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the date of receipt and acceptance should be inserted later

Abstract We derive the exact one-step transition probabilities of the number of lin-
eages that are ancestral to a random sample from the current generation of a bi-
parental population that is evolving under the discrete Wright-Fisher model with n
diploid individuals. Our model allows for a per-generation recombination probability
of r. When r = 1, our model is equivalent to Chang’s (1999) model for the karyotic
pedigree. When r = 0, our model is equivalent to Kingman’s (1982) discrete coales-
cent model for the cytoplasmic tree or sub-karyotic tree containing a DNA locus that
is free of intra-locus recombination. When 0 < r < 1 our model can be thought to
track a sub-karyotic ancestral graph containing a DNA sequence from an autosomal
chromosome that has an intra-locus recombination probability r. Thus, our family
of models indexed by r ∈ [0,1] connects Kingman’s discrete coalescent to Chang’s
pedigree in a continuous way as r goes from 0 to 1. For large populations, we also
study three properties of the ancestral process corresponding to a given r ∈ (0,1): the
time Tn to a most recent common ancestor (MRCA) of the population, the time Un
at which all individuals are either common ancestors of all present day individuals or
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ancestral to none of them, and the fraction of individuals that are common ancestors
at time Un. These results generalize the three main results of Chang (1999). When we
appropriately rescale time and recombination probability by the population size, our
model leads to the continuous time Markov chain called the ancestral recombination
graph of Hudson (1983) and Griffiths (1991).

Keywords Kingman’s coalescent, Chang’s pedigree, Griffiths’ and Hudson’s
ancestral recombination graphs, zygotic/karyotic/cytoplasmic/sub-karyotic ancestral
graphs.

Mathematics Subject Classification (2000) 60C05 · 60J85 · 92D15 · 60J05

1 Introduction

Suppose we take a sample of present-day humans and track back in time through
their parents and their parents’ parents, and so on. This is the pedigree of the sample
where each individual will bifurcate into its father and mother in the previous gener-
ation. Recording only the number of individuals who are ancestors of the present-day
sample (instead of the full genealogical relationships) as we trace back through time
in the pedigree gives us a simpler ancestral process, of fundamental interest in popu-
lation genetics as it is the most elementary description of the pedigree that relates the
sampled individuals. It is this process on which we shall concentrate here.

Chang (1999) studied this ancestral process when the sample consists of all present-
day individuals in the population that are reproducing under a simplified mathemat-
ical model called the two-parent Wright-Fisher model (Fisher, 1930; Wright, 1931).
In the Wright-Fisher model, the population is made of a constant number n of diploid
individuals, generations are non-overlapping, and the pedigree is formed by each in-
dividual in each generation choosing two parents uniformly and independently at
random from the previous generation. His findings about the process were in stark
contrast with the well-known results for the analogous ancestral process of King-
man’s (1982) coalescent, in which each individual chooses only one parent (still
independently and uniformly at random) in the previous generation, corresponding
to reconstructing, say, the discrete coalescent tree describing the ancestry at a non-
recombining autosomal locus within the pedigree. Firstly, the number of generations
Tn before we find a most recent common ancestor (MRCA) of the whole population
in Chang’s pedigree process is about log2(n), while it is of the order of n for King-
man’s discrete coalescent. Secondly, if we continue further back through time past
Tn then we reach a generation Un (about 1.77log2(n) generations ago) at and be-
yond which every individual is either a common ancestor (CA) of the whole present
population or is extinct. Finally, a randomly chosen individual in generation Un is
a CA with probability about 0.8. Once again this is in contrast with the coalescent
where the MRCA is the only CA at Tn and only one individual in each generation
beyond Tn is the CA and the other individuals are extinct.

