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Abstract

We use the Malliavin integration by parts formula in order to provide a family
of representations of the joint density (which does not involve Dirac measures) of
(Xθ, Xθ+δ), where X is a d-dimensional Markov diffusion (d ≥ 1), θ > 0 and δ >

0. Following [5], the different representations are determined by a pair of localizing
functions. We discuss the problem of variance reduction within the family of separable
localizing functions: We characterize a pair of exponential functions as the unique
integrated-variance minimizer among this class of separable localizing functions. We
test our method on the d-dimensional Brownian motion and provide an application to
the problem of American options valuation by the quantization tree method introduced
by [2].

Key words: Monte Carlo, Malliavin calculus, quantization, American options.

MSC 1991 subject classifications: Primary 60H07 65C05 ; secondary 49-00.

1



1 Introduction

Let X be a Markov process. Given M simulated paths of X, we are interested in the
Monte Carlo estimation of the joint density function of (Xθ, Xθ+δ) :

f(x, y) = E (εx(Xθ)εy(Xθ+δ))

where θ > 0, δ > 0, and εx is the Dirac measure at the point x. The purpose of this paper
is to introduce an estimator based on the Malliavin integration by parts formula which
allows to integrate the Dirac measure up to the Heaviside function.

This problem is motivated by the recent financial literature which has been interested
in the Monte Carlo approach for the numerical approximation of the value of American
options. The Monte Carlo technique is particularly adapted for high dimensional problems.

By passing to a discrete-time approximation, the American option valuation problem
is reduced to a backward algorithm which requires to compare at each step the reward
from exercising the option to the expected reward from continuing. The main difficulty
from the numerical viewpoint lies in the computation of the expected reward conditional
on the actual information. In order to approximate the required conditional expectations,
one can use the classical tools from non-parametric regression methods in statistics. The
Kernel regression method (see e.g. Bosq [3]) has been suggested in this context by Carriere
[8]. The basis projection method consists in approximating the conditional expectation
by the orthogonal projection on some finite truncation of an orthonormal basis of L2, and
has been used in the context of American options by Longstaff and Schwartz [14], and
Tsitsiklis and van Roy [16].

An alternative approach, based on the integration by parts formula from Malliavin
calculus, has been suggested by Fournié et al. [10], and implemented for American options
in the context of the multivariate Black and Scholes model. The rate of convergence of this
method has been analyzed for general smooth processes by [5] and [6]. We also mention
the approach of Braodie and Glassermann [7] which use a random grid at each time step
associated with some conveniently chosen weights defined by some statistical ideas based
on the importance sampling theorem.

In this paper, we focus on the quantization technique of Bally, Pagès and Printemps [2].
Loosely speaking, this method consists in ”quantizing” the state variable of the problem at
each time step, i.e. projecting Xtk on a grid containing Nk discrete points X̂i

k, i = 1, ..., Nk.
The state space is then partitioned into a family of cells C(X̂i

k) with X̂i
k ∈ C(X̂i

k). Given
m independent copies

(
X

(m)
tk

, X
(m)
tk+1

)
of the pair of random variables

(
Xtk , Xtk+1

)
, the

2



transition probability from the cell C(X̂i
k) to the cell C(X̂j

k+1) is estimated by :

π̂i,jk =

1
M

∑M
m=1 1

X
(m)
tk

∈C(X̂i
k)

1
X

(m)
tk+1

∈C(X̂j
k+1)

1
M

∑M
m=1 1

X
(m)
tk

∈C(X̂i
k)

.

Observe that as the size of these cells gets smaller (which is the case in practice), the
number of scenarios falling in each cell decreases dramatically, inducing a large variance
of the above estimator.

The method of estimation of transition probabilities exposed above, is in fact an exten-
sion of the classical approach used to estimate density function of a random variable using
M independent copies. In order to improve this method, one can think about Malliavin
integration by parts formula that has been used recently used in [11], [10], [13], [12] and
[5] in order to obtain an alternative representation of the conditional expectation :

r(x) = E [g (Xθ+δ) |Xθ = x ] =
E [g (Xθ+δ) εx (Xθ)]

E [εx (Xθ)]

where g is a mapping from Rd into R. The representation in [5] does not involve the Dirac
measure εx (it uses instead Hx: the Heaviside measure at the point x) and depends only
on the mapping g. It also allows to recover the

√
M rate of convergence.

In this paper, we extend the results of [5] by providing a family of alternative represen-
tations of the joint density which does not involve Dirac measures. Each representation is
determined by the choice of a pair of localization functions. We then study the problem of
minimizing the integrated mean square error within the class of all pairs of separable lo-
calization functions. Our main result provides an explicit characterization of such optimal
localization functions.

The paper is organized as follows. Section 2. introduces the main notations and some
preliminary results. Section 3 contains the proof of the family of alternative represen-
tations of the joint density. The variance reduction issues are discussed in Section 4.
Section 5 specializes the discussion to the multivariate Brownian motion, and provides
some numerical tests proving the performance of the Malliavin-based estimator. We also
proceed to a comparison with the Kernel density estimator. Finally section 6 provides and
application of this technique to the quantization tree method.

2 Notations

Throughout this paper we shall denote by J the subset of Nk whose elements I = (i1, ..., ik)
satisfy 1 ≤ i1 < ... < ik ≤ d. The cardinality of I will be denoted by |I|. Let I = (i1, ..., im)
and J = (j1, ..., jn) be two arbitrary elements in J . Then {i1, ..., im} ∪ {j1, ..., jn} =
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{k1, ..., kp} for some max{n,m} ≤ p ≤ min{d,m + n}, and 1 ≤ k1 < ... < kp ≤ d. We
then denote I ∨ J := (k1, ..., kp) ∈ J . For all positive integer i ≤ d, we denote by J (−i)

the subset of J whose elements I do not contain i, i.e. J (−i) := {I ∈ J : i 6∈ I}.

For a vector x ∈ Rd, we shall denote xi its i−th component, and x(−i) the vector of
Rd−1 obtained by omitting the i−th component, i.e. x(−i) := (x1, . . . , xi−1, xi+1, . . . , xd).
For x, y ∈ Rd, we denote by x · y :=

∑d
i=1 x

iyi the Euclidean scalar product.

Let ϕ be a map from Rd into R. Following [5], we say that ϕ is a smooth localizing
function if

ϕ(0) = 1 and ∂Iϕ exists and lies in ∈ C0
b for all I ∈ J .

Here, C0
b is the set of all bounded continuous functions from Rd to R, and for I =

(i1, . . . , i|I|), the notation ∂Iϕ stands for the I−th cross derivative, i.e. ∂Iϕ = ∂|I|ϕ/∂xi1 · · · ∂xi|I| .
For I = ∅ we set ∂∅ϕ = ϕ. We denote by L the set of all smooth localization functions.

For I = (1, . . . , d) and ϕ : Rd −→ R, we denote by ∇ϕ := ∂Iϕ the gradient of ϕ, if it
does exist.

3 Alternative representation of joint density function

3.1 Malliavin derivatives and Skorohod integrals

Let (Ω,F , P ) be a complete probability space equipped with a d-dimensional standard
Brownian motion W = (W 1, . . . ,W d). We shall restrict the time interval to T := [0, θ+δ]
for some θ, δ > 0. We denote by F := {Ft, t ∈ T} the P−completion of the filtration
generated by W . Throughout this paper, we consider a Markov process X such that Xθ

and Xθ+δ belong to the Sobolev spaces Dk,p (p, k ≥ 1) of k−times Malliavin differentiable
random variables satisfying :

||X||Dk,p :=

E(|X|p) +
k∑
j=1

E
(
||DjX||p

Lp(Tj)

)1/p

<∞

where

||DjX||Lp(Tj) =
(∫

Tj

|Dt1 · · ·DtjX|pdtj . . . dt1
)1/p

.

Given a matrix-valued process h, with columns denoted by hi, and a random variable F ,
we denote

Shi (F ) :=
∫
T
F hit · dWt for i = 1, . . . , d, and ShI (F ) := Shi1 ◦ . . . ◦ S

h
ik

(F )
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for I = (i1, . . . , ik) ∈ J , whenever these stochastic integrals exist in the Skorohod sense.
We extend this definition to the empty set by setting Sh∅ (F ) := F . For the maximal
element I = (1, . . . , d), we shall simply write

Sh(F ) := Sh(1,...,d)(F ) .

Similarly, for I ∈ J , we set :

Sh−I(F ) := ShĪ (F ) where Ī ∨ I = (1, . . . , d) and I ∩ Ī = ∅ .

We next introduce the set H(X) as the collection of all pairs of matrix-valued L2(F)
processes (g, h) satisfying∫

T
DtXθ gtdt = 0 ,

∫
T
DtXθ+δ gtdt = Id , (3.1)∫

T
DtXθ htdt = Id ,

∫
T
DtXθ+δ htdt = 0 (3.2)

and such that

SgJ ◦ ShI (ϕ(Xθ)ψ(Xθ+δ)) is well-defined in D1,2 (3.3)

for all I, J ∈ J and ϕ,ψ ∈ L.

Throughout this paper, we shall assume that

H(X) 6= ∅ .

