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Abstract

Given a controlled stochastic process, the reachability set is the collection of all
initial data from which the state process can be driven into a target set at a specified
time. Differential properties of these sets are studied by the dynamic programming
principle which is proved by the Jankov-von Neumann measurable selection theorem.
This principle implies that the reachability sets satisfy a geometric partial differen-
tial equation, which is the analogue of the Hamilton-Jacobi-Bellman equation for this
problem. By appropriately choosing the controlled process, this connection provides a
stochastic representation for mean curvature type geometric flows. Another application
is the super-replication problem in financial mathematics. Several applications in this
direction are also discussed.
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1 Introduction

The stochastic target problem is a non-classical optimal stochastic control problem in which
the controller tries to steer a controlled stochastic process Zν

t,z into a given target G ⊂ IRn

at time T , by appropriately choosing a control process ν. The object of interest is the
collection of all initial data, Zν

t,z(t) = z, from which the controller can achieve her goal:

V (t) :=
{
z ∈ IRn : Zν

t,z(T ) ∈ G for some admissible ν
}

.

We call V (t) the reachability set. As in classical optimal control, if the state process is
Markov, then the reachability sets satisfy a dynamic programming principle which states
that for any stopping time θ ∈ [t, T ],

V (t) =
{
z ∈ IRn : Zν

t,z(θ) ∈ V (θ) for some admissible ν
}

.(1.1)

After properly defining the problem in a general abstract setup, we prove this identity in
Theorem 3.1 under natural assumptions on the state process and the admissible controls.
The main technical tools of this proof are a measurable selection Theorem of Jankov-von
Neumann and the techniques developed in Bertsekas and Shreve [6].

In Section 4, we use (1.1) to derive a partial differential equation when the state process
is a diffusion process

dZν
t,z(s) = µ(s, Zν

t,z(s), ν(s)) ds + σ(s, Zν
t,z(s), ν(s)) dW (s)

where W is a n-dimensional Brownian motion, and the control ν is a progressively measur-
able process valued in a compact subset U of some Euclidean space. In this general setup,
the reachability set is neither a graph nor an epigraph. Therefore the evolution of the
reachability set can only be described by the geometric quantities of its boundary. We use
the machinery developed in [4, 8, 13, 25] to derive and study the corresponding dynamic
programming equation

sup { −Lνu(t, z) : ν ∈ N (t, z,Du(t, z)) } = 0 (t, z) ∈ (0, T )× IRn,(1.2)

where for ν ∈ U ,

Lνu(t, z) := ut(t, z) + µ(t, z, ν)∗∇u(t, z) +
1
2

trace
(
σσ∗(t, z, ν)D2u(t, z)

)
,

and for p ∈ IRn, and (t, z) ∈ S = [0, T ]× IRn

N (t, z, p) := { ν ∈ U : σ∗(t, z, ν) p = 0 } .

Since we wish to hit a deterministic target G with probability one, the diffusion process
has to degenerate along certain directions and the kernel N captures this fact.
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The main result of §4 is Theorem 4.1 which states that the characteristic function of the
complement of the reachability set is a viscosity solution of a nonlinear parabolic partial
differential equation. Note that although the characteristic function is discontinuous, it
solves a second order partial differential equation. This is common in the weak-viscosity
theory for geometric flows; [4, 8, 13, 25].

This connection between the stochastic target problems and the geometric flows also
provides a stochastic representation for the mean curvature flow, which was unexpected to
the authors. The mean curvature flow is a geometric initial value problem for a family of
sets {Γ(t)}t≥0. Given the initial set Γ(0), the problem is to construct Γ(t) in such a way
that the normal velocity of Γ(t) at any point is equal to its mean curvature at that point. A
brief discussion of this flow is given in §5 and we also refer to [4, 8, 13, 25] and the references
therein for more information. In the case of the (codimension one) mean curvature flow
the connection is this: Let the controlled process be

dZν
t,z(s) = [In − ν(s)ν∗(s)] dW (s) ,

where In is the n × n identity matrix, and the control ν is any adapted unit vector. This
choice provides a stochastic representation for the mean curvature flow problem, as a target
reachability problem in the reverse time. More precisely, the characteristic function of the
reachability set of this stochastic target problem is a weak-viscosity solution of the mean
curvature flow. To the best of our knowledge, this is the first representation formula of
this type. Note that it is analogous to the connection between forward-backward stochastic
differential equations and the semilinear partial differential equations [23, 22].

In general, the dynamic programming equation (1.2) corresponds to a general nonlin-
ear geometric flow. Indeed formally (1.2) implies that the boundary of V (t) satisfies the
following equation:

V = sup{ −µ(t, z, ν) · ~n− 1
2
trace (σσ∗(t, z, ν) D~n) : ν ∈ N (t, z, ~n) },(1.3)

where V is the normal velocity of the reachability set at z ∈ ∂V (t), and ~n is outward unit
vector at z ∈ ∂V (t). A brief discussion of the geometric flows, the definition of V in terms
of the distance function is given in Section 5.

The stochastic target problem was originally motivated by applications in financial
mathematics. The reachability set is closely related to the super-replication problem which
has been extensively studied in the last decade; we refer the reader to Karatzas and Shreve
[18] and the references therein. In this financial pricing problem, one is interested in finding
the minimal initial capital which allows to hedge some given contingent claim by means of
an admissible portfolio strategy. Here, the control is the portfolio, the controlled stochastic
process is the spot stock prices and the value of our portfolio, and the target is the set
of all stock prices and portfolio values such that the portfolio value dominates a nonlinear
function of stock prices given by the contingent claim.
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Initialy, convex duality is used to analyze the super-replication problem. In general,
when this approach is avaliable, the dual problem turns out to be a standard stochastic
control problem (see e.g. Fleming and Soner [15]) which can be solved via the classical
Hamilton-Jacobi-Bellman equations, see Cvitanić, Pham and Touzi [11]. Then the dual
formulation admits a classical dynamic programming principle which is equivalent to the
above one. Of course this derivation of the dynamic programming principle requires the
convex duality result.

However, to this date, there is no general convex duality approach which applies to the
general problem. In particular, there are several examples in financial mathematics which
have not yet been solved by convex duality. Two such examples are the large investor
framework (Cvitanić and Ma [10]), and the problem of hedging under Gamma constraints
(Soner and Touzi [26]).

In this paper, we propose to study the target problem directly by the above dynamic pro-
gramming principle 3.1. This alternative approach provides a way of deriving the Hamilton-
Jacobi-Bellman equation directly and it has already been successfully applied in [26], [27]
and [30].

In Section 6, we discuss super-replication problems with a Gamma constraint, transac-
tion costs, and general portfolio constraints. In all of these examples, the reachability set is
an epigraph of a function which is equal to the minimal super-replication price, and (1.1)
yields a Hamilton-Jacobi-Bellman equation for the minimal super-replication price.

The paper is organized as follows. Section 2 describes the general stochastic target
problem. Dynamic programming principle is proved in Section 3. The corresponding dy-
namic programming equation (1.2) is stated in Section 4. We defer the rigorous proof of the
connection between the target problem and this equation to Section 8. In that section, we
prove that the characteristic function of the complement of the reachability set is a viscosity
solution of (1.2). In the remaining sections we discuss the applications. In section 5, after
a brief introduction to mean curvature flow, we obtain a stochastic representation for the
mean curvature flow in any codimension. In Section 6, we discuss several applications in
financial mathematics. An extension of the target reachability problem to the stochastic
viability problem (Aubin et al. [2, 3]) is given in Section 7.

Sections on financial mathematics, §6 and §7, and the section on mean curvature flow,
§5 are independent of each other.
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2 Abstract problem

In this section, we formulate the stochastic target problem. We start with a brief summary
of the notation that will be used throughout the paper.

2.1 Notation

Let (Ω,F , P ) be a complete probability space, T > 0 a finite time horizon, and IF = {F(t),
0 ≤ t ≤ T} a filtration satisfying the usual assumptions. T is the set of all stopping times
in [0, T ].

For θ ∈ T , Lp
n(θ) is the set of all p integrable, IRn-valued random variables which

are measurable with respect to F(θ). For θ = T , we simply denote Lp
n := Lp

n(T ). We
also introduce the set S of all pairs (θ, ξ) ∈ T × L2

n such that ξ ∈ L2
n(θ). By analogy,

we introduce the set S = [0, T ] × IRn which can be viewed as the subset of deterministic
elements of S.

Let IH0
n be the set of all càd-làg processes X : [0, T ] × Ω −→ IRn progressively mea-

surable with respect to the filtration IF , and IHp
n the subset of IH0

n whose elements satisfy
E[
∫ T
0 |Xt|pdt] < ∞.
For a topological space A, BA is the set of all Borel subsets of A.
M∗ is the transpose of the matrix M .

2.2 Admissible controls

The control set U is a Borel subset of an Euclidean space and U is the set of all progressively
measurable processes ν : [0, T ]× Ω −→ U .

Given ν1 and ν2 in U and a stopping time θ ∈ T , we define the θ-concatenation of
(ν1, ν2) by :

ν1

θ
⊕ ν2 := ν1 1[[0,θ) + ν2 1[[θ,T ]].

Finally the set of admissible controls is any Borel subset A of U which satisfies the following
two conditions.

A1. Stability under concatenation:

ν1

θ
⊕ ν2 ∈ A for all ν1, ν2 ∈ A and θ ∈ T ,

This condition is crucial for dynamic programming. It essentially states that the set of
admissible controls has an additive structure.

The second assumption is a technical condition and in many instances it follows from
the topological structure we impose on A. In particular, the following assumption holds if
the set A is a separable, metric space; see Lemma 2.1 below.
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A2. Stability under measurable selection:
We assume that for any θ ∈ T and any measurable map

φ : (Ω,F(θ)) −→ (A,BA),

there exists ν ∈ A such that

φ = ν on [[θ, T ]]× Ω , Leb× P almost everywhere.

The issue here is this. Given φ as above we may define a control process ν by:

ν(t, ω) := (φ(ω))(t, ω)1{t≥θ}(ω) + ν̄(t, ω)1{t<θ}(ω),(2.1)

for some ν̄ ∈ A. Assumption A2 is then needed in order to show that ν is progressively
measurable.

A sufficient condition for A2 is the separability of A :

Lemma 2.1 Suppose that A is a separable metric space. Then, A2 holds.

Proof. We first prove that the result holds for simple functions, then we deduce the result
by density.

1. First suppose that φ is a simple function, i.e.,

φ =
∞∑

k=1

νk 1Bk
,

for some νk ∈ A and pairwise disjoint sets Bk ∈ Fθ whose union is the whole set Ω. Let ν

be as in (2.1). For any t ∈ [0, T ] and a Borel set A ∈ BU , we need to show that the set

O := { (s, ω) ∈ [0, t]× Ω | ν(s, ω) ∈ A }

is Leb[0,t] ⊗Ft−measurable for all t ≥ 0. Indeed, O = O∗ ∪ (∪kOk) where

O∗ := { s < θ} ∩ {ν̄(s, ω) ∈ A },

and, with B̄k := [0, t]×Bk,

Ok := {θ ≤ s} ∩ B̄k ∩ {νk(s, ω) ∈ A} .

