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Introduction

These notes have been prepared for the Special Research Semester on Fi-

nancial Markets, which was held in Pisa, Italy, from April 29 to July 15,

2002.

The lectures were organized into six sessions of two hours each. Unfor-

tunately, I was not able to provide all the information contained in these

notes. In particular, I had no time to even start the last chapter on gamma

constraints, which contains many open problems. I hope that these notes

will motivate some people to make some progress on this problem.

I would like to thank all participants to these lectures. It was a pleasure

for me to share my experience on this subject with the excellent audience

that was offered by this special research semester. Special thanks go to

Maurizion Prattelli for his excellent organization, his permanent availability,

and his warm hospitality. I am also grateful to Patrick Cheridito for a careful

reading of a preliminary version of these notes.

The general topic of these lectures is the Hamilton-Jacobi-Bellman ap-

proach to stochastic control problems, with applications to finance. In the

first lecture, I introduced the classical standard class of stochastic control

problems, the associated dynamic programming principle, and the resulting

HJB equation describing the local behavior of the value function of the con-

trol problem. Throughout this first introduction to HJB equation, the value

function is assumed to be as smooth as required.

The second lecture was dedicated to the verification theorem with two

applications. First, the classical Merton portfolio selection problem, which

was the starting point of the use of stochastic control techniques in the fi-

nancial literature. As a second application, we present a recent result on the

law of iterated logarithm for double stochastic integrals, which is needed in

the problem of hedging under gamma constraints of Section 4.

The regularity issue was discussed in the third lecture. I first estab-

lished the continuity of the value function when the controls take values in
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a bounded domain, then I provided some examples proving that, in general,

one should not expect more regularity (in the classical sense). This motivated

the need for a weak notion of solution of the HJB equation : the theory of

viscosity solutions.

In the next lecture, I showed how the HJB equation can now be written

rigorously in the viscosity sense, without any regularity assumption on the

value function. I put a special emphasis on the fact that these proofs are

only slight modifications of the proofs in the smooth case.

The remaining part of the lecture focuses on the problem of super-replicating

some given European contingent claim in a Markov diffusion model, under

portfolio constraints. This is a very popular problem in finance which, un-

fortunately, does not fit in the class of standard control problems treated in

the first part of these notes. However, one can derive a dual formulation of

this problem, which turns out to be a standard control problem with un-

bounded controls set. Control problems with controls taking values in an

unbounded set are said to be singular. This is the contain of the fifth lec-

ture. The last lecture uses the results of the first sections to derive the HJB

equation satisfied by the super-replication value (in the viscosity sense), and

studies precisely the terminal condition. The main results exhibit the so-call

face-lifting phenomenon in the context of the Black and Scholes model.
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1 Stochastic control problems and the asso-

ciated Hamilton-Jacobi-Bellman equation

1.1 Stochastic control problems in standard form

Throughout these notes, (Ω,F , IF, P ) is a filtered probability space with fil-

tration IF = {Ft, t ≥ 0} satisfying the usual conditions. Let W = {Wt,

t ≥ 0} be a Brownian motion valued in IRd, defined on (Ω,F , IF, P ).

Control processes. Given a subset U of IRk, we denote by U0 the set of all

progressively measurable processes ν = {νt, t ≥ 0} valued in U . The elements

of U0 are called control processes.

Controlled Process. Let

b : (t, x, u) ∈ IR+ × IRn × U −→ b(t, x, u) ∈ IRn

and

σ : (t, x, u) ∈ IR+ × IRn × U −→ σ(t, x, u) ∈MIR(n, d)

be two given functions satisfying the uniform Lipschitz condition

|b(t, x, u)− b(t, y, u)|+ |σ(t, x, u)− σ(t, y, u)| ≤ K |x− y| , (1.1)

for some constant K independent of (t, x, y, u). For each control process

ν ∈ U , we consider the state stochastic differential equation :

dXt = b(t,Xt, νt)dt+ σ(t,Xt, νt)dWt (1.2)

If the above equation has a unique solution X, for a given initial data, then

the process X is called the controlled process, as his dynamics is driven by

the action of the control process ν.

Admissible control processes. Let T > 0 be some given time horizon. We

shall denote by U the subset of all control processes ν ∈ U0 which satisfy the
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additional requirement :

E
∫ T

0

(
|b(t, x, νt)|+ |σ(t, x, νt)|2

)
dt < ∞ for x ∈ IRn . (1.3)

This condition guarantees the existence of a controlled process for each given

initial condition and control, under the above uniform Lipschitz condition on

the coefficients b and σ. This is a consequence of a more general existence

theorem for stochastic differential equations with random coefficients, see e.g.

Protter [21].

Theorem 1.1 Let Condition (1.1) hold. Then, for each F0 random vari-

able ξ ∈ L2(Ω), there exists a unique IF−adapted process X satisfying (1.2)

together with the initial condition X0 = ξ. Moreover, we have

E

[
sup

0≤s≤t
|Xs|2

]
< ∞ . (1.4)

Cost functional. Let

f, k : [0, T ]× IRn × U −→ IR and g : IRn −→ IR

be given functions. We assume that ‖k−‖∞ < ∞ (i.e. max(−k,O) is uni-

formly bounded), and f and g satisfy the quadratic growth condition :

|f(t, x, u)|+ |g(x)| ≤ C(1 + |x|2) for some constant C independent of (t, u) ,

We define the cost function J on [0, T ]× IRn × U by :

J(t, x, ν) := Et,x

[∫ T

t
β(t, s)f(s,Xs, νs)ds+ β(t, T )g(XT )

]

with

β(t, s) := e−
∫ s

t
k(r,Xr,νr)dr .

Here Et,x is the expectation operator conditional on Xt = x, and X is the

solution of the SDE 1.2 with control ν and initial condition Xt = x.
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Observe that the quadratic growth condition on f and g together with the

bound on k− ensure that J(t, x, ν) is well-defined for all admissible controls

ν ∈ U , as a consequence of Theorem 1.1.

The stochastic control problem. The purpose of this section is to study the

minimization problem

V (t, x) := inf
ν∈U

J(t, x, ν) for (t, x) ∈ [0, T )× IRn .

The main concern of this section is to describe the local behavior of the value

function V by means of the so-called Hamilton-Jacobi-Bellman equation, and

to see under which circumstances V is characterized by its local behavior.

We conclude this section by some remarks.

1. Although the cost function J(t, x, ν) may depend on the information

preceding time t, the value function V (t, x) depends only on the present

information (t, x) at time t. We refer to Hausmann (1983) or ElKaroui,

Jeanblanc and N’guyen (1983) for the proof of this deep result.

2. If V (t, x) = J(t, x, ν̂t,x), we call ν̂t,x an optimal control for the problem

V (t, x).

3. The following are some interesting subsets of controls :

- a process ν ∈ U which is adapted to the natural filtration IFX of the

associated state process is called feedback control,

- a process ν ∈ U which can be written in the form νs = ũ(s,Xs) for

some measurable map ũ from [0, T ]×IRn into U , is called Markovian control;

notice that any Markovian control is a feedback control,

- the deterministic processes of U are called open loop controls.

4. Let (Y, Z) be the controlled processes defined by

dYs = Zsf(s,Xs, νs)ds and dZs = −Zsk(s,Xs, νs)ds ,

and define the augmented state process X̄ := (X, Y, Z). Then, the above
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value function V can be written in the form :

V (t, x) = V̄ (t, x, 0, 1) ,

where x̄ = (x, y, z) is some initial data for the augmented state process X̄,

V̄ (t, x̄) := Et,x̄

[
ḡ(X̄T )

]
and ḡ(x, y, z) := y + g(x)z .

Hence the stochastic control problem V can be reduced without loss of gen-

erality to the case where f = k ≡ 0. We shall appeal to this reduced form

whenever convenient for the exposition.

1.2 The dynamic programming principle

The dynamic programming principle is the main tool in the theory of stochas-

tic control. A rigorous proof of this result is beyond the scope of these notes,

as it appeals to delicate measurable selection arguments.

Theorem 1.2 Let (t, x) ∈ [0, T ) × IRn be given. Then, for every stopping

time θ valued in [t, T ], we have

V (t, x) = inf
ν∈U

Et,x

[∫ θ

t
β(t, s)f(s,Xs, νs)ds+ β(t, θ)V (θ,Xθ)

]
. (1.5)

Before sketching the proof of this result, let us make some comments.

1. In the discrete-time framework, the dynamic programming principle can

be stated as follows :

V (t, x) = inf
u∈U

Et,x

[
f(t,Xt, u) + e−k(t+1,Xt+1,νt+1)V (t+ 1, Xt+1)

]
.

Observe that the infimum is now taken over the subset U of the finite di-

mensional space Rk. Hence, the dynamic programming principle allows to

reduce the initial minimization problem, over the subset U of the infinite

dimensional set of IRk−valued processes, into a finite dimensional minimiza-

tion problem. However, we are still facing an infinite dimensional problem
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since the dynamic programming principle relates the value function at time

t to the value function at time t+ 1.

2. In the context of the above discrete-time framework, notice that the

dynamic programming principle suggests the following backward algorithm

to compute V as well as the associated optimal strategy (when it exists).

Since V (T, ·) = g is known, the above dynamic programming principle can

be applied recursively in order to deduce the value function V (t, x) for every

t.

3. Back to the continuous time setting. There is no counterpart to the above

backward algorithm. But, as the stopping time θ approaches t, the above

dynamic programming principle implies a special local behavior for the value

function V . When V is known to be smooth, this will be obtained by means

of Itô’s lemma.

4. It is usually very difficult to determine a priori the regularity of V . The

situation is even worse since there are many counter-examples showing that

the value function V can not be expected to be smooth in general; see Section

1.5. This problem is solved by appealing to the notion of viscosity solutions,

which provides a weak local characterization of the value function V .

5. Once the local behavior of the value function is characterized, we are

faced to the important uniqueness issue, which implies that V is completely

characterized by its local behavior together with some convenient boundary

condition.

Sketch of the proof of Theorem 1.2. Let Ṽ (t, x) denote the right hand-

side of (1.5).

By the tower Property of the conditional expectation operator, it is easily

checked that

J(t, x, ν) = Et,x

[∫ θ

t
β(t, s)f(s,Xs, νs)ds+ β(t, θ)J(θ,Xθ, ν)

]
.
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Since J(θ,Xθ, ν) ≥ V (θ,Xθ), this proves that V ≥ Ṽ . To prove the reverse

inequality, let µ ∈ U and ε > 0 be fixed, and consider an ε−optimal control

νε for the problem V (θ,Xθ), i.e.

J(θ,Xθ, ν
ε) ≤ V (θ,Xθ) + ε .

Clearly, one can choose νε = µ on the stochastic interval [t, θ]. Then

V (t, x) ≤ J(t, x, νε) = Et,x

[∫ θ

t
β(t, s)f(s,Xs, µs)ds+ β(t, θ)J(θ,Xθ, ν

ε)

]

≤ Et,x

[∫ θ

t
β(t, s)f(s,Xs, µs)ds+ β(t, θ)V (θ,Xθ)

]
+ εEt,x[β(t, θ)] .

This provides the required inequality by the arbitrariness of µ ∈ U and ε > 0.

tu

Exercise. Where is the gap in the above sketch of the proof ?

1.3 The Hamilton-Jacobi-Bellman equation

In this paragraph, we introduce the Hamilton-Jacobi-Bellman equation by

deriving it from the dynamic programming principle under smoothness as-

sumptions on the value function. Let H : [0, T ]× IRn × IR× IRn ×Sn (Sn is

the set of all n×n symmetric matrices with real coefficients) be defined by :

H(t, x, r, p, A)

:= inf
u∈U

{
−k(t, x, u)r + b(t, x, u)′p+

1

2
Tr[σσ′(t, x, u)A] + f(t, x, u)

}
,

where prime denotes transposition. We also need to introduce the linear

second order operator Lu associated to the controlled process {β(0, t)Xt,

t ≥ 0} controlled by the constant control process u :

Luϕ(t, x) := −k(t, x, u)ϕ(t, x) + b(t, x, u)′Dϕ(t, x)

+
1

2
Tr[σσ′(t, x, u)D2ϕ(t, x)] ,
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where D and D2 denote the gradient and the Hessian operator with respect

to the x variable. With this notation, we have by Itô’s lemma

βν(0, s)ϕ(s,Xν
s )− βν(0, t)ϕ(t,Xν

t ) =
∫ s

t
βν(0, r)

(
∂

∂t
+ Lνr

)
ϕ(r,Xν

r )dr

+
∫ s

t
βν(0, r)Dϕ(r,Xν

r )′σ(r,Xν
r , νr)dWr

for every smooth function ϕ ∈ C1,2([0, T ], IRn) and each admissible control

process ν ∈ U .

Proposition 1.1 Assume the value function V ∈ C1,2([0, T ), IRn), and let

the coefficients k(·, ·, u) and f(·, ·, u) be continuous in (t, x) for all fixed u ∈ U .

Then, for all (t, x) ∈ [0, T )× IRn :

∂V

∂t
(t, x) +H

(
t, x, V (t, x), DV (t, x), D2V (t, x)

)
≥ 0 (1.6)

Proof. Let (t, x) ∈ [0, T )×IRn and u ∈ U be fixed and consider the constant

control process ν = u, together with the associated state process X with

initial data Xt = x. For all h > 0, Define the stopping time :

θh := inf {s > t : (s− t,Xs − x) 6∈ [0, h)× αB} ,

where α > 0 is some given constant, and B denotes the unit ball of IRn.

Notice that θh −→ t as h↘ 0 and θh = h for h ≤ h̄(ω) sufficiently small.

1. From the dynamic programming principle, it follows that :

0 ≥ Et,x

[
β(0, t)V (t, x)− β(0, θh)V (θh, Xθh

)−
∫ θh

t
β(0, r)f(r,Xr, νr)dr

]

= −Et,x

[∫ θh

t
β(0, r)(Vt + L·V + f)(r,Xr, u)dr

]

− Et,x

[∫ s

t
β(0, r)DV (r,Xr)

′σ(r,Xr, u)dWr

]
,

where Vt denotes the partial derivative with respect to t; the last equality

follows from Itô’s lemma and uses the crucial smoothness assumption on V .
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2. Observe that β(0, r)DV (r,Xr)
′σ(r,Xr, u) is bounded on the stochastic

interval [t, θh]. Therefore, the second expectation on the right hand-side of

the last inequality vanishes, and we obtain :

−Et,x

[
1

h

∫ θh

t
β(0, r)(Vt + L·V + f)(r,Xr, u)dr

]
≤ 0

We now send h to zero. The a.s. convergence of the random value in-

side the expectation is easily obtained by the mean value Theorem; re-

call that θh = h for sufficiently small h > 0. Since the random variable

h−1
∫ θh
t β(0, r)(L·V + f)(r,Xr, u)dr is essentially bounded, uniformly in h,

on the stochastic interval [t, θh], it follows from the dominated convergence

theorem that :

−∂V
∂t

(t, x)− LuV (t, x)− f(t, x, u) ≤ 0 ,

which is the required result, since u ∈ U is arbitrary. tu

We next wish to show that V satisfies the nonlinear partial differential

equation (1.6) with equality. This is a more technical result which can be

proved by different methods. We shall report a proof, based on a contra-

diction argument, which provides more intuition on this result, although it

might be slightly longer than the usual proof reported in standard textbooks.

