can be compensated by some

position on the first entry. More precisely, it states that the unitary prices of the assets

i > n in terms of the assets j ≤ n must be bounded. In the case n = d, condition (2.2) is

empty.

Finally, we define the liquidation function :

`(x) := sup
{

w ∈ IR : x � w11
}

(2.3)

which is valued in IR ∪ {+∞}. From the substitutability condition (2.2) together with the

closedness of K, we have :

`(x) = max
{

w ∈ IR : x � w11
}

< ∞ for all x ∈ IR× {0}n−1 × IRd−n .

We shall make use of the notation

π̄(x) :=
n∑

i=1

xi1i + `

 d∑
i=n+1

xi1i

11 for all x ∈ IRd .(2.4)

Observe that the the last d−n components of the IRd−vector π̄(x) are zero, by construction.

We then denote by π(x) the vector of IRn such that :

(π(x), 0) = π̄(x) .(2.5)
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Remark 2.1 An easy consequence of the subsituability condition is that the liquidation

function ` is Lipschitz on its effective domain. Therefore,

π is Lipschitz continuous and π(L∞d ) ⊂ L∞n .

Example 2.1 (Proportional transaction costs) Let λ = (λij)1≤i,j≤d be a matrix with non-

negative entries. For all (i, j), the coefficient λij is the proportional transaction cost for

transfers from asset i to asset j. This means that transferring an amount M ≥ 0 from asset

i to asset j requires a transaction fee of λijM .

A transfer matrix is a (d× d)−matrix with non-negative entries. Each component (i, j)

of such a matrix defines the amount transferred from asset i to asset j. Given a transfer

matrix a = (aij)1≤i,j≤d, and a portfolio x ∈ IRd, we denote by x(a) the portfolio defined

by :

x(a)i := xi +
d∑

j=1

aji − (1 + λij)aij for all i = 1, . . . , d ,

i.e. x(a) is the portfolio obtained from x after operating the transfers defined by the transfer

matrix a. In this financial market, it is natural to define the following relation on the set

portfolios :

x � 0 if and only if x(a) ∈ IRd
+ for some transfer matrix a .

See Kabanov (1999). Clearly, the set K := {x ∈ IRd : x � 0} is a closed convex cone, and

� is a partial ordering on IRd satisfying the conditions (2.1) and (2.2).

2.3 (d, n)−Coherent risk measures

We extend the notion of coherent risk measure introduced previously in ADEH to allow

for random portfolios valued in IRd. Each component of this portfolio corresponds to

a specific security market. The motivation is that investors are in general not able to

aggregate their portfolio because of liquidity problems and/or transaction costs between

the different security markets.

- In order for a random portfolio X to be acceptable in terms of “risk”, the regula-

tor/supervisor recommends that some deterministic portfolio x̄ be added to the position.

We then say that x̄ cancels the risk induced by X if the aggregate portfolio X + x̄ is ac-

ceptable by the regulator/supervisor in the sense of the risk measure. The risk measure of

the portfolio X will consist of the collection of such deterministic portfolios x̄.

- The integer d, representing the dimensionality of the portfolio X(ω), is typically

large since the firm has positions on many different securities markets. Although regula-

tor/supervisor can possibly recommend any deterministic portfolio x̄ ∈ IRd which cancels
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the risk of X, it is natural to restrict x̄ to have a small number n ≤ d of non-zero entries.

This reduction can be obtained by means of some aggreagation procedure either of the ini-

tial random portfolio X or of the deterministic portfolio x̄, see Sections 6 and 7 for further

discussion of this issue.

- For instance, when an amount of cash in Dollars is recommended to be added to the

position, we have n = 1. When the regulator/supervisor recommends to add two different

amounts of cash in Dollars and in Euros, we are in the situation n = 2.

- By possibly rearranging the components of x̄, we shall consider that its last d − n

components are zero, for some integer n ≤ d. This suggests the following notation (which

will be used throughout the paper) :

for all x ∈ IRn , x̄ := (x, 0) ∈ IRd .

In conclusion, the notion of (d, n)−risk measure should be defined as a map from L∞d

(the set of bounded random portfolios) into the subsets of IRn. We suggest the following

definition which will be shown to be a convenient extension of ADEH to our context.

Definition 2.1 A (d, n)−coherent risk meaure is a set-valued map R : L∞d −→→ IRn

satisfying the following axioms :

A0 - For all X ∈ L∞d , R(X) is closed, and 0 ∈ R(0) 6= IRn;

A1 - For all X ∈ L∞d : X � 0 P−a.s. =⇒ R(0) ⊂ R(X);

A2 - For all X, Y ∈ L∞d , R(X) + R(Y ) ⊂ R(X + Y );

A3 - For all t > 0 and X ∈ L∞d , R(tX) = t R(X);

A4 - For all x ∈ IRn and X ∈ L∞d , R(X + x̄) = {−x}+ R(X).

Remark 2.2 Let us specialize the discussion to the one-dimensional setting d = n = 1.

Starting from a set-valued mapping R : L∞1 −→→ IR satisfying A0, we define

ρ(x) := minR(x) > −∞.

Assume that R(X) coincides with [ρ(X),+∞) (A2 and A3 will guarantee that R(X) is

comprehensive which ensures that in the one dimensional case R is of the above form, see

Property 3.1 below). Then, it is easily checked that R satisfies A1-A2-A3-A4 if and only if

ρ is a coherent risk measure in the sense of ADEH [2] and Delbaen [3].

Before going any further, we briefly comment Axioms A0 through A4 introduced in the

previous definition.

- The first requirement in A0 is natural, and only needed for technical reasons. Then, A0

says that 0 is a deterministic portfolio which allows to cancel the risk of the null portfolio.
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The condition R(0) 6= IRn is assumed to avoid the trivial case R(X) = IRn for all X ∈ L∞d ,

see Remark 3.3.

- A1 says that any deterministic portfolio in R(0) allows to cancel the risk of a portfolio

X, whenever X � 0.

- A2 is the usual reduction property by risk aggregation : let x (resp. y) be a determin-

istic portfolio in IRn which cancels the risk of X (resp. Y ). Then x + y cancels the risk of

the aggregate risk X + Y .

- A3 is the usual positive homogeneity property of the risk measure.

- A4 is the analogue of the translation invariance axiom introduced in ADEH.

2.4 (d, n)−acceptance sets

An alternative way of defining risk measures is provided by the notion of acceptance set,

i.e. the set of random portfolios X ∈ L∞d which are viewed as free from risk by the

supervisor/regulator.

Definition 2.2 A (d, n)−acceptance set is a closed convex cone A of L∞d , containing

L∞d (K), and such that IRn × {0}d−n 6⊂ A.