Since ν̄ is progressively measurable, O∗ is Leb[0,t]⊗Ft−measurable. Also for each k, Bk ∈ Fθ

and the definition of the σ-algebra Fθ, {θ ≤ t} ∩ B̄k is Leb[0,t] ⊗Ft−measurable. Hence O

is Leb[0,t] ⊗Ft−measurable.
2. Since A is separable, there exist a sequence of maps φn : Ω → A which are simple

functions as in Step 1, and limn φn = φ everywhere. Let νn be as in (2.1) with φn. Then, by
Step 1, νn is IF−progressively measurable and morevoever νn converges to ν everywhere.
Hence ν is IF−progressively measurable as well. 2
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2.3 State process

The controlled state process is a mapping from S ×A into a subset Z of IH0
n :

(θ, ξ, ν) ∈ S ×A 7−→ Zν
θ,ξ ∈ Z ⊂ IH0

n .

We shall denote

ZT :=
{
Zν

θ,ξ(T ) : (θ, ξ, ν) ∈ S ×A
}
⊂ L0

n .

The state process is assumed to satisfy the following conditions.

Z1. Initial data: Zν
θ,ξ = 0 on [[0, θ) and Zν

θ,ξ(θ) = ξ.

Z2. Consistency with deterministic initial data: for all (t, z) ∈ S,

Zν
θ,ξ = Zν

t,z on the event {(θ, ξ) = (t, z)}.

The controlled process Zν is defined up to null sets, as an equivalence class in IH2
n. Since

the event {(θ, ξ) = (t, z)} may have zero measure, the above statement needs clarification.
Precisely, by Z2 we mean that

E
[
f
(
Zν

θ,ξ(s)
)
|(θ, ξ) = (t, z)

]
= E

[
f
(
Zν

t,z(s)
)]

for any bounded Borel function f and s ≥ t.

Z3. Pathwise uniqueness: for all τ ∈ T with θ ≤ τ a.s., we have

Zν
θ,ξ = Zν

τ,ζ on [[τ, T ]] where ζ := Zν
θ,ξ(τ).

Z4. Causality: if two admissible controls ν1, ν2 are equal between two stopping times
τ ≥ θ in T , ( i.e., ν1 = ν2 on [[θ, τ ]]) then,

Zν1
θ,ξ = Zν2

θ,ξ on [[θ, τ ]] .

Z5. Measurability: the map

(t, z, ν) ∈ S ×A 7−→ Zν
t,z(T ) ∈ ZT

is Borel measurable.
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2.4 The stochastic control problem

The target set G is a Borel subset of IRn. Given an initial data (t, z) ∈ S, let

G(t, z) :=
{
ν ∈ A : Zν

t,z(T ) ∈ G a.s.
}

be the set of admissible controls which can drive the state process Z into the target G at
the terminal time T . Observe that G(t, z) may be empty, and the reachability set is the
collection of all points at which it is nonempty:

V (t) := {z ∈ IRn : G(t, z) 6= ∅} .

2.5 Typical state and control processes

In all of our applications, the state process Zν
t,z is a jump-diffusion process; see Section 6.1

below. Such a process is driven by a Brownian motion W and random measures {vj}J
j=1.

In these applications, we take the filtration F to be the P completion of the smallest σ

algebra generated by the Brownian motion and the random measures.
Also a typical choice for the set of admissible controls A is a closed subset of adapted

processes in Lp((0, T )×Ω; Lebesque⊗ P ) with some p ∈ [1,∞) and the product σ-algebra
of B[0,T ] ×F . In view of Lemma 2.1, we would like A to be separable.

Indeed, since the set of progressively measurable processes is a closed subset of Lp((0, T )×
Ω), the separability of A follows from the separability of Lp. According to classical results
on separability (see for instance, Doob [12], page 92), any Lp space is separable if the
underlying σ-algebra is countably generated upto null sets. Therefore, this choice of A
is separable, provided that F is countably generated. We claim that this is always the
case. Indeed, as it is discussed in Section 6.1, random measures vj are determined by the
jump times {T j

n}n=1,... and random variables {Y j
n }n=1,.... So that F is the P completion

of F0 = FW ∨ FT ∨ FY , where FW is generated by the Brownian motion W , and FT ,
FY are generated by the sequence of random variables {T j

n}, {Y j
n }, respectively. Since the

Brownian paths are continuous FW is countably generated (see for instance [24] Example
4.2.1 in §1). Therefore, F0 is countably generated and by construction, F is countably
generated upto null sets.

Hence, with the above choices, A is separable, and Assumption A2 follows from Lemma
2.1.

3 Dynamic programming

We first start by a measurable selection result which is the key step in the proof of dynamic
programming principle. Set

D := {(t, z) ∈ S : z ∈ V (t)} = {(t, z) ∈ S : G(t, z) 6= ∅} .
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Lemma 3.1 For any probability measure µ on S, there exists a Borel measurable function
φµ : (D,BD) −→ (A,BA) such that :

φµ(t, z) ∈ G(t, z) for µ−a.e. (t, z) ∈ D .

Proof. By assumption, S and A are Borel spaces. Set

B := {(t, z, ν) ∈ S ×A : ν ∈ G(t, z)} .

1. We claim that B is a Borel subset of S ×A. Indeed, in view of Z5, the map (t, z, ν)
∈ S × A 7−→ Zν

t,z(T ) ∈ ZT is Borel measurable. Therefore, for any bounded continuous
function f , the map Ψf : (t, z, ν) ∈ S ×A 7−→ E

[
f
(
Zν

t,z(T )
)]
∈ IR is Borel.

If G is a closed subset of IRn, then there exists a sequence of continuous functions fn

such that fn(x) −→ 1G(x) for all x ∈ IRn, fn = 1 on G, and 0 < fn ≤ 1 outside G. Then,
the map Ψ1G is Borel as limit of the Borel maps Ψfn .

Now, if G is open, then Ψ1G = 1−Ψ1Gc and therefore Ψ1G is Borel by step 1. Clearly,
this property extends to a countable union ∪nGn of open or closed disjoint subsets of IRn

since 1∪nGn =
∑

n 1Gn . Hence, the map Ψ1G is Borel measurable for any Borel subset G

of IRn.
Since B = {(t, z, ν) ∈ S ×A : Ψ1G(t, z, ν) ≤ 0}, B is a Borel set.
2. Since any Borel set is also analytic (see [6] Proposition 7.36), B is an analytic subset

of S×A;. We may now apply the Jankov-von Neumann Theorem (see Bertsekas and Shreve
[6] Proposition 7.49), to deduce the existence of an analytically measurable function φ : D

−→ A such that Gr(φ) ⊂ B, i.e. φ(t, z) is an admissible control in G(t, z) for all (t, z) ∈ D.
3. In this step, we will construct a Borel measurable map φµ which is equal to φ, µ

almost everywhere.
Let P (S) be the set of all probability measures on S, and for µ ∈ P (S), let BS(µ) the

completion of the Borel σ-algebra BS under µ. Then US := ∩µ∈P (S)BS(µ) is called the
universal σ-algebra. In view of Corollary 7.42.1 in Bertsekas and Shreve [6], every analytic
subset of S is universally measurable. In particular, any analytic map φ is universally
measurable. Since US ⊂ BS(µ) for any µ ∈ P (S), it follows that φ is BS(µ)-measurable.
Then, the definition of BS(µ) implies that there exists a Borel measurable map φµ which
is equal to φ for µ almost every (t, z) ∈ S. 2

We are now in a position to state the dynamic programming principle.

Theorem 3.1 Let (t, z) ∈ S, and θ ≥ t be a stopping time in T . Then,

V (t) =
{
z ∈ IRn : Zν

t,z(θ) ∈ V (θ) a.s. for some ν ∈ A
}

.(3.1)

Proof. Set W (t) := {z ∈ IRn : Zν
t,z(θ) ∈ V (θ) a.s. for some ν ∈ A}.

9



1. We first prove that V (t) ⊂ W (t). Let z be an arbitrary element of V (t). Then, there
exists ν ∈ A such that Zν

t,z(T ) ∈ G a.s.. The pathwise uniqueness property Z3 yields

Zν
t,z(T ) = Zν

θ,Zν
t,z(θ)(T ) ∈ G a.s..

Let µ = µθ,t,z be the pull-back of P under the map (θ, Zν
t,z(θ)), as such µ is a Lebesque

measure on [0, T ]× IRn. We need to show that for µ-a.e. (t′, z′), z′ ∈ V (t′).
By Z2, for every (t′, z′),

P
(
Zν

t′,z′(T ) ∈ G
)

= P
(
Zν

θ,Zν
t,z(θ)(T ) ∈ G

∣∣∣ (θ, Zν
t,z(θ)) = (t′, z′)

)
.

Hence∫
P
(
Zν

t′,z′(T ) ∈ G
)

dµ = E
(

P
(
Zν

θ,Zν
t,z(θ)(T ) ∈ G

∣∣∣ (θ, Zν
t,z(θ)) = (t′, z′)

) )
= P

(
Zν

θ,Zν
t,z(θ)(T ) ∈ G

)
= P

(
Zν

t,z(T ) ∈ G
)

= 1.

Hence for µ-a.e. (t′, z′), P
(
Zν

t′,z′(T ) ∈ G
)

= 1, and z′ ∈ V (t′). Therefore, Zν
t,z(θ) ∈ V (θ)

a.s..
2. In this step, we prove the opposite inclusion W (t) ⊂ V (t). Let (t, z) ∈ W (t). Then,

Zν
t,z(θ) ∈ V (θ) a.s. for some ν ∈ A.(3.2)

Let µ be the probability measure on S induced by
(
θ, Zν

t,z(θ)
)
, and let φµ be the Borel

measurable map constructed in Lemma 3.1. In view of (3.2),
(
θ, Zν

t,z(θ)
)
∈ D a.s.. Then

by Lemma 3.1 and A2, there exists ν1 ∈ A such that for µ-almost every (t′, z′),

Zν1
t′,z′(T ) = Z

φµ(t′,z′)
t′,z′ (T ) ∈ G on the event set

{(
θ, Zν

t,z(θ)
)

= (t′, z′)
}

.(3.3)

Set ν̂ := ν
θ
⊕ ν1. According to the stability by concatenation property A1, ν̂ is an admissible

control in A. We now compute that

Z ν̂
t,z(T ) = Z ν̂

θ,Z ν̂
t,z(θ)

(T ) by Z3

= Z ν̂
θ,Zν

t,z(θ)(T ) by Z4 since ν̂ = ν on [[t, θ]]

= Zν1

θ,Zν
t,z(θ)(T ) by Z4 since ν̂ = ν1 on [[θ, T ]]

∈ G by (3.3).

Hence ν̂ ∈ G(t, z) and z ∈ V (t). 2
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4 Dynamic Programming Equation

In this section we state the corresponding dynamic programming equation when the state
process is a diffusion.

In our earlier work, [26] [27], the dynamic programming property is used to study two
problems in finance. In those two examples, the reachability set V (t) is the epigraph of
the value functions. In [26] and [27] this structure and the dynamic programming principle
(3.1) is then used to derive a nonlinear partial differential equation for these functions.