Proposition 1.2 Assume the value function V ∈ C1,2([0, T ), IRn), and let

the function H be continuous, and ‖k+‖∞ <∞. Then, for all (t, x) ∈ [0, T )×
IRn :

∂V

∂t
(t, x) +H

(
t, x, V (t, x), DV (t, x), D2V (t, x)

)
≤ 0 (1.7)

Proof. Let (t0, x0) ∈ [0, T )× IRn be fixed, assume to the contrary that

∂V

∂t
(t0, x0) +H

(
t0, x0, V (t0, x0), DV (t0, x0), D

2V (t0, x0)
)

> 0 , (1.8)

and let us work towards a contradiction.
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1. For a given parameter ε > 0, define the smooth function ϕ ≤ V by

ϕ(t, x) := V (t, x)− ε
1

2
|x− x0|2 .

Then

(V − ϕ)(t0, x0) = 0, (DV −Dϕ)(t0, x0) = 0, (Vt − ϕt)(t0, x0) = 0,

and (D2V −D2ϕ)(t0, x0) = εIn ,

where In is the n × n identity matrix. By continuity of H, it follows from

(1.8) that

h(t0, x0) :=
∂ϕ

∂t
(t0, x0) +H

(
t0, x0, ϕ(t0, x0), Dϕ(t0, x0), D

2ϕ(t0, x0)
)

> 0

for a sufficiently small ε > 0.

2. For η > 0, define the open neighborhood of (t0, x0) :

Nη := {(t, x) : (t− t0, x− x0) ∈ (−η, η)× ηB and h(t, x) > 0} ,

and observe that

2γeη‖k+‖∞ := min
∂Nη

(V − ϕ) =
ε

2
min
∂Nη

|x− x0|2 > 0 . (1.9)

Next, let ν̃ be a γ−optimal control for the problem V (t0, x0), i.e.

J(t0, x0, ν̃) ≤ V (t0, x0) + γ . (1.10)

We shall denote by X̃ and β̃ the controlled process and the discount factor

defined by ν̃ and the initial data X̃t0 = x0.

3. Consider the stopping time

θ := inf
{
s > t : (s, X̃s) 6∈ Nη

}
,

and observe that, by continuity of the state process, (θ, X̃θ) ∈ ∂Nη, so that :

(V − ϕ)(θ, X̃θ) ≥ 2γeη‖k+‖∞
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by (1.9). We now compute that :

β̃(t0, θ)V (θ, X̃θ)− β̃(t0, t0)V (t0, x0)

≥
∫ θ

t0
d[β̃(t0, r)ϕ(r, X̃r)] + 2γeh‖k+‖∞ β̃(t0, θ)

≥
∫ θ

t0
d[β̃(t0, r)ϕ(r, X̃r)] + 2γ .

By Itô’s lemma, this provides :

V (t0, x0) ≤ Et0,x0

[
β̃(t0, θ)V (θ, X̃θ)−

∫ θ

t0
(ϕt + Lν̃rϕ)(r, X̃r)dr

]
− 2γ ,

where the ”dW” integral term has zero mean, as its integrand is bounded

on the stochastic interval [t0, θ]. Observe also that (ϕt + Lν̃rϕ)(r, X̃r) +

f(r, X̃r, ν̃r) ≥ h(r, X̃r) ≥ 0 on the stochastic interval [t0, θ]. We therefore

deduce that :

V (t0, x0) ≤ −2γ + Et0,x0

[∫ θ

t0
β̃(t0, r)f(r, X̃r, ν̃r) + β̃(t0, θ)V (θ, X̃θ)

]
≤ −2γ + J(t0, x0, ν̃)

≤ V (t0, x0)− γ ,

where the last inequality follows by (1.10). This completes the proof. tu

As a consequence of Propositions 1.1 and 1.2, we have the main result of

this section :

Theorem 1.3 Let the conditions of Propositions 1.1 and 1.2 hold. Then,

the value function V solves the Hamilton-Jacobi-Bellman equation

∂V

∂t
(t, x) +H

(
t, x, V (t, x), DV (t, x), D2V (t, x)

)
= 0 (1.11)

on [0, T )× IRn.
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1.4 Solving a control problem by verification

In this paragraph, we provide a first answer towards the uniqueness problem.

Namely, given a smooth solution v of the Hamilton-Jacobi-Bellman equation,

we give sufficient conditions which allow to conclude that v coincides with

the value function V . This is the so-called verification result. The statement

of this result is heavy, but its proof is simple and relies essentially on Itô’s

lemma. We conclude this section by two examples of application of the

verification theorem.

1.4.1 The verification theorem

Theorem 1.4 Let v be a C1,2([0, T ), IRn)∩C([0, T ]×IRn) function. Assume

that ‖k−‖∞ < ∞ and v and f have quadratic growth, i.e. there is a constant

C such that

|f(t, x, u)|+ |v(t, x)| ≤ C(1 + |x|2) for all (t, x, u) ∈ [0, T )× IRn × U .

(i) Suppose that v(T, ·) ≤ g and

∂v

∂t
(t, x) +H

(
t, x, v(t, x), Dv(t, x), D2v(t, x)

)
≥ 0

on [0, T )× IRn. Then v ≤ V on [0, T ]× IRn.

(ii) Assume further that v(T, ·) = g, and there exists a minimizer û(t, x) of

u 7−→ Luv(t, x) + f(t, x, u) such that

0 =
∂v

∂t
(t, x) +H

(
t, x, v(t, x), Dv(t, x), D2v(t, x)

)
=

∂v

∂t
(t, x) + Lû(t,x)v(t, x) + f(t, x, u) ,

the stochastic differential equation

dXs = b (s,Xs, û(s,Xs)) ds+ σ (s,Xs, û(s,Xs)) dWs

defines a unique solution X for each given initial date Xt = x, and the process

ν̂s := û(s,Xs) is a well-defined control process in U .

Then v = V , and ν̂ is an optimal Markov control process.
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Proof. Let ν ∈ U be an arbitrary control process, X the associated state

process with initial date Xt = x, and define the stopping time

θn := T ∧ inf {s > t : |Xs − x| ≥ n} .

By Itô’s lemma, we have

v(t, x) = β(t, θn)v (θn, Xθn)−
∫ θn

t
β(t, r)(vt + Lν(r)v)(r,Xr)dr

−
∫ θn

t
β(t, r)Dv(r,Xr)σ(r,Xr, νr)dWr

Observe that vt +Luv+ f(·, ·, u) ≥ vt +H(·, ·, v,Dv,D2v) ≥ 0, and that the

integrand in the stochastic integral is bounded on [t, θn], a consequence of

the continuity of Dv, σ and the condition ‖k−‖∞ < ∞. Then :

v(t, x) ≤ E

[
β(t, θn)v (θn, Xθn) +

∫ θn

t
β(t, r)f(r,Xr, νr)dr

]
. (1.12)

We now take the limit as n increases to infinity. Since θn −→ T a.s. and∣∣∣∣∣β(t, θn)v (θn, Xθn) +
∫ θn

t
β(t, r)f(r,Xr, νr)dr

∣∣∣∣∣
≤ CeT‖k−‖∞(1 + |Xθn|2 + T +

∫ T
t |Xs|2ds)

≤ CeT‖k−‖∞(1 + T )(1 + supt≤s≤T |Xs|2) ∈ L1 ,

by the estimate (1.4) of Theorem 1.1, it follows from the dominated conver-

gence that

v(t, x) ≤ E

[
β(t, T )v(T,XT ) +

∫ T

t
β(t, r)f(r,Xr, νr)dr

]

≤ E

[
β(t, T )g(XT ) +

∫ T

t
β(t, r)f(r,Xr, νr)dr

]
,

where the last inequality uses the condition v(T, ·) ≤ g. Since the control

ν ∈ U is arbitrary, this completes the proof of (i).

Statement (ii) is proved by repeating the above argument and observing

that the control ν̂ achieves equality at the crucial step (1.12). tu
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Remark 1.1 When U is reduced to a singleton, the optimization problem

V is degenerate. In this case, the HJB equation is linear, and the verification

theorem reduces to the so-called Feynman-Kac formula.

We conclude this section by a discussion of the existence of a classical

solution to the HJB equation. The verification theorem assumes the existence

of such a solution, and is by no means an existence result. However, it

provides uniqueness in the class of function with quadratic growth.

We now state without proof an existence result for the HJB equation

together with the terminal condition V (T, ·) = g (see [18] for the detailed

proof). The main assumption is the so-called uniform parabolicity condition :

there is a constant c > 0 such that

ξ′ σσ′(t, x, u) ξ ≥ c|ξ|2 for all (t, x, u) ∈ [0, T ]× IRn × U .
(1.13)

In the following statement, we denote by Ck
b (IRn) the space of bounded func-

tions whose partial derivatives of orders ≤ k exist and are bounded continu-

ous. We similarly denote by Cp,k
b ([0, T ], IRn) the space of bounded functions

whose partial derivatives with respect to t, of orders ≤ p, and with respect

to x, of order ≤ k, exist and are bounded continuous.

Theorem 1.5 Let Condition 1.13 hold, and assume further that :

• U is compact;

• b, σ and f are in C1,2
b ([0, T ], IRn);

• g ∈ C3
b (IRn).

Then the HJB equation (1.11) with the terminal data V (T, ·) = g has a unique

solution V ∈ C1,2
b ([0, T ]× IRn).

1.4.2 Application 1 : optimal portfolio allocation

We now apply the verification theorem to a classical example in finance,

which was introduced by Merton [19], and generated a huge literature since

then.
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Consider a financial market consisting of a non-risky asset S0 and a risky

one S. The dynamics of the price processes are given by

dS0
t = S0

t rdt and dSt = St[µdt+ σdWt] .

Here, r, µ and σ are some given positive constants, andW is a one-dimensional

Brownian motion.

The investment policy is defined by an IF−adapted process π = {πt,

t ∈ [0, T ]}, where πt represents the proportion of wealth invested in the risky

asset at time t; The remaining (1 − πt) proportion of wealth is invested in

the risky asset. Therefore, the wealth process satisfies

dXt = πtXt
dSt

St

+ (1− πt)Xt
dS0

t

S0
t

= Xt [(r + (µ− r)πt) dt+ σπtdWt] . (1.14)

Such a process π is said to be admissible if

E

[∫ T

0
|πt|2dt

]
< ∞ .

We denote by U the set of all admissible portfolios. Observe that, in view of

the particular form of our controlled process X, this definition agrees with

(1.3).

Let γ be an arbitrary parameter in (0, 1) and define the power utility

function :

U(x) := xγ for x ≥ 0 .

The parameter γ is called the relative risk premium coefficient.

The objective of the investor is to choose an allocation of his wealth so

as to maximize the expected utility of his terminal wealth, i.e.

V (t, x) := sup
π∈U

Et,x [U(XT )] .

The HJB equation associated with this problem is :

∂w

∂t
(t, x) + sup

u∈IR
Luw(t, x) = 0 , (1.15)
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where Lu is the second order linear operator :

Luw(t, x) := (r + (µ− r)u)x
∂w

∂x
(t, x) +

1

2
σ2u2x2 ∂

2w

∂x2
(t, x) .

From the definition of X in (1.14), we see that :

Xs = Xt exp
(
r(s− t) + (µ− r)

∫ s

t
πτdτ −

1

2
σ2
∫ s

t
π2

τdτ + σ
∫ s

t
πτdWτ

)
so that

Et,x [U(XT )] = xγEt,1 [U(XT )] and V (t, x) = xγV (t, 1) .

Set h(t) := V (t, 1), and plug the above separability property of V in (1.15).

The result is the following ordinary differential equation on h :

0 = h′ + γh sup
u∈IR

{
r + (µ− r)u+

1

2
(γ − 1)σ2u2

}
(1.16)

= h′ + γh

[
r +

1

2

(µ− r)2

(1− γ)σ2

]
, (1.17)

where the maximizer is :

û :=
µ− r

(1− γ)σ2
.

Since V (T, ·) = U(x), we seek for a function h satisfying the above ordinary

differential equation together with the boundary condition h(T ) = 1. This

allows to select a unique candidate for the function h :

h(t) := ea(T−t) with a := γ

[
r +

1

2

(µ− r)2

(1− γ)σ2

]
.

Hence, the function (t, x) 7−→ xγh(t) is a classical solution of the HJB equa-

tion (1.15). It is easily checked that the conditions of Theorem 1.4 are all

satisfied in this context. Then V (t, x) = xγh(t), and the optimal portfolio

allocation policy is given by the constant process :

π̂t := û =
µ− r

(1− γ)σ2
.
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1.4.3 Application 2 : the law of iterated logarithm for double

stochastic integrals

The main object of this paragraph is Theorem 1.6 below, reported from [6],

which describes the local behavior of double stochastic integrals near the

starting point zero. This result will be needed in the problem of hedging

under gamma constraints which will be discussed later in these notes. An

interesting feature of the proof of Theorem 1.6 is that it relies on a verifi-

cation argument. However, the problem does not fit exactly in the setting

of Theorem 1.4. Therefore, this is an iteresting exercise on the verification

concept.

Given a bounded predictable process b, we define the processes

Y b
t := Y0 +

∫ t

0
brdWr and Zb

t := Z0 +
∫ t

0
Y b

r dWr , t ≥ 0 ,

where Y0 and Z0 are some given initial data in IR.

Lemma 1.1 Let λ and T be two positive parameters with 2λT < 1. Then :

E
[
e2λZb

T

]
≤ E

[
e2λZ1

T

]
for each predictable process b with ‖b‖∞ ≤ 1 .

Proof. We split the argument into three steps.

1. We first directly compute that

E
[
e2λZ1

T

∣∣∣Ft

]
= v(t, Y 1

t , Z
1
t ) ,

where, for t ∈ [0, T ], and y, z ∈ IR, the function v is given by :

v(t, y, z) := E

[
exp

(
2λ

{
z +

∫ T

t
(y +Wu −Wt) dWu

})]
= e2λzE

[
exp

(
λ{2yWT−t +W 2

T−t − (T − t)}
)]

= µ exp
[
2λz − λ(T − t) + 2µ2λ2(T − t)y2

]
,

where µ := [1− 2λ(T − t)]−1/2. Observe that

the function v is strictly convex in y, (1.18)
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and

yD2
yzv(t, y, z) = 8µ2λ3(T − t) v(t, y, z) y2 ≥ 0 . (1.19)

2. For an arbitrary real parameter β, we denote by Lβ the Dynkin operator

associated to the process
(
Y b, Zb

)
:

Lβ := Dt +
1

2
β2D2

yy +
1

2
y2D2

zz + βyD2
yz .

In this step, we intend to prove that for all t ∈ [0, T ] and y, z ∈ IR :

max
|β|≤1

Lβv(t, y, z) = L1v(t, y, z) = 0 . (1.20)

The second equality follows from the fact that {v(t, Y 1
t , Z

1
t ), t ≤ T} is a

martingale . As for the first equality, we see from (1.18) and (1.19) that 1 is

a maximizer of both functions β 7−→ β2D2
yyv(t, y, z) and β 7−→ βyD2

yzv(t, y, z)

on [−1, 1].

3. Let b be some given predictable process valued in [−1, 1], and define the

sequence of stopping times

τk := T ∧ inf
{
t ≥ 0 : (|Y b

t |+ |Zb
t | ≥ k

}
, k ∈ IN .

By Itô’s lemma and (1.20), it follows that :

v(0, Y0, Z0) = v
(
τk, Y

b
τk
, Zb

τk

)
−
∫ τk

0
[bDyv + yDzv]

(
t, Y b

t , Z
b
t

)
dWt

−
∫ τk

0
Lbtv

(
t, Y b

t , Z
b
t

)
dt

≥ v
(
τk, Y

b
τk
, Zb

τk

)
−
∫ τk

0
[bDyv + yDzv]

(
t, Y b

t , Z
b
t

)
dWt .

Taking expected values and sending k to infinity, we get by Fatou’s lemma :

v(0, Y0, Z0) ≥ lim inf
k→∞

E
[
v
(
τk, Y

b
τk
, Zb

τk

)]
≥ E

[
v
(
T, Y b

T , Z
b
T

)]
= E

[
e2λZb

T

]
,

which proves the lemma. tu
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We are now able to prove the law of the iterated logarithm for double

stochastic integrals by a direct adaptation of the case of the Brownian motion.

