
A stochastic representation for the level set equations

H. Mete Soner
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Abstract

A Feynman-Kac representation is proved for geometric partial differential equations. This repre-
sentation is in terms of a stochastic target problem. In this problem the controller tries to steer
a controlled process into a given target by judicial choices of controls. The sublevel sets of the
unique level set solution of the geometric equation is shown to coincide with the reachability sets
of the target problem whose target is the sublevel set of the final data.
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1 Introduction

A stochastic target problem is a non-classical control problem in which the controller tries to steer
a controlled stochastic process into a given target set G by judicial choices of controls. The chief
object of study is the set of all initial positions from which the controlled process can be steered
into G with probability one in an allowed time interval. Clearly these reachability sets depend on
the allowed time. Thus they can be characterized by an evolution equation which is the analoque
of the dynamic programming, or equivalently the Bellman, equation of stochastic optimal control.

These geometric equations express the velocity of the boundary as a possibly nonlinear function
of the normal and the curvature vectors. As a Cauchy problem these equations in general do not
admit classical smooth solutions and a weak formulation is needed. Several such formulations were
given starting with the pioneering work of Brakke [5]. Here we consider the viscosity formulation
given independently by Chen, Giga and Goto [6] and by Evans and Spruck [9]. The main idea of
this approach is to characterize the geometric solution as the zero level set of a continuous function.
The level set approach in numerical studies was first introduced by Osher and Sethian [18] and in
the physics literature by Okta, Jasnow and Kawasaki [17].

In our earlier work [22, 23], we have shown that smooth solutions of these geometric equations,
when exist, are equal to the reachability sets. Also, under certain assumptions, the characteristic
functions of the reachability sets are shown to be viscosity solutions of the geometric dynamic
programming equations in the sense defined by the first author [19]. In particular, this result
implies that the reachability set is included in the zero sub-level set of the solutions constructed
in [6, 9].

The chief goal of this paper is to give a stochastic characterization of the unique level set solutions
of [6, 9] in terms of the target problem. This is achieved by using the mentioned results of [22] and
the techniques developed by Barles, Soner and Souganidis [2]. The main result in this direction
is stated in Theorem 3.1. We give the proof of this representation in §5 and §6 by using a one
parameter family of target problems whose targets are the sub-level sets of a given initial function.
A restatement of the main theorem is given in Theorem 3.2 and the representation result is outline
in subsection 7.1.

These results can be interpreted in two ways. From a differential equations point of view it is
a Feynman-Kac type of representation of level set solutions of the geometric equations. From the
control point of view this gives a unique characterization of the reachability sets.

Let us mention that a similar representation theorem was recently obtained by Buckdahn,
Cardaliaguet and Quincampoix [4] by different techniques. However, their result is restricted
to the level set equation of the codimension−1 mean curvature flow.

In this paper we first show that a function w defined in (3.4) is a viscosity solution of the
corresponding geometric level set equation. In this construction, we consider a family of target
problems whose targets are the sublevel sets of a given function g. If this equation has comparison
as the large class of level set equations discussed in [6], then the above result shows that the
reachability sets are the sublevel sets of the unique viscosity solution of the level set equation.
This also provides a representation for the unique viscosity solution. These two results are proved
in Theorem 4.2, and Theorem 3.2.
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The paper is organized as follows. The target reachability problem is introduced in the next
section. The statement of our main results is reported in §3. Section 4 discusses the dynamic
programming principle and the induced class of geometric PDE’s. The stochastic representation
of this class of geometric PDE’s in terms of the target problem is proved in §5. The level set
characterization of the reachability sets is proved in §6. Examples are given in the final section.

2 Target reachability problem

In this section, we recall the target reachability problem introduced in [22] for diffusion processes.

We assume that the control set U is a compact subset of IRk. The controlled process is a solution
of the stochastic differential equation

dZ(s) = µ(s, Z(s), u(s))ds + σ(s, Z(s), u(s))dW (s) ,(2.1)

where W is a d-dimensional standard Brownian motion and u is a U -valued progressively mea-
surable map. As usual the drift µ is vector-valued and the diffusion coefficient is matrix-valued,
i.e.,

µ : [0, T ]× IRn × U −→ IRn and σ : [0, T ]× IRn × U −→ IRn×d .

We assume that both µ(t, z, u) and σ(t, z, u) are bounded and continuous. For later use, we
introduce the set

K(t, z) := {(µ(t, z, a), σ(t, z, a)) : a ∈ U} for all (t, z) ∈ [0, T ]× IRn .(2.2)

In this paper, we relax the control problem slightly as in [11] by admitting all weak solutions of
the stochastic differential equation (2.1). This forces us to consider all possible Brownian motions
as part of the minimization process as well. This relaxation is needed only to ensure the existence
of an optimal strategy and is not needed for the PDE results.

Mathematically, this is done as follows. For all initial data (t, z) ∈ [0, T )× IRn, let U(t, z) be the
collection of all elements

ν = (Ων ,Fν , IF ν , P ν , {W ν(s)}s≥t, {uν(s)}s≥t)

where (Ων ,Fν , IF ν , P ν) is an arbitrary filtered probability space, {W ν(s), s ≥ t} is a d dimensional
standard Brownian motion, {uν(s), s ≥ t} is a progressively measurable U−valued process on this
space. For ν ∈ U(t, z), let {Zν

t,z(s)}s≥t be the solution of (2.1) with (uν ,W ν) substituted for (u, W )
and with initial condition Zν

t,z(t) = z.