In the general setup outlined in this paper, the reachability set V (t) may not be an
epigraph. Still, the dynamic programming principle (3.1) can be used to derive an equation
for the boundary of the reachability set. Necessarily, this equation is a geometric flow
equation as defined in Barles, Soner and Souganidis [4]. This connection between the
stochastic target problems and the geometric flows is further discussed in our forthcoming
papers [29] and [28]. In particular, in [28], we provide a stochastic representation formula for
the weak solutions of the mean curvature flow as defined in Chen, Giga, Goto [8], Evans,
Spruck [13] and Ambrosio, Soner [1]. To our knowledge, this is the first representation
formula of this type. A brief discussion of this formula is given in the next section.

In this section, we simply state this “geometric dynamic programming equation” which
is the analogue of the Bellman equation of a standard optimal control problem. We then
discuss the properties of this equation and later in §8 we establish the connection between
the target problem and this equation by proving that the complement of the characteristic
function of the reachability set is a viscosity solution.

We assume that the state process Zν
t,z is a diffusion process solving

dZν
t,z(s) = µ(s, Zν

t,z(s), ν(s)) ds + σ(s, Zν
t,z(s), ν(s)) dW (s),

where W is a n-dimensional Brownian motion. We assume that µ and σ are both bounded
and satisfy the usual Lipschitz conditions, and that the control set U is compact. The
Dynking operator associated with the controlled diffusion Zν will be denoted by :

Lνu(t, z) := ut(t, z) + µ(t, z, ν)∗Du(t, z) +
1
2
trace

(
σσ∗(t, z, ν)D2u(t, z)

)
.

Further, for p ∈ IRn, and (t, z) ∈ S = [0, T ]× IRn let,

N (t, z, p) := { ν ∈ U : σ∗(t, z, ν) p = 0 } .

Note that N (t, z, 0) = U for any (t, z). In the rest of this section, wa shall assume that the
following standing assumption

N (t, z, p) 6= ∅ for all (t, z, p) ∈ [0, T )× IRn × IRn

holds.
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The dynamic programming equation for this diffusion target problem is

−ut(t, z) + F (t, z,Du(t, z), D2u(t, z)) = 0 ,(4.1)

where, for p ∈ IRn, p 6= 0, (t, z) ∈ S and a symmetric matrix A,

F (t, z, p, A) := sup
{
−µ(t, z, ν)∗p− 1

2
trace (σσ∗(t, z, ν)A) : ν ∈ N (t, z, p)

}
,(4.2)

so that −ut(t, z) + F (t, z,Du(t, z), D2u(t, z, )) = sup{−Lν(t, z) : ν ∈ N (t, z,Du(t, z))}.
The connection between the diffusion target problem and the above nonlinear equation

is this. Let u(t, z) be the characteristic function of the complement of the reachability set
V (t),

u(t, z) := 1− 1V (t)(z) :=

{
0 for z ∈ V (t)
1 for z 6∈ V (t).

We are ready to state the main theorem which establishes a connection between the
stochastic target and the equation (4.1). This requires the following technical condition on
the set valued function N (t, z, p) :

Assumption 4.1 (Continuity of N (t, z, p)) For any (t0, z0, p0) ∈ S × IRn and ν0 ∈
N (t0, z0, p0), there exists a map ν̂ : S × IRn −→ U satisfying ,

ν̂(t0, z0, p0) = ν0,

ν̂(t, z, p) ∈ N (t, z, p) for all (t, z, p) ∈ S × IRn,

ν̂ is locally Lipschitz on { (t, z, p) : p 6= 0 }.

Theorem 4.1 Assume that U is compact and N (t, z, p) satisfies the continuity Assumption
4.1. Further assume that F is locally Lipschitz on { p 6= 0 }. Then, u is a discontinuous
viscosity solution of (4.1).

We defer the proof of this theorem to §8. We refer to Chen, Giga and Goto (1991) for
the discussion of the uniqueness issue related to the above non-linear PDE.

For completeness we recall that u is a discontinuous viscosity supersolution (resp. sub-
solution) of (4.1), if the lower semicontinuous envelope u∗ (resp. the upper semicontin-
uous envelope u∗) of u is a viscosity supersolution (resp. subsolution) of the equation
−(u∗)t + F ∗(t, z,Du∗, D

2u∗) ≥ 0 (resp. −(u∗)t + F∗(t, z,Du∗, D2u∗) ≤ 0).
As discussed in the Introduction, this equation is the level set equation for the geometric

equation (1.3). Thus the above problem implies that the reachability set satisfies the
geometric equation. This property is discussed in detail in Section 5. In particular we will
show that when the resulting geometric flow has a smooth solution then it is equal to V (t).

12



Note that although u is discontinuous, it solves a second order partial differential equa-
tion. In this connection, the definition of N (t, z, p) plays a crucial role which implies that
the equation (4.1) is degenerate along the Du direction. This essentially means that the
dynamic programming equation (4.1) is a geometric equation only for the boundary of
V (t); see Barles, Soner, Souganidis [4]. Indeed, The nonlinearity F has the following two
important properties

F (t, z, c1p, c1A + c2pp∗) = c1F (t, z, p, A) ∀ c1 > 0 , c2 ∈ IR,(4.3)

F (t, z, p, A + B) ≤ F (t, z, p, A), ∀ B ≥ 0.(4.4)

The second property means that (4.1) is elliptic, while the first implies that it is geomet-
ric. Note that the geometric property implies that (4.1) is degenerate along the gradient
direction which is the normal direction to the level sets of u.

In some examples, the reachability set V (t) may be lower dimensional. In that case,
u∗ ≡ 1 and therefore u is automatically a viscosity subsolution of (4.1). Interestingly, still
the supersolution property of u contains enough information; see [1] Section 3.

We conclude this section by the following remark, which illustrates the typical use of
Assumption 4.1, and provides a lower bound for V (t).

Remark 4.1 (i) Fix (t, z) and a small constant δ > 0. Construct processes ν and Zν
z so

that for all s ∈ [t, T ],

ν(s) = ν̂ (s, Zν
z (s), Zν

z (s)− z) , whenever |Zν
z (s)− z| ≥ δ.

Set y(s) := Zν
z (s)− z and apply Itô’s rule to |y(s)|2,

d|y(s)|2 = [2y(s)∗µ(· · ·) + trace(σσ∗(· · ·))]ds + 2y(s)∗σ(· · ·)dW (s),

where (· · ·) = (s, y(s), ν(s)). Since ν(s) ∈ N (s, Zν
z (s), y(s)) whenever |y(s)| ≥ δ, the

stochastic term in the above equation is equal to zero. Hence, when |y(s)| ≥ δ,

d|y(s)|2 ≤ C(|y(s)|+ 1)ds,

for some constant C, depending on the bounds on µ and σ. This proves that :

|y(s)|2 ≤ δ2 + C

∫ s

t
(1 + |y(r)|)1|y(r)|≥δdr

≤ δ2 + C(s− t) +
C

δ

∫ s

t
|y(r)2|dr .

We now use Gronwall’s Lemma to see that

|y(s)|2 ≤ h(δ) := Cδ(1 + δ) + (δ + δ2)eCδ for (s− t) ≤ δ2 .(4.5)

13



Since δ is arbitrary, this proves that, with a convenient choice of the control ν, the distance
between Zν

z (s) and z can be controlled in small time.
(ii) Now suppose that the target G has non-empty interior. Then from the latter obser-
vation, for small δ > 0, let Gδ be a subset of G, with non-empty interior, and satisfying
dist(∂Gδ, ∂G) > h(δ). Then, clearly Gδ is a lower bound for V (T − δ2) in the sense that
Gδ ⊂ V (T − δ2). 2

5 Application to mean curvature flow

An important example of a parabolic geometric flow is the mean curvature flow. In this
section, we will show that our results provide a stochastic representation for the solutions
of this flow. There is a large literature on mean curvature flow. We refer to [19], [20], and
[21] for the analysis of smooth solutions and their properties, and we refer to [8], [13] and
[1] and the references therein for the weak-viscosity solutions of geometric flows. Further
study of this connection is given in [28].

Smooth mean curvature flow is a family of smooth manifolds {Γ(t)}t≥0 indexed by the
time variable t. At any point x ∈ Γ(t), the normal velocity V = V(t, x) at that point is
equal to a constant times the mean curvature H = H(t, x) of the smooth set Γ(t), i.e.,

V = c∗H,(5.1)

for some positive constant c∗. We may view this flow as a geometric initial value problem:
given Γ(0) find the time evolution Γ(t) so that (5.1) holds everywhere.

In this paper, we only consider the case when these manifolds are subsets of an Euclidean
space IRn. In this case, we may define all the relevant geometric quantities, such as V and
H, in terms of the distance function. Since the constant c∗ can be changed by appropriately
scaling time, we will take c∗ = (n− k), where k is codimension of the sets Γ(t).

Let us start with the case when Γ(t) is a smooth hypersurface enclosing an open set
O(t) so that the signed distance function :

ρ(t, x) :=

{
distance(x, Γ(t)), if x ∈ O(t),
−distance(x,Γ(t)), if x 6∈ O(t)

is smooth in some tubular neighborhood {(t, x) : ρ(t, x) ≤ ε}. Then, at x ∈ Γ(t), the
normal velocity and the mean curvature are given by

V(t, x) = ρt(t, x), H(t, x) =
1

n− 1
∆ρ(t, x).

Since c∗ = (n−1), the signed distance function of a mean curvature flow {Γ(t)}t≥0 satisfies

ρt(t, x) = ∆ρ(t, x), ∀ x ∈ Γ(t).(5.2)

14



Note that x ∈ Γ(t), if and only if ρ(t, x) = 0. Hence the signed distance function ρ satisfies
the heat equation only on its zero level set. Away from its zero set, it does not satisfy
the heat equation, however, it satisfies certain inequalities which are useful in the study of
mean curvature flow. Indeed it is shown in [25] that

[ ρt −∆ρ ] ρ ≥ 0.

Since ρ is not smooth everywhere, the above inequality has to be interpreted in the viscosity
sense.

Example 5.1 As a simple example consider the evolution of a sphere Γ(0) =∂BR0 := { x ∈
IRn | |x| = R0 }. Since the mean curvature flow is invariant under rotation, we guess the
solution Γ(t) to be a sphere as well, i.e., Γ(t)=∂BR(t). Then, the normal velocity and the
mean curvature of Γ(t) are easy to calculate,

V =
d

dt
R(t), H = − 1

R(t)
.

Then, the equation (5.1) implies that

d

dt
R(t) = −(n− 1)

R(t)
⇒ R(t) =

√
R(0)2 − 2(n− 1)t .