Set

h(t) := 2t log log
1

t
for t > 0 .

Theorem 1.6 Let b be a predictable process valued in a bounded interval

[β0, β1] for some real parameters 0 ≤ β0 < β1, and Xb
t :=

∫ t
0

∫ u
0 bvdWvdWu.

Then :

β0 ≤ lim sup
t↘0

2Xb
t

h(t)
≤ β1 a.s.

Proof. We first show that the first inequality is an easy consequence of the

second one. Set β̄ := (β0 + β1)/2 ≥ 0, and set δ := (β1 − β0)/2. By the law

of the iterated logarithm for the Brownian motion, we have

β̄ = lim sup
t↘0

2X β̄
t

h(t)
≤ δ lim sup

t↘0

2X b̃
t

h(t)
+ lim sup

t↘0

2Xb
t

h(t)
,

where b̃ := δ−1(β̄ − b) is valued in [−1, 1]. It then follows from the second

inequality that :

lim sup
t↘0

2Xb
t

h(t)
≥ β̄ − δ = β0 .

We now prove the second inequality. Clearly, we can assume with no loss of

generality that ‖b‖∞ ≤ 1. Let T > 0 and λ > 0 be such that 2λT < 1. It

follows from Doob’s maximal inequality for submartingales that for all α ≥ 0,

P
[
max
0≤t≤T

2Xb
t ≥ α

]
= P

[
max
0≤t≤T

exp(2λXb
t ) ≥ exp(λα)

]
≤ e−λαE

[
e2λXb

T

]
.

In view of Lemma 1.1, this provides :

P
[
max
0≤t≤T

2Xb
t ≥ α

]
≤ e−λαE

[
e2λX1

T

]
= e−λ(α+T )(1− 2λT )−

1
2 . (1.21)
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We have then reduced the problem to the case of the Brownian motion, and

the rest of this proof is identical to the first half of the proof of the law of

the iterated logarithm for the Brownian motion. Take θ, η ∈ (0, 1), and set

for all k ∈ IN ,

αk := (1 + η)2h(θk) and λk := [2θk(1 + η)]−1 .

Applying (1.21), we see that for all k ∈ IN ,

P

[
max

0≤t≤θk
2Xb

t ≥ (1 + η)2h(θk)

]
≤ e−1/2(1+η)

(
1 + η−1

) 1
2 (−k log θ)−(1+η) .

Since
∑

k≥0 k
−(1+η) < ∞, it follows from the Borel-Cantelli lemma that, for

almost all ω ∈ Ω, there exists a natural number Kθ,η(ω) such that for all

k ≥ Kθ,η(ω),

max
0≤t≤θk

2Xb
t (ω) < (1 + η)2h(θk) .

In particular, for all t ∈ (θk+1, θk],

2Xb
t (ω) < (1 + η)2h(θk) ≤ (1 + η)2h(t)

θ
.

Hence,

lim sup
t↘0

2Xb
t

h(t)
<

(1 + η)2

θ
a.s.

and the required result follows by letting θ tend to 1 and η to 0 along the

rationals. tu

1.5 On the regularity of the value function

The purpose of this paragraph is to show that the value function should not

be expected to be smooth in general. We start by proving the continuity

of the value function under strong conditions; in particular, we require the

set U in which the controls take values to be bounded. We then give a
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simple example in the deterministic framework where the value function is not

smooth. Since it is well known that stochastic problems are “more regular”

than deterministic ones, we also give an example of stochastic control problem

whose value function is not smooth.

1.5.1 Continuity of the value function for bounded controls

For notational simplicity, we reduce the stochastic control problem to the

case f = k ≡ 0, see Remark 4 at the end of Section 1.1. Our main concern,

in this section, is to show the standard argument for proving the continuity of

the value function. Therefore, the following results assume strong conditions

on the coefficients of the model in order to simplify the proofs. We first start

by examining the value function V (t, ·) for fixed t ∈ [0, T ].

Proposition 1.3 Let f = k ≡ 0, and assume that g is Lipschitz continuous.

Then V (t, ·) is Lipschitz-continuous for all t ∈ [0, T ].

Proof. We shall denote here by Xν
t,x(·) the process controlled by ν ∈ U and

starting from the initial date Xν
t,x(t) = x. For x1, x2 ∈ IRn and ν ∈ U , we

first estimate that :

|V (t, x1)− V (t, x2)| ≤ sup
ν∈U

E
∣∣∣g (Xν

t,x1
(T )

)
− g

(
Xν

t,x2
(T )

)∣∣∣
≤ Const sup

ν∈U
E
∣∣∣Xν

t,x1
(T )−Xν

t,x2
(T )

∣∣∣ (1.22)

by the Lipschitz-continuity of g. Set h(t) := E
∣∣∣Xν

t,x1
(T )−Xν

t,x2
(T )

∣∣∣2. Then,

from the dynamics of the state process, we see that :

h(T ) ≤ Const
{
|x1 − x2|2

+E
∫ T

t

∣∣∣b (r,Xν
t,x1

(r), νr

)
− b

(
r,Xν

t,x2
(r), νr

)∣∣∣2 dr
+E

∫ T

t

∣∣∣σ (r,Xν
t,x1

(r), νr

)
− σ

(
r,Xν

t,x2
(r), νr

)∣∣∣2 dr}

≤ Const

{
|x1 − x2|2 +

∫ T

t
h(r)dr

}
,
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where the last inequality follows from the Lipschitz-continuity of b and σ in

the x variable, uniformly in (t, u). By the Gronwall Lemma, this provides

the estimate h(t)2 ≤ Const |x1 − x2|2, which provides the required result by

going back to (1.22). tu

We next turn to the continuity in the t variable. This requires that the

set U , in which the controls take values, be bounded.

Proposition 1.4 Let f = k ≡ 0, and assume that

• g is Lipschitz-continuous.

• U is bounded,

• the coefficients b and σ are continuous in (t, x, u), and Lipschitz in x ∈ IRn

uniformly in (t, u) ∈ [0, T ]× U .

Then V (·, x) is (1/2)−Hölder continuous for all x ∈ IRn.

Proof. Let 0 ≤ t < s ≤ T be fixed. By the dynamic programming principle,

we have :

|V (t, x)− V (s, x)| =
∣∣∣∣ inf
ν∈U

Et,x [V (s,Xs)]− V (s, x)
∣∣∣∣

≤ sup
ν∈U

Et,x |V (s,Xs)− V (s, x)| .

By the Lipschitz-continuity of V (s, ·) established in Proposition 1.3, we see

that :

|V (t, x)− V (s, x)| ≤ Const sup
ν∈U

Et,x|Xs − x| . (1.23)

We shall now prove that

sup
ν∈U

Et,x|Xs − x| ≤ Const |s− t|1/2 , (1.24)

which provides the required (1/2)−Hölder continuity in view of (1.23). By

definition of the process X, we have

Et,x|Xs − x|2 = Et,x

∣∣∣∣∫ s

t
b(r,Xr, νr)dr +

∫ s

t
σ(r,Xr, νr)dWr

∣∣∣∣2
≤ Const Et,x

[∫ s

t
|h(r,Xr, νr)|2 dr

]
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where h := [b2 + σ2]1/2 is continuous in (t, x, u) and Lipschitz in x uniformly

in (t, u). Then

Et,x|Xs − x|2 ≤ Const
(
(s− t) +

∫ s

t
Et,x|Xr − x|2dr

)
,

which provides the estimation

Et,x|Xs − x|2 ≤ Const |s− t| (1.25)

by Gronwall’s lemma, and (1.24) follows. tu

Remark 1.2 When f and/or k are non-zero, the conditions required on f

and k in order to obtain the (1/2)−Hölder continuity of the value function

can be deduced from the reduction of Remark 4 at the end of Section 1.1.

Remark 1.3 Further regularity results can be proved for the value function

under convenient conditions. Typically, one can prove that LuV exists in the

generalized sense, for all u ∈ U . This implies immediately that the result of

Proposition 1.1 holds in the generalized sense. More technicalities are needed

in order to derive the result of Proposition 1.2 in the generalized sense. We

refer to [14], §IV.10, for a discussion of this issue.

1.5.2 A deterministic control problem with non-smooth value func-

tion

Let σ ≡ 0, b(x, u) = u, U = [−1, 1], and n = 1. The controlled state is then

the one-dimensional deterministic process defined by :

Xs = Xt +
∫ s

t
νtdt for 0 ≤ t ≤ s ≤ T .

Consider the deterministic control problem

V (t, x) := sup
ν∈U

(XT )2

= sup
ν∈U

(
x+

∫ T

t
νtdt

)2

.
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The value function of this problem is easily seen to be given by :

V (t, x) =

 (x+ T − t)2 for x ≥ 0 with optimal control û = 1 ,

(x− T + t)2 for x ≤ 0 with optimal control û = −1 .

This function is continuous. However, a direct computation shows that it is

not differentiable at x = 0.

1.5.3 A stochastic control problem with non-smooth value func-

tion

Let U = IR, and the controlled process X = (Y, Z) be the IR2−valued process

defined by the dynamics :

dYt = Zt

√
2dW 1

t and dZt = νtdt+
√

2dW 2
t ,

where W = (W 1,W 2) is a standard Brownian motion valued in IR2. Let

g be a non-negative lower semicontinuous mapping on IR, and consider the

stochastic control problem

V (t, x) := sup
ν∈U

Et,x [g(YT )] .

Let us assume that V is smooth, and work towards a contradiction. In

order to apply the results developed in this chapter, we have to amount to a

minimization problem by simply working with −V .

1. If V is C1,2([0, T ), IR2), then it follows from Proposition 1.1 that V satisfies

−∂V
∂t

− u
∂V

∂z
− z2∂

2V

∂y2
− ∂2V

∂z2
≥ 0 for all u ∈ IR ,

and all t ∈ [0, T ) and x = (y, z) ∈ IR2. From the arbitrariness of u ∈ IR, it

follows that the function V is independent of the z variable, and therefore :

−∂V
∂t

(t, y)− z2∂
2V

∂y2
(t, y) ≥ 0 for all z ∈ IR , (1.26)
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and (t, y) ∈ [0, T )× IR. Setting z = 0, we see that

V (·, y) is non-increasing for all y ∈ IR . (1.27)

Also, by sending z to infinity in (1.26), it follows that

V (t, ·) is concave for all t ∈ [0, T ) . (1.28)

2. Since g is non-negative, it is easily seen that

V (T−, y) := lim
t↗T

V (t, y, z) ≥ g(y) for all (y, z) ∈ IR2 . (1.29)

This is an easy consequence of Fatou’s lemma, the lower semicontinuity of g,

and the continuity of YT in its initial condition y.

Now, it follows from (1.27) and (1.29) that :

V (t, y, z) = V (t, y) ≥ V (T−, y) ≥ g(y) for all (t, y, z) ∈ [0, T ]× IR2 .

In view of (1.28), this proves that

V (t, y, z) = V (t, y) ≥ gconc(y) for all (t, y, z) ∈ [0, T ]× IR2 ,(1.30)

where gconc is the concave envelope of g, i.e. the smallest concave function

whose graph lies above the graph of g.

3. Using the inequality g ≤ gconc together with Jensen’s inequality and the

martingale property of Y , it follows that

V (t, y, z) := sup
ν∈U

Et,x [g(YT )]

≤ sup
ν∈U

Et,x [gconc(YT )]

≤ sup
ν∈U

gconc (Et,x[(YT )]) = gconc(y) .

In view of (1.30), we have then proved that

V ∈ C1,2([0, T ), IR2)

=⇒ V (t, y, z) = gconc(y) for all (t, y, z) ∈ [0, T )× IR2 .
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Now recall that this implication holds for any arbitrary non-negative lower

semicontinuous function g. We then obtain a contradiction whenever the

function gconc is not C2(IR). Hence

gconc 6∈ C2(IR) =⇒ V 6∈ C1,2([0, T ), IR2) .
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2 Stochastic control problems and viscosity

solutions

2.1 Intuition behind viscosity solutions

We consider a non-linear second order partial differential equation

(E) F (x, u(x), Du(x), D2u(x)) = 0 for x ∈ O

where O is an open subset of IRn and F is a continuous map from O ×
IR × IRn × Sn −→ IR. A crucial condition on F is the so-called ellipticity

condition :

F (x, r, p, A) ≤ F (x, r, p, B) whenever A ≥ B ,

for all (x, r, p) ∈ O × IR× IRn. The full importance of this condition will be

made clear by Proposition 2.1 below.

The first step towards the definition of a notion of weak solution to (E)

is the introduction of sub and supersolutions.

Definition 2.1 A function u : O −→ IR is a classical supersolution (resp.

subsolution) of (E) if u ∈ C2(O) and

F
(
x, u(x), Du(x), D2u(x)

)
≥ (resp. ≤) 0 for x ∈ O .

The theory of viscosity solutions is motivated by the following result,

whose simple proof is left to the reader.

Proposition 2.1 Let u be a C2(O) function. Then the following claims are

equivalents.

(i) u is a classical supersolution (resp. subsolution) of (E)

(ii) for all pairs (x0, ϕ) ∈ O × C2(O) such that x0 is a minimizer (resp.

maximizer) of the difference u− ϕ) on O, we have

F
(
x0, u(x0), Dϕ(x0), D

2ϕ(x0)
)
≥ (resp. ≤) 0 .
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2.2 Definition of viscosity solutions

Before going any further, we need to introduce a new notation. For a locally

bounded function u : O −→ IR, we denote by u∗ and u∗ the lower and

upper semicontinuous envelopes of u. We recall that u∗ is the largest lower

semicontinuous function below u, u∗ is the smallest upper semicontinuous

function above u, and

u∗(x) = lim inf
x′→x

u(x′) , u∗(x) = lim sup
x′→x

u(x′) .

We are now ready for the definition of viscosity solutions. Observe that

Claim (ii) in the above proposition does not involve the regularity of u. It

therefore suggests the following weak notion of solution to (E).

Definition 2.2 Let u : O −→ IR be a locally bounded function.

(i) We say that u is a (discontinuous) viscosity supersolution of (E) if

F
(
x0, u∗(x0), Dϕ(x0), D

2ϕ(x0)
)
≥ 0

for all pair (x0, ϕ) ∈ O×C2(O) such that x0 is a minimizer of the difference

(u∗ − ϕ) on O.

(ii) We say that u is a (discontinuous) viscosity subsolution of (E) if

F
(
x0, u

∗(x0), Dϕ(x0), D
2ϕ(x0)

)
≤ 0

for all pair (x0, ϕ) ∈ O×C2(O) such that x0 is a maximizer of the difference

(u∗ − ϕ) on O.

(iii) We say that u is a (discontinuous) viscosity solution of (E) if it is both

a viscosity supersolution and subsolution of (E).

Remark 2.1 Clearly, the above definition is not changed if the minimum

or maximum are local and/or strict. Also, by a density argument, the test

function can be chosen to be in C∞(O).
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In Section 2.6, we will show that the value function V is a viscosity

solution of the HJB equation (1.11) under the conditions of Theorem 1.3

(except the smoothness assumption on V ). We also want to emphasize that

proving that the value function is a viscosity solution is almost as easy as

proving that it is a classical solution under the assumption on V .

2.3 First properties

We now turn to two important properties of viscosity solutions : the change

of variable formula and the stability result.