Several conjectures generalized Chang’s results to the case where individuals or
genes have on average less than 2 parents in the previous generation. This happens for
example when we are interested in a stretch of autosomal DNA that can recombine
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with probability r, or not with probability 1− r. In the discussion by Donnelly et al
(1999), Wiuf and Hein proposed that Tn should be approximately equal to log1+r(n),
on the basis that the mean number of parents for a given lineage is 2×r+1×(1−r)=
1+r. Indeed, following this idea the number of ancestors of a given individual should
grow like (1 + r)t as we go backwards in time, and so should be of the order of
n for t ≈ log1+r(n). At this time, the sets of ancestors of all present-day individuals
overlap a lot and we are thus likely to find a common ancestor of all these individuals.
However, this reasoning fails to take into account the much slower decay of the family
of ‘non-descendants’ of a given potential CA, which is now linear instead of quadratic
as in Chang’s model. As we shall see in the proof of Theorem 2, this last stage adds
another − log1−r(n) to the time needed to find a most recent common ancestor of the
whole population. The same question was discussed by Lachance (2009), who argues
that population growth and inbreeding, specified by r and w, can cause the number
of ancestors of an individual to grow at a rate (r w)t instead of 2t (at least during
the first generations). There the inbreeding mechanism imposes some correlations
between the choices of ancestors made by two distinct lineages, and it is not clear
that logr w(n) is a good approximation to the time of the MRCA in large populations.

Wakeley et al (2012) highlight the fact that in a diploid biparental population,
the genealogy of a sample of individuals at a given locus is constrained by the or-
ganismal or karyotic population pedigree giving the ancestral history of the whole
population. This means that the different transmission processes of various kary-
otic genetic material (autosomal fragments of homologous DNA sequences) are all
embedded into the same parental pedigree. The relation between gene genealogies
and ancestral pedigrees has been the object of several interesting papers (Barton and
Etheridge, 2011; Gravel and Steel, 2014; Matsen and Evans, 2008; Wakeley et al,
2012; Ralph, 2009). The latter introduces a measure-valued framework to describe
the flow of genes passed on from parents to offspring in a continuous-time gener-
alized Moran model, mainly in a large-population limit. Most of the others try to
quantify the genetic contribution of each pedigree ancestor to the current population,
given the pedigree. They show in particular that although 80% of individuals deep in
the past are ancestors to all present-day individuals, a fraction (close to 1) of them
will leave no genetic material to any of their descendants. Our work does not aim at
quantifying these contributions, but instead formalizes the embedding of the material
transmission into the parental pedigree. It also enables us to embed the transmission
of a nested family of subsets of a given material into ancestral sub-graphs of the
karyotic pedigree corresponding to this material.

We formally describe the reproduction in such a recombining Wright-Fisher model
in Sects. 1.1 and 1.2. Before going into the mathematical description, we start with
biologically concrete definitions to articulate various ancestral relations of a sam-
ple through time. Consider a biparental eukaryotic population of diploid individuals
with non-overlapping generations. Let n∈N := {1,2,3, . . .} be the size of the diploid
population. The n individuals in the population are labeled by {1,2, . . . ,n}. Such a
population with n = 5 is shown in Fig. 1. An individual i from generation t is identi-
fied with its zygocyte or zygote Ii,t , a labeled 3-ball, i.e. the protoplasmic contents of
an individual zygotic sphere in three dimensions that is bounded by its plasma mem-
brane. Within the protoplasm of this zygote lies its nucleus or karyon Ki,t , another
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labeled 3-ball that is bounded by its nuclear membrane. Finally, the cytoplasm of zy-
gote i is given by Ji,t = Ii,t \Ki,t , i.e., the contents of the zygote excluding its nucleus.
In order to emphasize the longer evolutionary time-scale in units of non-overlapping
zygote generations we ignore the ontogenesis of the Ii,t -rooted mitotic branching pro-
cess to produce the mature adult individual Mi,t . The diploid adult individuals from
generation t meiotically produce gametes. These gametes in turn randomly form pairs
to produce the diploid zygotes of generation t +1 given by Ii,t+1, for i = 1,2, . . . ,n.