Note that Γ(t) becomes empty for all t >
√

R(0)2/2(n− 1). 2

When Γ(t) has codimension higher than one, we can not define a signed distance function
and the distance function is not smooth on Γ(t). However, the square distance function

η(t, x) :=
1
2

(distance(x,Γ(t)))2

is as smooth as Γ(t) in a tubular neigborhood of Γ(t). Let ~V(t, x), ~H(t, x) be, respectively,
the normal velocity vector and the mean curvature vector. Then, ~V = V ~n, and ~H = H ~n,
for some unit normal vector ~n; see [1] for the definition of ~H . Then, following a suggestion
of DeGiorgi it is shown that (see [1])

~V(t, x) = Dηt(t, x), ~H(t, x) = D∆η(t, x).

Therefore, if {Γ(t)}t≥0 is a mean curvature, then

Dηt(t, x) = D∆η(t, x), on {(t, x) : η(t, x) = 0} .(5.3)

Planar mean curvature flow is also known as the curve shortening equation. In a series
of papers, it is shown that solutions of the curve shortening equation remain smooth and
shrink to a point in finite time [19, 20, 21]. However, in higher dimensions mean curvature
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flow do create singularities even if it starts smoothly. For that reason several weak-viscosity
solutions have been introduced [8, 13, 25]. They have shown that the following partial
differential equation can be used to characterize the viscosity solutions of the (codimension
one) mean curvature flow.

−ut + F1(D2u, Du) = 0 ,(5.4)

where for p ∈ IRn, p 6= 0, and a symmetric matrix A,

F1(A, p) := − trace [ AΠp ] , Πp := In − (pp∗)/|p|2 .

Later a similar differential equation is obtained for higher codimension flows [1]. For flows
with codimension k, the equation is

−ut + Fk(D2u, Du) = 0,(5.5)

with

Fk(A, p) := −
n−k∑
i=1

λp
i (A) ,

where λp
1(A)≤λp

2(A)≤. . .≤λp
n−1(A) are the eigenvalues of ΠpAΠp corresponding to eigen-

vectors which are orthogonal to p.
In the next two subsections we will obtain a stochastic representation of the Euclidean

mean curvature flow. Although general codimension case can be handled directly, for the
ease of presentation we will treat the codimension one case first and then describe the
general codimension.

5.1 Codimension one mean curvature flow

Since for the mean curvature flow it is appropriate to assign an initial set, we reverse time
and consider the following state dynamics

dZν
z (s) =

√
2 (In − ν(s)ν∗(s))dW (s), s > 0,

with initial data Zν
z (0) = z. Control processes take values in U = Sn−1 = { z ∈ IRn : |z| =

1 } and In is the n× n identity matrix.
With the notation of the previous section, N (t, z, p) = { p/|p|,−p/|p| } for any p 6= 0

and therefore the continuity Assumption 4.1 is satisfied. Then the dynamic programming
equation (4.1) (after changing the direction of time) takes the form

ut = − sup{−∆u + D2uν · ν | ν ∈ N (t, z,Du) }

= ∆u− D2u(t, z)Du(t, z) ·Du(t, z)
|Du(t, z)|2

.

This is exactly the level set equation of the (codimension one) mean curvature flow. Note
that the above equation is not defined when Du(t, z) = 0. This problem is addressed in
detail in the papers on weak-viscosity solutions of the mean curvature flow. See also §8.
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Given a target G, let

G(t, z) := {ν ∈ A : Zν
z (t) ∈ G a.s.} ,

and
V (t) := { z ∈ IRn | G(t, z) 6= ∅ }.

Then, the results of the previous section imply that

Theorem 5.1 V (t) is a viscosity solution of the mean curvature flow as defined in [4], i.e.,
the characteristic function of the complement of V (t) is a discontinuous viscosity solution
of (5.4).

Example 5.2 We consider the evolution of spheres discussed in Example 5.1. Then, it
follows from Remark 4.1 that V (t) is nonempty for all t sufficiently close to T . Indeed, we
may obtain from (4.5) an explicit lower bound for V (t) in terms of C and R(T ).

Example 5.3 Again, in the context of Example 5.1, we now construct an optimal control
process. Indeed in that example G = ∂BR0 . Suppose that z ∈ V (T ). Then, there exists
an adapted process ν(·) ∈ Sn−1, such that the corresponding state process Zν

z satisfies,
Zν

z (T ) ∈ G, or equivalently, |Zν
z (T )| = R0. We apply Itô’s rule to |Zν

z (t)|2,

(R0)2 = |Zν
z (T )|2 = |z|2 + 2(n− 1)T + 2

√
2
∫ T

0
(Zν

z (t))∗(In − ν(t)ν∗(t))dW (t) .

Since the above identity holds almost surely, we conclude that the stochastic integral has
to be equal to zero. Hence

ν(t) = ± Zν
z (t)

|Zν
z (t)|

,

and |z| = R(T ) := (R(0))2 − 2(n − 1)T . Therefore, V (T ) ⊂ ∂BR(T ). Also starting from
any point z ∈ ∂BR(T ) if we use the feedback control ν as above, then the above calculation
implies that the corresponding state process Zν

z satisfies |Zν
z (T )| = R(0). Hence, V (T ) =

∂BR(T ). 2

In this example, we have shown the equivalence between the stochastic target problem
and the mean curvature flow by explicitely constructing the control process. Such a con-
struction is also possible when the mean curvature flow has a smooth solution. In this case
the control process is constructed by using the gradient of the distance function; [28].
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5.2 codimension k mean curvature flow

A slight change of the above problem gives the codimension k mean curvature flow. For an
integer k < n consider the state process

dZν
z (s) =

√
2

In −
k∑

j=1

νj(s)ν∗j (s)

 dW (s),

where the control set is defined by :

U =
{

ν = (ν1, . . . , νk) ∈
(
Sn−1

)k
: ν∗i νj = 0 for all 1 ≤ i 6= j ≤ k

}
.

The control set U can be seen as the Grassmanian manifold of n−k dimensional unoriented
planes. Indeed, for ν ∈ U , let Πν be the projection matrix onto a plane orthogonal to ν,
i.e.

Πν := In −
k∑

i=1

νiν
∗
i .

For p 6= 0,
N (t, z, p) = N (p) = { ν ∈ U | Πνp = 0 }.

Therefore, (4.1) is satisfied and the dynamic programming equation is

ut(t, z) + F (D2(t, z), Du(t, z)) = 0,

where
F (A, p) = sup

ν∈N (p)
{ −trace [AΠν ] } .

We claim that the nonlinear function F is equal to Fk defined in (5.5).

Proposition 5.1 For all p ∈ IRn, p 6= 0, and n× n symmetric matrix A,

F (A, p) = Fk(A, p) = −
n−k∑
j=1

λp
j (A).

Proof. For an n × n symmetric matrix M , let λ1(M) ≤ . . . ≤ λn(M) be the ordered
eigenvalues of M . Also, for ν = (ν1, . . . , νk) ∈ U , λν

1(M) ≤ . . . ≤ λν
n−k(M) denote the

ordered eigenvalues of ΠνMΠν corresponding to eigenvectors orthogonal to ν1, . . . , νk.
Since AΠν = AΠνΠν , Πν is symmetric, and since all νj is an eigenvector of ΠνAΠν

with zero eigenvalue,

trace [AΠν ] = trace [ΠνAΠν ] =
n∑

j=1

λj(ΠνAΠν) =
n−k∑
j=1

λν
j (A).
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We now claim that for ν ∈ N (p), λν
i (A) ≥ λp

i (A) for every i = 1, . . . , n − k. Indeed, λν
i

admits a representation

λν
i (A) = sup

η∈Ki

inf{ ΠνAΠνx · x | |x| = 1, Πνx = x, Πηx = x },

where K1 = ∅, and for i > 1, Ki is set of all (i − 1) mutually orthogonal, unit vectors
η = {η1, . . . , ηi−1}.

For ν ∈ N (p), and x satisfying Πνx = x,

ΠνAΠνx = ΠpAΠpx = Ax .

Hence

λν
i (A) = sup

η∈Ki

inf{ ΠνAΠνx · x | |x| = 1, Πνx = x, Πηx = x }

= sup
η∈Ki

inf{ ΠpAΠpx · x | |x| = 1, Πνx = x, Πηx = x }

≥ sup
η∈Ki

inf{ ΠpAΠpx · x | |x| = 1, Πpx = x, Πηx = x }

= λp
i (A).

Conversely, let ei be an eigenvector corresponding to the eigenvalue λp
i , i.e.,

ei · p = 0, and ΠpAΠpei = λp
i (A)ei.

Set F := {e1, . . . , en−k}⊥. By definition, p ∈ F . Let ν̂ = (ν̂1, . . . , ν̂k) be an orthonormal
basis of F . Then, ν̂ ∈ N (p), and

Πν̂AΠν̂ei = ΠpAΠpei = λp
i (A)ei.

Hence

F (A, p) ≥ −trace
[
AΠν̂

]
= −

n−k∑
j=1

λν̂
j (A) ≥ −

n−k∑
j=1

λp
j (A)

= Fk(A, p).

2

6 Application to financial mathematics

In this section, we discuss three examples from financial mathematics. In all these exam-
ples, the dynamic programming principle is used to characterize the reachability set by a
Hamilton-Jacobi-Bellman equation. As in Theorem 4.1, this equation holds in the viscosity
sense.
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6.1 Stochastic target problem in a jump-diffusion model

Let W = (W 1, . . . ,W I) be an I-dimensional Brownian motion on the probability space
(Ω,F , P ), and vj(dt, dz)j=1,...,J be integer valued random measures defined on the same
probability space. We assume that these random measures are constructed by the marked
point process (N j , {Y j

n , n ∈ IN}), i.e. {N j(t) t ≥ 0} is a counting process corresponding to
the exponential random times {T j

n, n ∈ IN}, and {Y j(n), n ∈ IN} is a sequence of random
variables with values in the mark space E, a Borel subset of IR+. Then, vj is given by

vj([0, t]×B) =
∑
n≥1

1{T j
n≤t}1B(Y j

n ) for all t ∈ [0, T ] and B ∈ BE .

As discussed in §2.5, we assume that F is the P completion of the σ algebra generated
by the Brownian motion and the random measures. We also let IF = {F(t), 0 ≤ t ≤ T} be
the P -completed filtration generated by the random measures vj(dt, dz) and the Brownian
motion W .

The random measure v(dt, dz) = (v1, . . . , vJ) is assumed to have a predictable intensity
kernel mt(dz) with

E

[
sup

0≤t≤T

∫
E

mt(dz)

]
< ∞ .(6.1)

In particular, this means that there is a finite number of jumps during any finite time
interval. By definition of the intensity kernel mt(dz), the compensated jump process :

ṽ(dt, dz) = v(dt, dz)−mt(dz)dt

is such that {ṽ([0, t]×B), 0 ≤ t ≤ T} is a (P, IF ) martingale for all B ∈ BE .
The control set A is the collection of all L2((0, T ) × Ω) adapted processes valued in

some closed subset U of IRd. Observe that Property A1 is trivially satisfied. Also, in view
of §2.5, the control set A is a separable metric space, and therefore Property A2 holds by
Lemma 2.1.