Proposition 2.2 Let u be a locally bounded (discontinuous) viscosity super-

solution of (E). If f is a C1(IR) function with Df 6= 0 on IR, then the function

v := f−1 ◦ u is a (discontinuous)

- viscosity super-solution, when Df > 0,

- viscosity subsolution, when Df < 0,

of the equation

K(x, v(x), Dv(x), D2v(x)) = 0 for x ∈ O ,

where

K(x, r, p, A) := F
(
x, f(r), Df(r)p,D2f(r)pp′ +Df(r)A

)
We leave the easy proof of this proposition to the reader. The next result

shows how limit operations with viscosity solutions can be performed very

easily.

Proposition 2.3 Let uε be a lower semicontinuous viscosity super-solution

of the equation

Fε

(
x,Duε(x), D

2uε(x)
)

= 0 for x ∈ O ,

where (Fε)ε is a sequence of continuous functions satisfying the ellipticity

condition. Suppose that (ε, x) 7−→ uε(x) and (ε, z) 7−→ Fε(z) are locally
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bounded, and define

u∗(x) := lim inf
(ε,x′)→(0,x)

uε(x
′) and F ∗(z) := lim sup

(ε,z′)→(0,z)
Fε(z

′) .

Then, u∗ is a lower semicontinuous viscosity supersolution of the equation

F ∗
(
x,Du∗(x), D

2u∗(x)
)

= 0 for x ∈ O .

A similar statement holds for subsolutions.

Proof. The fact that u∗ is a lower semicontinuous function is left as an

exercise for the reader. Let ϕ ∈ C2(O) and x̄, be a strict minimizer of the

difference uε−ϕ. By definition of u∗, there is a sequence (εn, xn) ∈ (0, 1]×O
such that

(εn, xn) −→ (0, x̄) and uεn(xn) −→ u∗(x̄) .

Consider some r > 0 together with the closed ball B̄ with radius r, centered

at x̄. Of course, we may choose |xn − x̄| < r for all n ≥ 0. Let x̄n be a

minimizer of uεn − ϕ on B̄. We claim that

x̄n −→ x̄ as n→∞ . (2.1)

Before verifying this, let us complete the proof. We first deduce that x̄n is an

interior point of B̄ for large n, so that x̄n is a local minimizer of the difference

uεn − ϕ. Then :

Fεn

(
x̄n, Dϕ(x̄n), D2ϕ(x̄n)

)
≥ 0 ,

and the required result follows by taking limits and using the definition of

F ∗.

It remains to prove Claim (2.1). Recall that (xn)n is valued in the compact

set B̄. Then, there is a subsequence, still named (xn)n, which converges to

some x̃ ∈ B̄. We only have to prove that x̃ = x̄. Using the fact that x̄n is a
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minimizer of uεn − ϕ on B̄, together with the definition of u∗, we see that

0 = (u∗ − ϕ)(x̄) = lim
n→∞

(uεn − ϕ) (xn)

≥ lim inf
n→∞

(uεn − ϕ) (x̄n)

≥ (u∗ − ϕ)(x̃) .

We now obtain (2.1) from the fact that x̄ is a strict minimizer of the difference

(u∗ − ϕ). tu

Observe that the passage to the limit in partial differential equations writ-

ten in the classical or the generalized sense usually appeals to much more

technicalities, as one has to ensure convergence of all the partial deriva-

tives involved in the equation. The above stability result provides a general

method to pass to the limit when the equation is written in the viscosity

sense, and its proof turns out to be remarkably simple.

A possible application of the stability result is to establish the convergence

of numerical schemes. In view of the simplicity of the above statement, the

notion of viscosity solutions provides a nice framework for such a numerical

issue. The reader interested in this issue can consult [3].

The main difficulty in the theory of viscosity is the interpretation of the

equation in the viscosity sense. First, by weakening the notion of solution to

the second order nonlinear PDE (E), we are enlarging the set of solutions,

and one has to guarantee that uniqueness still holds (in some convenient

class of functions). This issue will be discussed in the subsequent Section

2.4. We conclude this section by the following result whose proof is trivial in

the classical case, but needs some technicalities when stated in the viscosity

sense.

Proposition 2.4 Let A ⊂ IRn and B ⊂ IRp be two open subsets, and let

u : A × B −→ IR be a lower semicontinuous viscosity supersolution of the

equation :

F
(
x, y, u(x, y), Dyu(x, y), D

2
yu(x, y)

)
≥ 0 on A×B ,
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where F is a continuous elliptic operator. Assume further that

r 7−→ F (x, y, r, p, A) is non-increasing. (2.2)

Then, for all fixed x0 ∈ A, the function v(y) := u(x0, y) is a viscosity super-

solution of the equation :

F
(
x0, y, v(y), Dv(y), D

2v(y)
)
≥ 0 on B .

If u is continuous, the above statement holds without Condition (2.2).

A similar statement holds for the subsolution property.

Proof. Fix x0 ∈ A, set v(y) := u(x0, y), and let y0 ∈ B and f ∈ C2(B) be

such that

(v − f)(y0) < (v − f)(y) for all y ∈ J \ {y0} , (2.3)

where J is an arbitrary compact subset of B containing y0 in its interior. For

each integer n, define

ϕn(x, y) := f(y)− n|x− x0|2 for (x, y) ∈ A×B ,

and let (xn, yn) be defined by

(u− ϕn)(xn, yn) = min
I×J

(u− ϕn) ,

where I is a compact subset of A containing x0 in its interior. We claim that

(xn, yn) −→ (x0, y0) as n −→∞ . (2.4)

Before proving this, let us complete the proof. Since (x0, y0) is an interior

point of A×B, it follows from the viscosity property of u that

0 ≤ F
(
xn, yn, u(xn, yn), Dyϕn(xn, yn), D2

yϕn(xn, yn)
)

= F
(
xn, yn, u(xn, yn), Df(yn), D2f(yn)

)
,

and the required result follows by sending n to infinity.
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We now turn to the proof of (2.4). Since the sequence (xn, yn)n is valued

in the compact subset A × B, we have (xn, yn) −→ (x̄, ȳ) ∈ A × B, after

passing to a subsequence. Observe that

u(xn, yn)− f(yn) ≤ u(xn, yn)− f(yn) + n|xn − x0|2

= (u− ϕn)(xn, yn)

≤ (u− ϕn)(x0, y0) = u(x0, y0)− f(y0) .

Taking the limits, it follows from the lower semicontinuity of u that

u(x̄, ȳ)− f(ȳ) ≤ u(x̄, ȳ)− f(ȳ) + lim inf
n→∞

n|xn − x0|2 ≤ u(x0, y0)− f(y0) .

Then, we must have x̄ = x0, and

(v − f)(ȳ) = u(x0, ȳ)− f(ȳ) ≤ (v − f)(y0) ,

which concludes the proof of (2.4) in view of (2.3). tu

2.4 Comparison result and uniqueness

We first state, without proof, a general comparison result for second order

non-linear equations, see [7].

Theorem 2.1 Let O be an open bounded subset of IRN and let F be an

elliptic operator satisfying

(i) there exists a constant γ > 0 such that for all (x, p,M) ∈ O×IRN×Sn,

F (x, r, p,M)− F (x, s, p,M) ≥ γ(r − s), r ≥ s

(ii) there exists a function ω : IR+ −→ IR+ with ω(0+) = 0 such that

F (y, r, α(x− y), N)−F (x, r, α(x− y),M) ≤ ω
(
α|x− y|2 + |x− y|

)
(2.5)

for all x, y ∈ O, r ∈ IRN and (M,N, α) ∈ Sn × Sn × IR∗+ satisfying :

−3αI2n ≤

 M 0

0 −N

 ≤ 3α

 In −In
−In In

 .
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Let U be an upper-semicontinuous viscosity subsolution of (E), and U a lower-

semicontinuous viscosity supersolution of (E). Then

sup
Ō

(U − U) = sup
∂O

(U − U) .

We list below two interesting examples of operators F which satisfy the

conditions of the above theorem:

(i) F (x, r, p, A) = γr +H(p) for some continuous function H : IRn −→ IR,

and γ > 0.

(ii) F (x, r, p, A) = −Tr (σσ′(x)A) + γr, where σ : IRn −→ Sn is a Lipschitz

function, and γ > 0. To see that Theorem 2.1 applies to this equation, we

only need to check that Condition (ii) holds. So suppose that (M,N, α) ∈
Sn × Sn × IR∗+ satisfy (2.5). We claim that

Tr[AA′M −BB′N ] ≤ 3α|A−B|2 =
n∑

i,j=1

(A−B)2
ij .

To see this, observe that the matrix

C :=

 BB′ BA′

AB′ AA′


is a non-negative matrix in Sn. From the right hand-side inequality of (2.5),

this implies that

Tr[AA′M −BB′N ] = Tr

C
 M 0

0 −N


≤ 3αTr

C
 In −In
−In In


= 3αTr [(A−B)(A′ −B′)] = 3α|A−B|2 .

Remark 2.2 In the above example (i), the condition γ > 0 is not needed

when H is a convex and H(Dϕ(x)) ≤ α < 0 for some ϕ ∈ C1(O). This result

can be found in [2].
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We finally turn to time-evolution problems in unbounded domains defined

by the equation

∂u

∂t
+G

(
t, x,Du(t, x), D2u(t, x)

)
= 0 on Q := [0, T )× IRn , (2.6)

where G is elliptic and continuous. For γ > 0, set

G+γ(t, x, p, A) := sup {G(s, y, p, A) : (s, y) ∈ BQ(t, x; γ)} ,
G−γ(t, x, p, A) := inf {G(s, y, p, A) : (s, y) ∈ BQ(t, x; γ)} ,

where BQ(t, x; γ) is the collection of elements (s, y) in Q such that |t− s|2 +

|x− y|2 ≤ γ2. The following result is reported from [14] (Theorem V.8.1 and

Remark V.8.1).

Theorem 2.2 Suppose that

lim supε↘0 {G+γε(tε, xε, pε, Aε)−G−γε(sε, yε, pε, Bε)}
≤ Const (|t0 − s0|+ |x0 − y0|) [1 + |p0|+ α (|t0 − s0|+ |x0 − y0|)]

(2.7)

for all sequences (tε, xε), (sε, yε) ∈ [0, T )× IRn, pε ∈ IRn, and γε ≥ 0 with :

((tε, xε), (sε, yε), pε, γε) −→ ((t0, x0), (s0, y0), p0, 0) as ε ↘ 0 ,

and symmetric matrices (Aε, Bε) with

−KI2n ≤

 Aε 0

0 −Bε

 ≤ 2α

 In −In
−In In


for some α independent of ε.

Let U be an upper semicontinuous viscosity subsolution of (2.6), and U a

lower semicontinuous viscosity supersolution of (2.6). Then

sup
Q̄

(U − U) = sup
IRn

(U − U)(T, ·)

A sufficient condition for (2.7) to hold is that f(·, ·, u), k(·, ·, u), b(·, ·, u),
and σ(·, ·, u) ∈ C1(Q̄) with

‖bt‖∞ + ‖bx‖∞ + ‖σt‖∞ + ‖σx‖∞ < ∞
|b(t, x, u)|+ |σ(t, x, u)| ≤ Const(1 + |x|+ |u|) ;

see [14], Lemma V.8.1.
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2.5 Useful applications

We conclude this section by two consequences of the above comparison re-

sults, which are trivial properties in the classical case.

Lemma 2.1 Let O be an open interval of IR, and U : O −→ IR be a lower

semicontinuous supersolution of the equation DU ≥ 0 on O. Then U is

nondecreasing on O.

Proof. For each ε > 0, define W (x) := U(x) + εx; x ∈ O. Then W satisfies

in the viscosity sense DW ≥ ε in O, i.e. for all (x0, ϕ) ∈ O × C1(O) such

that

(W − ϕ)(x0) = min
x∈O

(W − ϕ)(x), (2.8)

we have Dϕ(x0) ≥ ε. This proves that ϕ is strictly increasing in a neighbor-

hood V of x0. Let (x1, x2) ⊂ V be an open interval containing x0. We intend

to prove that

W (x1) < W (x2) , (2.9)

which provides the required result from the arbitrariness of x0 ∈ O.

To prove (2.9), suppose to the contrary that W (x1) ≥ W (x2), and the

consider the function v(x) = W (x2) which solves the equation

Dv = 0 on (x1, x2) .

together with the boundary conditions v(x1) = v(x2) = W (x2). Observe that

W is a lower semicontinuous viscosity supersolution of the above equation.

From the comparison theorem of Remark 2.2, this implies that

sup
[x1,x2]

(v −W ) = max {(v −W )(x1), (v −W )(x2)} ≤ 0 .

Hence W (x) ≥ v(x) = W (x2) for all x ∈ [x1, x2]. Applying this inequality at

x0 ∈ (x1, x2), and recalling that the test function ϕ is strictly increasing on

[x1, x2], we get :

(W − ϕ)(x0) > (W − ϕ)(x2),

contradicting (2.8). tu
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Lemma 2.2 Let O be an open interval of IR, and U : O −→ IR be a lower

semicontinuous supersolution of the equation −D2U ≥ 0 on O. Then U is

concave on O.

Proof. Let a < b be two arbitrary elements in O, and consider some ε > 0

together with the function

v(s) :=
U(a)[e

√
ε(b−s)−1]+U(b)[e

√
ε(s−a)−1]

e
√

ε(b−a)−1
for a ≤ s ≤ b .

Clearly, v solves the equation

(εv −D2v)(t, s) = 0 on (a, b) .

Since U is lower semicontinuous it is bounded from below on the interval

[a, b]. Therefore, by possibly adding a constant to U , we can assume that

U ≥ 0, so that U is a lower semicontinuous viscosity supersolution of the

above equation. It then follows from the comparison theorem 2.2 that :

sup
[a,b]

(v − U) = max {(v − U)(a), (v − U)(b)} ≤ 0 .

Hence,

U(s) ≥ v(s) =
U(a)

[
e
√

ε(b−s) − 1
]
+ U(b)

[
e
√

ε(s−a) − 1
]

e
√

ε(b−a) − 1
,

and by sending ε to zero, we see that

U(s) ≥ [U(b)− U(a)]
s− a

b− a
+ U(a)

for all s ∈ [a, b]. Let λ be an arbitrary element of the interval [0,1], and set

s := λa+ (1− λ)b. The last inequality takes the form :

U(λa+ (1− λ)b) ≥ λU(a) + (1− λ)U(b) ,

proving the concavity of U . tu
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2.6 The HJB equation in the viscosity sense

We now turn to the stochastic control problem introduced in Section 1.1.

The chief goal of this paragraph is to use the notion of viscosity solutions

in order to relax the smoothness condition on the value function V in the

statement of Propositions 1.1 and 1.2. Notice that the following proofs are

obtained by slight modification of the corresponding proofs in the smooth

case.

Remark 2.3 Recall that the general theory of viscosity applies for nonlinear

partial differential equations on an open domain O. This indeed ensures that

the optimizer in the definition of viscosity solutions is an interior point. In

the setting of control problems with finite horizon, the time variable moves

forward so that the zero boundary is not relevant. We shall then write the

Hamilton-Jacobi-Bellman equation on the domain [0, T )×IRn. Although this

is not an open domain, the general theory of viscosity solutions is still valid.

Proposition 2.5 Assume that V is locally bounded on [0, T ) × IRn, and

let the coefficients k(·, ·, u) and f(·, ·, u) be continuous in (t, x) for all fixed

u ∈ U . Then, the value function V is a (discontinuous) viscosity subsolution

of the equation

−∂V
∂t

(t, x)−H
(
t, x, V (t, x), DV (t, x), D2V (t, x)

)
≤ 0 (2.10)

on [0, T )× IRn.

Proof. Let (t, x) ∈ Q := [0, T )× IRn and ϕ ∈ C2(Q) be such that

0 = (V ∗ − ϕ)(t, x) = max
Q

(V ∗ − ϕ) . (2.11)

Let (tn, xn)n be a sequence in Q such that

(tn, xn) −→ (t, x) and V (tn, xn) −→ V ∗(t, x) .