Remark 2.3 This definition is motivated by the following observation. Let R be a (d, n)−coherent

risk measure. Then A := {X ∈ L∞d : R(0) ⊂ R(X)} is a (d, n)−acceptance set in the

sense of the above definition. This claim is a direct consequence of the properties stated in

the subsequent section.

We now show that the notions of acceptance sets is directly connected to coherent risk

measures.

Theorem 2.1 Let A be a subset of L∞d , and define the set-valued map RA : L∞d −→→ IRn

by

RA(X) := {x ∈ IRn : X + x̄ ∈ A} .

Then, A is a (d, n)−acceptance set if and only if RA is a (d, n)−coherent risk measure.

Proof. (i) Let A be a (d, n)−acceptance set. Clearly, RA has closed values as A is closed.

Moreover, since 0 ∈ A and IRn×{0}d−n 6⊂ A, we have 0 ∈ RA(0) 6= IRn. Hence RA satisfies

A0. To see that A1 holds, take an arbitrary x ∈ RA together with some X ∈ L∞(K). Then,

by the definition of acceptance sets, both X and x̄ are contained in A, and therefore X + x̄

∈ A, i.e. x ∈ R(X). That RA satisfies conditions A2 and A3 follows easily from the fact

that A is a convex cone. Finally A4 is directly obtained from the definition of RA.
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(ii) Now, suppose that RA is a (d, n)−coherent risk measure. In order to prove that A is a

(d, n)−acceptance set, we first observe that

A = {X ∈ L∞d : RA(0) ⊂ RA(X)} .(2.6)

Then, it is easily seen that conditions A0-A1-A2-A3 imply that A is a convex cone of L∞d

containing L∞d (K) and not including the whole deterministic space IRn × {0}d−n. The

closedness of A in the L∞d norm follows from Property 3.5 reported in the subsequent

section.

2

2.5 Example : the vector WCEα

In ADEH, the authors propose the use of the worst conditional expectation measure of risk

defined by :

For X ∈ L∞ : WCEα(X) := − inf
B∈Fα

E[X|B] where Fα := {B ∈ F : P [B] > α} ,

and the level α is a given parameter in (0, 1). The corresponding acceptance set is given

by :

AWCEα = {X ∈ L∞ : E[X|B] ≥ 0 for all B ∈ Fα} .

The functional WCEα is a coherent risk measure, in the sense of ADEH, which appears

naturally as a good alternative for the (non-coherent) Value-at-Risk measure.

We now provide an extension of this coherent risk measure to our multi-dimensional

framework. Let J be a closed convex cone of IRd such that :

K ⊂ J and J 6= IRd

and define the subset of L∞d :

AJ
α := { X ∈ L∞d : E[X|B] ∈ J P − a.s. for all B ∈ Fα } .

Observe that AJ
α coincides with AWCEα when d = 1. Clearly AJ

α is a closed convex cone

of L∞d containing L∞d (K). Also, for all positive integer n ≤ d, AJ
α does not contain the

deterministic set IRn × {0}d−n. Hence AJ
α is a (d, n)−acceptance set, and the set-valued

map :

WCEJ
α(X) := RAJ

α
(X) =

{
x ∈ IRn : X + x̄ ∈ AJ

α

}
defines a (d, n)−coherent risk measure. This is a natural extension of the worst conditional

expectation risk measure to the multi-dimensional framework.
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Notice that the risk measure WCEα is shown to coincide with the Tail VaR in the one-

dimensional case, under suitable conditions, and is therefore as easy to compute in practice

as the VaR measure. We leave for future research the possible extensions of these results

to our multi-dimensional framework.

3 Properties of coherent risk measures

We now derive some properties of (d, n)−coherent risk measures as defined in Definition

2.1.

Property 3.1 R(X) is a closed convex subset of IRn, R(0) is a closed convex cone of IRn,

and

R(X) = R(X) + R(0) for all X ∈ L∞d .

Proof. By A0, R(X) is closed for all X ∈ L∞d . From A2 and A3, we have

tR(X) + (1− t)R(X) ⊂ R(tX + (1− t)X) = R(X) for all t ∈ [0, 1] .

This proves that R(X) is convex. Since 0 ∈ R(0) by A0, and tR(0) = R(0) by A3, we

deduce that R(0) is a closed convex cone. Finally, using again A2, we see that R(X)+R(0)

⊂ R(X), and the equality follows from the fact that 0 ∈ R(0). 2

Remark 3.1 It follows from Property 3.1 that A1 can be written in :

A1 − 0 ∈ R(X) for all X ∈ L∞(K) .

Similarly, the acceptance set associated with a (d, n)−coherent risk measure defined in

Remark 2.3 can also be written in :

A = {X ∈ L∞d : 0 ∈ RA(X)} .

the next result requires the following additional notations :

Kn := {x ∈ IRn : x̄ ∈ K} and ~R0 := R(0) ∩ −R(0) .

Observe that ~R0 is a vector space.

Property 3.2 (Consistency with �) Kn ⊂ R(0) and :

int(−Kn) ∩R(0) =
(
−Kn \ ~R0

)
∩ R(0) = ∅ .
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Proof. 1. To see that Kn ⊂ R(0), fix some x ∈ Kn. By definition of the partial ordering,

we have x̄ � 0, and therefore R(0) ⊂ R(x̄) = {−x}+ R(0) by A1 and A4. Hence x ∈ R(0)

and the required inclusion follows from the arbitrariness of x ∈ Kn.

2. For y ∈ IRn, set Dy := {y}◦ = {x ∈ IRn : xy ≥ 0}. Clearly, R(0)◦ = {y ∈ IRn : xy ≥ 0

for all x ∈ R(0)} = {y ∈ IRd : R(0) ⊂ Dy}. Observe that R(0)◦ 6= {0} since R(0) is a

convex cone by Property 3.1, and R(0) 6= IRn by A0. From the bipolar theorem, it follows

that R(0) = {x ∈ IRn : x ∈ Dy for all y ∈ R(0)◦}. This proves in particular that :

x 6∈ ~R0 iff x 6∈ ∂Dy for some y ∈ R(0)◦ ,(3.1)

where ∂Dy = Dy ∩−Dy. Now take an arbitrary x ∈ int(−Kn). Then x ∈ int(−Dy) for all

y ∈ R(0)◦, which proves that x 6∈ ~R0 from (3.1). Hence int(−Kn) ⊂ (−Kn \ ~R0).