For a given Borel subset G of IRn, the target reachability set is given by

V G(t) :=
{

z ∈ IRn : Zν
t,z(T ) ∈ G P ν − a.s. for some ν ∈ U(t, z)

}
.(2.3)

This set is the chief object of our study. A natural condition for V G(t) to be non-empty for any G

is the following

N (t, z, p) 6= ∅ for all (t, z, p) ∈ [0, T ]× IRn × IRn,
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where for (t, z, p) ∈ [0, T ]× IRn × IRn

N (t, z, p) := { u ∈ U : σ(t, z, u)∗p = 0 } for p 6= 0 and N (t, z, 0) := U .(2.4)

In what follows, we always assume that this condition holds. As a corollary, if G is smooth, then
V G(t) is non-empty at least for some t > 0. Although this is a natural general assumption, if we
could apriori restrict the reachability sets into a smaller class such as graphs or epigraphs, then
Assumption 4.1 can be relaxed: see Remark 4.3 below.

The stochastic target problem is introduced by the authors in [20, 21] to study the problem of
super-replication in mathematical finance. An application to stochastic volatility is given by the
second author in [24], and jump-diffusion processes are discussed by Bouchard [3]. In addition to
these examples, forward-backward stochastic differential equations (FBSDE) also can be seen as
target reachability problems. We close this section by a brief discussion of these equations.

Example 2.1 (unconstrained FBSDE’s.) The forward-backward stochastic differential equation is
this. Given functions α, β, a, b, and γ (with appropriate domains and ranges) consider the problem
of finding square integrable adapted processes Z = (X, Y ) valued in IRm× IRp and ν valued in IRd

satisfying the differential equations

dX(s) = α(s, Z(s), ν(s))ds + β(s, Z(s), ν(s))dW (s)

dY (s) = a(s, Z(s), ν(s))ds + b(s, Z(s), ν(s))dW (s)

together with the initial and final conditions

X(0) = x and Y (T ) = γ(X(T )).

The main point here is that, unlike the deterministic framework, there is an important measura-
bility problem : the processes Z = (X, Y ) and ν are required to be adapted to the given filtration
IF . Note that an initial and a final condition is given and we could solve this only for certain
values of x. The set of initial x for which a solution exists is indeed the projection on the first m

coordinates of the target reachability problem for the process Z = (X, Y ) with target

G = Graph(γ) := { (x, y) : y = γ(x) }.

Further discussion of the connection between the target problems and FBSDE’s is given in Remark
4.3 below.

The problem of FBSDE’s has been motivated by applications in financial mathematics, namely
the problem of hedging for a large investor. Loosely speaking, (i) the control ν is the investment
strategy, i.e. the number of shares of risky assets to be held at each time, (ii) the dynamics of the
process X, standing for the price process of m risky assets, is influenced by the investment strategy
ν (large investor), (iii) and the Y component of the state process Z is the amount of wealth implied
by the investment strategy ν; under the so-called self-financing condition, the dynamics of Y are
given by dY = νdX.

For the existence of nontrivial solutions, certain restrictions on the coefficients, especially on b,
are needed. We refer the reader to the recent lecture notes of Ma and Yong [16] and the references
therein for information on FBSDE’s. 2
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Example 2.2 (constrained FBSDE’s .) Let Z = (X, Y ) with a scalar Y be as above and let A be
a non-decreasing adapted process with A(0) = 0. Again we look for Z and ν in a certain convex
set, satisfying the above differential equations together with the initial and final conditions

X(0) = x and Y (T ) = γ(X(T )) + A(T ).

This is again a target reachability problem with target

G = Epi(γ) := { (x, y) : y ≥ γ(x) }.

The constraint that ν taking values in a convex set is the main difference between this and the
unconstrained problem. For this reason the process A is introduced. A problem with constraints
is considered by Cvitanić, Karatzas and Soner in [8]. 2

3 The stochastic representation result

The main result of this paper is the following representation formula for a partial differential
equation. To state the theorem we need to define the nonlinear term in the equation. Let Sn be
the set of all n by n symmetric matrices.

For (t, z, p, A) ∈ [0, T ]× IRn × IRn × Sn, define

F (t, z, p, A) := sup
ν∈N (t,z,p)

{
−µ(t, z, ν)∗p− 1

2
trace (σσ∗(t, z, ν)A)

}
,(3.1)

where N (t, z, p) is defined in 2.4.

Observe that F (t, z, p, A) is singular at p = 0 because N (t, z, 0) = U . In the sequel, we shall
denote F∗ and F ∗ the lower and the upper semicontinuous envelopes of F . Then the equation is

−wt(t, z) + F (t, z,Dw(t, z), D2w(t, z)) = 0 on [0, T )× IRn .(3.2)

We consider this equation together with the terminal condition

w(T, z) = g(z) ,(3.3)

where g is a uniformly continuous function. Here we choose to study a terminal boundary value
problem as they are more natural in optimal control. However, one could easily reverse time to
obtain an initial value problem.

The main representation result is a consequence of the following theorem which requires a tech-
nical assumption, Assumption 4.1, that will be discussed in the next section.

Theorem 3.1 Suppose Assumption 4.1 holds and that F is locally Lipschitz on {p 6= 0}. Then,

w(t, z) := inf
ν∈U(t,z)

ess sup
ω∈Ω

g
(
Zν

t,z(T, ω)
)

(3.4)

is a discontinuous viscosity solution of (3.2) satisfying the terminal condition (3.3) pointwise.