Since ϕ is smooth, notice that

ηn := V (tn, xn)− ϕ(tn, xn) −→ 0 .
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Next, let u ∈ U be fixed, and consider the constant control process ν = u. We

shall denote by Xn the associated state process with initial data Xn
tn = xn.

Finally, for all n > 0, we define the stopping time :

θn := inf {s > tn : (s− tn, X
n
s − xn) 6∈ [0, hn)× αB} ,

where α > 0 is some given constant, B denotes the unit ball of IRn, and

hn :=
√
ηn1{ηn 6=0} + n−11{ηn=0} .

Notice that θn −→ t as n −→∞.

1. From the dynamic programming principle, it follows that :

0 ≥ Etn,xn

[
V (tn, xn)− β(tn, θn)V (θn, X

n
θn

)−
∫ θn

tn
β(tn, r)f(r,Xn

r , νr)dr

]
.

Now, in contrast with the proof of Proposition 1.1, the value function is not

known to be smooth, and therefore we can not apply Itô’s lemma to V . The

main trick of this proof is to use the inequality V ≤ V ∗ ≤ ϕ on Q, implied

by (2.11), so that we can apply Itô’s lemma to the smooth test function ϕ :

0 ≥ ηn + Etn,xn

[
ϕ(tn, xn)− β(tn, θn)ϕ(θn

h , X
n
θn

)−
∫ θn

tn
β(tn, r)f(r,Xn

r , νr)dr

]

= ηn − Etn,xn

[∫ θn

tn
β(tn, r)(ϕt + L·ϕ− f)(r,Xn

r , u)dr

]

− Etn,xn

[∫ θn

tn
β(tn, r)Dϕ(r,Xn

r )σ(r,Xn
r , u)dWr

]
,

where ϕt denotes the partial derivative with respect to t.

2. We now continue exactly along the lines of the proof of Proposition

1.1. Observe that β(tn, r)Dϕ(r,Xn
r )σ(r,Xn

r , u) is bounded on the stochastic

interval [tn, θn]. Therefore, the second expectation on the right hand-side of

the last inequality vanishes, and :

ηn

hn

− Etn,xn

[
1

hn

∫ θn

tn
β(tn, r)(ϕt + L·ϕ− f)(r,Xr, u)dr

]
≤ 0 .
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We now send n to infinity. The a.s. convergence of the random value inside

the expectation is easily obtained by the mean value Theorem; recall that

for n ≥ N(ω) sufficiently large, θn(ω) = hn. Since the random variable

h−1
n

∫ θn
t β(tn, r)(L·ϕ − f)(r,Xn

r , u)dr is essentially bounded, uniformly in n,

on the stochastic interval [tn, θn], it follows from the dominated convergence

theorem that :

−∂ϕ
∂t

(t, x)− Luϕ(t, x)− f(t, x, u) ≤ 0 ,

which is the required result, since u ∈ U is arbitrary. tu

We next wish to show that V satisfies the nonlinear partial differential

equation (2.10) with equality, in the viscosity sense. This is also obtained by

a slight modification of the proof of Proposition 1.2.

Proposition 2.6 Assume that the value function V is locally bounded on

[0, T ) × IRn. Let the function H be continuous, and ‖k+‖∞ < ∞. Then, V

is a (discontinuous) viscosity supersolution of the equation

−∂V
∂t

(t, x)−H
(
t, x, V (t, x), DV (t, x), D2V (t, x)

)
≥ 0 (2.12)

on [0, T )× IRn.

Proof. Let (t0, x0) ∈ Q := [0, T )× IRn and ϕ ∈ C2(Q) be such that

0 = (V∗ − ϕ)(t0, x0) < (V∗ − ϕ)(t, x) for (t, x) ∈ Q \ {(t0, x0)}.(2.13)

In order to prove the required result, we assume to the contrary that

h(t0, x0) :=
∂ϕ

∂t
(t0, x0) +H

(
t0, x0, ϕ(t0, x0), Dϕ(t0, x0), D

2ϕ(t0, x0)
)

> 0,

and work towards a contradiction.

1. Since H is continuous, there exists an open neighborhood of (t0, x0) :

Nη := {(t, x) : (t− t0, x− x0) ∈ (−η, η)× ηB and h(t, x) > 0} ,
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for some η > 0. From (2.13), it follows that

3γeη‖k+‖∞ := min
∂Nη

(V − ϕ) > 0 . (2.14)

Next, let (tn, xn)n be a sequence in Nh such that

(tn, xn) −→ (t0, x0) and V (tn, xn) −→ V∗(t0, x0) .

Since (V − ϕ)(tn, xn) −→ 0, we can assume that the sequence (tn, xn) also

satisfies :

|(V − ϕ)(tn, xn)| ≤ γ for all n ≥ 1 . (2.15)

Finally, we introduce a γ−optimal control ν̃n for the problem V (tn, xn), i.e.

J(tn, xn, ν̃
n) ≤ V (tn, xn) + γ . (2.16)

We shall denote by X̃n and β̃n the controlled process and the discount factor

defined by the control ν̃n and the initial data X̃n
tn = xn.

3. Consider the stopping time

θn := inf
{
s > tn : (s, X̃n

s ) 6∈ Nη

}
,

and observe that, by continuity of the state process, (θn, X̃
n
θn

) ∈ ∂Nη, so

that :

(V − ϕ)(θn, X̃
n
θn

) ≥ (V∗ − ϕ)(θn, X̃
n
θn

) ≥ 3γe−η‖k+‖∞ (2.17)

by (2.14). We now use the inequality V ≥ V∗, together with (2.17) and (2.15)

to see that :

β̃n(tn, θn)V (θn, X̃
n
θn

)− V (tn, xn)

≥
∫ θn

tn
d[β̃n(tn, r)ϕ(r, X̃n

r )] + 3γeη‖k+‖∞ β̃n(tn, θn)− γ

≥
∫ θn

tn
d[β̃n(tn, r)ϕ(r, X̃n

r )] + 2γ .
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By Itô’s lemma, this provides :

V (tn, xn) ≤ Etn,xn

[
β̃n(tn, θn)V (θn, X̃

n
θn

)−
∫ θn

tn
(ϕt + Lν̃n

r ϕ)(r, X̃n
r )dr

]
− 2γ ,

where the stochastic term has zero mean, as its integrand is bounded on the

stochastic interval [tn, θn]. Observe also that (ϕt+Lν̃rϕ)(r, X̃n
r )+f(r, X̃n

r , ν̃
n
r )

≥ h(r, X̃n
r ) ≥ 0 on the stochastic interval [tn, θn]. We therefore deduce that :

V (tn, xn) ≤ −2γ + Etn,xn

[∫ θn

tn
β̃n(tn, r)f(r, X̃r, ν̃r) + β̃n(tn, θn)V (θn, X̃

n
θn

)

]
≤ −2γ + J(tn, xn, ν̃)

≤ V (tn, xn)− γ ,

where the last inequality follows by (2.16). This completes the proof. tu

As a consequence of Propositions 2.5 and 2.6, we have the main result of

this section :

Theorem 2.3 Let the conditions of Propositions 2.5 and 2.6 hold. Then,

the value function V is a (discontinuous) viscosity solution of the Hamilton-

Jacobi-Bellman equation

−∂V
∂t

(t, x)−H
(
t, x, V (t, x), DV (t, x), D2V (t, x)

)
= 0 (2.18)

on [0, T )× IRn.
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3 Hedging contingent claims under portfolio

constraints

3.1 Problem formulation

3.1.1 The financial market

Given a finite time horizon T > 0, we shall consider throughout these notes

a complete probability space (Ω,F , P ) equipped with a standard Brownian

motion W = {(W 1
t , . . . ,W

d
t ), 0 ≤ t ≤ T} valued in IRd, and generating

the (P−augmented) filtration IF . We denote by ` the Lebesgue measure on

[0, T ].

The financial market consists of a non-risky asset S0 normalized to unity,

i.e. S0 ≡ 1, and d risky assets with price process S = (S1, . . . , Sd) whose

dynamics is defined by a stochastic differential equation. More specifically,

given a vector process µ valued in IRd, and a matrix-valued process σ valued

in MIR(d), the price process Si is defined as the unique strong solution of

the stochastic differential equation :

Si
0 = si , dSi

t = Si
t

bitdt+
d∑

j=1

σij
t dW

j
t

 ; (3.1)

here b and σ are assumed to be bounded IF−adapted processes.

Remark 3.1 The normalization of the non-risky asset to unity is, as usual,

obtained by discounting, i.e. taking the non-risky asset as a numéraire.

In the financial literature, σ is known as the volatility process. We assume

it to be invertible so that the risk premium process

λ0
t := σ−1

t bt , 0 ≤ t ≤ T ,

is well-defined. Throughout these notes, we shall make use of the process

Z0
t := E

(
−
∫ t

0
λ0

r
′
dWr

)
:= exp

(
−
∫ t

0
λ0

r
′
dWr −

1

2

∫ t

0
|λ0

r|2dr
)
.
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Standing Assumption. The volatility process σ satisfies :

E

[
exp

1

2

∫ T

0
|σσ′|−1

]
< ∞ and sup

[0,T ]

|σσ′|−1 < ∞ P − a.s.

Since b is bounded, this condition ensures that the process λ0 satisfies the

Novikov condition

E[exp
∫ T

0
|λ0|2/2] < ∞ ,

and we have E[Z0
T ] = 1. The process Z0 is then a martingale, and induces

the probability measure P0 defined by :

P 0(A) := E
[
Z0

t 1A

]
for all A ∈ Ft , 0 ≤ t ≤ T .

Clearly P 0 is equivalent to the original probability measure P . By Girsanov

Theorem, the process

W 0
t := Wt +

∫ t

0
λ0

tdt , 0 ≤ t ≤ T ,

is a standard Brownian motion under P 0.

3.1.2 Portfolio and wealth process

Let Xt denote the wealth at time t of some investor on the financial market.

We assume that the investor allocates continuously his wealth between the

non-risky asset and the risky assets. We shall denote by πi
t the proportion of

wealth invested in the i− th risky asset. This means that

πi
tXt is the amount invested at time t in the i− th risky asset.

The remaining proportion of wealth 1−∑d
i=1 π

i
t is invested in the non-risky

asset.

The self-financing condition states that the variation of the wealth process

is only affected by the variation of the price process. Under this condition,
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the wealth process satisfies :

dXt = Xt

d∑
i=1

πi
t

dSi
t

Si
t

= Xtπ
′
t[btdt+ σtdWt] = Xtπ

′
tσtdW

0
t . (3.2)

Hence, the investment strategy π should be restricted so that the above

stochastic differential equation has a well-defined solution. Also πt should be

based on the information available at time t. This motivates the following

definition.

Definition 3.1 An investment strategy is an IF−adapted process π valued

in IRd and satisfying
∫ T
0 |σ′tπt|2dt < ∞ P−a.s.

We shall denote by A the set of all investment strategies.

Clearly, given an initial capital x ≥ 0 together with an investment strat-

egy π, the stochastic differential equation (3.2) has a unique solution

Xx,π
t := xE

(∫ t

0
π′rσrdW

0
r

)
, 0 ≤ t ≤ T .

We then have the following trivial, but very important, observation :

Xx,π is a P 0−supermartingale , (3.3)

as a non-negative local martingale under P 0.

3.1.3 Problem formulation

Let K be a closed convex subset of IRd containing the origin, and define the

set of constrained strategies :

AK := {π ∈ A : π ∈ K `⊗ P − a.s.} .

The set K represents some constraints on the investment strategies.

Example 3.1 Incomplete market : takingK = {x ∈ IRd : xi = 0}, for some

integer 1 ≤ i ≤ d, means that trading on the i−th risky asset is forbidden.
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Example 3.2 No short-selling constraint : taking K = {x ∈ IRd : xi ≥ 0},
for some integer 1 ≤ i ≤ d, means that the financial market does not allow

to sell short the i−th asset.

Example 3.3 No borrowing constraint : taking K = {x ∈ IRd : x1 + . . .+

xd ≤ 1} means that the financial market does not allow to sell short the

non-risky asset or, in other word, borrowing from the bank is not available.

Now, let G be a non-negative FT− measurable random variable. The

chief goal of these notes is to study the following stochastic control problem

V0 := inf {x ∈ IR : Xx,π
T ≥ G P − a.s. for some π ∈ AK} . (3.4)

The random variable G is called a contingent claim in the financial math-

ematics literature, or a derivative asset in the financial engineering world.

Loosely speaking, this is a contract between two counterparts stipulating

that the seller has to pay G at time T to the buyer. Therefore, V0 is the min-

imal initial capital which allows the seller to face without risk the payment

G at time T , by means of some clever investment strategy on the financial

market.

Observe that the above stochastic control problem does not fit in the class

of stochastic control problems introduced in Section 1.1. We will therefore

pass to a dual formulation of the problem which turns out to be in the class

of stochastic control problems introduced in Section 1.1.

The main step towards the dual formulation of the problem is an existence

result for the problem V0 under very mild conditions, i.e. XV0,π
T ≥ G P−a.s.

for some constrained investment strategy π ∈ AK . We say that π is an

optimal hedging strategy for the contingent claim G.

The existence result will in turn be obtained by means of some represen-

tation result which is now known as the optional decomposition theorem (in

the framework of these notes, we can even call it a predictable decomposition

theorem).
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3.2 Existence of optimal hedging strategies

and dual formulation

In this section, we concentrate on the duality approach to the problem of

super-replication under portfolio constraints V0. The main ingredient is a

stochastic representation theorem. We therefore start by recalling the prob-

lem solution in the unconstrained case. This corresponds to the so-called

complete market framework. In the general constrained case, the proof re-

lies on the same arguments except that : we need to use a more advanced

stochastic representation result, namely the optional decomposition theorem.

Remark 3.2 local martingale representation theorem.

(i) Theorem. Let Y be a local P−local martingale. Then there exists an

IF−adapted IRd−valued process φ such that

Yt = Y0 +
∫ t

0
φ′rdWr 0 ≤ t ≤ T and

∫ T

0
|φ|2 < ∞ P − a.s.

(see e.g. Dellacherie and Meyer VIII 62).

(ii) We shall frequently need to apply the above theorem to a Q−local

martingale Y , for some equivalent probability measure Q defined by the

density (dQ/dP ) = ZT := E
(
−
∫ T
0 λ′rdWr

)
, with Brownian motion WQ :=

W +
∫ ·
0 λrdr. To do this, we first apply the local martingale representation

theorem to theP−local martingale ZY . The result is ZY = Y0 +
∫ ·
0 φdW for

some adapted process φ with
∫ T
0 |φ|2 < ∞. Applying Itô’s lemma, one can

easily check that we have :

Yt = Y0 +
∫ t

0
ψ′rdW

Q
r 0 ≤ t ≤ T where ψ := (Z)−1φ+ λY .

Since Z and Y are continuous processes on the compact interval [0, T ], it is

immediately checked that
∫ T
0 |ψ|2 < ∞ Q−a.s.
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3.2.1 Complete market :

the unconstrained Black-Scholes world

In this paragraph, we consider the unconstrained case K = IRd. The follow-

ing result shows that V0 is obtained by the same rule than in the celebrated

Black-Scholes model, which was first developed in the case of constant coef-

ficients µ and σ.

Theorem 3.1 Assume that G > 0 P−a.s. Then :

(i) V0 = E0[G]

(ii) if E0[G] < ∞, then XV0,π
T = G P−a.s. for some π ∈ A.

Proof. 1. Set F := {x ∈ IR : Xx,π
T ≥ G for some π ∈ A}. From the

P 0−supermartingale property of the wealth process (3.3), it follows that

x ≥ E0[G] for all x ∈ F . This proves that V0 ≥ E0[G]. Observe that this

concludes the proof of (i) in the case E0[G] = +∞.