In Figs. 1, 2 and 3 we illustrate the karyotic ancestral graph, the zygotic ancestral
graph which contains the cytoplasmic ancestral graph as well as the karyotic ances-
tral graph, and the sub-karyotic ancestral graph which is embedded in the karyotic
ancestral graph. The ancestral graphs encode the ancestry of the individuals from the
present generation 0 at the bottom of Figs. 1, 2 and 3 as follows. The karyon, cyto-
plasm and sub-karyon (i.e., an inheritable subset of the karyon such as an autosomal
recombining DNA sequence) of each individual zygote i ∈ [5] := {1,2,3,4,5} from
the present generation 0 is labelled by {i}K , {i}C and {i}S, respectively. The ancestral
states of each individual in any past generation is obtained recursively from the union
of the labelled sets of their offspring by starting from the labelled sets in generation 0.
For example, the second individual zygote one generation ago is the karyotic ances-
tor of 1, 2 and 3, the cytoplasmic ancestor of 1 and 2, and the sub-karyotic ancestor
of 1 and 2 from the present. This ancestral state is denoted by labelled sets {1,2}K ,
{1,2,3}C and {1,2}S in Figs. 1, 2 and 3, respectively. Although these karyotic, cy-
toplasmic and sub-karyotic ancestries of the same individuals in generation 0 of the
same population are shown independently in the three figures, it is crucial to note
that they are joint and biologically dependent structures since any zygote’s karyon
is within its cytoplasm and any sub-karyon is within its karyon. Therefore, the joint
ancestral graph in Fig. 3 should be thought of as giving the dependent ancestry of the
karyon, cytoplasm and sub-karyon of each individual zygote i ∈ [5] from the present
generation 0 into the past with individual ancestral states given jointly by initializing
individuals in generation 0 with {{i}K ,{i}C,{i}S} for each i ∈ [5], although Fig. 3
only depicts the sub-karyotic ancestral states for visual clarity. Furthermore, such a
tripartite notion of ancestry (with maternal-karyotic, paternal-karyotic and cytoplas-
mic ancestral graphs) is necessary to account for that of humans who can currently be
born in the UK through the legal (Gallagher, 2015) medical procedure termed three
parent in vitro fertilization (TPIVF) (Amato et al, 2014). TPIVF involves taking the
karyon of an egg with diseased mitochondria and inserting it into the cytoplasm of
another mitochondrially healthy egg which has had its karyon removed, and then
fertilizing the hybrid egg with a sperm.

As a concrete example, consider a recombining fragment of autosomal DNA se-
quence (including nested subsets of the fragment). Such a sub-karyotic fragment re-
sides in the nucleus (karyon) of the sampled individuals and has a probability r of
recombining in one generation, and a probability 1− r of not recombining, where r
is allowed to take a fixed value in [0,1]. Hence, understanding the evolution of the
genetic diversity of the population/sample at this locus requires us to follow some-
times one parental karyotic line only, and sometimes both lines. The subsets of the
fragment may correspond to different values of r, such that the probability of hav-
ing risen from two parental karyons in the previous generation increases with the
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Fig. 1 The karyotic ancestral graph of a population of 5 diploid individuals reproducing according to the
two-parent Wright-Fisher model. Each individual karyon or nucleus is represented by a dark gray circle.
Parental relations are indicated by thick dark gray edges. Since the individuals are diploid, the genealogical
(tracing back the ‘physical’ parents) and karyotic (tracing back the ancestors contributing some nuclear
DNA) ancestral graphs coincide. We report the karyotic ancestry of the individuals in the past (before
present generation 0) by taking unions of the offspring sets after starting from the five individual karyons
{1}K , . . .{5}K at generation 0 (the set super-script label K here stands for ‘karyotic’). For example, the
second individual karyon in generation −1, i.e., one generation ago, is the karyotic ancestor of 1, 2 and 3
and its ancestral state is denoted by {1,2,3}K . The second individual karyon at generation −2 with state
[5]K is a karyotic most recent common ancestor (KMRCA) of all the individuals in generation 0 and thus
T K