Remark 3.1 For later use, we observe that for all (g, h) ∈ H(X), we have

ShI (ϕ(Xθ)ψ(Xθ+δ)) = ψ(Xθ+δ)ShI (ϕ(Xθ)) ,

for all I ∈ J and ϕ,ψ ∈ L. To see this, observe that it is sufficient to prove these equalities
for |I| = 1. For a positive integer i ≤ d, it follows from the connection between the Itô
and the Skorohod integral (see [15] p40) that :

Shi (ϕ(Xθ)ψ(Xθ+δ)) = ψ(Xθ+δ)Shi (ϕ(Xθ))−
∫
T
Dtψ(Xθ+δ)hitdt

= ψ(Xθ+δ)Shi (ϕ(Xθ))−∇ψ(Xθ+δ)
∫
T
DtXθ+δh

i
tdt

= ψ(Xθ+δ)Shi (ϕ(Xθ))

by (3.2).
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3.2 The case of Markov diffusions

Before going any further, let us verify that the conditions listed in the above paragraph are
satisfied in the case of regular Markov Diffusions. Let X = {Xt} be the continuous-time
process defined by the stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt ,

together with an initial condition X0. Here b : Rd −→ Rd and σ : Rd −→ Rd×d are
respectively vector and matrix valued maps, the matrix σ(x) is invertible for all x ∈ Rd,
b, σ and σ−1 are C∞

b . Then, for all p, k ≥ 1, the process X lies in the set Lk,pT , i.e. Xt ∈
Dk,p for all t ∈ T and :

||X||Lk,p
T

:=

E(
∫
T
|Xt|pdt) +

k∑
j=1

E

(∫
T
||DjXt||pLp(T j)

dt

) 1
p

<∞ .

We denote by L∞T := ∩p≥1 ∩k≥1 Lk,pT . We similarly define D∞. Notice that f(X) ∈ L∞T
whenever f ∈ C∞

b . In particular, σ−1(X) ∈ L∞T (see [15] Proposition 1.5.1).

The first variation process of X is the matrix-valued process defined by :

Y0 = Id and dYt = ∇b(Xt)Ytdt+
d∑
i=1

∇σi(Xt)YtdW i
t , (3.4)

where σi is the i−th column vector of σ. By [15] Lemma 2.2.2, the processes Y and Y −1

also belong to L∞T .

The Malliavin derivative is related to the first variation process by :

DsXt = YtY
−1
s σ(Xs)1{s≤t} ; s ≥ 0 , (3.5)

so that :

DsXθ = YθY
−1
θ+δDsXθ+δ1{s≤θ} ; s ≥ 0 . (3.6)

It follows that H(X) is not empty. Indeed, since X, Y , Y −1 and σ−1(X) are in L∞T ,

ĝt := (DtXθ+δ)−1δ−11t∈[θ,θ+δ] (3.7)

ĥt := (DtXθ+δ)−1Yθ+δY
−1
θ

(
θ−11t∈[0,θ) − δ−11t∈[θ,θ+δ]

)
(3.8)

defines a pair of processes in L∞T satisfying (3.1)-(3.2). Moreover, for each real-valued F

∈ D∞, and i = 1, . . . , d, Sĥi (F ) is well defined and belongs to D∞ (see [15] Property 2 p38
and Proposition 3.2.1 p158). By simple iteration of this argument, we also see that (ĝ, ĥ)
satisfies (3.3).
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3.3 Alternative representation of the joint density distribution

In this paragraph, we provide an extension of Theorem 3.1. of [5]. This result induces an
expectation representation of the joint density of (Xθ, Xθ+δ) which does not involve Dirac
measures.

Theorem 3.1 Let {Ai, i ≤ d}, {Bi, i ≤ d} be two families of Borel subsets of R, and set
A := A1×· · ·×Ad, B := B1×· · ·×Bd. Then for all pair of localizing functions ϕ,ψ ∈ L,
we have:

E [1A(Xθ)1B(Xθ+δ)]

=
∫ ∫

A×B
E
[
Hx (Xθ)Hy (Xθ+δ)Sg ◦ Sh (ϕ(Xθ − x)ψ(Xθ+δ − y))

]
dxdy

where, for ξ = (ξ1, . . . , ξd) and ζ = (ζ1, . . . , ζd) ∈ Rd, Hξ(ζ) :=
d∏
i=1

1{ζi>ξi} is the so-called

Heaviside function.

Proof. We shall prove the required representation result by using repeatedly a lemma to
be derived in the first part of this proof. In comparison to the proof of Theorem 3.1 of [5],
the main new ingredient is located in Step 3 below. Let us first introduce the following
additional notations:

πi(x) := (0, ..., 0, xi+1, ..., xd) for i = 1, ..., d− 1 and πd(x) := 0

for x = (x1, ..., xd) ∈ Rd,

ϕi := ϕ ◦ πi for all ϕ ∈ L and i ≤ d ,

and

Ii := (i+ 1, ..., d) ∈ J for i = 1, ..., d− 1, and Id := ∅.

1. By a classical density argument, it is sufficient to prove the result for Ai = [ai, bi] with
ai < bi and Bi = [ci, di] with ci < di.

2. By the same argument as in [5], we have

E
[
1Ai

(
Xi
θ

)
φ
(
(X(−i)

θ

)
f (Xθ+δ)ShIi (ϕi(Xθ − x)F )

]
=
∫
Ai

E
[
Hxi

(
Xi
θ

)
φ
(
(X(−i)

θ

)
f (Xθ+δ)ShIi−1

(ϕi−1(Xθ − x)F )
]
dxi.

(3.9)

Here, i ≤ d, f : Rd −→ R, φ : Rd−1 −→ R are two bounded maps, F is a real-valued
random variable in D1,2, (g, h) ∈ H(X), ϕ ∈ L, and Ai is a Borel subset of R.
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3. We now prove that

α := E
[
f (Xθ)1Bi

(
Xi
θ+δ

)
φ
(
X

(−i)
θ+δ

)
SgIi (ψi(Xθ+δ − y)F )

]
=
∫
Bi

E
[
f (Xθ)Hyi

(
Xi
θ+δ

)
φ
(
X

(−i)
θ+δ

)
SgIi−1

(ψi−1(Xθ+δ − y)F )
]
dyi,

(3.10)

where i, f , φ, F , (g, h) are as above, and ψ ∈ L, Bi ∈ B(R). To see this, we first observe
that it is sufficient to consider the case where f and φ are smooth. The general case is
then deduced by a classical density argument. Next, since SgIi (ψi(Xθ+δ − y)F ) ∈ D1,2, it
follows from the smoothness of f and φ that the random variable

V :=
∫ Xi

θ+δ

−∞
f (Xθ)1Bi

(
yi
)
φ
(
(X(−i)

θ+δ

)
SgIi (ψi−1(Xθ+δ − y)F ) dyi

is Malliavin differentiable. By the usual rules of differentiation, we directly compute that∫
T
DtV · gitdt = f (Xθ)1Bi

(
Xi
θ+δ

)
φ
(
X

(−i)
θ+δ

)
SgIi (ψi(Xθ+δ − y)F )

∫
T
DtX

i
θ+δ · gitdt

+
∫ Xi

θ+δ

−∞
1Bi

(
yi
) ∫

T
Dt

{
f (Xθ)φ

(
X

(−i)
θ+δ

)
SgIi (ψi−1(Xθ+δ − y)F )

}
· gitdt dyi

= f (Xθ)1Bi

(
Xi
θ+δ

)
φ
(
X

(−i)
θ+δ

)
SgIi (ψi(Xθ+δ − y)F )

+
∫ Xi

θ+δ

−∞
1Bi

(
yi
)
f (Xθ)φ

(
X

(−i)
θ+δ

)∫
T
Dt

{
SgIi (ψi−1(Xθ+δ − y)F )

}
· gitdt dyi ,

by (3.1). Recall the definition of the parameter α in (3.10), and set S := SgIi (ψi−1(Xθ+δ − y)F ).
By the Malliavin integration by parts formula, this provides :

α = E

[
V

∫
T
git · dWt

]
−E

[∫ Xi
θ+δ

−∞
1Bi

(
yi
)
f (Xθ)φ

(
X

(−i)
θ+δ

)∫
T
DtS · gitdt dyi

]

=
∫
Bi

E

[
Hyi

(
Xi
θ+δ

)
f (Xθ)φ

(
X

(−i)
θ+δ

)(
S

∫
T
git · dWt −

∫
T
DtS · gitdt

)]
dyi

=
∫
Bi

E

[
Hyi

(
Xi
θ+δ

)
f (Xθ)φ

(
X

(−i)
θ+δ

)∫
T
Sgit · dWt

]
dyi ,

by the connection between the Itô and the Skorohod integrals, see [15] p40. We then
deduce (3.10) by observing that

∫
T Sg

i
t · dWt = SgIi−1

(ψi−1(Xθ+δ − y)F ).

4. Now, we are able to prove Theorem 3.1. We start by taking F = 1 and setting

φ
(
z(−d)) :=

d−1∏
i=1

1Ai(z
i). Since ϕ(0) = 1, we see that :

E [1A (Xθ)1B (Xθ+δ)]

= E
[
1A (Xθ)1B (Xθ+δ)ShId (ϕd(Xθ − x))

]
=

∫
Ad

E
[
Hxd

(
Xd
θ

)
φ
(
X

(−d)
θ

)
1B (Xθ+δ)ShId−1

(ϕd−1(Xθ − x))
]
dxd
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by (3.9). Next, we set φ
(
z−(d−1)

)
:= Hxd

(
zd
) d−2∏
i=1

1Ai(z
i), we observe that :

E [1A (Xθ)1B (Xθ+δ)]

=
∫
Ad

∫
A(d−1)

E[Hxd−1

(
Xd−1
θ

)
φ
(
X
−(d−1)
θ

)
1B (Xθ+δ)ShId−2

(ϕd−2(Xθ − x))]dxd−1dxd

Iterating this argument, we obtain that :

E [1A (Xθ)1B (Xθ+δ)] =
∫
A
β(x)dx ; (3.11)

where

β(x) := E
[
Hx (Xθ)1B (Xθ+δ)Sh (ϕ(Xθ − x))

]
.