Given an initial data (t, z) ∈ S = [0, T ] × IRn, and a control ν ∈ A, the controlled
process Zν

t,z is the unique solution of

dZν
t,z(t) = µ

(
t, Zν

t,z(t), ν(t)
)

dt + σ
(
t, Zν

t,z(t), ν(t)
)

dW (t)

+
∫

E
γ(t, Zν

t,z(t), ν(t), e)v(dt, de),

and the condition Zν
t,z(t) = z. We set Zν

t,s(r) = 0 for r < t. It is well known that the above
stochastic differential equation has a unique strong solution under some conditions on the
coefficients µ, σ and γ.

The target set in this example is given by

G := Epi(g) =
{
z = (x, y) ∈ IRn−1 × IR : y ≥ g(x)

}
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for some measurable function g : IRn−1 −→ IR. Then, the stochastic target problem is

V (t) :=
{
z ∈ IRn : Zν

t,z(T ) ∈ G for some ν ∈ U
}

.

A straightforward application of Theorem 3.1 yields the following.

Proposition 6.1 Let µ(t, z, u), σ(t, z, u) and γ(t, z, u, e) be continuous functions, globally
Lipschitz in (z, u) ∈ IRn×U uniformly in (t, e) ∈ [0, T ]×E. Then, V satisfies the dynamic
programming principle of Theorem 3.1.

Proof. First, observe that the above conditions on the coefficients ensure the existence
of a unique strong solution Zν

θ,ξ of the stochastic differential equation (6.2) for any given
initial condition ξ ∈ L2

n(θ) and θ ∈ T ; see for instance [16]. Properties Z1, Z2, Z3 and
Z4 are clearly satisfied by the solution Zν

θ,ξ. Also Properties A1 and A2 of the control set
hold.

We continue with a proof of Property Z5. From classical estimates we know that for
each ν ∈ A, the map (t, z) ∈ S 7−→ Zν

t,z(T ) ∈ L2
n is continuous ( see for instance [16].) So

it remains to prove that for fixed initial data (t, z) ∈ S, the map ν ∈ U 7−→ Zν
t,z(T ) ∈ L2

n

is continuous uniformly in (t, z).
In the rest of this proof, for the ease of notation we suppress the dependence of the

coefficients on the t variable.
For ν1, ν2 ∈ A, we directly estimate that∣∣∣Zν1

t,z − Zν2
t,z

∣∣∣ ≤
∫ T

t

∣∣∣µ (Zν1
t,z(r), ν1(r)

)
− µ

(
Zν2

t,z(r), ν2(r)
)∣∣∣ dr

+

∣∣∣∣∣
∫ T

t

(
σ
(
Zν1

t,z(r), ν1(r)
)
− σ

(
Zν2

t,z(r), ν2(r)
))

dW (r)

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

t

∫
E

(
γ
(
Zν1

t,z(r), ν1(r), e
)
− γ

(
Zν2

t,z(r), ν2(r), e
))

v(dr, de).

∣∣∣∣∣
The global Lipschitz property of the coefficients in (z, u) uniformly in (t, e) together with
(6.1), implies that

E
∣∣∣Zν1

t,z(T )− Zν2
t,z(T )

∣∣∣2 ≤
C

∫ T

t
E
∣∣∣µ (Zν1

t,z(r), ν1(r)
)
− µ

(
Zν2

t,z(r), ν2(r)
)∣∣∣2 dr

+C

∫ T

t
E
∣∣∣σ (Zν1

t,z(r), ν1(r)
)
− σ

(
Zν2

t,z(r), ν2(r)
)∣∣∣2 dr

+C

∫ T

t
E

∫
E

∣∣∣γ (Zν1
t,z(r), ν1(r), e

)
− γ

(
Zν2

t,z(r), ν2(r), e
)∣∣∣mr(de)dr

≤ C

(
‖ν1 − ν2‖2

IH2
n

+
∫ T

t
E
∣∣∣Zν1

t,z(r)− Zν2
t,z(r)

∣∣∣2 dr

)
,
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where C is a generic constant whose value may vary. By Gronwall’s inequality,

E
∣∣∣Zν1

t,z(T )− Zν2
t,z(T )

∣∣∣2 ≤ CeC(T−t)‖ν1 − ν2‖2
IH2

n
,

proving that the map ν ∈ U 7−→ Zν
t,z(T ) ∈ L2

n is Lipschitz uniformly in (t, z) ∈ S. 2

Next, let us split the process Zν
t,z into two parts Zν

t,z =
(
Xν

t,z, Y
ν
t,z

)
, where Y ν

t,z is the last
component of Zν

t,z valued in IR. Suppose further that the process Xν
t,z = Xν

t,x is independent
of the initial data y. Then, by usual comparison theorem for SDE’s, the random variable
Y ν

t,z is increasing in y. Consequently, the reachability set V (t) is essentially the epigraph of
the following value function,

v(t, x) := inf {y ∈ IR : (x, y) ∈ V (t)}

= inf
{
y ∈ IR : Zν

t,x,y(T ) ∈ Epi(g) for some ν ∈ A
}

.

The above stochastic target problem was studied by Soner and Touzi [27] in the diffusion
case, and extended to this context by Bouchard [5].

This problem is closely related to the theory of forward-backward stochastic differential
equations and it is motivated by applications from finance; see e.g. Karatzas and Shreve [18]
and Cvitanić and Ma [10]. Previously, convex duality was used to reduce it to a standard
stochastic control problem; see Föllmer and Kramkov [14] for the general semimartingale
case, and the references therein. Once the reduction is proved, then the Hamilton-Jacobi-
Bellman equation associated to the problem is derived by means of a classical dynamic
programming on the dual problem; see Broadie, Cvitanić and Soner [7] and Cvitanić, Pham
and Touzi [11]. Corollary 6.1 below allows to derive the HJB equation directly from the
initial problem, and therefore avoids the passage by duality.

In [27], the following dynamic programming principle has been introduced (with only
a partial proof), and used successfully in order to obtain a characterization of the value
function v by means of the associated Hamilton-Jacobi-Bellman equation in the viscosity
sense.

Corollary 6.1 Let the conditions of Proposition 6.1 hold. Suppose further that the process
Xν

t,x,y = Xν
t,x is independent of y. Then, for all stopping time θ ≥ t in T ,

v(t, x) = inf
{
y ∈ IR : Zν

t,x,y(θ) ∈ Epi (v(θ, ·)) for some ν ∈ A
}

.

Proof. Let w(t, x) denote the right-hand side of the above dynamic programming equation.
Clearly, the process Y ν

t,x,y is strictly increasing in the initial condition y since Xν
t,x,y = Xν

t,x

is independent of y. Then, For all y > w(t, x) and ε > 0, we have Zν
t,x,y+ε(θ) ∈ V (θ). From

Proposition 6.1, this proves that (x, y + ε) ∈ V (t), and therefore y + ε ≥ v(t, x). Since y >

w(t, x) and ε > 0 are arbitrary, this proves that w(t, x) ≥ v(t, x) .
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Conversely, for all y > v(t, x), Zν
t,x,y(T ) = Zν

θ,Zν
t,x,y(θ)(T ) ∈ G for some ν ∈ A and

therefore Y ν
t,x,y(T ) ≥ v

(
θ, Xν

t,x,y(θ)
)
. Hence y ≥ w(t, x) and the required inequality follows

by letting y converge to v(t, x). 2

Remark 6.1 In [27], the value function v was shown to be a (discontinuous) supersolution
(resp. subsolution) of the associated Hamilton-Jacobi-Bellman equation by means of DP1
(resp. DP2), where :
DP1 Let (t, x, y) ∈ S, and ν ∈ A be such that Zν

t,x,y(T ) ∈ Epi(g). Then Zν
t,x,y(θ) ∈

Epi(v(θ, ·)) for all stopping time θ ∈ T .
DP2 For (t, x) ∈ [0, T )× IRn−1, set y∗ := v(t, x). Then, for all η > 0, ν ∈ A, and stopping
time θ ∈ T , we have P

[
Zν

t,x,y∗−η(θ) ∈ Epi (v(θ, ·))
]

< 1.
Clearly, DP1 and DP2 follow easily from the dynamic programming principle stated in

Corollary 6.1.

We conclude the discussion of this example by relating the value function of the stochas-
tic target problem v(t, x) to

ṽθ,ξ := ess inf
{
ζ ∈ L2(θ) : Zν

θ,ξ,ζ(T ) ∈ Epi(g) for some ν ∈ A
}

,

for a stopping time θ ∈ T and ξ ∈ L2(θ). By the definition of the essential infimum, we
obviously have v(θ(ω), ξ(ω)) ≤ ṽθ,ξ(ω) for a.e. ω ∈ Ω. The measurable selection argument
of Lemma 3.1 allows us to prove that equality holds.

Proposition 6.2 Let θ ∈ T and ξ ∈ L2(θ) be such that ṽθ,ξ ∈ L2(θ). Assume further that
v is bounded from below. Then,

v(θ, ξ) = ṽθ,ξ P − a.s.

Proof. We only need to prove that v(θ, ξ) ≥ ṽθ,ξ for all θ ∈ T and ξ ∈ L2
n−1(θ). Fix θ ∈

T . Consider the function f mapping L2
n−1(θ)× (L2

1(θ)× U) into L2
1(θ),

f(ξ, ζ, ν) = ζ for all (ξ, ζ, ν) ∈ L2
n−1(θ)× (L2

1(θ)× U).

Set Dξ :=
{
(ζ, ν) ∈ L2

1(θ)× U : Zν
θ,ξ,ζ(T ) ∈ G

}
. Notice that Dξ 6= ∅ since ṽθ,ξ ∈ L2(θ).

Then,

v(θ, ξ) = inf
(ζ,ν)∈Dξ

f(ξ, ζ, ν).

Fix ε > 0. Since v(θ, ξ) is bounded from below, it follows from Bertsekas and Shreve [6],
Proposition 7.50, that there exists an analytically measurable function ϕ : L2(θ)× (L2(θ)×
A) −→ L2(θ) such that (ξ, ϕ(ξ)) ∈ L2(θ)× (L2(θ)×A), and

ζ := f (ξ, ϕ(ξ)) ≤ v(θ, ξ) + ε.
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Using the notion of universal σ-algebra as in the proof of Lemma 3.1, we see that, for all
probability measure µ on IRn−1, there exists a Borel measurable function ζµ such that ζ =
ζµ P -a.s.

For a positive integer n, set ζn := ζµ + n−1. In view of the definition of the value
function v, (ξ, ζn) ∈ V (θ). Using the same measurable selection argument as in the proof
of Theorem 3.1, we construct an admissible control νn ∈ A such that Zνn

θ,ξ,ζn
(T ) ∈ Epi(g).

Then, by the definition of ṽ, ζn ≥ ṽθ,ξ. We now complete the proof by sending n to infinity
and ε to zero. 2

6.2 Super-replication under Gamma constraints

Let W = {W (t), 0 ≤ t ≤ T} be a Brownian motion on IR. The controls are taken
from the set U defined as the collection of adapted processes ν = (α, γ) in IH2

2 . Given
such a control, the state process Z = (S, X, Y ) is defined by the initial data Zν

t,s,x,y(t) =
(St,s, X

ν
t,s,x,y, Y

ν
t,y)(t) = (s, x, y) and :

dSt,s(r) = St,s(r)σ(t, St,s(r))dW (r)

dXν
t,s,x,y(r) = Y ν

t,y(r)dSt,s(r)(6.2)

dY ν
t,y(r) = α(r)dr + γ(r)dW (r).