The proof of this theorem will be given in Section 6. If the solutions of these equations are unique,
then the above theorem provides a stochastic representation formula for the unique solution.
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Definition 3.1 We say that the equation (3.2) has comparison if for all functions u, u satisfying

• u is an upper semicontinuous, bounded viscosity subsolution of (3.2) on [0, T )× IRn,

• u is a lower semicontinuous, bounded viscosity supersolution of (3.2) on [0, T )× IRn,

• u(T, ·) ≤ h ≤ u(T, ·) for some uniformly continuous function h : IRn → IR,

we have u ≤ u on [0, T ]× IRn.

In particular, if (3.2) has comparison and g is an uniformly continuous function on IRn, then
there exists at most one continuous viscosity solution to the equation (3.2) together with the
terminal condition u(T, ·) = g. Notice that the requirement that h is uniformly continuous rules
out the non-compact counterexamples to comparison constructed by Ilmanen [12].

Comparison results for geometric equations have been first proved in [6, 9] for the mean curvature
flow. Also [6] provides a very general comparison result for a large class of geometric equations.
In Section 7, we will give two examples of such flows.

With the assumption of comparison, Theorem 3.1 provides a stochastic representation formula
for the unique solution of (3.2)-(3.3). Our next result provides a characterization of the reachability
set V G as the zero sublevel set of the function w.

Theorem 3.2 Let the conditions of Theorem 3.1 hold. Suppose that g is bounded and uniformly
continuous, and (3.2) has comparison, so that w is the unique bounded continuous viscosity solution
of (3.2)-(3.3).
Assume further that the set K(t, z), defined in (2.2), is closed and convex for all (t, z) ∈ [0, T ]×IRn.
Then,

V G(t) = { z : w(t, z) ≤ 0 }

with the target set

G := {z ∈ IRn : g(z) ≤ 0} .

Proof of this theorem is a straightforward application of Theorem 3.1 and Propositions 5.1-5.2.
Observe that the boundedness of g is by no means a restricting condition, as one can replace g by
(1 + |g|)−1g. Also, the boundedness of w is inherited from g, as it is immediately seen from its
definition.

4 Dynamic programming

In this section, we recall several results of [22], which will be used in the proof of Theorem 3.1.

We first start by stating a geometric dynamic programming principle for the target reachability
problem.
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Theorem 4.1 ([22]) Let G be a Borel subset of IRd, and t ∈ [0, T ). For all stopping times θ∈
[t, T ],

V G(t) =
{

z ∈ IRn : Zν
t,z(θ) ∈ V G(θ) P ν − a.s. for some ν ∈ U(t, z)

}
.

This principle is proved in [22] for general target reachability problems. While the inclusion of
V G(t) in the right hand side of the above expression is obvious, the reverse inclusion is technical,
and relies mainly on a measurable selection argument.

As in classical optimal control theory, the infinitesimal version of the dynamic programming
principle yields a second order partial differential equation. This is also the case here. Indeed, in
[22] it is proved that the characteristic function of the complement of the reachability sets

vG(t, z) = 1− 1V G(t)(z) =

{
0 if z ∈ V G(t)
1 otherwise

(4.1)

is a viscosity solution of the geometric dynamic programming equation. This is proved under the
following assumption.

Assumption 4.1 (Continuity of N (t, z, p).) Let N be as in (2.4). We assume that for any
(t0, z0, p0) ∈ S × IRn and u0 ∈ N (t0, z0, p0), there exists a map û : S × IRn −→ U satisfying ,

û(t0, z0, p0) = u0,

û(t, z, p) ∈ N (t, z, p) for all (t, z, p) ∈ S × IRn,

and that û is locally Lipschitz on {(t, z, p) : p 6= 0}.

A possible relaxation of this assumption is discussed in Remark 4.3 below. The following is
proved in [22].

Theorem 4.2 ([22]) Suppose that Assumption 4.1 holds and that F is locally Lipschitz on { p 6=
0 }. Let G be a Borel subset of IRn. Then, the support function of its reachability sets vG is a
discontinuous viscosity solution of the dynamic programming equation (3.2).

We refer the reader to [7, 11] for information on viscosity solutions.

By a discontinuous viscosity solution, we mean that the lower (resp. upper) semicontinuous
envelope

(
vG

)
∗ (resp.

(
vG

)∗) of vG is a viscosity supersolution (resp. subsolution) of (3.2) with
F ∗ (resp. F∗) substituted to F . While the proof of the supersolution property follows from judicial
changes of measure, the subsolution property turns out to be a surprisingly technical proof. The
complication is mainly related to the above-mentioned singularity of F at p = 0.

Remark 4.1 Although (3.2) is a second order partial differential equation, it admits a discontin-
uous function vG as a solution. Uniqueness of discontinuous solutions to level set equations is not
always expected due to the fattening phenomenon. This is studied extensively in the paper by
Barles, Soner and Souganidis [2] where the characteristic functions were first used as solutions of
level set equations. Indeed when the target is a level set of a given function, then the reachability
set V G(t) is a subset of this “fat” level-set. However, V G(t) is the equal to the whole level-set under
mild assumptions as discussed in Proposition 5.2 and Theorem 3.2 provides an exact statement
towards this problem. 2
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Remark 4.2 The nonlinearity F has the following two important properties

F (t, z, c1p, c1A + c2pp∗) = c1F (t, z, p, A) ∀ c1 > 0 , c2 ∈ IR,(4.2)

F (t, z, p, A + B) ≤ F (t, z, p, A), ∀ B ≥ 0.(4.3)

The second property means that (3.2) is degenerate elliptic, while the first implies that it is
geometric; see [2]. Note that the geometric property implies that (3.2) is degenerate along the
gradient direction which is the normal direction to the level sets of vG. 2

The latter observation was the starting point of [23] where a stochastic representation of a class
of smooth geometric flows in terms of target reachability problems is provided. In contrast with
the technical proofs in [22], the stochastic representation of [23] relies on an easy application of
Itô’s lemma together with the use of the square distance function to the family of submanifolds.