We next apply (3.10) with F = Sh (ϕ(Xθ − x)), φ(z(−d)) :=
d−1∏
i=1

1Bi(z
i). Since ψd(x) =

ψ(0) = 1, we get

β(x) = E
[
Hx (Xθ)1B (Xθ+δ)S

g
Id

(ψd(Xθ+δ − y)F )
]

=
∫
Bd

E
[
Hx (Xθ)Hyd

(
Xd
θ+δ

)
φ
(
X

(−d)
θ+δ

)
SgId−1

(ψd−1(Xθ+δ − y)F )
]
dy.

Iterating this argument, we obtain that :

β(x) =
∫
Bd

E
[
Hx (Xθ)Hy

(
Xd
θ+δ

)
φ
(
X

(−d)
θ+δ

)
Sg (ψ(Xθ+δ − y)F )

]
dy. (3.12)

Now, the statement of the theorem follows by combining (3.11), (3.12) and by using
Remark 3.1. �

Remark 3.2 For later use, we observe that the above proof shows that

E
[
1A(−i)

(
X

(−i)
θ

)
Hxi

(
Xi
θ

)
1B (Xθ+δ)

]
=
∫
A(−i)×B

E
[
Hx (Xθ)Hy (Xθ+δ)Sg ◦ Sh(−i) (ϕ(Xθ − x)ψ(Xθ+δ − y))

]
dx(−i)dy

and

E
[
1A (Xθ)1B(−j)

(
X

(−j)
θ+δ

)
Hxj

(
Xj
θ+δ

)]
=
∫
A×B(−j)

E
[
Hx (Xθ)Hy (Xθ+δ)S

g
(−j) ◦ S

h (ϕ(Xθ − x)ψ(Xθ+δ − y))
]
dxdy(−j)

where A(−i) := A1×. . .×Ai−1×Ai+1×. . .×Ad and B(−j) := B1×. . .×Bj−1×Bj+1×. . .×Bd.
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4 Variance reduction using localizing separable functions

Given a pair of localizing functions (ϕ,ψ) ∈ L×L and (g, h) ∈H(X), Theorem 3.1 provides
the following representation of the joint-density function:

f(x, y) = E
[
Hx(Xθ)Hy(Xθ+δ)Sg ◦ Sh (ϕ(Xθ − x)ψ(Xθ+δ − y))

]
.

This suggests the following Monte Carlo estimator of the joint density function :

f̂n (x, y) :=
1
n

n∑
k=1

Hx

(
X

(k)
θ

)
Hy

(
X

(k)
θ+δ

)
Sg

(k) ◦ Sh(k)
(
ϕ(X(k)

θ − x)ψ(X(k)
θ+δ − y)

)
,

where
(
X

(k)
θ , X

(k)
θ+δ, g

(k), h(k)
)

are independent copies with the same distribution as
(Xθ, Xθ+δ, g, h). Following [5], we consider the problem of minimizing the integrated mean
square error (mse) :

Ig,h(ϕ,ψ) :=
∫

Rd×Rd

E
[
Hx(Xθ)Hy(Xθ+δ)Sg ◦ Sh (ϕ(Xθ − x)ψ(Xθ+δ − y))2

]
dxdy

within a suitable class of localizing functions. We first observe that, for any pair (ϕ,ψ) of
localizing functions, only the restrictions of ϕ and ψ to Rd

+ are involved in Ig,h(ϕ,ψ). We
then consider the set L+ of functions of the form ϕ|Rd

+
.

The problem of minimizing the integrated mse has been introduced in [12] and com-
pletely solved in [5] in the case of separable localizing functions, i.e.

ϕ(x) =
d∏
i=1

ϕi(xi) ,

where, for each i = 1, . . . , d, the function ϕi maps R+ into R. We denote by Ls+ the set of
all separable localizing functions. We will then concentrate on the minimization problem

vg,h := inf
(ϕ,ψ)∈Ls

+×Ls
+

Ig,h(ϕ,ψ) . (4.1)

In order to ensure that vg,h is finite, we assume that:∑
I,J∈J

E
[
Sg,hJ,I (1)2

]
< ∞ . (4.2)

The main result of this section is the following.

Theorem 4.1 There exists a unique solution
(
ϕ̂, ψ̂

)
∈ Ls+ × Ls+ to the integrated mini-

mization problem (4.1) given by:

ϕ̂(x) := e−η̂·x and ψ̂(x) := e−ρ̂·x for x ∈ Rd
+ ,
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where (η̂, ρ̂) is the unique solution in (0,∞)2d of the system of polynomial equations:

η̂2
m :=

E
[(∑

I∈J (−m)

∑
J∈J S

g
−J ◦ Sh−I(1)

∏
i∈I η̂

i
∏
j∈J ρ̂

j
)2
]

E
[(∑

I∈J (−m)

∑
J∈J S

g
−J ◦ Sh−(I∨m)(1)

∏
i∈I η̂

i
∏
j∈J ρ̂

j
)2
] (4.3)

ρ̂2
m :=

E
[(∑

I∈J
∑

J∈J (−m) S
g
−J ◦ Sh−I(1)

∏
i∈I η̂

i
∏
j∈J ρ̂

j
)2
]

E
[(∑

I∈J
∑

J∈J (−m) S
g
−(J∨m) ◦ S

h
−I(1)

∏
i∈I η̂

i
∏
j∈J ρ̂

j
)2
] , (4.4)

for all m = 1, ..., d.

The proof of this result, is based on the classical calculus of variations technique, and
follows essentially the line of arguments of the corresponding result in [5]. The details of
this proof are reported in the Appendix section.

5 Application to the d−dimensional Brownian motion

In this section, we specialize the discussion to the d−dimensional Brownian motion. We
first exploit the particular structure of the Brownian motion in order to push further the
characterization of the optimal separable localization function. This leads to an explicit
solution of the optimal separable localization problem, see (5.8) below. Then, we examine
the numerical performance of our estimation method of the joint density of (Wθ,Wθ+δ),
and we provide a comparison with the corresponding kernel estimator.

5.1 Optimal separable localization for the Brownian motion

1. Preparation.

The Malliavin derivative of the d−dimensional Brownian motion is given by

DsWt = Id 1{s≤t},

for any t, s ≥ 0. It is then easily checked that the pair (ĝ, ĥ) defined by

ĝt := δ−1Id 1[θ,θ+δ](t) and ĥt := θ−1Id 1[0,θ](t)− δ−1Id 1[θ,θ+δ](t)

is in H(W ). Given two separable localizing functions ϕ,ψ ∈ Ls and I, J ∈ J , we easily
calculate that :

SĥI (ϕ(Wθ − x)) =

∏
k 6∈I

ϕk(W k
θ − xk)

∏
i∈I

Sĥi
(
ϕi(W i

θ − xi)
)

S ĝJ (ψ(Wθ+δ − y)) =

∏
k 6∈J

ψk(W k
θ − yk)

∏
j∈J

S ĝj

(
ψj(W

j
θ+δ − yj)

)
,

11



where

Sĥi
(
ϕi(W i

θ − xi)
)

= ϕi(W i
θ − xi)Sĥi (1)− ϕ′i(W

i
θ − xi) , (5.1)

S ĝj

(
ψj(W

j
θ+δ − yj)

)
= ψj(W

j
θ+δ − yj)S ĝj (1)− ψ′i(W

j
θ+δ − yj), (5.2)

Sĥi (1) =
W i
θ

θ
−
W i
θ+δ −W i

θ

δ
, S ĝj (1) =

W j
θ+δ −W j

θ

δ
.