3. Using again (3.1) we see that, for all x ∈ −Kn with x 6∈ ~R0, we have x ∈ −Kn∩int(−Dy)

⊂ −Dy ∩ int(−Dy) = int(−Dy) for some y ∈ R(0)◦. This proves that x 6∈ R(0) since

R(0) ⊂ Dy. We have then proved that
(
−Kn \ ~R0

)
∩R(0) = ∅, and the proof is complete.

2

Remark 3.2 (i) Suppose that ~R0 = {0}. Then Property 3.2 reduces to −Kn ∩R(0) = ∅.
This means that non-positive deterministic portfolios (in the sense of �) can not cancel the

risk of the null portfolio.

(ii) Since Kn ⊂ R(0), we have Kn∩−Kn ⊂ ~R0. Therefore the above case ~R0 = {0} implies

that there are effective frictions between the first n assets. 2

Property 3.3 (Monotonicity)

(i) Let X, Y ∈ L∞d be such that X � Y . Then, R(Y ) ⊂ R(X).

(ii) Let X ∈ L∞d be such that ā � X � b̄ for some a, b ∈ IRn. Then :

{−b}+ R(0) ⊂ R(X) ⊂ {−a}+ R(0) .

(iii) For all X ∈ L∞d , we have {‖π(X)‖∞1}+ R(0) ⊂ R(X).

Proof. By A1, we have R(0) ⊂ R(X − Y ) whenever X � Y . Using A2 together with

Property 3.1, it follows that R(Y ) = R(Y ) + R(0) ⊂ R(Y ) + R(X − Y ) ⊂ R(X), and the

proof of (i) is completed. Claim (ii) is easily obtained from (i) by use of A4. To prove (iii),

observe that X � π̄(X) � −‖π(X)‖∞1 by definition of π, and apply again (i). 2

Remark 3.3 A direct consequence of Property 3.3 (iii) is that the condition R(0) 6= IRn

contained in A0 implies that :

R(X) 6= IRn for all X ∈ L∞d .

2
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Remark 3.4 (i) Let X, Y be two random portfolios in L∞d with Y ∈ ~K := K ∩ −K a.s.

Then, X + Y � X and X � X + Y a.s. From Property 3.3 (i), it follows that

R(X + Y ) = R(X) .

(ii) Let pr ~K denote the orthogonal projection on the vector space ~K, and set X̃ :=

X−pr ~K(X). Part (i) of this remark provides an obvious extension of the vector valued risk

measure R to the space L∞d + L0
d( ~K) by setting :

R(X) = R(X̃) for all X ∈ L∞d + L0
d( ~K) .

2

Remark 3.5 It is easily checked that the ordering defined on the portfolios is complete if

and only if K, i.e. K = {x ∈ IRd | ax ≥ 0} for some vector a ∈ IRd
+ \ {0}. By possibly

multiplying a by a constant, we can find an integer i ∈ {1, . . . , d} satisfying ai = 1. Then,

for any portfolio X ∈ L∞d , one has X � (aX)1i � X. From the monotonicity Property 3.3,

it follows that :

R(X) = R
(
aX 1i

)
,

and we are essentially back to the one-dimensional case of ADEH.

Remark 3.6 By the same argument as in Property 3.3 (iii), we have :

{‖π(X)‖∞1}+ R(0) ⊂ R(X) ⊂ {−‖π(−X)‖∞1}+ R(0) for all X ∈ L∞d .

It is an easy exercise to show that this property implies that R(0) is the asymptotic cone

of R(X), i.e.

R(0) =
⋂
k≥0

cone {x ∈ R(X) : |x| ≥ k} .

2

Property 3.4 (Self-consistency) For all X ∈ L∞d ,

R(X) = {x ∈ IRn : 0 ⊂ R(X + x̄)}

= {x ∈ IRn : R(0) ⊂ R(X + x̄)} .

Proof. The second equality is a direct consequence of Property 3.1. To see that the first

equality holds, it suffices to observe that x ∈ R(X) if and only if 0 ∈ {−x} + R(X) =

R(X + x̄) by A4. 2
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The final property of this section states the continuity of the set-valued map R. We

recall that

- a set valued map F from a metric vector space U into a metric vector space V is said

to be continuous if it is both lower-semicontinuous and upper-semicontinuous,

- F is lower semicontinuous at some u ∈ U if for all v ∈ F (u) and for any sequence

(un)n ⊂ dom(F ) converging to u, there is a sequence vn ∈ F (un) such that vn −→ v,

- F is upper-semicontinuous at some u ∈ U if for all ε > 0, there exists a constant η > 0

such that F (u + ηBU ) ⊂ F (u) + εBV ; here, BU and BV are the unit balls of U and V .

Property 3.5 (Continuity)

(i) For all X, Y ∈ L∞d ,

R(Y ) + {‖π(Y −X)‖∞1} ⊂ R(X) ⊂ R(Y )− {‖π(X − Y )‖∞1} .

(ii) The set-valued map R is continuous on L∞d .

Proof. We first prove (i). By A2 together with Properties 3.3 (iii) and 3.1, we see that

R(X) ⊂ R(X − Y ) + R(Y ) ⊂ −{‖π(X − Y )‖∞1}+ R(0) + R(Y )

= −{‖π(X − Y )‖∞1}+ R(Y ) .

By symmetry, we also have R(Y ) ⊂ −{‖π(Y −X)‖∞1} + R(X), and the proof of (i) is

complete.

(ii) To see that R is lower-semicontinuous at some X ∈ L∞d , take some y ∈ R(X) together

with an L∞d sequence (Xk)k converging to X in the L∞d norm. From the right left-side

inclusion of (i), we deduce the existence of a sequence yk ∈ R(Xk) such that

y = yk − ‖π(X −Xk)‖∞1 .

Since π is a Lipschitz-continuous map on its domain, see Remark 2.1, we see that π(X−Xk)

−→ 0 in L∞d , and therefore yk −→ y.

It remains to prove that R is upper-semicontinuous. Let B denote the unit ball of L∞d ,

and take an arbitrary ε > 0. By Lipschitz-continuity of π on its domain, one can find some

η > 0 such that π(X − Y ) ∈ εB for all Y ∈ X + ηB. We now use the right hand-side

inclusion of (i) to see that R(Y ) ⊂ R(X)−{π(X−Y )1} ⊂ R(X)+ εB for all Y ∈ X +ηB.

2
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4 Dual representation of (d, n)−coherent risk measures

In this section, we provide a dual representation of coherent risk measures. In the one-

dimensional case, this result was shown to have important practical implications, since it

proves the universality of the scenario-based methods for providing coherent measures of

risk in the sense of Definition 2.1. The SPAN method is an example of such scenario-based

measure of risk. The proof was first established in ADEH for finite Ω, and further extended

to a general probability space by Delbaen [3].