Remark 4.3 Assumption 4.1 is restictive for the forward backward stochastic differential equa-
tions discussed in the previous section. Still our techniques apply to FBSDE’s. Indeed the variable
p in N stands for any possible normal vector of the reachability set, and in FBSDE’s the reacha-
bility sets are either graphs or epigraphs of functions of the form Y = ϕ(s,X). Therefore for these
examples we need N (s, z, p) to be nonempty only for p’s which are normals to graphs. To illustrate
this point consider the Example 2.1 with X ∈ IRm, Y ∈ IR1, β = β(s, z) and b(s, z, ν) = ν ∈ IR1.
Then the driving Brownian motion is one dimensional. Moreover, a normal p to the graph of any
function y = ϕ(x) has the form p = λ (q,−1) for some scalar λ and q ∈ IRm. For such a p,

σ∗(s, z, ν)p = λ [β∗(s, z)q − ν].

So ν = β∗(s, z)q belongs to N (s, z, p) whenever p is normal to a graph. In particular, N (s, z, p) is
nonempty for normals. Although the Assumption 4.1 does not hold for every p, this is enough to
use the techniques of the preceeding sections.

This example shows how to relax the Assumption 4.1 depending on the possible geometries of
the reachable sets.

5 Targets as level sets

In this section, we provide a convenient alternative expression for the function w of (3.4). Then,
as stated before, Theorem 3.2 follows from Theorem 3.1 and the results of this section.

In the context of this paper, we would like to see the target G as the zero sublevel set of some
function g : IRn → IR, i.e.

G = { z ∈ IRn : g(z) ≤ 0 } .

where g is an uniformly continuous function on IRn. This is not a restriction as we could always
take g to be the signed distance to the boundary of G.
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In order to prove Theorem 3.1, we need to derive an alternative expression of the function w

defined in (3.4). For parameter α ∈ IR, define the target

Gα := { z ∈ IRn : g(z) ≤ α } ,

together with the associated target reachability problem :

V Gα(t) :=
{

z ∈ IRn : Zν
t,z(T ) ∈ Gα P ν − a.s. for some ν ∈ U(t, z)

}
.

Set

W (t, z) :=
{
α ∈ IR : z ∈ V Gα(t)

}
.(5.1)

Then,

Lemma 5.1 For all (t, z) ∈ [0, T ]× IRn, we have

w(t, z) = inf W (t, z) .

Proof. (i) We first prove that w(t, z) ≤ inf W (t, z). Take some arbitrary α > inf W (t, z).
By definition, this means that, for some ν ∈ U(t, z), g

(
Zν

t,z(T )
)
≤ α P−a.s. or equivalently

esssupω∈Ω g
(
Zν

t,z(T, ω)
)
≤ α. Hence w(t, z) := infν∈U(t,z)esssupω∈Ω g

(
Zν

t,z(T, ω)
)
≤ α, and the

required inequality follows by sending α to inf W (t, z).

(ii) To see that the reverse inequality holds, take an arbitrary α > w(t, z). Then, g
(
Zνn

t,z(T )
)

≤ α P−a.s. for some νn ∈ U(t, z), or equivalently z ∈ V Gα

(t). Hence α ≥ inf W (t, z), and the
required inequality follows by sending α to w(t, z). 2

Observe that V Gα(t) ⊂ V Gβ (t) whenever α ≤ β. Hence

(w(t, z),∞) ⊂ W (t, z) ⊂ [w(t, z),∞) for all (t, z) ∈ [0, T ]× IRn.

The following result expresses the target reachability sets V G(·) as the level sets of w(·, z). Its
proof is straightforward and it is omitted.

Proposition 5.1 For any t ∈ [0, T ]

{z ∈ IRn : w(t, z) < 0} ⊂ V G(t) ⊂ {z ∈ IRn : w(t, z) ≤ 0} .

If in addition W (t, z) is closed for all z ∈ IRn, then

V G(t) = {z ∈ IRn : w(t, z) ≤ 0} for all t ∈ [0, T ] .

Hence, in order to deduce Theorem 3.2 from Theorem 3.1, it remains to prove that W is a
closed interval. This closedness property is the main reason for the relaxation of the stochastic
reachability problem by means of weak solutions. In our previous paper [22], the filtered probability
space and the Brownian motions were fixed, and the controlled process Zν was defined as a strong
solution of (2.1). However, such a setting requires stronger conditions in order to guarantee the
closedness of W (t, z). The following result is almost an immediate corollary of the results proved
by Haussman [14], and by ElKaroui, Nguyen and Jeanblanc [10].
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Proposition 5.2 Fix a point (t, z) ∈ [0, T ) × IRn with w(t, z) < ∞, and suppose that the set
K(t, z), defined in (2.2), is closed and convex. Assume further that the function g, defining the
target, is lower semicontinuous. Then, W (t, z) is a closed interval, i.e. there exists a control
ν̂ ∈ U(t, z) such that

g
(
Z ν̂

t,z(T )
)
≤ w(t, z) P ν̂ − a.s..