Observe that the random variables Sĥi
(
ϕi(W i

θ − xi)
)

and S ĝi
(
ψj(W

j
θ+δ − yj)

)
depend only

on the one-dimensional Brownian motion W i. We then directly calculate that

S ĝ ◦ SĥI (ϕ(Wθ − x)ψ(Wθ+δ − y)) (5.3)

=
∏
j 6∈I

S ĝj

(
ψj(W

j
θ+δ − yj)

)∏
i∈I

S ĝi ◦ S
ĥ
i

(
ϕi(W i

θ − xi)ψi(W i
θ+δ − yi)

)
, (5.4)

and

S ĝJ ◦ S
ĥ (ϕ(Wθ − x)ψ(Wθ+δ − y)) (5.5)

=
∏
i6∈J

Sĥi
(
ϕi(W i

θ − xi)
)∏
j∈J

S ĝj ◦ S
ĥ
j

(
ϕj(W

j
θ − xj)ψj(W

j
θ+δ − yj)

)
. (5.6)

We finally need the following direct computation :

A = S ĝk ◦ S
ĥ
k

(
ϕk(W k

θ − xk)ψk(W k
θ+δ − yk)

)
= S ĝk

(
ψk(W k

θ+δ − yk)Sĥk
(
ϕk(W k

θ − xk)
))

−
∫ θ+δ

0
ψ′k(W

k
θ+δ − yk)ĥkt dt

= S ĝk

(
ψk(W k

θ+δ − yk)Sĥk
(
ϕk(W k

θ − xk)
))

= Sĥk

(
ϕk(W k

θ − xk)
)
S ĝk

(
ψk(W k

θ+δ − yk)
)

−
∫ θ+δ

0
ψk(W k

θ+δ − yk)DtS
ĥ
k

(
ϕk(W k

θ − xk)
)
ĝkt dt

which provides that

A = Sĥk

(
ϕk(W k

θ − xk)
)
S ĝk

(
ψk(W k

θ+δ − yk)
)

+
1
δ
ϕk(W k

θ − xk)ψk(W k
θ+δ − yk)(5.7)

2. Optimal separable localization function.

Now, we rewrite the characterization (4.3)-(4.4) of Theorem 4.1 in the context of the
d−dimensional Brownian motion. In order to simplify the computations, we use the
equivalent system (7.2)-(7.4). By (5.3), it follows that

(η̂i)2 =
E
[
Γi
∫
Hyi

(
W i
θ+δ

)
S ĝi ◦ Sĥi

(
ψi(W i

θ+δ − yi)
)2
dyi
]

E
[
Γi
∫
Hyi

(
W i
θ+δ

)
S ĝi
(
ψi(W i

θ+δ − yi)
)2
dyi
] ,

12



where

Γi :=
∏
k 6=i

∫ ∫
Hxk

(
W k
θ

)
Hyk

(
W k
θ+δ

)
S ĝk ◦ S

ĥ
k

(
ϕk(W k

θ − xk)ψk(W k
θ+δ − yk)

)2
dxkdyk .

Since the random variables S ĝi ◦ Sĥi
(
ψi(W i

θ+δ − yi)
)

and S ĝi
(
ψi(W i

θ+δ − yi)
)

are both in-
dependent of Γi, the above expression reduces to

(η̂i)2 =
E
[∫

Hyi

(
W i
θ+δ

)
S ĝi ◦ Sĥi

(
ψi(W i

θ+δ − yi)
)2
dyi
]

E
[∫

Hyi

(
W i
θ+δ

)
S ĝi
(
ψi(W i

θ+δ − yi)
)2
dyi
] .

By (5.7) and (5.1)-(5.2), this provides :

(η̂i)2 =
E

[∫
Hyi

(
W i
θ+δ

) (
Sĥi (1)S ĝi

(
ψi(W i

θ+δ − yi)
)

+ δ−1ψi(W i
θ+δ − yi)

)2
dyi
]

E
[∫

Hyi

(
W i
θ+δ

)
S ĝi
(
ψi(W i

θ+δ − yi)
)2
dyi
]

=
E
[∫

Hyi

(
W i
θ+δ

) (
Sĥi (1)S ĝi (1)ψi − Sĥi (1)ψ′i + δ−1ψi

)
(W i

θ+δ − yi)2dyi
]

E
[∫

Hyi

(
W i
θ+δ

) (
ψiS

ĝ
i (1)− ψ′i

)
(W i

θ+δ − yi)2dyi
]

=
E

[∫∞
0

(
Sĥi (1)S ĝi (1)ψi(yi)− Sĥi (1)ψ′i(y

i) + δ−1ψi(yi)
)2
dyi
]

E

[∫∞
0

(
ψi(yi)S

ĝ
i (1)− ψ′i(yi)

)2
dyi
]

Observing that E
[
Sĥi (1)S ĝi (1)

]
= −δ−1 and E

[
Sĥi (1)2S ĝi (1)

]
= E

[
Sĥi (1)

]
= 0, we get :

(η̂i)2 =

∫∞
0

(
E
[
Sĥi (1)2S ĝi (1)2

]
ψi(yi)2 + E

[
Sĥi (1)2

]
ψ′i(y

i)2 − δ−2ψi(yi)2
)
dyi∫∞

0

(
E
[
S ĝi (1)2

]
ψi(yi)2 + ψ′i(yi)2

)
dyi

=

∫∞
0

(
−δ−2 + E

[
Sĥi (1)2S ĝi (1)2

]
+ E

[
Sĥi (1)2

]
(ρ̂i)2

)
ψi(yi)2dyi∫∞

0

(
E
[
S ĝi (1)2

]
+ (ρ̂i)2

)
ψi(yi)2dyi

=
−δ−2 + E

[
Sĥi (1)2S ĝi (1)2

]
+ E

[
Sĥi (1)2

]
(ρ̂i)2

E
[
S ĝi (1)2

]
+ (ρ̂i)2

.

By similar calculations, we also get

(ρ̂i)2 =
−δ−2 + E

[
Sĥi (1)2S ĝi (1)2

]
+ E

[
S ĝi (1)2

]
(η̂i)2

E
[
Sĥi (1)2

]
+ (η̂i)2

.

Recalling the definition of Sĥi (1) and S ĝi (1), we immediately calculate :

E
[
Sĥi (1)2S ĝi (1)2

]
=

3
δ2

+
1
δθ

and E
[
Sĥi (1)2

]
=

1
θ

+
1
δ
.

13



Therefore, we obtain the following system of equations :

(η̂i)2 =
2δ−2 + θ−1δ−1 + (θ−1 + δ−1)(ρ̂i)2

δ−1 + (ρ̂i)2

(ρ̂i)2 =
2δ−2 + θ−1δ−1 + δ−1(η̂i)2

θ−1 + δ−1 + (η̂i)2
,

which can be solved explicitly and we get :

η̂i =
(
δ−1 + θ−1

)1/4 (2δ−1 + θ−1
)1/4 and ρ̂i = δ−1/2

(
2δ−1 + θ−1

δ−1 + θ−1

)1/4

. (5.8)

Remark 5.1 Let θ be a fixed positive parameter. Then, the above expression shows that

η̂i = O
(
δ−1/2

)
and ρ̂i = O

(
δ−1/2

)
for small δ > 0 .

This is the same asymptotic behavior of the localization function that is in [6].

3. Optimal (non-separable) localization.

In this paper, we only focus on the problem of minimizing the integrated mean square
error with the class of separable localization functions. The problem of minimizing the in-
tegrated mean square error, within the class of all localization functions, has been analyzed
in [5] in the context of approximating E [εx(Xθ)g (Xθ+δ)]. An optimal (non-separable) lo-
calization function does exist in some convenient Sobolev space, but there was no explicit
characterization of this solution in general. However, in the case of the Brownian motion,
i.e. X = W , it was observed that the optimal separable localization function is also opti-
mal for the problem of minimizing the integrates mean square error with the class of all
localization functions. See Remark 4.3 in [5].

A similar comment is valid for the context of this paper. Following the same proof as
in [5], we see that the optimal separable localization functions for the Brownian motion,
determined in the previous paragraph, solve the problem of integrated mean square error
minimization within the class of all localization functions.

5.2 Numerical results

In this section, we apply our technique to estimate the joint density f(x, y) of (Wθ,Wθ+δ),
and compare to the exact value

f(x, y) = (2π)−d(θδ)−d/2 exp

(
− 1

2θδ

d∑
i=1

(θ + δ)x2
i − 2θxiyi + θy2

i

)
. (5.9)

For a fixed number of scenarios M = 200 000, we analyze the impacts of the dimension,
the dispersion between x and y and the time step δ on the quality of the estimator.
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5.2.1 Impact of the dimension

In order to study the impact of the dimension on our estimator, we fix θ = 1, δ = 1,
estimate the joint density at the origin (x, y) = (0, 0) for d ranging from 1 to 4. We collect
the estimation results together with the comparison to the exact value given by (5.9) in
the following table. The mean and the standard deviation are estimated by their empirical
counterpart on an independent sample of 500 Malliavin based estimations of f(0, 0) .

d Mean Std. deviation Th. value
Mean - Th. value

Th. value
Std. deviation

Th. value
Localization by exact η̂ and ρ̂, see (5.8)

1 0.1592 0.7982 10−3 0.1592 0.001% 0.48%

2 0.0253 0.3408 10−3 0.0254 −0.03% 1.35%

3 0.040 0.1377 10−3 0.0040 0.07% 3.42%

4 0.0006 0.0566 10−3 0.0006 −0.13% 8.82%

Localization by ηi = ρi = δ−1/2, see Remark 5.1

1 0.1592 0.6534 10−3 0.1592 0.01% 0.41%

2 0.0253 0.2745 10−3 0.0254 -0.06% 1.08%

3 0.0040 0.1081 10−3 0.0040 -0.25% 2.68%

4 0.0006 0.0397 10−3 0.0006 -0.20% 6.19%

Notice that the mean of the Malliavin based estimator is very close to the exact value.
The above results also show that the quality of the estimator is worsened by increasing
the dimension.

5.2.2 Impact of the dispersion

We now analyze the impact of the distance between x and y. We fix θ = δ = 1, and
we estimate the joint density f(x, y) for different pairs (xi, yi). We perform numerical
experiments for d = 1 and d = 2. The following table reports our estmation results
together with the comparison to the exact valued obtained from (5.9).