2. We then concentrate on the case E0[G] <∞. Define

Yt := E0[G|Ft] for 0 ≤ t ≤ T .

Apply the local martingale representation theorem to the P 0−martingale Y ,

see Remark 3.2. This provides

Yt = Y0 +
∫ t

0
ψ′rdW

0
r for some process ψ with

∫ T

0
|ψ|2 <∞ .

Now set π := (Y σ′)−1ψ. Since Y is a positive continuous process, it follows

from the second condition in Standing Assumption that π ∈ A, and Y =

Y0E (
∫ ·
0 π

′
rσrdW

0
r ) = XY (0),π. The statement of the theorem follows from the

observation that YT = G. tu

Remark 3.3 Statement (ii) in the above theorem implies that existence

holds for the control problem V0, i.e. there exists an optimal trading strat-

egy. But it provides a further information, namely that the optimal hedging

strategy allows to attain the contingent claim G. Hence, in the unconstrained

setting, all (positive) contingent claims are attainable. This is the reason for

calling this financial market complete.
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Remark 3.4 The proof of Theorem 3.1 suggests that the optimal hedging

strategy π is such that the P 0− martingale Y has the stochastic represen-

tation Y = E[G] +
∫ ·
0 Y π

′σdW 0. In the Markov case, we have Yt = v(t, St).

Assuming that v is smooth, it follows from an easy application of Itô’s lemma

that

∆i
t :=

πi
tX

V0,π
t

Si
t

=
∂v

∂si
(t, St) .

We now focus on the positivity condition in the statement of Theorem

3.1, which rules out the main example of contingent claims, namely European

call options [Si
T −K]+, and European put options [K − Si

T ]+. Indeed, since

the portfolio process is defined in terms of proportion of wealth, the implied

wealth process is strictly positive. Then, it is clear that such contingent

claims can not be attained, in the sense of Remark 3.3, and there is no hope

for Claim (ii) of Theorem 3.1 to hold in this context. However, we have the

following easy consequence.

Corollary 3.1 Let G be a non-negative contingent claim. Then

(i) For all ε > 0, there exists an investment strategy πε ∈ A such that XV0,πε

T

= G+ ε.

(ii) V0 = E0[G].

Proof. Statement (i) follows from the application of Theorem 3.1 to the

contingent claimG+ε. Now let Vε(0) denote the value of the super-replication

problem for the contingent claim G + ε. Clearly, V0 ≤ Vε(0) = E0[G + ε],

and therefore V0 ≤ E0[G] by sending ε to zero. The reverse inequality holds

since Part 1 of the proof of Theorem 3.1 does not require the positivity of G.

tu

Remark 3.5 In the Markov setting of Remark 3.4 above, and assuming that

v is smooth, the approximate optimal hedging strategy of Corollary 3.1 (i)

is given by

∆i,ε
t :=

πi,ε
t X

Vε(0),πε

t

Si
t

=
∂

∂si
{v(t, St) + ε} =

∂v

∂si
(t, St) ;
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observe that ∆ := ∆ε is independent of ε.

Example 3.4 The Black and Scholes formula : consider a financial market

with a single risky asset d = 1, and let µ and σ be constant coefficients,

so that the P 0−distribution of ln [ST/St], conditionally on Ft, is gaussian

with mean −σ2(T − t)/2 and variance σ2(T − t). As a contingent claim, we

consider the example of a European call option, i.e. G = [ST −K]+ for some

exercise price K > 0. Then, one can compute directly that :

V (t) = v(t, St)

where

v(t, s) := sF (d(t, s))−KF
(
d(t, s)− σ

√
T − t

)
,

d(t, s) := (σ
√
T − t)−1 ln(K−1s) +

1

2
σ
√
T − t ,

and F (x) = (2π)−1/2
∫ x
−∞ e

−u2/2du is the cumulative function of the gaussian

distribution. According to Remark 3.4, the optimal hedging strategy in terms

of number of shares is given by :

∆(t) = F (d(t, St)) .

3.2.2 Optional decomposition theorem

We now turn to the general constrained case. The key-point in the proof of

Theorem 3.1 was the representation of the P 0−martingale Y as a stochastic

integral with respect to W 0; the integrand in this representation was then

identified to the investment strategy. In the constrained case, the investment

strategy needs to be valued in the closed convex set K, which is not guaran-

teed by the representation theorem. We then need to use a more advanced

representation theorem. The results of this section were first obtained by

ElKaroui and Quenez (1995) for the incomplete market case, and Cvitanić

and Karatzas (1993) in our context. Notice that a general version of this re-

sult in the semimartingale case has been obtained by Föllmer and Kramkov

(1997).
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We first need to introduce some notations. Let

δ(y) := sup
x∈K

x′y

be the support function of the closed convex set K. Since K contains the

origin, δ is non-negative. We shall denote by

K̃ := dom(K) = {y ∈ IRd : δ(y) <∞}

the effective domain of δ. For later use, observe that K̃ is a closed convex

cone of IRd. Recall also that, since K is closed and convex, we have the

following classical results from convex analysis (see e.g. Rockafellar 1970) :

x ∈ K if and only if δ(y)− x′y ≥ 0 for all y ∈ K̃ , (3.5)

We next denote by D the collection of all bounded adapted processes valued

in K̃. For each ν ∈ D, we set

βν
t := exp

(
−
∫ t

0
δ(νr)dr

)
, 0 ≤ t ≤ T ,

and we introduce the Doléans-Dade exponential

Zν
t := E

(
−
∫ t

0
λν

r
′dWr

)
where λν := σ−1(b− ν) = λ0 − σ−1ν .

Since b and ν are bounded, λν inherits the Novikov condition

E

[
exp

(
1

2

∫ T

0
|λν |2

)]
< ∞

from the first condition in Standing Assumption. We then introduce the

family of probability measures

P ν(A) := E [Zν
t 1A] for all A ∈ Ft , 0 ≤ t ≤ T .

Clearly P ν is equivalent to the original probability measure P . By Girsanov

Theorem, the process

W ν
t := Wt +

∫ t

0
λν

rdr (3.6)

= W 0(t)−
∫ t

0
σ−1

r νrdr , 0 ≤ t ≤ T , (3.7)

is a standard Brownian motion under P ν .
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Remark 3.6 The reason for introducing these objects is that the important

property (3.3) extends to the family D :

βνX
x,π is a P ν−supermartingale for all ν ∈ D, π ∈ AK , (3.8)

and x > 0. Indeed, by Itô’s lemma together with (3.6),

d(Xx,πβν) = Xx,πβν [−(δ(ν)− π′ν)dt+ π′σdW ν ] .

In view of (3.5), this shows thatXx,πβν is a non-negative local P ν−supermar-

tingale, which provides (3.8).

Theorem 3.2 Let Y be an IF− adapted positive càdlàg process, and assume

that

the process βνY is a P ν−supermartingale for all ν ∈ D.

Then, there exists a predictable non-decreasing process C, with C0 = 0, and

a constrained portfolio π ∈ AK such that Y = XY0,π − C.

Proof. 1. We start by applying the Doob (unique) decomposition theorem

(see e.g. Dellacherie and Meyer VII 12) to the P 0−supermartingale Y β0

= Y , together with the local martingle representation theorem, under the

probability measure P 0. This implies the existence of an adapted process ψ0

and a non-decreasing predictable process C0 satisfying C0
0 = 0,

∫ T
0 |ψ0|2 <∞,

and :

Yt = Y0 +
∫ t

0
ψ0

rdW
0
r − C0

t , (3.9)

see Remark 3.2. Observe that

M0 := Y0 +
∫ ·

0
ψ0dW 0 = Y + C0 ≥ Y > 0 . (3.10)

We then define

π0 :=
(
M0σ′

)−1
ψ0 .
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From the second condition in Standing Assumption together with the conti-

nuity of M0 on [0, T ] and the fact that
∫ T
0 |ψ0|2 < ∞, it follows that π0 ∈ A.

Then M0 = XY0,π0
and by (3.10),

Y = XY0,π0 − C0 .

In order to conclude the proof, it remains to show that the process π is valued

in K.

2. By Itô’s lemma together with (3.6), it follows that :

d(Y βν) = M0βνπ0′σdW ν − βν
[
(Y δ(ν)−M0π0′ν)dt+ dC0

]
.

Since Y βν = is a Pν−supermartingale, the process

Cν :=
∫ ·

0
βν
[
(Y δ(ν)−M0π0′ν)dt+ dC0

]
is non-decreasing. In particular,

0 ≤
∫ t

0
(βν)−1dCν = C0

t +
∫ t

0

(
Yrδ(νr)−M0

r π
0
r
′
νr

)
dr

≤ C0
t +

∫ t

0
M0

r

(
δ(νr)− π0

r
′
νr

)
dr for all ν ∈ D , (3.11)

where the last inequality follows from (3.10) and the non-negativity of the

support function δ.

3. Now fix some ν ∈ D, and define the set Fν := {(t, ω) : [−π0′ν+δ(ν)](t, ω) <

0}. Consider the process

ν(n) = ν1F c
ν

+ nν1Fν , n ∈ IN .

Clearly, since K̃ is a cone, we have ν(n) ∈ D for all n ∈ IN . Writing (3.11)

with ν(n), we see that, whenever ` ⊗ P [Fν ] > 0, the right hand-side term

converges to −∞ as n → ∞, a contradiction. Hence ` ⊗ P [Fν ] = 0 for all

ν ∈ D. From (3.5), this proves that π ∈ K `⊗ P−a.s. tu
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3.2.3 Dual formulation

Let T be the collection of all stopping times valued in [0, T ], and define the

family of random variables :

Yτ := ess sup
ν∈D

Eν [Gγν(τ, T )|Fτ ] ; τ ∈ T where γν(τ, T ) :=
βν

T

βν
τ

,

and Eν [·] denotes the conditional expectation operator under P ν . The pur-

pose of this section is to prove that V0 = Y0, and that existence holds for the

control problem V0. As a by-product, we will also see that existence for the

control problem Y0 holds only in very specific situations. These results are

stated precisely in Theorem 3.3. As a main ingredient, their proof requires

the following (classical) dynamic programming principle.

Lemma 3.1 (Dynamic Programming). Let τ ≤ θ be two stopping times in

T . Then :

Yτ = ess sup
ν∈D

Eν [Yθγ
ν(τ, θ)|Fτ ] .

Proof. 1. Conditioning by Fθ, we see that

Yτ ≤ ess sup
ν∈D

Eν [γν(τ, θ)Eν [Gγν(θ, T )|Fθ]| Fτ ]

≤ ess sup
ν∈D

Eν [γν(τ, θ)Yθ|Fτ ] .

2. To see that the reverse inequality holds, fix any µ ∈ D, and let Dτ,θ(µ)

be the subset of D whose elements coincide with µ on the stochastic interval

[τ, θ]. Let (νk)k be a maximizing sequence of Yθ, i.e.

Yθ = lim
k→∞

Jνk
θ where Jν

θ := Eν [Gγν(θ, T )|Fθ] ;

the existence of such a sequence follows from the definition of the notion of

essential supremum, see e.g. [20]. Also, since Jν
θ depends on ν only through

its realization on the stochastic interval [θ, T ], we can assume that νk ∈
Dτ,θ(µ). We now compute that

Yτ ≥ Eνk [Gγνk(τ, T )|Fτ ] = Eµ [γµ(τ, θ)Jνk
θ |Fτ ] ,
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which implies that Yτ ≥ Eµ [γµ(τ, θ)Yθ|Fτ ] by Fatou’s lemma. tu

Now, observe that we may take the stopping times τ in the definition of

the family {Yτ , τ ∈ T } to be deterministic and thereby obtain a non-negative

adapted process {Yt, 0 ≤ t ≤ T}. A natural question is whether this process

is consistent with the family {Yτ , τ ∈ T } in the sense that Yτ (ω) = Yτ(ω)(ω)

for a.e. ω ∈ Ω.

For general control problems, this is a delicate issue, which is related to

the already mentioned difficulty in the proof of the dynamic programming

principle of Theorem 1.2. However, in our context, it follows from the above

dynamic programming principle that the family {Yτ , τ ∈ T } satisfies a su-

permartingale property :

Eν [βν
θYθ|Fτ ] ≤ βν

τ Yτ for all τ, θ ∈ T with τ ≤ θ .

By a classical argument, this allows to extract a process Y out of this family,

which satisfies the supermartingale property in the usual sense. We only state

precisely this technical point, and send the interested reader to Karatzas and

Shreve (1999) Appendix D or Cvitanić and Karatzas (1993), Proposition 6.3.

Corollary 3.2 There exists a càdlàg process Y = {Yt, 0 ≤ t ≤ T}, consis-

tent with the family {Yτ , τ ∈ T }, and such that Y βν is a P ν−supermartingale

for all ν ∈ D.

We are now able for the main result of this section.

Theorem 3.3 Assume that G > 0 P−a.s. Then :

(i) V0 = Y0,

(ii) if Y0 < ∞, existence holds for the problem V0, i.e. XV0,π
T ≥ G P−a.s.

for some π ∈ AK,

(iii) existence holds for the problem Y0 if and only if

XV0,π̂
T = G and β ν̂XV0,π̂ is a P ν̂−martingale

for some pair (π̂, ν̂) ∈ AK ×D.
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Proof. 1. We concentrate on the proof of Y0 ≥ V0 as the reverse inequality is

a direct consequence of (3.8). The process Y , extracted from the family {Yτ ,

τ ∈ T } in Corollary 3.2, satisfies the condition of the optional decomposition

theorem 3.2. Then Y = XY0,π − C for some constrained portfolio π ∈ AK ,

and some predictable non-decreasing process C with C0 = 0. In particular,

XY0,π
T ≥ YT = G. This proves that Y0 ≥ V0, completing the proof of (i) and

(ii).

2. It remains to prove (iii). Suppose that XV0,π̂
T = G and β ν̂XV0,π̂ is a

P ν̂−martingale for some pair (π̂, ν̂) ∈ AK × D. Then, by the first part of

this proof, Y0 = V0 = E ν̂
[
XV0,π̂

T β ν̂
T

]
= E ν̂

[
Gβ ν̂

T

]
, i.e. ν̂ is a solution of Y0.

Conversely, assume that Y0 = E ν̂ [Gβ ν̂
T ] for some ν̂ ∈ D. Let π̂ be the so-

lution of V0, whose existence is established in the first part of this proof.

By definition XV0,π̂
T − G ≥ 0. Since β ν̂XV0,π̂ is a P ν̂−super-martingale,

it follows that E ν̂
[
β ν̂

T (XV0,π̂
T −G)

]
≤ 0. This proves that XV0,π̂

T − G = 0

P−a.s. We finally see that the P ν̂−super-martingale β ν̂XV0,π̂ has constant

P ν̂−expectation :

Y0 ≥ E ν̂
[
β ν̂

t X
V0,π̂
t

]
≥ E ν̂

[
E ν̂

(
β ν̂

TX
V0,π̂
T

∣∣∣Ft

)]
= E ν̂

[
β ν̂

TG
]

= Y0 ,

and therefore β ν̂XV0,π̂ is a P ν̂−martingale. tu

3.3 Explicit solution by means of the HJB equation

3.3.1 The HJB equation as a variational inequality

In order to characterize further the super-replication cost V0, we assume that

bt = b(t, St) , σt = σ(t, St) ,

where the functions b and σ are continuous, Lipschitz in s uniformly in t.

Then, the price process S is Markov. We also consider a contingent claim

G = g(ST ) for some lower semicontinuous g : IRn
+ −→ IR+ .
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By a trivial change of the time origin, it follows from the dual formulation

of the super-replication problem of Theorem 3.3 that :

Vt = V (t, St) = sup
ν∈D

Eν
t,St

[
e−
∫ T

t
δ(νr)drg (ST )

]
.