We first need to introduce some additional notations. The dual space of L∞d , denoted

by bad, is the set of bounded additive set functions µ on (Ω,F) with the property that

IP (A) = 0 implies µ(A) = 0. The space bad is endowed with the norm of total variation,

i.e. ‖µ‖ = sup{
∑k

i=1 |µ(Ai)| : A1, . . . , Ak disjoint subsets of F}, for all µ ∈ bad. We shall

write Eµ[X] for the duality mapping between a random variable X ∈ L∞d and a measure µ

∈ bad.

The countably additive elements of bad can be identified with L1
d random variables, and

are more interesting from the economic viewpoint as they can be interpreted as pricing

kernels. The strictly positive (in some sense) elements of L1
d are of particular interest in

finance since they can be viewed as pricing kernels consistent with the notion of no-arbitrage,

see Theorems 5.1 and 5.2 below.

Finally, we shall denote by L∞d (K) the subset of L∞d consisting of all K-valued random

variables, i.e. non-negative random variables in the sense of �. The positive orthant of bad

is defined accordingly by :

bad(K) := {µ ∈ bad : Eµ[X] ≥ 0 for all X ∈ L∞d (K)} .

Theorem 4.1 Let R : L∞d −→→ IRn be a set valued map. The following claims are equiv-

alent.

(1) R is a (d, n)−coherent risk measure.

(2) There exists a non-zero convex σ (bad, L
∞
d )−closed cone, Pba of bad(K) such that for

all X ∈ L∞d :

R(X) =
{

x ∈ IRn : inf
µ∈Pba

Eµ(X + x̄) ≥ 0
}

.

Proof. The implication (2) =⇒ (1) follows by direct verification of Axioms A1-A2-A3-

A4. We then concentrate on (1) =⇒ (2). We adapt the argument in Delbaen [3] to our

set-valued framework. Consider the subset of L∞d

C := { X ∈ L∞d : 0 ∈ R(X) } ,
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together with its positive polar cone

C◦ := { µ ∈ bad : Eµ[X] ≥ 0 for all X ∈ C } .

First, observe that C contains the positive orthant L∞d (K) and C 6= IRn. Therefore {0} 6=
C◦ ⊂ bad(K). Also, by definition of the duality mapping, C◦ is σ(bad, L

∞
d )-closed.

Next, C is clearly a convex cone of L∞d . It is easily checked that it is closed in the

sense of the L∞d norm : let (Xk)k be a sequence in C converging to some X ∈ L∞d ,

then R(0) ⊂ R(Xk) for all k ∈ IN , and therefore R(0) ⊂ lim supk R(Xk) = R(X) by the

continuity Property 3.5 (ii).

We are then in the context of the bipolar Theorem which provides :

C =
{

X ∈ L∞d : inf
µ∈C◦

Eµ[X] ≥ 0
}

.

Finally, it follows from the self-consistency Property 3.4 that :

R(X) = { x ∈ IRn : 0 ∈ R(X + x̄) }

= { x ∈ IRn : X + x̄ ∈ C }

=
{

x ∈ IRn : inf
µ∈C◦

Eµ[X + x̄] ≥ 0
}

,

and the statement of the theorem holds with Pba = C◦. 2

We next follow Delbaen [3] to see under which circumstances the minimization in the

dual representation of Theorem 4.1 can be restricted to a subset of L1
d.

Definition 4.1 A (d, n)−coherent risk measure R : L∞d −→→ IRn is said to satisfy the

Fatou property if, for all X ∈ L∞d ,

lim inf
k→∞

R(Xk) ⊂ R(X) ,

for any bounded sequence (Xk)k∈IN of L∞d converging to X in probability.

Theorem 4.2 Let R : L∞d −→→ IRn be a (d, n)−coherent risk measure. The following

properties are equivalent

(1) There exists a closed subset Pσ of L1
d(K

◦) such that for all X ∈ L∞d ,

R(X) =
{

x ∈ IRn : inf
µ∈Pσ

Eµ(X + x̄) ≥ 0
}

.

(2) The convex cone C = {X ∈ L∞d : R(0) ⊂ R(X)} is σ(L∞d , L1
d)-closed.

(3) The (d, n)−coherent risk measure R satisfies the Fatou property.

13



Proof. We again adapt the argument of Delbaen [3] to the set-valued framework.

(1) =⇒ (3) Let (Xk)k∈IN , X ∈ L∞d such that the sequence (Xk)k∈IN is bounded and

converges to X in probability. Let x be an arbitrary element of lim infk R(Xk). Then,

there exists a sequence (xk)k∈IN in IRn such that xk ∈ R(Xk) for all k ∈ IN , and xk −→ x.

Then, for all µ ∈ Pσ,

Eµ(Xk + x̄k) ≥ 0 for all µ ∈ Pσ and k ∈ IN ,

and

Eµ(X + x̄) ≥ lim sup
k→∞

Eµ(Xk + x̄k) ≥ 0 for all µ ∈ Pσ

implying that x ∈ R(X).

(3) =⇒ (2) From Grothendieck [5] (supp. ex. 1 p204), and since C is a cone, it is sufficient

to check that C ∩ B is closed in probability (B is the closed unit ball of L∞d ). Let (Xk)

be a sequence of C such that ‖Xk‖∞ ≤ 1 for all k ∈ IN and converging in probability

to some X ∈ L∞d . From the Fatou property, one has lim infk R(Xk) ⊂ R(X) and since

R(0) ⊂ R(Xk) for all k ∈ IN , one obtains that R(0) ⊂ lim infk R(Xk) ⊂ R(X) and thus

X ∈ C.

(2) =⇒ (1) Follows the lines of the proof of Theorem 4.1, and take the polar of C in L1
d.

For completeness, we report a direct proof of (2) =⇒ (3). Assume that C is σ(L∞d ,L1
d)-

closed. Let (Xk)k∈IN , X ∈ L∞d such that the sequence (Xk)k∈IN is bounded and converges

to X in probability. Observe that Xk −→ X weakly in σ(L∞d ,L1
d), since the sequence

(XkY )k is uniformly integrable for all Y ∈ L1
d.