Dimension 1
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x y Mean Std deviation Th value
Mean - Th. value

Th. value
Std deviation

Th value
Localization by exact η̂ and ρ̂, see (5.8)

0 0 0.1591 0.7342 10−3 0.1592 −0.018% 0.46%

0 1 0.0965 0.5840 10−3 0.0965 0.004% 0.60%

−1 1 0.0131 0.2792 10−3 0.0131 −0.096% 2.14%

Localization by ηi = ρi = δ−1/2, see Remark 5.1

0 0 0.1591 0.6628 10−3 0.1592 -0.007% 0.42%

0 1 0.0966 0.5424 10−3 0.0965 0.04% 0.56%

−1 1 0.131 0.5086 10−3 0.0131 0.37% 3.89%

Dimension 2

x y Mean Std. dev. Th val.
Mean - Th. val.

Th. val.
Std dev.
Th val.

Localization by exact η̂ and ρ̂, see (5.8)

(0, 0) (0, 0) 0.0253 0.3502 10−3 0.0253 0.06% 1.38%

(0, 0) (1, 1) /
√

2 0.0154 0.2614 10−3 0.0154 0.002% 1.70%

− (1, 1) /
√

2 (1, 1) /
√

2 0.0021 0.0523 10−3 0.0021 0.016% 2.52%

Localization by ηi = ρi = δ−1/2, see Remark 5.1

(0, 0) (0, 0) 0.0253 0.2913 10−3 0.0253 0.0091% 1.15%

(0, 0) (1, 1) /
√

2 0.0154 0.2240 10−3 0.0154 -0.0029% 1.46%

− (1, 1) /
√

2 (1, 1) /
√

2 0.0021 0.1052 10−3 0.0021 -0.0609% 5.06%

The above result confirm the expected conclusion that the quality of the estimator is
worsened by increasing the distance between x and y. Notice that the mean of the joint
density estimator is very close to the exact values.

5.2.3 Impact of the time step

We now fix θ = 1 and compute the Malliavin based estimator of the joint density at the
origin (x, y) = (0, 0) for different values of the time step δ. We again perform numerical
experiments for the one-dimensional and the two-dimensional case, and we compare to the
exact values given by (5.9).

Dimension 1 : (x, y) = (0, 0)
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δ Mean Std deviation Th value
Mean - Th. value

Th. value
Std deviation

Th value
Localization by exact η̂ and ρ̂, see (5.8)

0.2 0.3559 0.0023 0.3559 0.006% 0.63%

0.5 0.2251 0.0012 0.2251 0.032% 0.53%

1 0.1592 0.0007 0.1592 0.022% 0.45%

Localization by ηi = ρi = δ−1/2, see Remark 5.1

0.2 0.3558 0.0024 0.3559 -0.017% 0.66%

0.5 0.2251 0.0011 0.2251 0.012% 0.50%

1 0.1591 0.0007 0.1592 -0.026% 0.43%

Dimension 1 : (x, y) = (−1/2, 1/2)

δ Mean Std deviation Th value
Mean - Th. value

Th. value
Std deviation

Th value
Localization by exact η̂ and ρ̂, see (5.8)

0.2 0.0257 0.87 10−3 0.0258 -0.0016 3.37%

0.5 0.0731 0.52 10−3 0.0731 0.0009 0.71%

1 0.0852 0.46 10−3 0.0852 0.0004 0.54

Localization by ηi = ρi = δ−1/2, see Remark 5.1

0.2 0.0257 0.0012 0.0258 -0.12% 4.83%

0.5 0.0731 0.0007 0.0731 0.03% 0.90%

1 0.0852 0.0005 0.0852 -0.03% 0.55%

Dimension 2 : (x, y) = (0, 0)

δ Mean Std deviation Th value
Mean - Th. value

Th. value
Std deviation

Th value
Localization by exact η̂ and ρ̂, see (5.8)

0.2 0.1266 0.0028 0.1267 -0.0081% 2.18%

05 0.0506 0.0007 0.0507 -0.0356% 1.47%

1 0.0253 0.0004 0.0253 -0.0933% 1.39%

Localization by ηi = ρi = δ−1/2, see Remark 5.1

0.2 0.1266 0.0029 0.1267 -0.069% 2.26%

0.5 0.0507 0.0007 0.0507 0.055% 1.47%

1 0.0253 0.0003 0.0253 0.023% 1.13%

Dimension 2 : (x1, x2) = −(y1, y2) = −1
2
√

2
(1, 1)
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δ Mean Std deviation Th value
Mean - Th. value

Th. value
Std deviation

Th value
Localization by exact η̂ and ρ̂, see (5.8)

0.2 0.0092 0.44 10−3 0.0092 -0.14% 4.82%

0.5 0.0165 0.33 10−3 0.0164 0.15% 2.02%

1 0.0136 0.20 10−3 0.0136 -0.01% 1.50%

Localization by ηi = ρi = δ−1/2, see Remark 5.1

0.2 0.0092 0.66 10−3 0.0092 -0.089% 7.20%

05 0.0165 0.31 10−3 0.0164 0.037% 1.89%

1 0.0136 0.17 10−3 0.0136 0.012% 1.29%

The above results show that the quality of the estimator is worsened by shrinking the
time step. This is in agreement with the variance explosion observation of the Malliavin
based estimator observed in [6]. We also observe, as in the previous experiments, that the
mean of the Malliavin based estimator is very close to the exact value.

Remark 5.2 From the examples above, we notice that the standard deviation of our
estimations using ηi = ρi = δ−1/2 is very close to (and even sometimes better than) the
standard of our estimations using the optimal values of η and ρ. This is due to the fact
that these optimal values minimize the integrated-variance and not the variance of the
joint density for a particular choice of x and y. Notice however that, for a large dispersion
between x and y, or for a small time step δ, the optimal values η̂ and ρ̂ produce better
estimators of the joint density.

5.3 Comparison with the kernel method

We next compare the malliavin based joint density estimator to the so-called kernel esti-
mation method. Before reporting the numerical experiments, We start by recalling briefly
the regression methods using convolution kernels.

5.3.1 Kernel convolution regression method

Let Z be a random variable valued in Rk, and let (Zi)i≥1 be a sequence of independent
copies of Z. In order to estimate the density function `(z) := E[δz(Z)], we approximate
the Dirac measure εz by the function ζ 7−→ b−kn 1|ζ−z|≤bn , where (bn)n≥1 is a sequence of
positive numbers converging to zero. This suggest to approximate `(z) by

1
nbkn

n∑
i=1

1|Zi−z|≤bn .
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More generally, given a bounded function K : Rk −→ R+ satisfying∫
Rd

K(r)dr = 1 and lim
|r|→∞

|r|2dK(r) = 0 ,

we define the approximation of the Dirac measure εz :

Kn(ζ) =
1
bkn
K

(
ζ

h

)
.

In the statistics literature, K is a called a kernel function, and induces the following kernel
estimator of ` :

ˆ̀
n(z) :=

1
n

n∑
i=1

Kn(Zi − z) .

Under some regularity conditions on ` and by judicial choice of the rate of convergence of
(bn)n towards zero, it is well-known that ˆ̀

n(z) is a consistent estimator of `(z). The rate
of convergence decreases dramatically with the dimension, and is always slower than the
parametric rate of convergence

√
n. We refer to Bosq [3] for an overview of the asymptotic

properties of ˆ̀
n.

5.3.2 Malliavin versus Kernel joint density estimation

We fix θ = δ = 1, and estimate the joint density by both methods, for d ranging from 1
to 3, at the point (x, y) = (0, u/|u|), where u is a vector of ones. The numerical results
are collected in the following table.

Malliavin Calculus based approach kernel based approach

d Th value Mean Std. dev.
Std. dev.
Th. value

Mean Std. dev.
Std. dev.
Th. value

1 0.0965 0.0965 0.57 10−3 0.59% 0.0958 0.0015 1.54%

2 0.0154 0.0154 0.28 10−3 1.81% 0.0140 0.0005 2.95%

3 0.0024 0.0024 0.12 10−3 4.96% 0.0018 0.0001 3.72%

Notice that, unlike the Malliavin-based estimator, the mean of the kernel based estimator
is far from the exact value. This is due to the fact that the Malliavin-based estimator is
unbiased.

6 Solving the American option valuation problem by quan-

tization

In this section, we focus on the problem of approximating the value of an optimal stopping
problem by the quantization tree method introduced by Bally, Pagès and Printemps [1].
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The quantization tree methods consists in approximating a continuous-time process with
values in a continuous state space by a discrete-time process with finite state space. A key
step in this quantization method is to estimate the transition matrix of the approximating
discrete-time process. This is usually obtained by classical Monte Carlo technique. The
main objective of this section is to use instead our Malliavin-based Monte Carlo estimator
of the joint density, and to analyze the performance of this procedure.

6.1 The American option problem

Let T > 0 be a finite horizon, and (Ω,F ,P) a complete probability endowed with a
filtration F = (Ft)0≤t≤T satisfying the usual conditions. The filtration Ft represents the
information available up to time t. We also assume that F0 is trivial and that FT = F . Let
Y be an F−adapted process valued in R+. For each t ∈ [0, T ] and ω ∈ Ω, Yt(ω) represents
the reward for stopping at time t in the state ω. Our main concern in this section is the
valuation of American options which reduces to the following optimal stopping problem

U0 := sup
τ∈T0

E[Yτ ] , (6.1)

where T0 is the collection of all F−stopping times valued in [0, T ].