By Girsanov theorem, the above value function can be written in the standard

form of stochastic control problems introduced in Chapter 1.1 :

V (t, s) = sup
ν∈D

E0
t,s

[
e−
∫ T

t
δ(νr)drg (Sν

T )
]
.

where Sν is the controlled process defined by

dSν
r = diag[Sν

r ] (νrdr + σ(r, Sν
r )dW ) .

We now apply Proposition 2.5 to the value function −V (in order to recover

a minimization problem). Then, the value function V is a (discontinuous)

viscosity supersolution of the equation

0 ≤ −∂V
∂t

− 1

2
Tr
[
diag[s]σσ′diag[s]D2V

]
+V inf

u∈K̃

{
δ(u)− u′

diag[s]DV

V

}
;

recall that V > 0. Since δ is positively homogeneous, and K̃ is a cone, this

can be written equivalently in

0 ≤ −∂V
∂t

− F
(
t, s, V (t, s), DV (t, s), D2V (t, s)

)
(3.12)

where

F (t, s, r, p, A)

:= min

{
−1

2
Tr [diag[s]σσ′diag[s]A] , inf

u∈K̃1

(
δ(u)− u′

diag[s]p

r

)}
,

(3.13)

and

K̃1 := {x ∈ K̃ : |x| = 1} .
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We next observe that

int(K) 6= ∅ ⇐⇒ F is continuous . (3.14)

(Exercise !). It then follows from Proposition 2.6 that under this condition,

the value function V is a (discontinuous) viscosity solution of the equation

0 = −∂V
∂t

− F
(
t, s, V (t, s), DV (t, s), D2V (t, s)

)
. (3.15)

3.3.2 Terminal condition

From the definition of the value function V , we have :

V (T, s) = g(s) for all s ∈ IRd
+ .

However, The set K̃ in which the control process take values is unbounded.

We are therefore faced to a singular control problem. As we argued before,

this is the typical case where a careful analysis has to be performed in order

to derive the boundary condition for V∗ and V ∗. Typically this situation

induces a jump in the terminal condition so that we only have :

V∗(T, s) ≥ V (T, s) = g(s) .

The purpose of this section is to prove that V∗(T, ·) and V ∗ are related to

the function

ĝ(s) := sup
u∈K̃

g(seu)e−δ(u) for s ∈ IRd
+ , (3.16)

where seu is the IRd vector with components sieui
. The main results are

stated in Propositions 3.2 and 3.3 below. We first start by deriving the PDE

satisfied by V∗(T, ·), as inherited from (3.12).

Proposition 3.1 Suppose that g is lower semi-continuous and V is locally

bounded. Then V∗(T, ·) is a viscosity super-solution of

min

{
V∗(T, ·)− g , inf

u∈K̃1

(
δ(u)− u′

diag[s]DV∗
V∗

(T, ·)
)}

≥ 0 .
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Proof. 1. We first check that V∗(T, ·) ≥ g. Let (tn, sn)n be a sequence of

[0, T ) × (0,∞)d converging to (T, s), and satisfying V (tn, sn) −→ V∗(T, s).

Since δ(0) = 0, it follows from the definition of V that

V (tn, sn) ≥ E0 [g (Stn,sn(T ))] .

Since g ≥ 0, we may apply Fatou’s lemma, and derive the required inequality

using the lower semi-continuity condition on g, together with the continuity

of St,s(T ) in (t, s).

2. It remains to prove that V∗(T, ·) is a viscosity super-solution of

δ(u)V∗(T, ·)− u′diag[s]DV∗(T, ·) ≥ 0 for all u ∈ K̃ . (3.17)

Let f be a C2 function satisfying, for some s0 ∈ (0,∞)d,

0 = (V∗(T, ·)− f)(s0) = min
IRd

+

(V∗(T, ·)− f) .

Since V∗(T, s0) = lim inf(t,s)→(T,s0) V∗(t, s) by the lower semi-continuity of V∗,

we have

V∗(Tn, sn) −→ V∗(T, s0) for some sequence (Tn, sn) −→ (T, s0) .

Define

ϕn(t, s) := f(s)− 1

2
|s− s0|2 +

T − t

T − Tn

,

let B̄ = {s ∈ IRd
+ :

∑
i | ln (si/si

0)| ≤ 1}, and choose (t̄n, s̄n) such that :

(V∗ − ϕn)(t̄n, s̄n) = min
[Tn,T ]×B̄

(V∗ − ϕn) .

We shall prove the following claims :

t̄n < T for large n , (3.18)

s̄n −→ s0 along a subsequence, and V∗(t̄n, s̄n) −→ V∗(T, s0) .(3.19)
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Admitting this, wee see that, for sufficiently large n, (t̄n, s̄n) is a local mini-

mizer of the difference (V∗−ϕn). Then, the viscosity supersolution property,

established in (3.12), holds at (t̄n, s̄n), implying that

δ(u)V∗(t̄n, s̄n)− u′diag[s] (Df(s̄n)− (s̄n − s0)) ≥ 0 for all u ∈ K̃ ,

by definition of ϕn in terms of f . In view of (3.19), this provides the required

inequality (3.17).

Proof of (3.18) : Observe that for all s ∈ B̄,

(V∗ − ϕn)(T, s) = V∗(T, s)− f(s) +
1

2
|s− s0|2 ≥ V∗(T, s)− f(s) ≥ 0 .

Then, the required result follows from the fact that :

lim
n→∞

(V∗ − ϕn)(Tn, sn) = lim
n→∞

{
V∗(Tn, sn)− f(sn) +

1

2
|sn − s0|2 −

1

T − Tn

}
= −∞ .

Proof of (3.19) : Since (s̄n)n is valued in the compact subset B̄, we have s̄n

−→ s̄ along some subsequence, for some s̄ ∈ B̄. We now use respectively the

following facts : s0 minimizes the difference V∗(T, ·) − f , V∗ is lower semi-

continuous, sn −→ s0, t̄n ≥ Tn, and (t̄n, s̄n) minimizes the difference V∗−ϕn

on [Tn, T ]× B̄. The result is :

0 ≤ (V∗(T, ·)− f)(s̄)− (V∗(T, ·)− f)(s0)

≤ lim inf
n→∞

{
(V∗ − ϕn)(t̄n, s̄n)− 1

2
|s̄n − s0|2

−(V∗ − ϕn)(Tn, sn) +
1

2
|sn − s0|2 −

t̄n − Tn

T − Tn

}

≤ −1

2
|s̄− s0|2 + lim inf

n→∞
{(V∗ − ϕn)(t̄n, s̄n)− (V∗ − ϕn)(Tn, sn)}

≤ −1

2
|s̄− s0|2 + lim sup

n→∞
{(V∗ − ϕn)(t̄n, s̄n)− (V∗ − ϕn)(Tn, sn)}

≤ −1

2
|s̄− s0|2 ≤ 0 ,

so that all above inequalities hold with equality, and (3.19) follows. tu
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We are now able to derive the required lower bound on the terminal

condition of the singular stochastic control problem v(t, s).

Proposition 3.2 Suppose that g is lower semi-continuous and V is locally

bounded. Then V∗(T, ·) ≥ ĝ.

Proof. Introduce the lower semi-continuous function

h(u)(r) := ln [V∗(T, e
x+ru)]− δ(u)r ,

for fixed x ∈ IRd and y ∈ K̃ (here, ex = (ex1
, . . . , exn

)). From the previous

proposition, h(u) is a viscosity super-solution of the equation −h(u)
r ≥ 0, and

is therefore non-increasing. In particular h(0) ≥ h(1), i.e. ln [V∗(T, e
x)] ≥

ln [V∗(T, e
x+u)]− δ(u) for all x ∈ IRd and y ∈ K̃, and

ln [V∗(T, e
x)] ≥ sup

u∈K̃

{
ln [V∗(T, e

x+u)]− δ(u)
}

≥ sup
u∈K̃

ln
{
g
(
ex+u

)
e−δ(u)

}
for all x ∈ IRd .

tu
We now turn to the reverse inequality of Proposition 3.2. In order to

simplify the presentation, we shall provide an easy proof under a stronger

assumption.

Proposition 3.3 Let σ be a bounded function, and ĝ be an upper semi-

continuous function with linear growth. Suppose that V is locally bounded.

Then V ∗(T, ·) ≤ ĝ.

Proof. Suppose to the contrary that V ∗(T, s) − ĝ(s) =: 2η > 0 for some

s ∈ (0,∞)d. Let (Tn, sn) be a sequence in [0, T ]× (0,∞)d satisfying :

(Tn, sn) −→ (T, s) , V (Tn, sn) −→ V ∗(T, s)

and

V (Tn, sn) > ĝ(s) + η for all n ≥ 1 .
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From the (dual) definition of V , this shows the existence of a sequence (νn)n

in D such that :

E0
Tn,sn

[
g
(
S

(n)
T e

∫ T

Tn
νn

r dr
)
e
−
∫ T

Tn
δ(νn

r )dr
]
> ĝ(s) + η for all n ≥ 1 ,(3.20)

where

S
(n)
T := snE

(∫ T

Tn

σ(t, Sνn

t )dWt

)
.

We now use the sublinearity of δ to see that :

E0
Tn,sn

[
g
(
S

(n)
T e

∫ T

Tn
νn

r dr
)
e
−
∫ T

Tn
δ(νn

r )dr
]

≤ E0
Tn,sn

[
g
(
S

(n)
T e

∫ T

Tn
νn

r dr
)
e
−δ(
∫ T

Tn
νn

r dr)
]

≤ E0
Tn,sn

[
ĝ
(
S

(n)
T

)]
,

where we also used the definition of ĝ together with the fact that K̃ is a

closed convex cone of IRd. Plugging this inequality in (3.20), we see that

ĝ(s) + η ≤ E0
tn,sn

[
ĝ
(
S

(n)
T

)]
. (3.21)

By easy computation, it follows from the linear growth condition on ĝ that

E0
∣∣∣ĝ(S(n)

T )
∣∣∣2 ≤ Const

(
1 + e(T−t)‖σ‖2∞

)
.

This shows that the sequence
{
ĝ(S

(n)
T ), n ≥ 1

}
is bounded in L2(P 0), and is

therefore uniformly integrable. We can therefore pass to the limit in (3.21)

by means of the dominated convergence theorem. The required contradiction

follows from the upper semicontinuity of ĝ together with the a.s. continuity

of ST in the initial data (t, s). tu

3.3.3 The Black and Scholes model under portfolio constraints

In this paragraph we report an explicit solution of the super-replication prob-

lem under portfolio constraints in the context of the Black-Scholes model.

This result was obtained by Broadie, Cvitanić and Soner (1997).
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Proposition 3.4 Let d = 1, σ(t, s) = σ > 0, and consider a lower semicon-

tinuous payoff function g : IR+ −→ IR. Assume that the face-lifted payoff

function ĝ is upper semicontinuous and has linear growth. Then :

V (t, s) = E0
t,s [ĝ (ST )] ,

i.e. V (t, s) is the unconstrained Black-Scholes price of the face-lifted contin-

gent claim ĝ (ST ).

Proof. We shall provide a ”PDE” proof of this result under the additional

condition that ĝ is C1. The original probabilistic argument (which does not

require this condition) can be found in [5]. From the previous paragraphs,

The function V (t, s) is a (discontinuous) viscosity solution of (3.15). When

σ is constant, we claim that the PDE (3.15) reduces to :

−LV = 0 on [0, T )× (0,∞)d , V (T, ·) = ĝ , (3.22)

and the required result follows from the Feynman-Kac representation for-

mula.

It remains to prove (3.22). By classical arguments, see e.g. [15], the

linear PDE (3.22) has a classical solution v with vs ∈ C1,2. Notice that both

functions v and svs solve the linear PDE −Lu = 0, so that the function

w(u) := δ(u)v − usvs satisfies

−Lw(u) = 0 and w(u)(T, s) = δ(u)ĝ(s)− usĝs(u) .

Now observe that w(u)(T, ·) ≥ 0 for all u ∈ K, by definition of ĝ. The

Feynman-Kac representation formula then implies that w(u) ≥ 0 for all u ∈ K,

and therefore v solves the variational inequality (3.15). We finally appeal to

a uniqueness result for the variational inequality (3.15) in order to conclude

that v = V . tu

3.3.4 The uncertain volatility model

In this paragraph, we study the simplest incomplete market model. The

number of risky assets is now d = 2. We consider the case K = IR × {0} so
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that the second risky asset is not tradable. The contingent claim is defined

by G = g(S1(T )), where the payoff function g : IR+ −→ IR+ is continuous

and has polynomial growth. We finally introduce the notations :

σ(t, s1) := sup
s2>0

[σ2
11 + σ2

12](t, s1, s2); σ(t, s1) := inf
s2>0

[σ2
11 + σ2

12](t, s1, s2)

We report the following result from Cvitanić, Pham and Touzi (1999).

Proposition 3.5

(i) Assume that σ < ∞ on [0, T ] × IR+. Then V (t, s) = V (t, s1) is a (dis-

continuous) viscosity solution of the Black-Scholes-Barrenblatt equation

−Vt − 1
2

[
σ2V +

s1s1
− σ2V −

s1s1

]
= 0 on [0, T )× (0,∞)

V (T, s1) = g(s1) for s1 > 0.
(3.23)

(ii) Assume that σ = ∞ and

either g is convex or σ = 0 .

Then v(t, s) = gconc(s1), where gconc is the concave envelope of g.

We only gives the main ideas for the proof of this result. First, observe

that the constraints set K = IR×{0} has empty interior, and the operator F

defined in (3.13) is not continuous. We then proceed as follows. The viscosity

supersolution property (3.12) is still valid. We first deduce from it that V∗

does not depend on the s2 variable.

- In case (i), this proves that the value function V is a (discontinuous)

viscosity supersolution of the equation

−Vt −
1

2

[
σ2V +

s1s1
− σ2V −

s1s1

]
≥ 0 on [0, T )× (0,∞) .

It follows from the non-negativity and the lower semicontinuity of g that

the value function is lower semicontinuous, i.e. V = V∗. Then V does not

depend on the s2 variable. One can then proceed exactly as in the proof of

Proposition 2.5 to prove that V is also a (discontinuous) viscosity subsolution

of (3.23). Finally since g does not depend on the s2 variable, we have ĝ = g.

- Case (ii) is treated by the same type of arguments as the example of

Paragraph 1.5.3.
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4 Hedging contingent claims under gamma

constraints

In this section, we focus on an alternative constraint on the portfolio π. For

simplicity, we consider a financial market with a single risky asset. Let Yt(ω)

:= S−1
t πtXt(ω) denote the vector of number of shares of the risky assets held

at each time t and ω ∈ Ω. By definition of the portfolio strategy, the investor

has to adjust his strategy at each time t, by passing the number of shares

from Yt to Yt+dt. His demand in risky assets at time t is then given by ”dYt”.

In an equilibrium model, the price process of the risky asset would be

pushed upward for a large demand of the investor. We therefore study the

hedging problem with constrained portfolio adjustment. This problem turns

out to present serious mathematical difficulties. The analysis of this section is

reported from [23], and provides a solution of the problem in a very specific

situation. We hope that this presentation will encourage some readers to

attack some of the possible extensions.

4.1 Problem formulation

We consider a financial market which consists of one bank account, with

constant price process S0
t = 1 for all t ∈ [0, T ], and one risky asset with price

process evolving according to the Black-Scholes model :

Su := StE (σ(Wt −Wu)) , t ≤ u ≤ T.