Moreover, there exists a Borel measurable U−valued function ū such that uν̂(t) = ū(t, Z ν̂
t,z)(t),

P ν̂− a.s.

Proof. We shall briefly recall the compactification method of [14]. Assertions of the Proposition
follow easily from this compactification method.

1. We first rewrite the reachability set problem using the canonical space Ω = C([0,∞), IRd),
F(t) = σ{ω(s), s ≤ t}. Then we identify a weak solution of (2.1) with its induced measure; see
[14]. With this identification, the set of (measure) controls is compact in the weak topology of
Proposition 3.1 of [14].

2. Since w(t, z) < ∞ by assumption, the set of controls is non-empty. Now let (νn)n be a
minimizing sequence for the optimization problem w(t, z), i.e.

g
(
Zνn

t,z(T )
)
≤ w(t, z) + 1/n P νn − a.s. for all n ≥ 1 .

Let Pn be the measure control associated to νn. Then, there is some (measure) control P̂ , identified
to ν̂ ∈ U(t, z), such that Pn −→ P̂ weakly. By the definition of the weak convergence, this implies
that Zνn

t,z(T ) −→ Z ν̂
t,z(T ) P ν̂−a.s. along some subsequence. Since g is lower semicontinuous,we

pass to the limit in the above inequality, to obatin g
(
Z ν̂

t,z(T )
)
≤ w(t, z) P ν̂−a.s..

3. The final claim in Proposition 5.2 is proved in Lemmas 3.4, 3.5 and Proposition 3.2 of [14]. 2

6 Level set equation

In this section we prove Theorem 3.1 which states that the function w, defined in (3.4) (or Lemma
5.1), is a viscosity solution of the geometric dynamic programming equation (3.2) together with
the terminal condition (3.3).

We start the proof with a straigtforward observation. Recall that vG is defined in (4.1).

Lemma 6.1 For any β, the semicontinuous envelopes of vGβ satisfy

(i).
(
vGβ

)
∗ ≥ 1{w∗>β}, and

(
vGβ

)∗ ≤ 1{w∗≥β},

(ii). w∗(t, z) < β =⇒
(
vGβ

)
∗ (t, z) = 0,

(iii). w∗(t, z) > β =⇒
(
vGβ

)∗
(t, z) = 1.

Proof. We shall only prove the statements concerning the lower semicontinuous envelopes. The
statements concerning the upper semicontinuous envelopes is proved exacly the same way.
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1. Let W be as in (5.1). Then,

vGβ (t, z) = 1{β 6∈W (t,z)} for all (t, z) ∈ [0, T ]× IRn .(6.1)

Suppose that 1{w∗(t,z)>β} = 1. Then, w(t, z) ≥ w∗(t, z) > β. and this implies that β 6∈ W (t, z). By
(6.1), we conclude that vGβ (t, z) = 1. Since 1{w∗>β} and vGβ are valued in {0, 1}, this proves that
1{w∗>β} ≤ vGβ . Moreover, 1{w∗>β} is clearly lower-semicontinuous. Hence 1{w∗>β} ≤

(
vGβ

)
∗.

2. Next, suppose that
(
vGβ

)
∗ (t, z) = 1. Then vGβ = 1 on some neighbourhood B0 of (t, z). By

(6.1), β ≤ w and consequently β ≤ w∗ on B0. 2

Remark 6.1 From the above lemma, it follows that :(
vGβ

)
∗ = 1{w∗>β} on {w∗ 6= β} and

(
vGβ

)∗
= 1{w∗≥β} on {w∗ 6= β}

Moreover, Part 2 of the proof provides that(
vGβ

)
∗ > 1{w∗>β} =⇒ (t0, z0) is a point of local minimum of w∗.

A similar statement holds for
(
vGβ

)∗.
We first prove the w solves the geometric PDE.

Proposition 6.1 Under the conditions of Theorem 3.1, w is a discontinuous viscosity solution of
(3.2).

Proof. We first prove that w∗ is a viscosity subsolution of the dynamic programming equation
(3.2) by applying Theorem 4.2 to V Gαn with a carefully chosen sequence of αn.

1. Let (t0, z0) ∈ [0, T )× IRn and ϕ ∈ C2([0, T ]× IRn) be such that

0 = (w∗ − ϕ)(t0, z0) > (w∗ − ϕ)(t, z) for all (t, z) ∈ [0, T )× IRn \ (t0, z0) .(6.2)

Note that w∗ ≤ ϕ. We need to show that

−ϕt(t0, z0) + F∗
(
t0, z0, Dϕ(t0, z0), D2ϕ(t0, z0)

)
≤ 0.(6.3)

Set

α := w∗(t0, z0) = ϕ(t0, z0) , and αn := α− 1/n .