Let x ∈ lim infk R(Xk), then, there exists a sequence (xk)k∈IN in IRn such that for

all k ∈ IN , xk ∈ R(Xk) and xk −→ x. From the self-consistency Property 3.4, R(0) ⊂
R(Xk + x̄k) for all k ∈ IN , meaning that Xk + x̄k ∈ C. Since C is σ(L∞d ,L1

d)-closed, one

obtains also that X + x̄ ∈ C. Using again the self-consistency Property 3.4, we see that

R(0) ⊂ R(X + x̄) = {−x}+ R(X). Since 0 ∈ R(0), this shows that x ∈ R(X). 2

5 Relevance of a (d, n)-coherent risk measure

In this section, we focus on the notion of relevancy of a coherent risk measure, which was

introduced by Delbaen [3] in the one-dimensional case. In Theorem 4.2, a coherent risk

measure is represented in terms of a family of state price densities µ valued in K◦. A

natural question, which is closely related to the notion of no-arbitrage, is whether such

state price densities are strictly positive in some sense.
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Remark 5.1 Recall that the closed convex cone K contains the positive orthant IRd
+ of

IRd. Then K◦ ⊂ IRd
+. A first notion of strict positivity of the state price density µ is the

requirement that all components µi are positive a.s. The following interesting observation

follows from the substitutability condition (2.2) :

for all y ∈ K◦ : y1 = 0 ⇐⇒ yi = 0 for all i = n + 1, . . . , d

⇐⇒ yi = 0 for some i = n + 1, . . . , d .

2

Following Kabanov and Stricker [7], the multi-dimensional framework suggests at least

the following definitions of relevancy. Recall the notation ~K := K ∩ −K.

Definition 5.1 A (d, n)−coherent risk measure R is said to be

• weakly relevant if for all X ∈ L∞d (K), 0 ∈ R(−X) =⇒ P [X ∈ int(K)] = 0,

• strongly relevant if for all X ∈ L∞d (K), 0 ∈ R(−X) =⇒ P
[
X ∈ (K \ ~K)

]
= 0.

Observe that any strongly relevant (d, n)−coherent risk measure R is weakly relevant.

We also have the following equivalent definitions of relevancy.

Proposition 5.1 Let R be a (d, n)−coherent risk measure.

• R is weakly relevant if and only :

for all A ∈ F and z ∈ int(K) , 0 ∈ R(−z1A) =⇒ P (A) = 0 .(5.1)

• R is strongly relevant if and only if :

for all A ∈ F and z ∈ (K \ ~K) , 0 ∈ R(−z1A) =⇒ P (A) = 0 .(5.2)

Proof. We only report the proof of the equivalent definition of weak relevancy. Suppose

that Condition 5.1 holds, and let X ∈ L∞d (K) be such that 0 ∈ R(−X) and P [(X ∈ int(K)]

> 0. Then, there exists z ∈ int(K) such that P [X � z] > 0. Set A := {X � z}. Clearly

X � z 1A and thus 0 ∈ R(−X) ∈ R(−z1A) by the monotonicity Property 3.3. This is in

contradiction with (5.1). 2

Theorem 5.1 Let R be a (d, n)−coherent risk measure satisfying the Fatou property, Pσ

the associated dual set introduced in Theorem 4.2, and set

Pw
σ := {µ ∈ Pσ : µ ∈ K◦ \ {0} IP − a.s.} .

Then the following claims are equivalent.

(1) R is weakly relevant.
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(2) The set Pw
σ is non-empty.

(3) The set Pw
σ is dense in Pσ in the sense of the L1

d norm.

(4) There is a set P ⊂ Pw
σ such that :

R(X) =
{

x ∈ IRn : inf
µ∈P

Eµ(X + x̄) ≥ 0
}

.

Proof. We only prove (1) =⇒ (2) as the remaining implications are trivial.

Step 1. We first fix an arbitrary event set A ∈ F with P (A) > 0. From the dual represen-

tation of R in Theorem 4.2, we have that

inf
µ∈Pσ

Eµ[−z 1A] < 0 for all z ∈ int(K) .(5.3)

This proves that the set ζA(µ) := {z ∈ int(K) : Eµ[−z 1A] < 0} is non-empty for some µ

∈ Pσ. We then consider the family of subsets of int(K) defined by :

ZA := {ζA(µ) : µ ∈ Pσ} .

The family ZA has a maximal element ζA(µA), for some µA ∈ Pσ, as it easily checked that

it is stable by countable union. We now use an exhaustion argument to see that

ζA(µA) = int(K) , i.e. EµA [−z 1A] < 0 for all z ∈ int(K) .(5.4)

Indeed, let y be an arbitrary element in int(K) \ ζA(µA). By (5.3), we deduce the existence

of some µ ∈ Pσ such that Eµ[−y 1A] < 0, and we observe that ζA(µA)∪ {y} ⊂ ζA(µA + µ),

contradicting the maximality of µA.

Step 2. We now want to select some µ̂ ∈ Pσ such that

ζA(µ̂) = int(K) for all A ∈ F .(5.5)

With B+ := {B ∈ B : P [B] > 0} for B ⊂ F , we introduce the family

G :=

B ⊂ F :
⋂

B∈B+

ζB(µ) = int(K) for some µ ∈ Pσ

 .

It is again easily checked that G is stable by countable union. Therefore, it admits a maximal

element B̂ associated with some µ̂ ∈ Pσ. We now use a second exhaustion argument to see

that B̂ = F which provides (5.5). Indeed, Let A be an arbitrary element in F \ B̂ with

P [A] > 0. Considering the measure µA of Step 1, it follows that ζB(µ̂ + µA) = int(K) for

all B ∈ B̂ ∪ {A}. This is in contradiction with the maximality of B̂.

Step 3. In Step 2, we have proved the existence of some µ̂ ∈ Pσ satisfying (5.5), or equiva-

lently,

Eµ̂(−z 1A) < 0 for all z ∈ int(K) and A ∈ F+ .
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This proves that

µ̂ ∈ K̂ :=
{
y ∈ IRd : yz > 0 for all z ∈ int(K)

}
P − a.s.

In order to conclude the proof, it remains to check that K̂ = K◦ \{0}. We only concentrate

on the proof of K◦ \ {0} ⊂ K̂ as the reverse inclusion is trivial. Let y be an arbitrary

element in K◦ \ {0}, and assume that yz = 0 for some z ∈ int(K). Let ε > 0 be such that

(z − εy) ∈ K. Then, (z − εy)y < 0, contradicting the fact that y ∈ K◦.

2

We also have a similar characterization of strongly relevant coherent risk measures which

satisfy the Fatou property.

Theorem 5.2 Let R be a (d, n)−coherent risk measure satisfying the Fatou property, Pσ

the associated dual set introduced in Theorem 4.2, and set

Ps
σ := {µ ∈ Pσ : µ ∈ ri(K◦) P − a.s.} .

Then the following claims are equivalent :

(1) R is strongly relevant.

(2) The set Ps
σ is non-empty.

(3) The set Ps
σ is dense in Pσ in the sense of the L1

d norm.