For two constants −∞ ≤ Γ ≤ Γ ≤ +∞, the control set is

A :=
{
ν = (α, γ) ∈ U : Γ ≤ γ(t) ≤ Γ

}
.

In this example, the target is given by

G :=
{
z = (s, x, y) ∈ IR3 × IR : x ≥ g(s)

}
for some measurable function g : IR −→ IR, and the target reachability problem is defined
by :

V (t) :=
{
z ∈ IR3 : Zν

t,z(T ) ∈ G for some ν ∈ A
}

.

In financial mathematics, this control problem arises in the following optimal investment
problem in a financial market consisting of one risky asset and a non-risky asset with price
process normalized to unity. S is the price process of a risky asset. The process Y describes
the number of shares of risky assets held by an investor at each time t. The process X

represents the value of the investor’s portfolio under the self-financing condition. In the
above model, the unbounded variation part of the portfolio process is constrained in the
interval [Γ,Γ]. This problem has been first raised by Broadie, Cvitanić and Soner [7], and
studied by Soner and Touzi [26] in the case Γ = −∞. The case Γ > −∞ is an open problem.

Proceeding as in Proposition 6.1, we obtain the following corollary of Theorem 3.1.
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Proposition 6.3 Let the function sσ(t, s) be continuous and globally Lipschitz in s ∈ [0,∞)
uniformly in t ∈ [0, T ]. Then V satisfies the dynamic programming principle of Theorem
3.1.

Next, as in the previous example, we can reduce the problem to a scalar function,

v(t, s, y) := inf {x ∈ IR : (s, x, y) ∈ V (t)}

= inf
{
x ∈ IR : Xν

t,s,x,y(T ) ≥ g(St,s(T )) for some ν ∈ A
}

.

We then have the following consequence of Proposition 6.3. The proof is omitted since it
follows from the same argument as in the proof of Corollary 6.1.

Corollary 6.2 Let the conditions of Proposition 6.3 hold. Then, for any stopping time θ

≥ t in T , we have :

v(t, s, y) = inf
{
x ∈ IR : Zν

t,s,x,y(θ) ∈ Epi (v(θ, ·))
}

= inf
{
x ∈ IR : Xν

t,s,x,y(θ) ≥ v (θ, St,s(θ), Yt,y(θ))
}

.

However, the control problem v(t, s, y) is not the relevant problem in practice, since the
number of shares y held at the time origin t is an additional control for the investor. The
problem of super-replication under Gamma constraint, as introduced in [26], is defined by :

u(t, s) := inf
y∈IR

v(t, s, y).

Unfortunately, the dynamic programming equation does not translate to the value function
u. However, suppose that the drift term α(t)dt is extended to dA(t) where A is a (new)
control in the class of bounded variation processes. Then, clearly, the value function v(t, s, y)
does not depend on y, since the process Y can jump at time zero by the action of the
bounded variation process A, and u(t, s) = v(t, s, y) for all y ∈ IR. Under this “relaxation”
the value function u(t, s) satisfies the dynamic programming equation of Corollary 6.2.

6.3 Super-replication under transaction costs

The financial market consists of one bank account, with constant price process S0, normal-
ized to unity, and d risky assets S = (S1, . . . , Sd) defined by the dynamics :

St,s(t) = s and dSt,s(t) = diag[St,s(t)] (b(t, St,s(t))dt + σ(t, St,s(t))dW (t)) .(6.3)

Here W is an d-dimensional Brownian motion defined on the filtered probability space
(Ω,F , IF, P ), and b, σ are coefficients, with the appropriate size, satisfying the usual global
Lipschitz condition.
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Proportional transaction costs in this financial market are described by the matrix λ

= (λij , 0 ≤ i, j ≤ d) with non-negative entries. This means that transfers from asset i to
asset j are subject to proportional transaction costs λij for all i, j = 0, . . . , d.

The Control set. A trading strategy is an d + 1-matrix valued process L, with initial value
L(0−) = 0, such that Lij is IF−adapted, right-continuous, and nondecreasing for all i, j

= 0, . . . , d. Here, Lij describes the cumulative amount of funds transferred from asset i to
asset j. We shall denote by U = A the collection of all such trading strategies satisfying

‖L‖2 :=
d∑

i,j=0

E

[(
Lij(T )

)2
]

< ∞.(6.4)

Controlled process. Given a trading strategy L and a vector x ∈ IRd+1 of initial holdings,
the portfolio holdings XL

t,s,x = (XL
t,s,x

i
, i = 0, . . . , d) are defined by the dynamics :

XL
t,s,x(0−) = x

dXL
t,s,x(t)

i
= XL

t,s,x(t)
i dSi

t,s(t)
Si

t,s(t)
+

d∑
j=0

[
dLji(t)− (1 + λij)dLij(t)

]
,(6.5)

for all i = 0, . . . , d. Hence, the state process in this example is ZL
t,s,x = (St,s, X

L
t,s,x) defined

by (6.3)-(6.5).

Hedging problem. The solvency region K is given by

K :=

 x ∈ IRd+1 : ∃ aij ≥ 0, xi +
d∑

j=0

(aji − (1 + λij)aij) ≥ 0; i = 0, . . . , d

 ,

i.e. the collection of portfolio holdings whose liquidation value, through some convienient
transfers, is nonnegative. The set K is a closed convex cone containing the origin. It then
induces a partial ordering � defined by x � 0 iff x ∈ K.

Given some measurable function g : IRd −→ IRd+1, the target is defined by

G := Epi�(g) = {z = (s, x) ∈ IRd × IRd+1 : x− g(s) � 0}.

The target reachability problem is defined by :

V (t) :=
{
z ∈ IRd × IRd+1 : ZL

t,z(T ) ∈ G for some L ∈ A
}

.

An immediate corollary of Theorem 3.1 is the following dynamic programming principle.

Proposition 6.4 Let the coefficients of the model (6.3)-(6.5) be Lipschitz in (s, x) uni-
formly in t. Then, for all stopping time θ ≥ t in T ,

V (t) =
{
z ∈ IRd × IRd+1 : ZL

t,z(θ) ∈ V (θ) for some L ∈ A
}

.
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Proof. As in the proof of Proposition 6.1, we only need to prove that the map L ∈ A 7−→
ZL

t,z(T ) ∈ L2
2d+1 is Lipschitz-continuous. We integrate the state equation to obtain

XL
t,s,x(r)

i
= xi+

∫ r

t
XL

t,s,x(ρ)
i dSi

t,s(ρ)
Si

t,s(ρ)
+

d∑
j=0

[
(Lji(r)− Lji(t)) + (1 + λij)(Lij(r)− Lij(t))

]
.

For any two control processes L1, L2, set

Y (r) := XL1
t,s,x(r)

i −XL2
t,s,x(r)

i
,

so that
‖Y (r)‖2

L2
d+1

≤ C

[∫ r

t
‖Y (ρ)‖2

L2
d+1

dρ + ‖L1 − L2‖2
]
,

where C is an appropriate constant, and ‖L1−L2‖ := E[Var(L1−L2)2], where Var(L1−L2)
is the variation of the BV process L1 − L2. Now the continuity follows from Grownwall’s
inequality. 2

Finally, we interpret the dynamic programming principle in terms of the hedging set
defined by Kabanov [17],

v(t, s) :=
{
x ∈ IRd+1 : (s, x) ∈ V (t)

}
.

The following result is an immediate consequence of Proposition 6.4.

Corollary 6.3 Let the conditions of Proposition 6.4 hold. Then, for all stopping time θ ≥
t in T ,

v(t, s) =
{
x ∈ IRd+1 : XL

t,s,x(θ) ∈ v (θ, St,s(θ)) for some L ∈ A
}

.

Proof. Denote by w(t, x) the right-hand side set of the above dynamic programming
equation. Let x be in v(t, s). By definition, this means that (s, x) ∈ V (t). From Proposition
6.4, there exists some L ∈ A such that ZL

t,s,x(θ) ∈ V (θ), i.e. XL
t,s,x(θ) ∈ v (θ, St,s(θ)). Hence

x ∈ w(t, x).
Conversely, if x ∈ w(t, s), then ZL

t,s,x(θ) ∈ V (θ) for some L ∈ A, and therefore (s, x) ∈
V (t) by Proposition 6.4. Hence x ∈ v(t, s). 2

7 Extension to stochastic viability

The target reachability problem discussed previously can be viewed as a stochastic control
problem with constrained state process at the terminal time. Our dynamic programming
principle can be stated in a slightly more general framework where the state process is
constrained at any time t ∈ [0, T ].
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Let the state process Zν
θ,ξ be as defined in sections 2.2 and 2.3. In section 2.4, we

introduced a target G for the terminal value of the state process. Instead, we define here a
tube {Gt, 0 ≤ t ≤ T} where Gt is a Borel subset of IRd for all t ∈ [0, T ].

Following Aubin et al. [2, 3], we shall say that the process Z is viable if Z(t) ∈ Gt for
all t ∈ [0, T ]. This leads naturally to defining the viability set :

V̄ (t) :=
{
z ∈ IRn : Zν

t,z is viable for some ν ∈ A
}

.

This problem has been studied extensively in the deterministic framework, and we refer to
Aubin et al. [2, 3] for a discussion of the diffusion case.

The following dynamic programming principle follows from the same arguments as in
section 3. Therefore, we only provide a formal statement for it.

Theorem 7.1 Let (t, z) ∈ S, and θ ≥ t be a stopping time in T . Then,

V̄ (t) =
{
z ∈ IRn : Zν

t,z(. ∧ θ) ∈ G.∧θ and Zν
t,z(θ) ∈ V (θ) for some ν ∈ A

}
.

We only need the measurability of each Gt and the measurability of the tube {(t, z) :
z ∈ Gt} in the product topology.

In the financial application, this extension is necessary in order to deal with the problem
of super-replication of American contingent claims.

8 Viscosity Property

In this section, we prove Theorem 4.1. We shall first prove that u is a discontinuous
supersolution of (4.1) by a similar method to the one developed in our earlier paper [27].
The proof of the subsolution property requires more attention than in [27] because of the
singularity of N (t, z, p) at p = 0.

Here we only study a certain type of weak solution, distance solutions, as developed by
the first author [25], [4]. Other types of weak solutions easily follow from this result and
they will be studied in [29].

As in §4 and §5, we assume that Zν
t,z is a diffusion. We first start by some easy conse-

quences of the main technical condition reported in Assumption 4.1.

Remark 8.1 Let F be as in (4.2). In Theorem 4.1 we assume that it is locally Lipschitz
on { (t, z, p) : p 6= 0 }. This continuity assumption is closely related to the behavior of N ,
and indeed it would follow from a slightly stronger version of Assumption 4.1.