By Lemma 6.1 (i), we see that((
vGαn

)∗ − ϕ
)

(t, z) ≤
(
1{w∗≥αn} − ϕ

)
(t, z)

≤ (1− ϕ)1{w∗≥αn}(t, z)− ϕ1{w∗<αn}(t, z)

≤ (1− w∗)1{w∗≥αn}(t, z)− ϕ1{w∗<αn}(t, z)

≤ (1− αn)1{w∗≥αn}(t, z)− ϕ1{w∗<αn}(t, z).
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Now if w∗ < αn, then the right hand side of the above inequality is equal to −ϕ which is by the
continuity of ϕ is less than −αn on some bounded neighbourhood B0 of (t0, z0). In the opposite
case, the right hand side is equal to 1−αn. So in any case, there exists a bounded neighbourhood
B0 of (t0, z0) such that ((

vGαn
)∗ − ϕ

)
(t, z) ≤ (1− αn) on B0.(6.4)

On the other hand, since w∗(t0, z0) = α > αn, it follows from Lemma 6.1 (iii) that
(
vGαn

)∗ (t0, z0) =
1 for every n. Hence ((

vGαn
)∗ − ϕ

)
(t0, z0) = 1− α < 1− αn.(6.5)

2. Let (tn, zn) be a maximizer of
(
vGαn

)∗ − ϕ on cl(B0), i.e.((
vGαn

)∗ − ϕ
)

(tn, zn) = sup
B0

((
vGαn

)∗ − ϕ
)

.

We claim that

(tn, zn) −→ (t0, z0) as n → ∞.(6.6)

Indeed, let (t̄, z̄) be the limit of some converging subsequence of (tn, zn)n, that we rename (tn, zn).
After possibly choosing a smaller neighbourhood B0,(

vGαn
)∗

(tn, zn) = 1 for all large n.(6.7)

This follows from the fact that
(
vGαn

)∗ (t0, z0) = 1 together with the smoothness of ϕ. Hence,

lim
n→∞

((
vGαn

)∗ − ϕ
)

(tn, zn) = 1− ϕ(t̄, z̄).(6.8)

By (6.4) and (6.5),

1− α =
((

vGαn
)∗ − ϕ

)
(t0, z0) ≤

((
vGαn

)∗ − ϕ
)

(tn, zn) ≤ 1− αn ,

so that (6.8) yields ϕ(t̄, z̄) = α. Using again (6.7) together with Lemma 6.1 (i), we conclude that
w∗(tn, zn) ≥ αn. Therefore,

(w∗ − ϕ)(t̄, z̄) = lim sup
n→∞

(w∗ − ϕ)(tn, zn) ≥ lim sup
n→∞

αn − ϕ(tn, zn) = α− ϕ(t̄, z̄) = 0.

In view of (6.2), this proves that (t̄, z̄) = (t0, z0) and the proof of (6.6) is complete.

3. By (6.6), (tn, zn) is a local maximizer of
((

vGαn

)∗ − ϕ
)

on B0, for sufficiently large n. Also, by

Theorem 4.2, vGαn is a discontinuous subsolution of the dynamic programming equation. Hence

−ϕt(tn, zn) + F
(
tn, zn, Dϕ(tn, zn), D2ϕ(tn, zn)

)
≤ 0,

We now take liminf as n approaches to infinity to arrive at (6.3).

So w is a discontinuous viscosity subsolution of the dynamic programming equation.

(ii) It remains to prove that w∗ is a viscosity supersolution of the dynamic programming equation.
This part of the proof is very similar to (i).
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4. Let (t0, z0) ∈ [0, T )× IRn and ϕ ∈ C2([0, T ]× IRn) be such that

0 = (w∗ − ϕ)(t0, z0) < (w∗ − ϕ)(t, z) for all (t, z) ∈ [0, T )× IRn \ (t0, z0) .(6.9)

Observe that w∗ ≥ ϕ. Set βn = α + 1/n where α is as in Step 1. Argueing as in Step 1,((
vGβn

)
∗ − ϕ

)
(t, z) ≥

(
1{w∗>βn} − ϕ

)
(t, z)

≥ (1− ϕ)1{w∗>βn}(t, z)− ϕ1{w∗≤αn}(t, z)

≥ (1− ϕ)1{w∗>βn}(t, z)− w∗1{w∗≤βn}(t, z)

≥ (1− ϕ)1{w∗>βn}(t, z)− βn1{w∗≤βn}(t, z)

≥ −βn,(6.10)

on some bounded neighbourhood B0 of (t0, z0). On the other hand, since w∗(t0, z0) = α < βn, it
follows from Lemma 6.1 (ii) that((

vGβn
)
∗ − ϕ

)
(t0, z0) = −α > −βn .(6.11)

5. Let (tn, zn) be a minimizer of
(
vGβn

)
∗ − ϕ on cl(B0), i.e.((

vGβn
)
∗ − ϕ

)
(tn, zn) = inf

B0

((
vGβn

)
∗ − ϕ

)
.

As in Step 2, we claim that

(tn, zn) −→ (t0, z0) as n → ∞ .(6.12)

We argue as before. Let (t̄, z̄) be the limit of some converging subsequence of (tn, zn)n, that we
rename (tn, zn). Observe that after possibly choosing a smaller neighbourhood B0,(

vGβn
)
∗ (tn, zn) = 0 for large n.(6.13)

This follows from the fact that
(
vGβn

)
∗ (t0, z0) = 0 together with the smoothness of ϕ. Then,

lim
n→∞

((
vGβn

)
∗ − ϕ

)
(tn, zn) = −ϕ(t̄, z̄) .(6.14)

We now use (6.10) and (6.11) to conclude that

−α =
((

vGβn
)
∗ − ϕ

)
(t0, z0) ≥

((
vGβn

)
∗ − ϕ

)
(tn, zn) ≥ −βn.

Hence by (6.14), ϕ(t̄, z̄) = α. Using again (6.13) together with Lemma 6.1 (i), we see that
w∗(tn, zn) ≤ βn. Therefore,

(w∗ − ϕ)(t̄, z̄) = lim inf
n→∞

(w∗ − ϕ)(tn, zn) ≤ lim inf
n→∞

βn − ϕ(tn, zn) = α− ϕ(t̄, z̄) = 0,

which shows that (t̄, z̄) = (t0, z0), in view of (6.9). This proves the claim.