(4) There is a set P ⊂ Ps
σ such that :

R(X) =
{

x ∈ IRn : inf
µ∈P

Eµ(X + x̄) ≥ 0
}

.

Proof. Following the lines of Steps 1 and 2 in the previous proof, we obtain the existence

of some µ̂ ∈ Pσ such that

µ̂ ∈ K̃ :=
{
y ∈ IRd : yz > 0 for all z ∈ (K \ ~K)

}
P − a.s.

In order to conclude the proof, it remains to check that K̃ = ri(K◦). To se this, we use the

following characterization

ri(K◦) =
{
y ∈ IRd : xy < δ(x) for all x satisfying − δ(−x) 6= δ(x)

}
,

where δ(x) := supy∈K◦(xy) is the support function of K◦, see Rockafellar [8] Theorem 13.1.

Since K◦ is a closed convex cone, δ(x) = 0 if −x ∈ (K◦)◦ = K, and +∞ otherwise. Then,

one can write the above characterization in :

ri(K◦) =
{
y ∈ IRd : xy < 0 for all x ∈ −K with − x 6∈ −K

}
= K̃ .

2
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6 Coherent aggregation of random portfolios

Definition 6.1 Let R be a (n, n)−coherent risk measure. A function f : IRd −→ IRn is

an R−coherent portfolio aggregator if

PA1 f (K) ⊂ R(0);

PA2 For all x, y ∈ IRd : f(x + y)− f(x)− f(y) ∈ R(0);

PA3 For all x ∈ IRd and t > 0 : f(tx)− tf(x) ∈ ~R0;

PA4 For all x ∈ IRn and y ∈ IRd : f(x̄ + y)− f(y)− x ∈ ~R0.

We shall discuss some examples of R−coherent portfolio aggregators at the end of this

section. Our next result requires to introduce a stronger version of A1 :

A1s For all X ∈ L∞d , we have : X ∈ R(0) P−a.s. =⇒ 0 ∈ R(X).

Remark 6.1 Condition A1s is satisfied by deterministic portfolios x ∈ IRd. This is an

easy consequence of the self-consistency Property 3.4.

Remark 6.2 In the case n = d = 1, conditions A1s and A1 are identical since R(0) = K

= IR+.

Example 6.1 (Coherent risk measure which does not satisfy A1s) Let K = IR2
+ be the

non-negative orthant of IR2, Ω = {ω1, ω2}, and

Pσ = {µ = (µ1, µ2)} where µ(ω1) =

(
0.5
0.25

)
and µ(ω2) =

(
0.5
0.75

)
.

Clearly, since K is the non-negative orthant of IR2, µ ∈ ba2(K). Therefore, it follows from

Theorem 4.1 that the set valued function :

R(X) :=

(x1, x2) ∈ IR2 : Eµ[X + x] =
2∑

i,j=1

µj(ωi)(Xj(ωi) + xj) ≥ 0


defines a (2, 2)−coherent coherent risk measure. Observe that R(0) is the half space {x1 +

x2 ≥ 0}. Now consider the random portfolio

X(ω1) = (−1, 1) and X(ω2) = (0, 0) ,

so that X(ωi) ∈ R(0) for i = 1, 2. But

2∑
i,j=1

µj(ωi)Xj(ωi) = −0.25

which proves that 0 6∈ R(X). 2
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The main result of this section shows that R−coherent portfolio aggregators f define

(d, n)−coherent risk measures R̃ := R ◦ f under the additional condition A1s. We first

need to check that R̃ is well-defined. We shall use the notation pr~R⊥
0

for the orthogonal

projection on the vector space ~R⊥
0 .

Lemma 6.1 Let R be an (n, n)−coherent risk measure, and f an R−coherent portfolio

aggregator. Then :

(i) f(L∞d ) ⊂ L∞d + L0
d(~R0).

(ii) Assume that R satisfies the additional condition A1s. Then R̃ := R ◦ f is well-defined

on L∞d .

Proof. (i) We shall prove that f has the following decomposition :

f = g + h where g(L∞d ) ⊂ L∞d and h(L∞d ) ⊂ L0
d(~R0) .

1. Let y be an arbitrary element of the negative polar cone −R(0)◦ := {y ∈ IRn : xy ≤ 0

for all x ∈ R(0)}. Then, it follows from PA2 and PA3 that the real-valued function fy,

defined by fy(x) := yf(x), is sublinear. Then, it is locally bounded as a convex function

with effective domain IRd. By the same argument, we also have that fy is locally bounded

for all y ∈ R(0)◦. Hence,

fy(L∞d ) ⊂ L∞d for all y ∈ R(0)◦ + (−R(0)◦) .(6.1)

2. Clearly, we have that

IR0 ⊂ [R(0)◦ + (−R(0)◦)]◦ .(6.2)

From the fact that R(0)◦ is a convex cone, it follows that the set R(0)◦ + (−R(0)◦) is a

vector space, and [R(0)◦ + (−R(0)◦)]◦ = [R(0)◦ + (−R(0)◦)]⊥. Since ~R0 is also a vector

space, we can rewrite (6.2) equivalently in

R(0)◦ + (−R(0)◦) ⊂ IR⊥
0 .

In view of (6.1), this proves that

fy(L∞d ) ⊂ L∞d for all y ∈ ~R⊥
0 .(6.3)

3. Now define

g := proj~R⊥
0
(f) so that h := f − g is valued in ~R0 .

In order to complete the proof of (i), we need to show that g(L∞d ) ⊂ L∞d . Suppose to the

contrary that

|g(xn)| −→ ∞ for some sequence xn −→ x ∈ IRd ,
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and let us work towards a contradiction. Since ~R⊥
0 is finite dimensional vector space,

yg(xn) −→ ∞ for some y ∈ ~R⊥
0 .(6.4)

We now observe that yg(xn) = yf(xn)− yh(xn) = yf(xn), so that (6.4) is in contradiction

with (6.3).

(ii) The remaining claim follows by an obvious extension of R to the space L∞d + L0
d(~R0).

This is obtained exactly by the same argument than in Remark 3.4, substituting R(0) to

K. This is possible thanks to A1s.

2

Theorem 6.1 Let R be a (n, n)−coherent risk measure, and let f be a mapping from IRd

into IRn.

(i) Suppose that the set-valued map R◦f : L∞d −→→ IRn is a (d, n)−coherent risk measure.

Then f is an R−coherent portfolio aggregator.

(ii) Conversely, assume that A1s holds, and let f be an R−coherent portfolio aggregator.

Then the set-valued map R ◦ f : L∞d −→→ IRn is a (d, n)−coherent risk measure.

Proof. Set R̃ := R ◦ f .