6.2 Discrete-time approximation

Let 0 = t0 < t1 < . . . tn = T be a partition of the interval [0, T ] with mesh max1≤i≤n |ti −
ti−1| −→ 0 as n → ∞. One may choose for instance a constant mesh ti = iT/n. A
natural approximation of the optimal stopping problem (6.1) is obtained by restricting
the maximization to those stopping times with values in {t0, . . . , tn}. We shall call T n0 the
collection of all such stopping times, and

Un0 := sup
τ∈T n

0

E[Yτ ] . (6.2)

The convergence of Un0 towards U0 holds under mild conditions. Also, it is well-known that
the value of the discrete-time stopping problem (6.2) can be computed by the following
backward induction :

Unn := Ytn and Uni = max
{
Yti ,E[Uni+1|Fti ]

}
for i = 0, . . . , n − 1. Assume in addition that the process Y is Markov. Then we can
rewrite the above backward algorithm in :

Unn := Ytn and Uni = max
{
Yti ,E[Uni+1|Yti ]

}
.
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6.3 Estimation of the discrete-time American option value by quantiza-

tion

We next approximate, at each time ti, the random variable Yti by some random variable Ŷti
which can only take a finite numberNi of values yi := (yi,j)1≤j≤Ni . This is the quantization
step. A Voroni tessellation of yi is a Borel partition (Cj(yi))1≤j≤Ni

of Rk satisfying

Cj(yi) ⊂
{
y ∈ Rk : |yi,j − y| = min

1≤k≤Ni

|yi,k − y|
}
.

The quantizer of Yti is defined by :

Ŷti :=
Ni∑
j=1

yi,j1Cj(yi)(Yti) .

We now turn to the problem of choosing yi :

1. We say that yi is an Lp optimal quantizer of Yti if yi solves the problem of minimizing
the Lp mean of the approximation error

Di := min
yi∈RNi

E|Ŷti − Yti |p .

This approach is presented by [2], and the above minimization problem is solved by means
of a (time consuming) stochastic gradient descent method. The quantity Di is called the
Lp-distorsion of the quantizer yi.

2. A random quantization of Yti consists in choosing Ni independent realizations of a
random variable whose support contains the support of Yti . Given the density function of
Yti , Cohort [9] provided the density function whose associated random quantization has
the smallest rate of convergence of the distorsion when Ni → ∞, and proved that this
procedure achieves the same rate of convergence than the optimal quantization method.

We next turn to the problem of approximation of the value of the discrete-time optimal
stopping problem. Set

πi,jk := P
[
Ŷtk+1

= yk+1,j |Ŷtk = yk,i

]
,

and define the approximation

Ûnn := Ŷtn and Ûnk = max
{
Ŷtk , πkÛ

n
k+1

}
,

where Unk ∈ RNk , and πk is a matrix with entries πi,jk , and the maximum is taken
component-wise.
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6.4 Monte Carlo approximation of the transition matrices

We now concentrate on the approximation of the transition probabilities πi,jk . Let
(
Y (m)

)
1≤m≤M

be M copies of the process Y . The classical Monte Carlo estimator of the transition prob-
abilitie πi,jk is given by :

π̃i,jk =

∑M
m=1 1

Y
(m)
tk

∈Ci(yk)
1
Y

(m)
tk+1

∈Cj(yk+1)∑M
m=1 1

Y
(m)
tk

∈Ci(yk)

As proved in [2], the bigger the Nk are, the smaller the error bounds are. So, in practice, in
order to have a satisfying estimation of the value of the stopping-problem one has to take
a big number of cells for each time step (usually Nk lies between 500 and 2000). When,
we take a big number of cells Nk, the size of these cells become small and the variance
of the estimators of the transition probabilities π̃i,jk becomes large, since the number of
scenarios falling in each cell is small. In order to overcome this problem, we suggest an
approach using Malliavin calculus estimation of the joint density function. recall that the
transition probability from the cell Ci(yk) to the cell Cj(yk+1) is given by:

πi,jk =

∫ ∫
Ci(yk)×Cj(yk+1)

f tk,tk+1 (x, y) dxdy∫
Ci(yk)

f tk (x) dx

where f tk,tk+1 is the joint density function of Ytk and Ytk+1
and f tk is the density function

of Ytk . We will then approximate πi,jk by the following expression:

π̂i,jk :=
f̂ tk,tk+1 (yk,i, yk+1,j)V (Cj(yk+1))

Nk+1∑
l=1

f̂ tk,tk+1 (yk,i, yk+1,l)V (Cl(yk+1))

,

where V (Cj(yk+1)) =
∫
Cj(yk+1) dy is the hyper-volume1 of the cell Cj(yk+1), and f̂ tk,tk+1(x1, x2)

is the Malliavin based estimator of the joint density E
[
εx1 (Xtk) εx2

(
Xtk+1

)]
as developed

in the previous sections of this paper.
1This hyper-volume is calculated using the function “convhulln” of MATLAB (www.mathworks.com).

This function uses essentially a free software named “Qhull” that was created by the National Science and

Technology Research Center for Computation and Visualization of Geometric Structures of university of

Minnesota (www.geom.umn.edu/software/qhull/).
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6.5 Numerical Implementation

6.5.1 The model

Let S be a process defined by the multi-dimensional Black-Scholes model :

dSit
Sit

= rdt+
d∑
j=1

σijdW
j
t , i = 1, ..., d

Where W = (W 1, . . . ,W d) is a d-dimensional standard Brownian motion and r is a strictly
positive constant and the matrix [σij ](i,j)∈<1,d>2 is invertible. The reward process Y is
defined by

Yt := e−rtf(St) ,

where f is a non-negative mapping from Rd
+ into R+.

The most important feature of the Black-Scholes model is that for any time t ∈ [0, T ],
the asset price St is a function of t and the Brownian motion Wt :

Sit = Si0 exp

r − d∑
j=1

σ2
ij

2

 t+
d∑
j=1

σijW
j
t

 .

Therefore, instead of quantizing St, one can quantize Wt. This remark, will be very helpful
in practice.

6.5.2 The numerical scheme

Applying the quantization algorithm to the optimal stoping problem with reward process
Y , we are reduced to the following backward scheme :

ûin = e−rtnf(sni ), i = 1, ..., Nn

ûik = max(e−rtkf
(
ski
)
, e−r(tk+1−tk)

Nk+1∑
j=1

π̂i,jk û
j
k+1), k = 0, ..., n− 1, i = 1, ..., Nk

Where ski ∈ Rd is given by:

(
ski

)
l
=
(
s01
)
l
exp

r − d∑
j=1

σ2
lj

2

 tk +
d∑
j=1

σlj

(
xki

)
l


and xki ∈ Rd the i-th scenario (i = 1...Nk) of the multi-dimensional Brownian motion
Wtk , k = 0, ..., n.
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For each k = 0, . . . , n − 1, i = 1, . . . , Nk, and j = 1, . . . , Nk+1, we approximate the
transition probability πi,jk by :

π̂i,jk =
f̂ tk,tk+1 (xk,i, xk+1,j)V (Cj(xk+1))
N∑
l=1

f̂ tk,tk+1 (xk,i, xk+1,l)V (Cl(xk+1))

where f̂ tk,tk+1(x1, x2) is the Malliavin based estimator of the joint density E
[
εx1 (Wtk) εx2

(
Wtk+1

)]
as developed in the previous sections of this paper.

Remark 6.1 In the estimator given above, we omitted deliberately to deal with case
where we have unbounded cells (i.e. the periferal cells in the quantization tree methods),
because several solutions can be proposed.

One can for example (like in classical lattice methods) bound his workspace and say that
the probability to find a realization of the underlying process outside a certain domain is
null. Doing so, we transform all our cells into bounded cells.

An other possibility is to use the classical estimation of P (Ci(xk), Cj(xk+1)) when the
2 cells are unbounded. The case where only one of the two cells is unbounded can be
treated in the following way (Suppose for example that Ci(xk) is bounded and Cj(xk+1)
is unbounded): We make the following approximation∫ ∫

Ci(xk)×Cj(xk+1)
f̂ tk,tk+1 (x, y) dxdy =

(∫
Cj(xk+1)

f̂ tk,tk+1 (xk,i, y) dy

)
V (Cj(xk))

and we estimate f̂ tk,tk+1 (xk,i, y) by making only one Mallivin-integration by part on “the
first variable” (by doing this, we retrieve the framework introduced by Bouchard, Ekeland
and Touzi in [5]).

We tested both methods. The results given by the second one seems to be slighty more
relevant. That’s why we decided to adopt it in the numerical tests below.

6.5.3 Numerical Results

Impact of the dimension In order to test the impact of the dimension, we consider a
European option and a Bermudan one, on the geometric mean of d assets :

f(s) :=

K −

(
d∏
i=1

si

) 1
d

+

.

In the multidimensional Black and Scholes framework, the geometric mean of d non-
dividend lognormal processes is equivalent to a particular lognormal process with a divi-
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dend yield. We give below the features of this process:

Initial value X0

(
d∏
i=1

Si0

) 1
d

Equivalent volatility σeq 1
d2

d∑
j=1

(
d∑
j=1

σij

)2

Dividend yield q 1
2

(
1
d

d∑
i,j=1

σ2
ij − σ2

eq

)

This allows to obtain the exact value of the price of the European option using the usual
Black-Scholes explicit formula. We also use a 1-dimensional finite difference scheme and
we consider the obtained approximation as the “exact value” of the price of the Bermudan
option.