6. By (6.12), (tn, zn) is a local minimizer of
((

vGβn

)
∗ − ϕ

)
on B0, for large n. Since vGβn is a

discontinuous subsolution of the dynamic programming equation, this proves that

−ϕt(tn, zn) + F
(
tn, zn, Dϕ(tn, zn), D2ϕ(tn, zn)

)
≥ 0 ,

Letting n tend to infinity we obtain

−ϕt(t0, z0) + F ∗ (
t0, z0, Dϕ(t0, z0), D2ϕ(t0, z0)

)
≥ 0.

12



Hence w is a discontinuous viscosity supersolution of the dynamic programming equation. 2

In order to conclude the proof of Theorem 3.1, it remains to show that w satisfies the terminal
condition (3.3). In preparation of this, we start with

Lemma 6.2 For any initial data (t, z) ∈ [0, T )× IRn, there exists ν̃ ∈ U(t, z) such that∣∣Z ν̃
t,z(T )− z

∣∣2 ≤ C[(T − t)2 + (T − t)] P ν̃ − a.s.,

for some constant C depending on ‖µ‖∞ and ‖σ‖∞.

Proof. Fix (t, z) and a small constant δ > 0. Let u0 be an arbitrary control in U , and construct
processes ν̃ and Z̃ := Z ν̃

t,z so that for all s ∈ [t, T ],

ũ(s) := uν̃(s) = u0(s)1{|Z̃(s)−z|<δ} + û
(
s, Z̃(s), Z̃(s)− z

)
1{|Z̃(s)−z|≥δ} ,

where û is as defined in Assumption 4.1. Clearly for any arbitrary filtered probability space
(Ω,F , IF, P ) equipped with an IRd−valued Brownian motion W , ν̃ := (Ω,F , IF, P, W, Z̃, ũ) ∈ U(t, z).

Set f(s) := Z̃(s)− z, for s ≥ t, and apply Itô’s rule to |f(s)|2,

d|f(s)|2 =
[
2f(s)∗µ(s, Z̃(s), ũ(s)) + trace{σσ∗(s, Z̃(s), ũ(s))}

]
dt

+2f(s)∗σ(s, Z̃(s), ũ(s)) dW (s).

Since ũ(s) ∈ N
(
s, Z̃(s), ũ(s)

)
whenever |f(s)| ≥ δ, the stochastic term in the above equation is

equal to zero. Hence, for |f(s)| ≥ δ,

d|f(s)|2 ≤ C(|f(s)|+ 1)dt,

for some constant C, depending on the bounds of µ and σ. This proves that

|f(s)|2 ≤ δ2 + C

∫ s

t

(1 + |f(s)|)1|f(s)|≥δ ds

≤ δ2 + C(s− t) +
C

δ

∫ s

t

|f(s)|2 ds.

We now use Gronwall’s Lemma to arrive at

|f(s)|2 ≤ δ2e(C/δ)(s−t) + δ
(
e(C/δ)(s−t) − 1

)
for s ∈ [t, T ].

Choosing δ := T − t yields

|f(T )|2 = |Z̃(T )− z|2 ≤ eC [(T − t)2 + (T − t)].

2

The following result completes the proof of Theorem 3.1.

Proposition 6.2 For all z ∈ IRn, we have w∗(T, z) = w∗(T, z) = g(z).
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Proof. We shall prove that w∗(T, ·) ≥ g and w∗(T, ·) ≤ g, then the required result follows from
the trivial inequality w∗ ≥ w∗.

1. We first prove that w∗(T, ·) ≥ g. Fix z ∈ IRn and consider a sequence (tn, zn)n such that

(tn, zn) → (T, z) and w(tn, zn) → w∗(T, z).

With βn := w(tn, zn) + 1/n, it follows from the definition of w that

g
(
Zνn

tn,zn
(T )

)
≤ βn P νn − a.s. for some control νn ∈ U .

Since the functions µ and σ are bounded, it is easily seen that Zνn
tn,zn

(T ) → z P−a.s. and therefore

g(z) = lim
n→∞

g
(
Zνn

tn,zn
(T )

)
≤ lim

n→∞
βn = w∗(T, z)

by the continuity of g.

2. We now prove that w∗(T, ·) ≤ g. Let ε > 0 be given. By Lemma 6.2, there exists tε < T such
that for any z ∈ IRn, t ∈ [tε, T ] there exists a control ν̃ ∈ U(t, z) satisfying

g
(
Z ν̃

t,z(T )
)
≤ g(z) + ε for all t ∈ [tε, T ] P ν̃ − a.s..

By the definition of w, this yields

w(t, z) ≤ g(z) + ε for all t ∈ [tε, T ].

Then we obtain the required inequality by taking limsup as (t, z) approaches to (T, z0) and using
the continuity of g. 2

7 Examples

7.1 Stochastic representation of mean curvature type geometric flows

In this subsection we outline the above results with a view towards finding the stochastic repre-
sentation.

1. Suppose that a level set PDE is given with a nonlinearity as in (3.1). Then Theorem 3.1 or
Theorem 3.2 provide the desired representation. Of course, we need a uniqueness result for this
equation together with the boundary condition.

For initial value problems, we need to reverse time in order to apply our results. Indeed if the
coefficients µ, σ are independent of t, then this reversal is easy:

w(t, z) = inf
ν∈U(t,z)

ess sup
ω∈Ω

g
(
Zν

0,z(t, ω)
)

.