As in the previous sections, let u be the characteristic function of the reachability set
V (t), and let u∗ be the lower-semicontinuous envelope and, respectively, u∗ be the upper-
semicontinuous envelope of u

u∗(t, x) := lim inf
(t′,x′)→(t,x)

u(t′, x′) and u∗(t, x) := lim sup
(t′,x′)→(t,x)

u(t′, x′).
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According to the definition, u is a viscosity solution if and only if u∗ is a viscosity
supersolution and u∗ is a viscosity subsolution of (4.1). We refer to [9] and [15] for the
definition of viscosity solutions. In this definition we use the lower and upper semicontinuous
envelope of the nonlinearity F defined in (4.2). In view of our assumptions, F ∗ = F∗ =
F whenever the gradient variable is nonzero. Moreover, since N (t, z, 0) = U , F ∗ = F

everywhere.

8.1 Proof of the supersolution property of u∗

According to the definition, we need to prove that the lower semicontinuous envelope u∗ of
u is a viscosity supersolution of (4.1). So suppose that there are a point (t0, z0) ∈ S and a
smooth function ϕ satisfying

0 = (u∗ − ϕ)(t0, z0) = min
S

(u∗ − ϕ) .

We need to show that

−ϕt(t0, z0) + F ∗(t0, z0, Dϕ(t0, z0), D2ϕ(t0, z0)) ≥ 0.

Since F ∗ = F and U is compact, this is equivalent to show that

−Lν0 ϕ(t0, z0) ≥ 0 for some ν0 ∈ N (t0, z0, Dϕ(t0, z0)).(8.1)

1. Suppose that u(t, z) is equal to a constant in a (space-time) neighborhood of (t0, z0).
Then,

ϕt(t0, z0) = Dϕ(t0, z0) = 0, D2ϕ(t0, z0) ≥ 0,

and (8.1) follows for any ν0.
2. In view of the previous step, we may assume that u∗(t0, z0) = 0. Then, there exists

a sequence (tn, zn)n≥1 converging to (t0, z0) such that u(tn, zn) = u∗(tn, zn) = 0. Hence,
zn ∈ V (tn). For any stopping time θn > tn, by the dynamic programming principle, there
is an admissible control νn ∈ A such that

Zνn
tn,zn

(θn) ∈ V (θn), i.e. u(θn, Zνn
tn,zn

(θn)) = 0.

Further, since u ≥ u∗ ≥ ϕ,

0 = u(θn, Zνn
tn,zn

(θn)) ≥ ϕ
(
θn, Zνn

tn,zn
(θn)

)
P − a.s..

Set βn = −ϕ(tn, zn) so that by Itô’s lemma,

0 ≤ βn −
∫ θn

tn
Lνn(s)ϕ

(
s, Zνn

tn,zn
(s)
)

ds

−
∫ θn

tn

[
σ∗
(
s, Zνn

tn,zn
(s), νn(s)

)
Dϕ

(
s, Zνn

tn,zn
(s))

)]∗
dW (s).(8.2)
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3. For a large constant C, set

θn := inf
{
s > tn :

∣∣∣Zνn
tn,zn

(s)
∣∣∣ ≥ C

}
.

Since µ and σ are bounded and (tn, zn) −→ (t0, z0), by an application of the Borel-Cantelli
Lemma

lim inf
n→∞

t ∧ θn > t0 P − a.s. for all t > t0 .(8.3)

We shall report the proof of this claim in the last step of this proof. For ξ ∈ IR, we introduce
the probability measure P ξ

n equivalent to P defined by the density process :

M ξ
n(t) := E

(
ξ

∫ t∧θn

tn
(σ∗Dϕ)

(
s, Zνn

tn,zn
(s), νn(s)

)∗
dW (s)

)
; t ≥ tn,

where E(·) is the Doléans-Dade exponential operator. Observe that the process M ξ
n is

a martingale, by the definition of θn. We shall denote by Eξ
n the expectation operator

under P ξ
n. By Girsanov Theorem, the process W (·) −

∫ ·
tn

ξ(σDϕ)
(
s, Zνn

tn,zn
(s), νn(s)

)
ds is

a Brownian motion under P ξ
n.

We take the expected value under P ξ
n in (8.2). The result is

0 ≤ βn − Eξ
n

[∫ t∧θn

tn

(
Lνn(s)ϕ

(
s, Zνn

tn,zn
(s)
))

ds

]

− ξ Eξ
n

[∫ t∧θn

tn

∣∣∣σ∗ (s, Zνn
tn,zn

(s), νn(s)
)

Dϕ
(
s, Zνn

tn,zn
(s)
)∣∣∣2 ds

]
,

for all t > tn. Then, we take the limit as n tends to infinity. Since βn converges to zero, the
result is the following inclusion. (We refer to [27], Step 2 of §4.1, for the technical details.)

lim inf
h↓0

−1
h

∫ tn+h

tn

[
Lνn(s)ϕ (t0, z0)− ξ |σ∗ (t0, z0, νn(s))Dϕ (t0, z0)|2

]
ds ≥ 0.(8.4)

Set
V(t0, z0) :=

{
−Lνϕ(t0, z0)− ξ |σ∗(t0, z0, ν)Dϕ(t0, z0)|2 : ν ∈ U

}
,

so that for any h > 0,

−1
h

∫ tn+h

tn

[
Lνn(s)ϕ (t0, z0)− ξ |σ∗ (t0, z0, νn(s))Dϕ (t0, z0)|2

]
ds ∈ c̄oV(t0, z0),

where c̄oV(t0, z0) is the closed, convex hull of the set V(t0, z0). Therefore, it follows from
(8.4) that :

0 ≤ sup
φ∈coV

φ = sup
φ∈V

φ = sup
ν∈U

{
−Lνϕ(t0, z0)− ξ |σ∗(t0, z0, ν)Dϕ(t0, z0)|2

}
(8.5)

for all ξ ∈ IR.
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4. For a large positive integer n, set ξ = −n. Since U is compact, the supremum in
(8.5) is attained at some ν̂n ∈ U and

−n |σ∗(t0, z0, ν̂n)Dϕ(t0, z0)|2 − Lν̂nϕ(t0, z0) ≥ 0.

By passing to a subsequence, we may assume that there exists ν0 ∈ U such that ν̂n → ν0.
Now let n to infinity in the last inequality to conclude that

−Lν0ϕ(t0, z0) ≥ 0

and that σ∗(t0, z0, ν0)Dϕ(t0, z0) = 0. This proves that

ν0 ∈ N (t0, z0, Dϕ(t0, z0))

and therefore (8.1) holds.

5. We now turn to a rigorous proof of (8.3), as requested by an anonymous referee.
From the dynamics of the controlled process Zνn

tn,zn
and the boundedness of µ, we have

|Zνn
tn,zn

(t ∧ θn)− zn| ≤ |µ|∞(θn − tn) +

∣∣∣∣∣
∫ θn

tn
σ(. . .)dW (t)

∣∣∣∣∣ .

Now suppose that lim infn→∞ t ∧ θn = t0, for some t > t0. Then lim infn→∞ θn = t0 and
limk→∞ θnk

= t0 for some subsequence (nk) depending on ω. By taking the limit along
(nk) in the above inequality and using the fact that t > t0, (tn, zn) −→ (t0, z0), |σ|∞ < ∞,
we see that

Z
νnk
tnk

,znk
(θnk

) −→ z0 a.s. .

This provides the required contradiction since |Zνnk
tnk

,znk
(θnk

)| = C > |z0| for large k.

8.2 Proof of the subsolution property of u∗

Suppose that there are a point (t0, z0) ∈ S and a smooth test function ϕ satisfying

0 = (u∗ − ϕ)(t0, z0) = max
t≥t0,z∈IRn

(u∗ − ϕ)(t, z) .(8.6)

We may assume that the above maximum is strict and that the Hessian D2ϕ has full rank.
We need to prove that

−ϕt(t0, z0) + F∗(t0, z0, Dϕ(t0, z0), D2ϕ(t0, z0)) ≤ 0 .(8.7)

Recall that, F∗(t, z, p, A) = F (t, z, p, A) when p 6= 0, so that the above inequality reduces
to

sup{ −Lνϕ(t0, z0) : ν ∈ N (t0, z0, Dϕ(t0, z0)) } ≤ 0 when Dϕ(t0, z0) 6= 0.(8.8)
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We consider three cases separately.

Case 1. If u∗(t0, z0) = 0, then

ϕ(t0, z0) = 0, Dϕ(t0, z0) = 0, D2ϕ(t0, z0) ≥ 0,

and (8.8) follows.

Case 2. Suppose that u∗(t0, z0) = 1 and Dϕ(t0, z0) 6= 0. Working towards a contradiction,
let us assume that (8.8) does not hold. Then,

−Lν0ϕ(t0, z0) > 0 for some ν0 ∈ N (t0, z0, Dϕ(t0, z0)).

1. Since Dϕ(t0, z0) 6= 0 and (t0, z0) is a strict maximum, for every sufficiently small
δ > 0, there exists β = β(δ) > 0 so that on

O = Oδ := Bδ(z0)× [t0, t0 + δ]

Dϕ 6= 0, Lν̂(t,z,Dϕ(t,z))ϕ(t, z) ≤ 0, and

u∗(t, z)− ϕ(t, z) ≤ −β(8.9)

on the parabolic boundary ∂pO of O:

∂pO := ∂Bδ(z0)× [t0, t0 + δ] ∪Bδ(z0)× {t0 + δ}.

Here ν̂(t, z,Dϕ(t, z)) is as defined in Assumption 4.1. When there is no confusion we will
simply write ν̂ for ν̂(t, z,Dϕ(t, z)).

2. Let (tn, zn)n≥1 be a sequence in S such that

(tn, zn) −→ (t0, z0) and u(tn, zn) −→ u∗(t0, z0) = 1.(8.10)

Since ϕ(tn, zn) −→ ϕ(t0, z0) = u∗(t0, z0) = 1, we may assume that :

|1− ϕ(tn, zn)| < β for all n ≥ 1.(8.11)

Now, consider the feedback control ν̃(t, z) := ν̂(t, z,Dϕ(t, z)). Since Dϕ(t0, z0) 6= 0 on O,
and since ν̂ is locally Lipschitz whenever the p-variable is nonzero, ν̃ is locally Lipschitz
and there is a solution Zn of

dZn(s) = µ(s, Zn(s), ν̃(s, Zn(s))) ds + σ(s, Zn(s), ν̃(s, Zn(s))) dW (s)(8.12)

with initial data Zn(tn) = zn, for small (s − tn). For ease of notation, we write νn(s) :=
ν̃(s, Zn(s)). Set

θn := inf{ s ≥ tn : (s, Zn(s)) 6∈ O }.
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Then, θn is a stopping time, and almost surely tn < θn ≤ t0+δ by definition of O. Moreover
by the continuity of Zn, (θn, Zn(θn)) ∈ ∂pO. Therefore, by (8.9),

u (θn, Zn(θn)) ≤ ϕ (θn, Zn(θn))− β .

3. We apply the Itô’s rule to ϕ and use the previous step. The result is

u(θn, Zn(θn)) ≤ ϕ(θn, Zn(θn))− β

= ϕ(tn, zn)− β +
∫ θn

tn
Lνn(s)ϕ(s, Zn(s))ds

+
∫ θn

tn
[σ∗(s, Zn(s), νn(s))Dϕ(s, Zn(s))]∗ dW (s).