5 , the time to KMRCA is 2. Similarly, U K
5 = 5 since −5 is the most recent generation when every

individual is either a karyotic common ancestor of everyone in generation 0 (individuals 1, 3 and 4 with
state [5]K ) or of no one in generation 0 (individuals 2 and 5 are karyotically extinct with state /0K ).
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Fig. 2 The zygotic ancestral graph is the union of the cytoplasmic ancestral graph (light gray) and the kary-
otic ancestral graph (dark gray) of the same population in Fig. 1. Here, the cytoplasmic ancestral graph is a
tree since the cytoplasm is inherited each time from only one parent (due to no assumed paternal leakage).
With the set super-script label C standing for ‘cytoplasmic’, we have T C

5 = 6 = U C
5 since in generation

−6 we not only find that individual 2 is the cytoplasmic most recent common ancestor (CMRCA) with
state [5]C but also that all other individuals are cytoplasmically extinct with state /0C .

length of the contiguous DNA sequence due to an assumed constant per-site recom-
bination probability per generation. In the limit of the fragment approaching a whole
autosomal chromosome for instance, the process with r = 1 traces back the number
of karyotic ancestors of the sample back through time, but decreasing r enables us
to concentrate on more precise transmission phenomena that are naturally embedded
into the karyotic pedigree (see Fig. 3). The other extreme case with r = 0 corresponds
to focusing on the number of ancestors at a non-recombining locus.

As another example, consider the cytoplasmic ancestry of the current population
of zygotic mitochondria (the mitochondria present in each zygote today and their
cytoplasmic ancestors from which they could have descended). Although mitochon-
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Fig. 3 The sub-karyotic ancestral graph (thin black) corresponding to a recombining autosomal locus
with a fixed per-generation probability r ∈ (0,1) is embedded in the karyotic ancestral graph (thick dark
gray) and the cytoplasmic ancestral graph (thicker light gray) of the individuals in generation 0. With the
set super-script label S standing for ‘sub-karyotic’, T S

5 , the time to a sub-karyotic most recent common
ancestor (SMRCA), is 4 since the third individual in generation −4 is a SMRCA (at the locus of interest).
Similarly, U S

5 = 5 since generation −5 is the most recent generation when the third individual is a sub-
karyotic common ancestor of all individuals in generation 0 with state [5]S and all others in generation −5
are sub-karyotically extinct with state /0S.

dria are predominantly maternally inherited in many animals, a state of mitochon-
drial heteroplasmy is also reached if paternal mitochondria enter the egg cytoplasm
at fertilization. This is referred to as paternal leakage resulting in the coexistence
of mitochondria from two unique ancestral lineages corresponding to both parents.
Such biparental mitochondrial inheritance has been documented in mammals, birds,
reptiles, fish, molluscs, nematodes, and arthropods, and is the norm in some bivalves
(see the paper by White et al (2008) and the references therein). We can model the cy-
toplasmic ancestry of the mitochondria within the n individual zygotes at the present
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generation with a per generation paternal leakage probability r using our model. See
also the review by Hurst and Jiggins (2005) on inherited symbionts causing indirect
selection on cytoplasmic inheritance for another example of paternal influence on
maternal descent that fits into our framework.

Other papers have considered biparental pedigrees and the corresponding num-
bers of ancestors or their sampling effects for a bisexual model comprised of a pop-
ulation of males and females (Kämmerle, 1989, 1991; Möhle, 1994; Wakeley et al,
2012). Each time they take always two parents (a mother and a father). Here we only
consider monoecious individuals in accordance with Chang’s model and want to be
able to embed different transmission processes into the same parental pedigree by
allowing r, the probability that an individual chooses two parents (instead of one),
to take any fixed value in [0,1]. This is not considered carefully in former studies
which focus on the fate of independent non-recombining loci (Wakeley et al, 2012;
Matsen and Evans, 2008) or that of the genetic content of an individual within a pedi-
gree (Barton and Etheridge, 2011; Gravel and Steel, 2014). We defer more realistic
bi-sexual generalizations of our model to the future.