2. Given a target problem we showed that the corresponding level set equation is (3.2). However,
it is not always possible to find a corresponding geometric equation written purely in geometric
quantities. The difficulty lies in the fact that the dimension of the reachability sets may change.
Still formally, the geometric equation is

14



~v(t, x) = inf
{

µ(t, z, ν) + ~Ha(t,z,ν) : ν ∈ K(t, z)
}

for z ∈ Γ(t) ,(7.1)

where ~v is the normal velocity vector, and ~Ha(t,z,ν) is the mean curvature vector at (t, z) using the
metric generated by the quadratic form of the matrix a(t, z, ν) := σσ∗(t, z, ν), and

K(t, z) := {ν ∈ U : Normal space at (t, z) ⊂ Kernel a(t, z)} .

When the solution has co-dimension one, the normal space is one-dimensional. Then, assuming
further that ~v, µ and ~H are directed along the normal, the above infimum has to be understood
as the infimum of scalar quantities obtained after taking the dot-product with the outward unit
normal vector. However, in the general case, the above infimum is just a formal writing which
needs a serious geometric study in order to be justified rigorously. In the subsequent section, we
provide examples where the above geometric equation is fully justified.

3. Given a level set equation to obtain its stochastic representation, we need to express the equation
as in (3.1)-(3.2). Of course this is not always straightforward. When the coefficients µ and σ are
linear functions of ν, it is possible to deduce µ and σ by the Fenchel transform. See Example 7.3
below.

7.2 Codimension−k mean curvature flow

In this example we will show that with appropriate choices of µ and σ we can obtain the level set
equation of the mean curvature flow in any codimension. The geometric equation for this flow is

~v = ~H,

where ~v is the normal velocity vector and ~H is the mean curvature vector. The corresponding level
set equation in any codimension is obtained by Ambrosio and Soner [1].

Let Uk be the set of all projections matrices onto a n − k dimensional unoriented plane in Rn.
Let the control set U = Uk, and for ν ∈ Uk,

µ ≡ 0, σ(s, z, ν) =
√

2 ν.

Then the nonlinear term in the dynamic programming equation (3.2) is

F (p, A) = inf{ trace[Aν] : ν ∈ Uk, νp = 0 }.

In [22], it is shown that

F (p, A) =
n−k∑
i=1

λi(p, A),

where λ1(p,A) ≤ . . . ≤ λn−1(p, A) are the eigenvalues of the matrix [I−(pp∗)/|p|2] A [I−(pp∗)/|p|2]
with eigenvectors orthogonal to p. This is exactly the nonlinearity in the level set equation of
codimension k mean curvature flow as studied by Ambrosio and Soner [1]. The codimension one
case is also included in the above formulation and agrees with level set equation of [6, 9]

−wt = ∆w − (D2wDw ·Dw)/|Dw|2.
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Note that we are considering this PDE in [0, T )× IRn with final data at time T , and this accounts
for the minus sign in front of wt.

Comparison for the above codimension−k mean curvature flows falls in the generality of the
comparison result established by Chen, Giga and Goto [6]. Hence, Theorem 3.2 applies and
provides a representation of the flow as the target reachability set of {g(z) ≤ 0}.

7.3 Inverse mean curvature flow

The second example is a nonlinear function of the curvature. It provides a guideline how to
construct the target problem starting from a geometric equation.

The geometric equation is only for codimension one, mean convex surfaces, i.e., for surface with
positive mean curvature at every point. The equation is

v = −1/H,

where v is the normal velocity and H is the mean curvature. Note that we are requiring that the
solution should have H ≥ 0 everywhere. This equation is recently used by Huisken and Ilmanen
[15] to prove the Riemanian positive mass conjecture of general relativity.

The staring point of the connection between the inverse mean curvature flow and the target
problems is the Legendre transform of the concave function −1/x restricted to positive x:

−1/x = inf{ a2x− 2a : a ≥ 0 }, x > 0.

The level set equation for the mean curvature flow is

− wt

|Dw|
= − 1

D · (Dw/|Dw|)

=
|Dw|

∆w −D2wDw ·Dw/|Dw|2
.(7.2)

We now multiply the equation by |Dw| and then use the expression for −1/x to arrive at

−wt = inf
a≥0

{ a2[∆w −D2wDw ·Dw/|Dw|2]− 2a|Dw| }.

We are now in a position to define the target problem. We first note that

[∆w −D2wDw ·Dw/|Dw|2] = inf{ trace[Aν] : ν ∈ U1, νDw = 0 },

and any ν ∈ U1 is of the form ν = [I−~n~n∗] for some vector ~n ∈ Sn−1. So instead of using projection
matrices from U1, we could use Sn−1. With this identification, we set U = Sn−1 × [0,∞) and

µ(~n, a) = −a~n, σ(~n, a) =
√

2 a [I − ~n~n∗].

By a direct calculation we can show that the nonlinear term F is given by

F (p, A) = inf
a≥0

{ a2(trace[A]−Ap · p/|p|2)− 2a|p| }

=
|p|2

(trace[A]−Ap · p/|p|2)
.
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Notice that (7.2) is exactly equal to the dynamic programming equation (3.2) with the above F .

In this example, the controls take values in unbounded set. Consequently, Theorems 4.2 and 3.2
do not apply to this context. The representation result needs to be proved for this specific case.
Notice that a representation result for smooth inverse mean curvature flows is proved in [23].
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