On the other hand, we price these two options with quantization tree method. We give
below the backward induction allowing for that:

ûin = e−rtnf(sni ), i ∈ 〈1, Nn〉

ûik = max

(
Iik, e

−r(tk+1−tk)
Nk+1∑
j=1

π̂i,jk û
j
k+1

)
, k ∈ 〈0, n− 1〉, i ∈ 〈1, Nk〉

where for any k ∈ 〈0, n − 1〉 and i ∈ 〈1, Nk〉, the quantity Iik is equal to −∞ for the
European option and to f

(
ski
)

for the Bermudan one.

The following are the parameters used for the simulations :

instantaneous interest rate r 0.06

volatility σi = 0.3 and ρij = 0.7

maturity T 1

initial values Si0 = 36

strike K 40

time step 1/5

We give here, the prices obtained with 6000 scenarios and a stochastic tree of size 300.
Then, we compare them to the results obtained when, we estimate the transition proba-
bilities by the classical approach(We also consider the same 6000 scenarios and the same
300 Voronoi cells at each time step):
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European option

Malliavin Calculus based approach Classical estimation based approach

d Exact price Mean Std. dev.
Std. dev.

Exact price
Mean Std. dev.

Std. dev.
Exact price

1 5.277 5.272 0.024 0.45% 5.283 0.007 0.13%

2 5.064 5.076 0.026 0.51% 5.090 0.009 0.18%

3 4.988 4.991 0.025 0.50% 5.057 0.009 0.18%

4 4.949 4.937 0.023 0.46% 5.082 0.012 0.24%

Bermudan option

Malliavin Calculus based approach Classical estimation based approach

d Exact price Mean Std. dev.
Std. dev.

Exact price
Mean Std. dev.

Std. dev.
Exact price

1 5.657 5.665 0.042 0.74% 5.683 0.0061 0.11%

2 5.426 5.412 0.053 0.97% 5.464 0.0056 0.10%

3 5.347 5.337 0.052 0.97% 5.416 0.0068 0.13%

4 5.306 5.313 0.063 1.19% 5.467 0.0072 0.14%

The above two tables show that the numerical results obtained by the Malliavin based
approach are closer to the exact value. This suggests that the Malliavin based approach
produces a smaller bias than the Bally and Pages [1] one. However, the Malliavin based
estimators typically exhibit a larger estimation error.

More exotic examples We consider three more examples of exotic American (or more
exactly Bermudan) options from finance. The first one is a put option on the arithmetic
mean of 4 assets

f1(s1, s2, s3, s4) := [K − 1
4
(s1 + s2 + s3 + s4)]+ ,

the second one is a put option on the minimum of same assets

f2(s1, s2, s3, s4) := [K −min(s1, s2, s3, s4)]+ ,

and the third one is a put option on the maximum of the same assets

f3(s1, s2, s3, s4) := [K −max(s1, s2, s3, s4)]+ ,
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The parameters used for this simulation are the following :

instantaneous interest rate r 0.06

volatility σi = 0.3 and ρij = 0.8

maturity T 1

initial values Si0 = 36

strike K 40

time step 1/10

We next provide the values obtained with 6000 scenarios and a stochastic tree of size 300.
Then we compare the results obtained when we estimate the transition probabilities by the
classical approach (We consider two cases: (a) 6000 scenarios and the same 300 Voronoi
cells at each time step or (b) 600000 scenarios and the same 300 Voronoi cells at each time
step):

Put on Mean Std. dev.
Std. dev.

Mean
Malliavin Calculus based approach

Arith. mean 5.40 0.031 0.57%

Min 8.44 0.058 0.69%

Max 4.07 0.028 0.76%

Classical estimation based approach (a)

Arith. mean 5.52 0.020 0.36%

Min 8.59 0.029 0.34%

Max 4.21 0.026 0.62%

Classical estimation based approach (b)

Arith. mean 5.40 0.0030 0.06%

Min 8.49 0.0034 0.04%

Max 4.06 0.0024 0.06%

7 Appendix : Proof of Theorem 4.1

We shall split the proof in various Lemmas. We will use classical calculus of variations
technique. We start by defining ”admissible” perturbations of the assumed solution. Let
ϕ be an arbitrary function in Ls+, and α a map from R+ into R. Set

Φi[ϕ, α](x) := α(xi)
∏
j 6=i

ϕj(xj) .
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It follows that if α is C1, bounded and satisfies α(0) = 1, we have that Φi[ϕ, α] ∈ Ls+. In
particular, for α(x) ≡ 1, x ∈ Rd

+, we simplify the notation by setting :

ϕ(−i) := Φi[ϕ,1] .

Lemma 7.1 For ϕ,ψ ∈ Ls+, we define :

Fi := ϕi(Xi
θ), F

′
i := ϕ′i(X

i
θ), F(−i) := ϕ(−i)(Xθ),

Gi := ψi(Xi
θ+δ), G

′
i := ψ′i(X

i
θ+δ), G(−i) := ψ(−i)(Xθ+δ),

Notice that F = FiF(−i) and G = GiG(−i). Then, for all (g, h) ∈ H(X), we have that :

Sg ◦ Sh(FG) = Fi S
g ◦ Sh

(
F(−i)G

)
− F ′i S

g ◦ Sh(−i)
(
F(−i)G

)
= Gi S

g ◦ Sh
(
FG(−i)

)
−G′

i S
g
(−i) ◦ S

h
(−i)

(
FG(−i)

)
.

Proof. We use the same argument as the proof of Lemma 4.1 in [5]. From (3.2) we have
that :

Sh(FG) = FiS
h
(
F(−i)G

)
− F ′iS

h
(−i)

(
F(−i)G

)
.

Then, we deduce the first equality of the lemma from Remark 3.1. By the same Remark,
we also have that :

Sg ◦ Sh(FG) = Sg
(
GSh(F )

)
= GiS

g
(
G(−i)S

h(F )
)
−G′

iS
g
−(i)

(
G(−i)S

h(F )
)

= GiS
g ◦ Sh

(
FG(−i)

)
−G′

iS
g
(−i) ◦ S

h
(−i)

(
FG(−i)

)
,

where the second equality follows from (3.1).

�

The next step consists in considering the problem of partial minimization.

Lemma 7.2 Let (ϕ,ψ) be an arbitrary pair of localizing functions in Ls+ ×Ls+, and fix a
positive integer i ≤ d. Then the minimization problem

min
α∈C1

b

Ig,h (Φi(ϕ, α), ψ)) (7.1)

has a unique solution:

α̂i(ξ) := e−η
iξ, for all ξ ∈ R+ ,
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where

ηi :=

√√√√√ E
∫

R2d−1 Hx(−i)

(
X

(−i)
θ

)
Hy (Xθ+δ)Sg ◦ Sh

(
F(−i)(x)G(y)

)2
dx(−i)dy

E
∫

R2d−1 Hx(−i)

(
X

(−i)
θ

)
Hy (Xθ+δ)Sg ◦ Sh(−i)

(
F(−i)(x)G(y)

)2
dx(−i)dy

,(7.2)

F(−i)(x) := ϕ(−i)(Xθ − x) and G(y) := ψ(Xθ+δ − y)

Similarly, the partial minimization problem

min
β∈C1

b

Ig,h (ϕ,Φi(ψ, β)) (7.3)

has a unique solution:

β̂i(ξ) := e−ρ
iξ, for all ξ ∈ R+ ,

where

ρi :=

√√√√√ E
∫

R2d−1 Hx (Xθ)Hy(−i)

(
X

(−i)
θ+δ

)
Sg ◦ Sh

(
F (x)G(−i)(y)

)2
dxdy(−i)

E
∫

R2d−1 Hx (Xθ)Hy(−i)

(
X

(−i)
θ+δ

)
Sg(−i) ◦ Sh

(
F (x)G(−i)(y)

)2
dxdy(−i)

,(7.4)

F (x) := ϕ(Xθ − x) and G(−i)(y) := ψ(−i)(Xθ+δ − y) .

Proof. We only report the proof for the partial minimization problem (7.1). The same
line of argument works perfectly for the problem (7.3).

1. We first derive the first order condition which must be satisfied by some potential
solution α̂ of the minimization problem (7.1). Without loss of generality, we assume that
ϕi = α̂ so that Φi(ϕ, α̂) = ϕ. By the optimality of α̂, we have

Ig,h(ϕ,ψ) ≤ Ig,h(Φi(ϕ, α̂+ εα), ψ)

for all α ∈ C1
b and ε > 0. By the linearity of the Skorohod integral together with Remark

3.1, this provides :

Ig,h(ϕ,ψ) ≤ Ig,h(Φi(ϕ,ψ) + ε2Ig,h (Φi(ϕ, α), ψ)

+2εE
∫

R2d

Hx(Xθ)Hy(Xθ+δ)Sg ◦ Sh (ϕ(Xθ − x)ψ(Xθ+δ − y))

Sg ◦ Sh (Φi(ϕ, α)(Xθ − x), ψ(Xθ+δ − y)) dxdy.

We next divide by ε, send ε to zero, and observe that the same calculation can be performed
with the function −α. This leads to the first order condition :

0 = E
∫

R2d

Hx(Xθ)Hy(Xθ+δ)Sg ◦ Sh (ϕ(Xθ − x)ψ(Xθ+δ − y))

Sg ◦ Sh (Φi(ϕ, α)(Xθ − x)ψ(Xθ+δ − y)) dxdy (7.5)
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for all α ∈ C1
b .