Ancestral recombination graphs (ARGs) as we describe above in a discrete setting
already exist in the literature, mostly in a continuous time setting (Griffiths, 1991;
Hudson, 1983). For a recent concise treatment of ARGs see the book by Gusfield
(2014). These continuous time models arise as large-population-small-recombination-
probability limits of models of the kind that we consider here, and are usually much
easier to handle than their finite-population counterparts. However, a lot of efforts are
now devoted to understanding the genetic consequences of population bottlenecks, or
the evolution of endangered species which have typically reached a critically small
census size, or the discrete structural effects of zygotic ancestral graphs that embed
gene genealogies (as thinned sub-karyotic graphs explained in Remark 1) when sam-
ple sizes reach the population size and/or when a large recombining locus with a con-
stant per-generational recombination probability that is independent of the population
size is of interest. Hence, it seems rather important to formulate and study a model
where population size n is kept finite and the per-generation recombination probabil-
ity r is kept constant. The model we shall use here is a straightforward generalization
of Chang’s biparental Wright-Fisher model parameterized by r ∈ [0,1], whose tran-
sition probabilities (to our knowledge) have never been explicitly stated. The exact
transition probability matrix for any given r ∈ [0,1] and n ∈ N of this ancestral size
Markov chain will be the content of Theorem 1. We obtain this result by formulating
the model forward in time and then developing its structure back in time using ex-
act counts. Using rational arithmetic, we explicitly compute the probabilities back in
time and obtain the exact stationary distribution of the number of ancestral lineages
in small recombining populations. These computations are compared with direct sim-
ulations. We show that as r varies, qualitatively different stationary behaviour of the
proportion of ancestral lineages of the sample occurs – there is a critical x∗r,n propor-
tion of the population about which this walk concentrates as n gets large. We then
study the large-n asymptotic properties of the ancestral size chain by using branching
process approximations to generalize for any r ∈ (0,1) the results of Chang regarding
Tn in Theorem 2, Un in Theorem 3, and the fraction of CAs at Un in Corollary 1.
We finally show how a special limiting case of our ancestral size Markov chain as
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an ancestral birth-death process of the sub-karyotic ancestry contains Hudson’s and
Griffiths’ ARG in Theorem 4.

We emphasize that our model only traces the ancestry at the physical level of
karyotic and cytoplasmic enclosures of the genetic content in the sample. Our main
reasons to study the process at such pedigree as opposed to genetic resolution are
the following. First, this level of ancestral description provides the support graphs,
i.e. the dominating counting measures on ancestral graphs, within which one can nat-
urally embed the gene genealogies of all DNA content of the current population via
thinning constructions given in Remark 1. Second, such embeddings give the lumped
Markov chains of the ancestral size process which can be delumped to the standard
models of coalescent with recombination, mutation, selection, structure, demography,
etc. Third, our resolution allows us to build an r-parametric homotopy between King-
man’s discrete coalescent with r = 0 and Chang’s pedigree with r = 1 and thereby
unify classical models through explicit discrete time Markov transition probabilities
as well as through continuous time Markov chains in limiting cases of large popula-
tion and large-population-small-recombination. Finally, the karyotic and cytoplasmic
enclosures of the genetic content provide the finest physical structure of the popu-
lation in space-time for genetic transmission. Thus, when individual zygotic labels
are further mapped to physical and/or behavioural space, via parameterized territo-
rial, dispersal and mate-choice operators for instance, one can consistently carry over
the diploid biology of these ancestral graphs to more ecologically realistic models
of population structure for the transmission of genes that are undergoing mutation,
recombination and natural selection.