1. Suppose that R̃ is a (d, n)−coherent risk measure, and let us prove that f satisfies

properties PA.

f satisfies PA1. We first observe that R̃(0) = R(f(0)) = {−f(0)}+ R(0). Since 0 ∈ R̃(0),

this proves that f(0) ∈ R(0). By the self-consistency Property 3.4, this proves that :

R(0) ⊂ R(f(0)) = R̃(0) .(6.5)

Now take some x ∈ K and let us prove that f(x) ∈ R(0), it follows from A1 that R̃(0) ⊂
R̃(x) = R(f(x)) = {−f(x)}+R(0). In view of (6.5), this proves that R(0) ⊂ {−f(x)}+R(0).

Since 0 ∈ R(0), it then follows that f(x) ∈ R(0).

f satisfies PA2. For all x, y ∈ IRd, it follows from A2 that R(f(x))+R(f(y)) = R̃(x)+R̃(y)

⊂ R̃(x+y) = R(f(x+y)). From A4, this provides that R(0) ⊂ {−f(x+y)+f(x)+f(y)}+

R(0). Since 0 ∈ R(0) by A0, this proves that f(x + y)− f(x)− f(y) ∈ R(0).

f satisfies PA3. For all t > 0 and x ∈ IRd, it follows from A3 and A4 that {−tf(x)}+R(0)

= tR(f(x)) = tR̃(x) = R̃(tx) = R(f(tx)) = {−f(tx)}+ R(0). Since 0 ∈ R(0) by A0, this

provides that f(tx)− tf(x) ∈ R(0) ∩ −R(0) = ~R0.

f satisfies PA4. For all x ∈ IRn and y ∈ IRd, it follows from A4 that R̃(x̄+y) = {−x}+R̃(y)

= {−x}+R(f(y)) = {−x−f(y)}+R(0). On the other hand, one has R̃(x̄+y) = R(f(x̄+y))

= {−f(x̄ + y)}+ R(0). Thus, since 0 ∈ R(0), we obtain that f(x̄ + y)− x− f(y) ∈ ~R0.
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2. Conversely, we assume that f is an R−coherent portfolio aggregator, and that the

(n, n)− coherent risk measure R satisfies A1s. By Lemma 6.1, R̃ = R ◦ f is a well-defined

set-valued map from L∞d into IRn. Observe that a similar argument to that used in the

proof of Property 3.3 shows that A1s is equivalent to the following statement :

For all X, Y ∈ L∞d : X − Y ∈ R(0) P − a.s. =⇒ R(Y ) ⊂ R(X) .(6.6)

R̃ satisfies A0. Trivial.

R̃ satisfies A1. Let X be a bounded r.v. valued in K. From PA1, we have f(X) ∈ R(0)

P -a.s. and therefore

R(0) ⊂ R(f(X)) = R̃(X)(6.7)

by condition A1s. Now, from PA3, it follows that f(0) ∈ ~R0. Then, R̃(0) = R(f(0)) =

{−f(0)} + R(0) ⊂ R(0) since −f(0) ∈ R(0). In view of (6.7), this proves that R̃(0) ⊂
R̃(X).

R̃ satisfies A2. For all X, Y ∈ L∞d , it follows from PA2 that f(X + Y ) − f(X) − f(Y ) ∈
R(0) P−a.s. Since R is an (n, n)− coherent risk measure, This implies that R̃(X) + R̃(Y )

= R(f(X)) + R(f(Y )) ⊂ R(f(X) + f(Y )) ⊂ R(f(X + Y )) = R̃(X + Y ) by (6.6).

R̃ satisfies A3. For all t > 0 and X ∈ L∞d , Property 3 says that f(tX) − tf(X) ∈ R(0)

and tf(X) − f(tX) ∈ R(0) IP−a.s. From (6.6), this implies that R̃(tX) = R(f(tX)) =

R(tf(X)) = tR(f(X)) = tR̃(X) since R is an (n, n)− coherent risk measure.

R̃ satisfies A4. For all x ∈ IRn and X ∈ L∞d , it follows from PA4 that f(X + x̄)− f(X)−x

∈ ~R0 = −R(0) ∩ R(0) IP−a.s. Using again (6.6) twice, this proves that R̃(X + x̄) =

{−x}+ R̃(X). 2

Example 6.2 (Coherent linear portfolio aggregators) Suppose that ~R0 = {0}, and let f(y)

:= Ay where A is a (n, d) matrix. Clearly, f satisfies conditions PA2 and PA3. A necessary

and sufficient condition for f to satisfy condition PA4 is that the matrix A be of the form :

A = (In|B) where In is the identity matrix in IRn .

Hence f is an R−coherent portfolio aggregator if and only if AK ⊂ R(0).

n=1 : in this case, R(0) = K1 = IR+, A = (1, bn+1, . . . , bd) with bj ∈ IR for all j =

n + 1, . . . , d. The condition AK ⊂ R(0) says that Ax ≥ 0 for all x ∈ K. Hence f is an

R−coherent portfolio aggregator of A ∈ K◦
1 := {y ∈ K◦ : y1 = 1}. 2

Example 6.3 (Coherent nonlinear portfolio aggregators, d = 2, n = 1) Again, we have

R(0) = K1 = IR+, and therefore ~R0 = {0}. Then, it is easily checked that Conditions

PA1,PA3 and PA4 imply that f is of the form :

f(x) = xa+1{x≥0} + xa−1{x≤0}
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where a+ = (1, α+) ∈ K◦
+, a− = (1, α−) ∈ K◦

− with K+ = K ∩ (IR × IR+) and K− =

K ∩ (IR × IR−). Now Condition PA2 says that f is concave, i.e. α+ ≤ α−. Hence f is an

R−coherent portfolio aggregator if and only if

a+ = (1, α+) and a− = (1, α−) ∈ K◦ with α+ ≤ α−

2

Example 6.4 (liquidation function, n = 1) Let R be a (1, 1)−coherent risk measure. then

the liquidation function ` defined in (2.3) is an R−coherent portfolio aggregator. 2

Remark 6.3 The function π defined in (2.5) is not a portfolio aggregator in general. To

see this, consider the case d = 3, n = 2, and K defined as in Example 2.1 with proportional

transaction costs matrix

λ = α


1 1 1
1 1 1
1 0 1

 for some α > 0 .