By the definitions of νn and θn, σ∗(s, Zn(s), νn(s))Dϕ(s, Zn(s)) = 0, and Lνn(s)ϕ(s, Zn(s))
≤ 0 for s ∈ [tn, θn]. In view of (8.11), this shows that {0, 1} 3 u(θn, Zn(θn)) < 1. Therefore

u(θn, Zn(θn)) = 0 P − a.s. for all n ≥ 1.(8.13)

4. The dynamic programming principle of Theorem 3.1 and (8.13) imply that the initial
point Zn(tn) = zn belongs to V (tn), i.e. u(tn, zn) = 0. Since this is true for all n ≥ 1, this
is in contradiction with (8.10).

Case 3. The only remaining case is u∗(t0, z0) = 1 and Dϕ(t0, z0) = 0. Set

A := D2ϕ(t0, z0),

and suppose to the contrary that the subsolution property does not hold :

−ϕt(t0, z0) + F∗(t0, z0, 0, A) > 0,(8.14)

and let us work towards a contradiction. By the definition of F∗ and the continuity As-
sumption 4.1 on N , there exists a Lipschitz map

ν̂ : [0, T ]× IRn × IRn −→ U

so that, by (8.14),

−ϕt(t, z)− µ(t, z, ν̂(t, z, p))∗p− 1
2
trace [σσ∗(t, z, ν̂(t, z, p))A] > 0

in a neighborhood of (t0, z0, 0).
Note that the coefficients of the SDE (8.12) are not locally Lipschitz, we can not define

the process Zn as in the second case. Hence the arguments of the second case do not apply
here.

For the convenience of the reader, we briefly describe the main idea of this step. We
argue by contradiction and we prove that the Hessian matrix A = D2ϕ(t0, z0) has a negative
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eigenvalue, whenever the subsolution property does not hold at (t0, z0). This is done in Step
5 below. This property is exploited in Step 6 to define a convenient perturbation ϕε of the
test function ϕ so that Dϕε 6= 0 at the local maxima of (u∗ − ϕε). Once this is achieved,
we use the results proved in Case 2 together with a simple limit argument to conclude.

5. In this step, we prove that (8.14) implies that the Hessian matrix A has a negative
eigenvalue. Suppose to the contrary that all eigenvalues of the symmetric matrix A are
nonnegative, i.e. there are orthonormal unit vectors ei ∈ IRd such that :

Aei = λiei for some λi ≥ 0 , i = 1, . . . , d.

Observe that, in view of (8.14)

−ϕt(t0, z0) > 0.(8.15)

Choose mi > λi, i = 1, . . . , d, and set

Ψ(z) :=
∑

i

mi[(z0 − z)∗ei]2, B̄Ψ
δ := { z ∈ IRd : Ψ(z) ≤ δ }, BΨ

δ := int(BΨ
δ ).

Then there are constants 0 < b < −ϕt(t0, z0), c0 > 0, and δ > 0, such that on (t0, t0+δ]×B̄Ψ
δ

ϕ(t, z) ≤ ϕ̃(t, z) := 1− b (t− t0) + Ψ(z) ,(8.16)

c0 ≤ b− µ(t, z, ν̂)∗ DΨ(z)− 1
2
trace

[
σσ∗(t, z, ν̂) D2Ψ(z)

]
,(8.17)

where ν̂ = ν̂(t, z,DΨ(z)).
For future use, we note that since mi > 0, Ψ generates a norm on IRd, and is therefore

equivalent to the Euclidean norm.
Next, fix an arbitrary point (t̃, z̃) in (t0, t0 + δ) × BΨ

δ close to (t0, z0), and choose
0 < ε << δ so that

Ψ(z̃) ≥ 4ε.(8.18)

Our ultimate goal for the rest of this step is to prove that

u(t̃, z̃) = 0 .(8.19)

Since (t̃, z̃) and ε > 0 are arbitrary, this would imply that u∗(t0, z0) = 0. But this contradicts
with the hypothesis of this case: u∗(t0, z0) = 1.

Let ν̃ be a smooth function satisfying

ν̃(t, z) = ν̂(t, z,DΨ(z)), on Q := [t0, t0 + δ]× (B̄Ψ
δ \BΨ

ε ),

and let Z̃ := Z ν̃
t̃,z̃

be the solution of the state equation with initial data Z̃(t̃) = z̃, and
feedback control ν̃. Set
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θ := inf
{
t > t̃ : (t, Z̃(t)) 6∈ ∂pQ

}
,

where
∂pQ :=

(
{t0 + δ} × [B̄Ψ

δ \BΨ
ε ]
)
∪
(
[t0, t0 + δ]× ∂[B̄Ψ

δ \BΨ
ε ]
)

.

For later use, observe that the definition of the feedback control ν̃ together with (8.17)
imply that :

Lν̃ϕ̃(t, Z̃(t)) ≤ c0 < 0 and (σ(·, ·, ν̃)∗Dϕ̃) (t, Z̃(t)) = 0 on (t, θ]] .(8.20)

Also, on the stochastic interval (t, θ]]

dΨ(Z̃(t)) = Lν̃(t)Ψ(Z̃(t))dt,

and moreover

Lν̃(t)Ψ(Z̃(t)) = µ(t, Z̃(t), ν̃(t))∗DΨ(Z̃(t)) +
1
2
trace

[
σσ∗(t, Z̃(t), ν̃(t)) D2Ψ(Z̃(t))

]
≥ µ(t, Z̃(t), ν̃(t))∗DΨ(Z̃(t))

≥ −2C
√

Ψ(Z̃(t))

for some constant C > 0, where we used the fact that µ is bounded, together with the
equivalence between the norm induced by Ψ and the Euclidean norm. By (8.18),√

Ψ(Z̃(t)) ≥ 2
√

ε− C(t− t̃) for t ∈ [t̃, θ]].(8.21)

We now have all the ingredients in order to obtain a contradiction. We consider two cases :
Subcase 1. Suppose that Z̃(θ) 6∈ ∂BΨ

ε . Since the maximum in (8.6) is strict, there is a
constant β > 0 such that for (t̃, z̃) sufficiently close to (t0, z0),

(u∗ − ϕ)(θ, Z̃(θ)) ≤ −β.

Then by (8.16), Itô’s Lemma and (8.20),

u∗(θ, Z̃(θ)) ≤ −β + ϕ(θ, Z̃(θ))

≤ −β + ϕ̃(θ, Z̃(θ))

= −β + ϕ̃(t̃, z̃) +
∫ θ

t̃
Lν̃(t)ϕ̃(t, Z̃(t)dt

≤ −β + ϕ̃(t̃, z̃).

Since (t̃, z̃) is sufficiently close to (t0, z0), ϕ(t0, z0) = u∗(t0, z0) = 1, and u∗ is valued in
{0, 1}, the last inequality proves that u∗(θ, Z̃(θ)) = 0. We now proceed as in Step 4 : by
the dynamic programming principle, z̃ ∈ V (t̃), i.e. u(t̃, z̃) = 0 as required in (8.19).
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Subcase 2. Suppose that Z̃(θ) ∈ ∂BΨ
ε . By the definition of the test function ϕ and (8.16),

u∗(θ, Z̃(θ)) ≤ ϕ(θ, Z̃(θ)) ≤ ϕ̃(θ, Z̃(θ))

= 1− b(θ − t̃) + Ψ(Z̃(θ))

= 1− b(θ − t̃) + ε.

In view of (8.21)
√

ε =
√

Ψ(Z̃(θ) ≥ 2
√

ε− C(θ − t̃).

Hence
−(θ − t̃) ≤ −

√
ε

C
.

Since b > 0,

u∗(θ, Z̃(θ)) ≤ 1 + ε− b

C

√
ε.

For a sufficiently small ε > 0, this implies that u∗(θ, Z̃(θ)) = 0 since u∗ is vaued in {0, 1}.
Once again we proceed as in Step 4 : by the dynamic programming principle, z̃ ∈ V (t̃), i.e.
u(t̃, z̃) = 0 as required in (8.19).

Hence we proved that the Hessian A = D2φ(t0, z0) has at least one negative eigenvalue.

6. Let −λ be a strictly negative eigenvalue of the Hessian matrix A = D2ϕ(t0, z0), and
let ê be an associated eigenvector:

Aê = − λê, λ > 0.

We may chose ê so that

α := Dϕt(t0, z0)∗ê ≥ 0.(8.22)

As in Step 1, for every sufficiently small δ > 0, there exists β(δ) > 0 so that on O = Oδ

(8.9) holds.
We are now in a position to define the convenient perturbation ϕε of the test function

ϕ so that the arguments of the second case apply to ϕε. For ε > 0, set

ϕε(t, z) := ϕ(t, z) + εê∗(z − z0).

Then there is ε(δ) > 0 so that (8.9) still holds for all ε ≤ ε(δ). Hence, the difference u∗−ϕε

attains an local maximum in O, say at (tε, zε) ∈ O :

(u∗ − ϕ)(tε, zε) = max
O

(u∗ − ϕ).(8.23)

It is clear that, as ε tends to zero, the sequence (tε, zε)ε converges to (t0, z0).
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We shall prove in the next step that

Dϕε(tε, zε) 6= 0 for sufficiently small ε > 0.(8.24)

Then we may use the result proved in the second case to conclude that

−(ϕε)t(tε, zε) + F (tε, zε, Dϕε(tε, zε), D2ϕε(tε, zε)) ≤ 0.

We then obtain (8.7) by sending ε to zero.

7. It remains to prove (8.24). Suppose that Dϕε(tεk
, zεk

) = 0 for some sequence (εk)k

converging to zero, and let us work towards a contradiction. Since A = D2ϕ(t0, z0) has full
rank, for a given tε ≥ t0 the equation

Dϕε(tε, zε) = 0 ⇐⇒ Dϕ(tε, zε) = −εê

has a smooth solution zε which is also smooth in ε. We differentiate the above equation
with respect to ε and then evaluate it at ε = 0. The result is[

dzε

dε

]
ε=0

= A−1
(
−ê−Dϕt(t0, z0)

[
dtε
dε

]
ε=0

)
.

Note that tε ≥ t0 for every ε > 0 by definition of O, and therefore
[

dtε
dε

]
ε=0

≥ 0. Since
A−1ê = −λ−1ê and µ > 0, it follows that

ê∗
[
dzε

dε

]
ε=0

= ê∗A−1
[
−ê−Dϕt(t0, z0)

[
dtε
dε

]
ε=0

]
=

1
λ

[
|ê|2 + α

[
dtε
dε

]
ε=0

]
> 0.

Therefore for sufficiently small ε > 0, we have ê∗(zε − z0) > 0, and

(u∗ − ϕε)(tε, zε) = (u∗ − ϕ)(tε, zε)− εê∗(zε − z0)

≤ (u∗ − ϕ)(t0, z0)− εê∗(zε − z0)

= (u∗ − ϕε)(t0, z0)− εê∗(zε − z0)

< (u∗ − ϕε)(t0, z0),

which is in contradiction with (8.23). 2
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