Here W is a standard Brownian motion in IR defined on a complete prob-

ability space (Ω,F , P ). We shall denote by IF = {Ft, 0 ≤ t ≤ T} the

P -augmentation of the filtration generated by W .

Observe that there is no loss of generality in taking S as a martingale, as

one can always reduce the model to this case by judicious change of measure

(P 0 in the previous chapter). On the other hand, the subsequent analysis

can be easily extended to the case of a varying volatility coefficient.
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We denote by Y = {Yu, t ≤ u ≤ T} the process of number of shares of

risky asset S held by the agent during the time interval [t, T ]. Then, by the

self-financing condition, the wealth process induced by some initial capital

x, at time t, and portfolio strategy Y is given by :

Xu = x+
∫ u

t
YrdSr, t ≤ u ≤ T.

In order to introduce constraints on the variations of the hedging portfolio

Y , we restrict Y to the class of continuous semimartingales with respect to

the filtration IF . Since IF is the Brownian filtration, we define the controlled

portfolio strategy Y y,α,γ by :

Y y,α,γ
u = y +

∫ u

t
αrdr +

∫ u

t
γrσdWr, t ≤ u ≤ T, (4.1)

where y ∈ IR is the time t initial portfolio and the control pair (α, γ) takes

values in

Bt := (L∞a ([t, T ]× Ω ; `⊗ P ) )2 ,

where L∞a ([t, T ] × Ω; ` ⊗ P ) denotes the set of ` ⊗ P−essentially bounded

processes on the time interval [t, T ]. Hence a trading strategy is defined by

the triple ν := (y, α, γ) with y ∈ IR and (α, γ) ∈ Bt. The associated wealth

process, denoted by Xν , is given by :

Xx,ν
u = x+

∫ u

t
Y ν

r dSr, t ≤ u ≤ T, (4.2)

where x is the time t initial capital. We now formulate the Gamma constraint

in the following way. Let Γ be a positive fixed constant. Given some initial

capital x ∈ IR, we define the set of x-admissible trading strategies by :

At(x) := {ν = (y, α, γ) ∈ IR× Bt : γ· ≤ Γ and Xx,ν
· ≥ 0} .

As in the previous sections, We consider the super-replication problem of

some European type contingent claim g(ST ) :

v(t, St) := inf {x : Xx,ν
T ≥ g(ST ) a.s. for some ν ∈ At(x)} . (4.3)
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4.2 The main result

Our goal is to derive the following explicit solution : v(t, St) is the (uncon-

strained) Black-Scholes price of some convenient face-lifted contingent claim

ĝ(ST ), where the function ĝ is defined by

ĝ(s) := hconc(s) + Γs ln s with h(s) := g(s)− Γs ln s ,

and hconc denotes the concave envelope of h. Observe that this function can

be computed easily. The reason for introducing this function is the following.

Lemma 4.1 ĝ is the smallest function satisfying the conditions

(i) ĝ ≥ g , and (ii) s 7−→ ĝ(s)− Γs ln s is concave.

The proof of this easy result is omitted.

Theorem 4.1 Let g be a non-negative lower semicontinuous mapping on

IR+. Assume further that

s 7−→ ĝ(s)− C s ln s is convex for some constant C . (4.4)

Then the value function (4.3) is given by :

v(t, s) = Et,s [ĝ (ST )] for all (t, s) ∈ [0, T )× (0,∞) .

4.3 Discussion

1. We first make some comments on the model. Intuitively, we expect the

optimal hedging portfolio to satisfy

Ŷu = vs(u, Su) ,

where v is the minimal super-replication cost; see Section 3.2.1. Assuming

enough regularity, it follows from Itô’s lemma that

dŶu = Audu+ σSuvss(u, Su)dWu ,
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where A(u) is given in terms of derivatives of v. Compare this equation with

(4.1) to conclude that the associated gamma is

γ̂u = Su vss(u, Su) .

Therefore the bound on the process γ̂ translates to a bound on svss. Notice

that, by changing the definition of the process γ in (4.1), we may bound vss

instead of svss. However, we choose to study svss because it is a dimensionless

quantity, i.e., if all the parameters in the problem are increased by the same

factor, svss still remains unchanged.

2. Observe that we only require an upper bound on the control γ. The

similar problem with a lower bound on γ is still open, and presents some

specific difficulties. In particular, it seems that the control
∫ t
0 α(r)dr has to

be relaxed to the class of bounded variation processes...

3. The extension of the analysis of this section to the multi-asset framework

is available; the restriction to the one-dimensional case is only made for

simplicity.

4. Intuitively, we expect to obtain a similar type solution to the case of

portfolio constraints. If the Black-Scholes solution happens to satisfy the

gamma constraint, then it solves the problem with gamma constraint. In

this case v satisfies the PDE −Lv = 0. Since the Black-Scholes solution does

not satisfy the gamma constraint, in general, we expect that the function v

solves the variational inequality :

min {−Lv,Γ− svss} = 0 . (4.5)

5. An important feature of the log-normal Black and Sholes model is that

the variational inequality (4.5) reduces to the Black-Scholes PDE −Lv = 0

as long as the terminal condition satisfies the gamma constraint (in a weak

sense). From Lemma 4.1, the face-lifted payoff function ĝ is precisely the

minimal function above g which satisfies the gamma constraint (in a weak

sense). This explains the nature of the solution reported in Theorem 4.1,

namely v(t, St) is the Black-Scholes price of the contingent claim ĝ (ST ).
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6. We shall check formally below that the variational inequality (4.5) is the

HJB equation associated to the stochastic control problem :

ṽ(t, s) := sup
ν∈N

Et,s

[
g (ST )− 1

2
Γ
∫ T

t
νr[S

ν
r ]2dr

]
, (4.6)

where N is the set of all non-negative, bounded, and IF− adapted processes,

and :

Sν
u := Sν

t E
(∫ u

t
[σ2 + νr]

1/2dWr

)
, for t ≤ u ≤ T .

The above stochastic control problem is a candidate for some dual formula-

tion of the problem v(t, s) defined in (4.3). Observe, however, that the dual

variables ν are acting on the diffusion coefficient of the controlled process Sν ,

so that the change of measure techniques of Section 3.2 do not help to prove

the duality connection between v and ṽ.

A direct proof of some duality connection between v and ṽ is again an

open problem. In order to obtain the PDE characterization (4.5) of v, we

shall make use of an original dynamic programming principle stated directly

on the initial formulation of the problem v.

7. Recall from Proposition 2.5 that the viscosity subsolution property of the

value function of a minimization problem holds under very mild conditions.

Applying this result to the maximization problem (4.6), t follows that ṽ is a

(discontinuous) viscosity supersolution of :

inf
u≥0

−Luṽ(t, s) +
1

2
Γs2u ≥ 0 where Luṽ := ṽt +

1

2
(σ2 + u)ṽss .

Collecting terms, this provides

inf
u≥0

−L0ṽ(t, s) +
1

2
u(Γ− ṽss) ≥ 0 ,

or, equivalently :

min
{
−L0ṽ ; Γ− ṽss

}
≥ 0 .

This suggests that (4.5) is the HJB equation associated with the stochastic

control problem (4.6).
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4.4 Dynamic programming and viscosity property

This paragraph is dedicated to the proof of Theorem 4.1. We shall denote

v̂(t, s) := Et,s [ĝ (ST )] .

It is easy to check that v̂ is a smooth function satisfying

Lv̂ = 0 and sv̂ss ≤ Γ on [0, T )× (0,∞) . (4.7)

1. We start with the inequality v ≤ v̂. For t ≤ u ≤ T , set

y := v̂s(t, s) , αu := Lv̂s(u, Su) , γu := Suv̂ss(u, Su) ,

and we claim that

(α, γ) ∈ Bt and γ ≤ Γ . (4.8)

Before verifying this claim, let us complete the proof of the required inequal-

ity. Since g ≤ ĝ, we have

g (ST ) ≤ ĝ (ST ) = v̂ (T, ST )

= v̂(t, St) +
∫ T

t
Lv̂(u, Su)du+ v̂s(u, Su)dSu

= v̂(t, St) +
∫ T

t
Y ν

u dSu ;

in the last step we applied Itô’s formula to v̂s. Now, set Xt := v̂(t, St), and

observe that XXt,ν
u = v̂(u, Su) ≥ 0 by non-negativity of the payoff function

g. Hence ν ∈ At(Xt), and by the definition of the super-replication problem

(4.3), we conclude that v ≤ v̂.

It remains to prove (4.8). The upper bound on γ follows from (4.7).

As for the lower bound, it is obtained as a direct consequence of Condition

(4.4). Using again (4.7) and the smoothness of v̂, we see that 0 = (Lv̂)s =

Lv̂s + σ2sv̂ss, so that α = −σ2γ is also bounded.

2. The proof of the reverse inequality v ≥ v̂ requires much more effort. The

main step is the following (half) dynamic programming principle.

74



Lemma 4.2 Let x ∈ IR, ν ∈ At(x) be such that Xx,ν
T ≥ g (ST ) P−a.s. Then

Xx,ν
θ ≥ v (θ, Sθ) P − a.s.

for all stopping times θ valued in [t, T ].

The obvious proof of this claim is left to the reader. We continue by

stating two lemmas whose proofs rely heavily on the above dynamic pro-

gramming principle, and will be reported later. We denote as usual by v∗

the lower semicontinuous envelope of v.

Lemma 4.3 The function v∗ is viscosity supersolution of the equation

−Lv∗ ≥ 0 on [0, T )× (0,∞) .

Lemma 4.4 The function s 7−→ v∗(t, s)−Γs ln s is concave for all t ∈ [0, T ].

Before proceeding to the proof of these results, let us show how the re-

maining inequality v ≥ v̂ follows from it. Given a trading strategy in At(x),

the associated wealth process is a non-negative local martingale, and there-

fore a supermartingale. From this, one easily proves that v∗(T, s) ≥ g(s). By

Lemma 4.4, v∗(T, ·) also satisfies requirement (ii) of Lemma 4.1, and therefore

v∗(T, ·) ≥ ĝ .

In view of Lemma 4.3, v∗ is a viscosity supersolution of the equation −Lv∗
= 0 and v∗(T, ·) = ĝ. Since v̂ is a viscosity solution of the same equation, it

follows from the classical comparison theorem that v∗ ≥ v̂.

Hence, in order to complete the proof of Theorem 4.1, it remains to prove

Lemmas 4.3 and 4.4.

Proof of Lemma 4.3 We split the argument in several steps.

3. We first show that the problem can be reduced to the case where the

controls (α, γ) are uniformly bounded. For ε ∈ (0, 1], set

Aε
t(x) :=

{
ν = (y, α, γ) ∈ At(x) : |α(.)|+ |γ(.)| ≤ ε−1

}
,
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and

vε(t, St) = inf {x : Xx,ν
T ≥ g(ST ) P − a.s. for some ν ∈ Aε

t(x)} .

Let vε
∗ be the lower semicontinuous envelope of vε. It is clear that vε also

satisfies the dynamic programming equation of Lemma 4.2.

Since

v∗(t, s) = lim inf∗ v
ε(t, s) = lim inf

ε→0,(t′,s′)→(t,s)
vε
∗(t

′, s′) ,

we shall prove that

−Lvε ≥ 0 in the viscosity sense, (4.9)

and the statement of the lemma follows from the classical stability result of

Proposition 2.3.

4. We now derive the implications of the dynamic programming principle

of Lemma 4.2 applied to vε. Let ϕ ∈ C∞(IR2) and (t0, s0) ∈ (0, T )× (0,∞)

satisfy

0 = (vε
∗ − ϕ)(t0, s0) = min

(0,T )×(0,∞)
(vε
∗ − ϕ) ;

in particular, we have vε
∗ ≥ ϕ. Choose a sequence (tn, sn) → (t0, s0) so that

vε(tn, sn) converges to vε
∗(t0, s0). For each n, by the definition of vε and the

dynamic programming, there are xn ∈ [vε(tn, sn), vε(tn, sn) + 1/n], hedging

strategies νn = (yn, αn, γn) ∈ Aε
tn(xn) satisfying

Xxn,νn

θn
− vε (θn, Sθn) ≥ 0

for every stopping time θn valued in [tn, T ]. Since vε ≥ vε
∗ ≥ ϕ,

xn +
∫ θn

tn
Y νn

u dSu − ϕ (θn, Sθn) ≥ 0 .

Observe that

βn := xn − ϕ(tn, sn) −→ 0 as n −→∞ .
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By Itô’s Lemma, this provides

Mn
θn

≤ Dn
θn

+ βn , (4.10)

where

Mn
t :=

∫ t

0

[
ϕs(tn + u, Stn+u)− Y νn

tn+u

]
dStn+u

Dn
t := −

∫ t

0
Lϕ(tn + u, Stn+u)du .

We now chose conveniently the stopping time θn. For some sufficiently large

positive constant λ and arbitrary h > 0, define the stopping time

θn := (tn + h) ∧ inf {u > tn : |ln (Su/sn)| ≥ λ} .

5. By the smoothness of Lϕ, the integrand in the definition ofMn is bounded

up to the stopping time θn and therefore, taking expectation in (4.10) pro-

vides :

−Etn,sn

[∫ t∧θn

0
Lϕ(tn + u, Stn+u)du

]
≥ −βn ,

We now send n to infinity, divide by h and take the limit as h ↘ 0. The

required result follows by dominated convergence. tu
6. It remains to prove Lemma 4.4. The key-point is the following result,

which is a consequence of Theorem 1.6.

Lemma 4.5 Let ({an
u, u ≥ 0})n and ({bnu, u ≥ 0})n be two sequences of real-

valued, progressively measurable processes that are uniformly bounded in n.

Let (tn, sn) be a sequence in [0, T ) × (0,∞) converging to (0, s) for some

s > 0. Suppose that

Mn
t∧τn

:=
∫ tn+t∧τn

tn

(
zn +

∫ u

tn
an

rdr +
∫ u

tn
bnrdSr

)
dSu

≤ βn + Ct ∧ τn

for some real numbers (zn)n, (βn)n, and stopping times (τn)n ≥ tn. Assume

further that, as n tends to infinity,

βn −→ 0 and t ∧ τn −→ t ∧ τ0 P − a.s.,
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where τ0 is a strictly positive stopping time. Then :

(i) limn→∞ zn = 0.

(ii) limu→0 essinf0≤r≤u bu ≤ 0, where b be a weak limit process of (bn)n.

Proof of Lemma 4.4 We start exactly as in the previous proof by reduc-

ing the problem to the case of uniformly bounded controls, and writing the

dynamic programming principle on the value function vε.

By a further application of Itô’s lemma, we see that :

Mn(t) =
∫ t

0

(
zn +

∫ u

0
an

rdr +
∫ u

0
bnrdStn+r

)
dStn+u ,

where

zn := ϕs(tn, sn)− yn

an(r) := Lϕs(tn + r, Stn+r)− αn
tn+r

bnr := ϕss(tn + r, Stn+r)−
γn

tn+r

Stn+r

.

Observe that the processes an
.∧θn

and bn.∧θn
are bounded uniformly in n since

Lϕs and ϕss are smooth functions. Also since Lϕ is bounded on the stochastic

interval [tn, θn], it follows from (4.10) that

Mn
θn

≤ C t ∧ θn + βn

for some positive constant C. We now apply the results of Lemma 4.5 to the

martingales Mn. The result is :

lim
n→∞

yn = ϕs(t0, y0) and lim
t→0

ess inf
0≤u≤t

bt ≤ 0.

where b is a weak limit of the sequence (bn). Recalling that γn(t) ≤ Γ, this

provides that :

−s0ϕss(t0, s0) + Γ ≥ 0 .

Hence vε
∗ is a viscosity supersolution of the equation −s(v∗)ss + Γ ≥ 0, and

the required result follows by the stability result of Proposition 2.3. tu
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