Then, it is easily checked that x := (0, 1,−1) ∈ K, and π̄(x) = (−1− α, 1, 0) ∈ −K. Since

K ∩−K = {0}, it follows from Property 3.2 that R(0)∩−K2 = {0}, and therefore π(x) 6∈
R(0), for all (2, 2)−coherent risk measure. Hence there is no (2, 2)−coherent risk measure

for which π is a coherent portfolio aggregator. 2

7 Coherent aggregation of risk

Definition 7.1 Let R be a (d, d)−coherent risk measure. A function g : IRd −→ IRn is an

R−coherent risk aggregator if :

RA1 g(R(0)) 6= IRn and 0 ∈ g(R(0));

RA2 For all x, y ∈ IRd : g(x) + g(y) ∈ cl[g(R(−x− y))];

RA3 For all x ∈ IRd and t > 0 :

g(tx) ∈ cl[tg(R(−x))] and tg(x) ∈ cl[g(tR(−x))] ;

RA4 For all x ∈ IRn and y ∈ IRd :

g(x̄ + y) ∈ x + cl[g(R(−y))] and x + g(y) ∈ cl[g(R(−x̄− y))] .

Some examples of coherent risk aggregators will be discussed at the end of this section.
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Theorem 7.1 Let R be a (d, d)−coherent risk measure, and let g be a mapping from IRd

into IRn. Define the set-valued map

cl[g ◦R] : L∞d −→→ IRn

X 7−→ cl[g(R(X))] .

Then, cl[g ◦ R] is a (d, n)−coherent risk measure if and only if g is an R−coherent risk

aggregator.

Proof. Set R̃ := cl[g ◦R].

1. Suppose that R̃ is a coherent risk measure, and let us prove that g satisfies properties

RA.

g satisfies RA1. Immediate, since 0 ∈ R̃(0) by A0.

g satisfies RA2. For all x, y ∈ IRd, it follows from A2 that R̃(−x) + R̃(−y) ⊂ R̃(−x − y).

By A4, this means that cl[g({x}+ R(0))] + cl[g({y}+ R(0))] ⊂ cl[g(R(−x− y))], and the

required result follows from the fact that 0 ∈ R(0).

g satisfies RA3. For all x ∈ IRd and t > 0, it follows from A3 that R̃(−tx) = tR̃(−x). By A4,

this means that cl[g({tx}+ R(0))] = tcl[g(R(−x))], which provides g(tx) ∈ tcl[g(R(−x))].

This also can be written in tcl[g({x}+R(0))] = cl[g(tR(−x))], which provides the remaining

property.

g satisfies RA4. For all x ∈ IRn and y ∈ IRd, it follows from A4 that R̃(−x̄ − y) =

{x} + R̃(−y), i.e. cl[g({x̄ + y} + R(0))] = {x} + cl[g({y} + R(0))], and the result follows

again from the fact that 0 ∈ R(0).

2. Conversely, let g be an R−coherent risk aggregator, and let us prove that R̃ satisfies

conditions A.

R̃ satisfies A0. Immediate from the fact that R satisfies A0, the definition of R̃, and RA1.

R̃ satisfies A1. Let X ∈ L∞d be such that X � 0 P−a.s. Then, it follows immediately that

cl[g(R(0))] ⊂ cl[g(R(X))].

R̃ satisfies A2. For X, Y ∈ L∞d , it follows from the coherency of R that R(X) + R(Y ) ⊂
R(X + Y ). Then, it follows immediately that g(R(X) + R(Y )) ⊂ g(R(X + Y )). By RA2,

this provides cl[g(R(X))] + cl[g(R(X))] ⊂ cl[g(R(X)) + g(R(Y ))] ⊂ cl[g(R(X) + R(Y ))].

R̃ satisfies A3. Let t > 0 and X ∈ L∞d . Since R is coherent, we have g(R(tX)) = g(tR(X))

⊂ t cl[g(R(X))] by RA3. Therefore cl[g(R(tX))] ⊂ t cl[g(R(X))].

Conversely, consider some x ∈ R(X). By the self-consistency Property 3.4, R(0) ⊂
R(X +x). Then by RA3, tg(x) ∈ cl[g(R(−tx))] = cl[g({tx}+ tR(0))] ⊂ cl[g({tx}+ tR(X +

x))] = cl[g(R(tX))]. From the arbitrariness of x ∈ R(0), this proves that tg(R(X)) ⊂
cl[g(R(tX))] which provides the required inclusion.
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R̃ satisfies A4. Let X ∈ L∞d and a ∈ IRn. Since R is coherent, we have g(R(X + ā))

= g({−ā} + R(X)). Now, for any x ∈ R(X), we have R(0) ⊂ R(X + x) by the self-

consistency Property 3.4. By use of RA4, this provides g({−ā}+x) ∈ {−a}+cl[g(R(−x))]

= {−a}+cl[g({x}+R(0))] ⊂ {−a}+cl[g({x}+R(X +x))] = {−a}+cl[g(R(X))]. By the

arbitrariness of x ∈ R(X), this proves that g({−ā}+ R(X)) ⊂ {−a}+ cl[g(R(X))].

Conversely, using again RA4, we see that −a + g(x) ∈ cl[g(R(ā − x))] = cl[g({−ā +

x}+ R(0))] ⊂ cl[g({−ā + x}+ R(X + x))] = cl[g({−ā}+ R(X))]. By the arbitrariness of

x ∈ R(X), this shows that {−a}+ g(R(X)) ⊂ cl[g({−ā}+ R(X))].

2

Example 7.1 (Risk liquidation) Let π be the function defined in (2.3-2.4-2.5) by means of

the liquidation function `, and define

g(x) := −π(−x) for all x ∈ IRd .

Then g is an R−coherent risk aggregator for all (d, d)− coherent risk measure R. Indeed :

- Since 0 ∈ R(0), it follows that 0 = g(0) ∈ g(R(0)). Now let −y be any vector in the

interior of −Kn = {x ∈ IRn : x̄ ∈ −K}. Suppose that g(R(0)) = IRn and let us work

towards a contradiction. Then, −ȳ = −π̄(−x) for some x ∈ R(0). By definition of π̄, this

implies that −ȳ � x ∈ R(0) and therefore −ȳ ∈ R(0) by Property 3.1. Since ȳ ∈ int(K),

the required contradiction follows from Property 3.2. Hence g satisfies RA1.

- From the definition of π̄, it follows that −π̄(−x) − π̄(−y) � −π̄(−x − y) for all

x, y ∈ IRd. This means that −π̄(−x)− π̄(−y) = −π̄(−x−y)+ z̄ = −π̄(−x−y− z̄) for some

z ∈ Kn. Now since Kn ⊂ R(0), this provides that −π̄(−x)− π̄(−y) ∈ −π̄ (−x− y −R(0))

= −π̄ (−R(−x− y)) by the translation invariance axiom A4. hence g satisfies RA2.

- We leave the verification of Properties RA3 and RA4 for the reader, since it can be

done easily by similar arguments. 2
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