2. In this step, we consider an arbitrary α ∈ C1
b with compact support, and we work out

the integral with respect to the variable xi in (7.5). Using the notations introduced in the
statement of the lemma, we deduce from Lemma 7.1 that :∫

Hxi(Xi
θ)S

g ◦ Sh (ϕ(Xθ − x)ψ(Xθ+δ − y))Sg ◦ Sh (Φi(ϕ, α)(Xθ − x), ψ(Xθ+δ − y)) dxi

=
∫ Xi

θ

−∞

{
α̂(Xi

θ − xi)Sg ◦ Sh
(
F(−i)(x)G(y)

)
− α̂′(Xi

θ − xi)Sg ◦ Sh(−i)
(
F(−i)(x)G(y)

)}
{
α(Xi

θ − xi)Sg ◦ Sh
(
F(−i)(x)G(y)

)
− α′(Xi

θ − xi)Sg ◦ Sh(−i)
(
F(−i)(x)G(y)

)}
dxi

=
∫ ∞

0

{
α̂(ξ)Sg ◦ Sh

(
F(−i)(x)G(y)

)
− α̂′(ξ)Sg ◦ Sh(−i)

(
F(−i)(x)G(y)

)}
{
α(ξ)Sg ◦ Sh

(
F(−i)(x)G(y)

)
− α′(ξ)Sg ◦ Sh(−i)

(
F(−i)(x)G(y)

)}
dξ,

where the last equality follows by the trivial change of variable ξ = Xi
θ − xi. By Fubini’s

theorem, (7.5) provides :

0 =
∫ ∞

0

{
aiα̂(ξ)α(ξ) + biα̂

′(ξ)α′(ξ) + ci
[
α̂(ξ)α′(ξ) + α̂′(ξ)α(ξ)

]}
dξ ,

=
∫ ∞

0

{
aiα̂(ξ)α(ξ) + biα̂

′(ξ)α′(ξ)
}
dξ

where we used the fact that α(0) = 0, α has compact support, and the coefficients ai, bi, ci
are given by :

ai := E
∫

R2d−1

Hx(−i)

(
X

(−i)
θ

)
Hy (Xθ+δ)Sg ◦ Sh

(
F(−i)(x)G(y)

)2
dx(−i)dy

bi := E
∫

R2d−1

Hx(−i)

(
X

(−i)
θ

)
Hy (Xθ+δ)Sg ◦ Sh

(
F(−i)(x)G(y)

)2
dx(−i)dy

ci := E
∫

R2d−1

Hx(−i)

(
X

(−i)
θ

)
Hy (Xθ+δ)Sg ◦ Sh

(
F(−i)(x)G(y)

)
Sg ◦ Sh(−i)

(
F(−i)(x)G(y)

)
dx(−i)dydx(−i)dy .

Integrating by parts, and using again the fact that α has compact support and α(0) = 1,
this provides : ∫ ∞

0
{aiα̂(ξ)− biα̂”(ξ)}α(ξ)dξ = 0 .

Since α is an arbitrary C1 function with compact support, this implies that aiα̂ − biα̂”
= 0 on R+. Since α̂(0) = 1 and α̂ is bounded, this leads to a unique solution to the first
order conditions :

α̂(ξ) = e−ηiξ for all ξ ≥ 0 with ηi :=
√
ai
bi
.
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3. Problem (7.1) consists in minimizing a convex function on a convex domain. Then the
above (unique) solution of the first order condition (7.5) is indeed the unique solution of
the problem (7.1).

�

By using repeatedly the decomposition of Lemma 7.1, we obtain the following result
which be useful for the next Lemma.

Corollary 7.1 Let (ϕ,ψ) be a pair of localizing functions in Ls+ × Ls+. Then :

Sg ◦ Sh (ϕ(Xθ)ψ(Xθ+δ)) =
∑
I∈J

∑
J∈J

(−1)|I|+|J |∂Iϕ(Xθ)∂Jψ(Xθ+δ)S
g
−JS

h
−I(1) .

In the following Lemma, we reduce the integrated mse minimization to the class of
exponential separable localizing functions

ϕη(x) := e−η·x , for η ∈ (0,∞)d .

Let us define the integrated mse problem within the family of exponential localizing func-
tion :

Jg,h(η, ρ) := Ig,h(ϕη, ϕρ) and wg,h := inf
(η,ρ)∈(0,∞)2d

Jg,h(η, ρ) . (7.6)

Lemma 7.3 There is a unique solution (η̂, ρ̂) ∈ (0,∞)2d to the optimization problem
(7.6), i.e.

wg,h := Jg,h(η̂, ρ̂) < Jg,h(η, ρ) for all (η, ρ) ∈ R2d
+ with (η, ρ) 6= (η̂, ρ̂).

Proof. The map (η, ρ) 7−→ Jg,h(η̂, ρ̂) is strictly convex and lower semi-continuous. Then,
the statement of the lemma holds under the following claim :

cl
({

(η, ρ) ∈ (0,∞)2d : Jg,h(η, ρ) ≤ C
})

is a compact subset of (0,∞)2d (7.7)

for all constant C > wg,h.

It remains to prove (7.7). We fix some positive integer i ≤ d and we denote :

Ui(x, y) := Hx(−i)(X(−i)
θ )Hy(Xθ+δ)Sg ◦ Sh

(
ϕ(−i)(Xθ − x)ψ(Xθ+δ − y)

)
,

Vi(x, y) := Hx(−i)(X(−i)
θ )Hy(Xθ+δ)Sg ◦ Sh(−i)

(
ϕ(−i)(Xθ − x)ψ(Xθ+δ − y)

)
.
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Observe that Ui(x, y) and Vi(x, y) do not depend on the xi variable. Proceeding as in Step
2 of the proof of Lemma 7.2, we see that

Jg,h(η, ρ) = E
∫

R2d−1

∫ Xi
θ

−∞

{
ϕi(Xi

θ − xi)Ui(x, y)− ϕ′i(X
i
θ − xi)Vi(x, y)

}2
dxidy

= E
∫

R2d−1

∫ ∞

0

{
ϕi(ξ)Ui(x, y)− ϕ′i(ξ)Vi(x, y)

}2
dξ dx(−i)dy .

Now since ϕ(x) = e−ηx, we have ϕ′i(x
i) = −ηiϕi(xi), and therefore

Jg,h(η, ρ) =
1

2ηi
E
∫

R2d−1

{Ui(x, y) + ηiVi(x, y)}2 dx(−i)dy .

Now, set Bn := [−n, n], and use the trivial inequality

1 = (2n)−1

∫
Bn

dxi ≥ (2n)−1

∫
Bn

Hxi

(
Xi
θ

)
dxi.

This provides that :

Jg,h(η, ρ) ≥ 1
2ηi

E
∫
B2d−1

n

{Ui(x, y) + ηi(ξ)Vi(x, y)}2 dx(−i)dy

≥ 1
4nηi

E
∫
B2d

n

{
Ūi(x, y) + ηi(ξ)V̄i(x, y)

}2
dxdy ,

where

Ūi(x, y) = Hx(Xθ)Hy(Xθ+δ)Sg ◦ Sh
(
ϕ(−i)(Xθ − x)ψ(Xθ+δ − y)

)
,

V̄i(x, y) := Hx(Xθ)Hy(Xθ+δ)Sg ◦ Sh(−i)
(
ϕ(−i)(Xθ − x)ψ(Xθ+δ − y)

)
.

By Jensen’s inequality, this provides :

Jg,h(η, ρ) ≥ 1
2ηi(2n)−2d+1

{∫
B2d

n

E
[
Ūi(x, y) + ηiV̄i(x, y)

]
dxdy

}2

. (7.8)

Now observe that

E
[
Ū(x, y)

]
= E [εx(Xθ)εy(Xθ+δ)] = f(x, y)

by Theorem 3.1, and

E
[
V̄ (x, y)

]
= E

[
Hxi(Xi

θ)εx(−i)(X(−i)
θ )εy(Xθ+δ)

]
by Remark 3.2. In particular, E

[
Ū(x, y)

]
and E

[
V̄ (x, y)

]
are positive and independent of

the pair (η, ρ). We then deduce from (7.8) that for all constant C > 0, there is a constant
c > 0 such that :

Jg,h(η, ρ) ≤ C =⇒ c−1 ≤ ηi ≤ c .
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By following the same line of argument, we obtain the same result for the parameter ρ,
completing the proof of (7.7). �

We are now ready for the proof of Theorem 4.1.

Proof of Theorem 4.1 We first show that vg,h = wg,h implying that the solution of the
problem wg,h solves vg,h. Then, we will show that this solution is unique and derive its
characterization as in the statement of the theorem.

1. Let (ϕn, ψn)n ⊂ Ls+×Ls+ be a minimizing sequence of the problem vg,h. Using repeatedly
Lemma 7.2, we pass to an exponential minimizing sequence (ϕηn , ϕρn). This shows that
vg,h ≤ wg,h. The reverse inequality is trivial by definition of wg,h.

2. The partial minimization problems (7.1)-(7.3) consist in minimizing a strictly convex
functional on a convex domain. This proves that the only possible solution of the first order
conditions for the integrated mse problem is of the exponential type, as in the definition of
the problem wg,h. We then deduce that the integrated mse problem has a unique solution
characterized by the first order condition (7.2)-(7.4). The characterization reported in the
statement of the theorem is easily obtained from Corollary 7.1, by observing that ϕ̂′(xi)
= −η̂iϕ̂(xi) and ψ̂′(xi) = −ρ̂iψ̂(xi), and performing explicitly a partial integration with
respect to each variable xi and yi. �
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