1.1 A Recombining Wright-Fisher Model

Recall that we consider a population of n diploid individuals. In the Wright-Fisher
model (Fisher, 1930; Wright, 1931) of selectively neutral reproduction within a re-
combining, diploid, monoecious, panmictic population of constant size n, there are
non-overlapping generations labeled by integers, {. . . ,−k,−k+1, . . . ,−1,0,+1, . . .},
as we go forward in time. The current generation is labeled 0. Let r denote the proba-
bility of intra-locus recombination at an autosomal locus per meiotic generation. We
model the lines of descent of the genetic material identified by this autosomal locus
from one of the gametes of a diploid individual in generation k + 1, that fertilized
into a zygote in the following generation k+ 2. This is equivalent to modeling one
of the two copies from a diploid individual in generation k+2 at this locus as a non-
recombinant offspring of exactly one diploid individual in the previous generation k
with probability 1− r, or as a recombinant offspring of two distinct diploid individu-
als in generation k. Thus, we only trace the lines of descent for the autosomal locus
up to its minimal topological enclosure by diploid karyons within individual zygotes.
These parent-offspring choices occur independently among individuals of the same
generation due to panmixia. Let us label the n diploid individuals in generation k us-
ing the label set [n] := {1,2, . . . ,n}. For the lines of descent at our autosomal locus,
let Vi denote the number of non-recombinant offspring of the diploid individual la-
beled i and Ui, j denote the number of offspring that are recombinants of the diploid
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pair labeled by {i, j} with i < j. Let also

V• :=
n

∑
i=1

Vi and U•,• := ∑
{i, j∈[n]: i< j}

Ui, j

denote the total number of non-recombinant and recombinant offspring, respectively.
The lines of descent of the minimal set of diploid karyons that enclose the n homol-
ogous copies at the autosomal locus, with per-generation intra-locus recombination
probability r, into the next generation follow from the multinomial random vector
(V,U) := (V1,V2, . . . ,Vn,U1,2,U1,3, . . . ,Un−1,n) of length n+

(n
2

)
such that V•+U•,• =

n a.s. and for any realization v and u satisfying this constraint of constant n,

P
(
(V,U) = (v,u)

)
= P(V1 = v1, . . . ,Vn = vn,U1,2 = u1,2, . . . ,Un−1,n = un−1,n)

=
n!

v1! · · ·vn!u1,2! · · ·un−1,n!
ru•,•

(
n
2

)−u•,•
(1− r)v•

(
1
n

)v•
. (1.1)

This reproduction scheme is independently and identically enforced in each genera-
tion to obtain the standard neutral Wright-Fisher model with recombination as we go
forward in time.

In the absence of recombination, i.e. with r = 0, V• = n and U•,• = 0, the num-
ber of nonrecombinant offspring born to each of the n individuals of the previous
generation is the symmetric multinomial random vector V := (V1,V2, . . . ,Vn) with,

P [V1 = v1,V2 = v2, . . . ,Vi = vi, . . . ,Vn = vn] =
n!

v1! · · ·vn!

(
1
n

)n

. (1.2)

This corresponds to the standard Wright-Fisher model with population size n.
When recombination is certain, i.e. with r = 1, U•,• = n and V• = 0, the number of

recombinant offspring born to each pair of the n haploid individuals of the previous
generation is given by the multinomial random vector U := (U1,2,U1,3, . . . ,Un−1,n),
with

P [U1,2 = u1,2, . . . ,Un−1,n = un−1,n] =
n!

u1,2! · · ·un−1,n!

(
n
2

)−n

. (1.3)

This forward-in-time process gives the karyotic population pedigree and corresponds
to Chang’s pedigree model but without any possibility for self-fertilization. Note that
the karyotic ancestral graph in Fig. 1 is a subgraph of this karyotic population pedi-
gree because it only gives the ancestry of the individual karyons from the present
generation and not that of the individuals who have no descendants in the present.

1.2 Number of ancestral lineages of a sample

The Wright-Fisher model of Sect. 1.1 has a simple structure as we go back in time. We
can choose to track (backwards in time) various aspects of the ancestry of a sample of
individuals from current generation 0 that is embedded within the karyotic ancestral
graph, a subgraph of the karyotic population pedigree. Here, we simply track the
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number of lineages that are ancestral to our sample, perhaps the most foundational
aspect of the ancestry.

The forward-time offspring distribution of Eq. (1.1) is equivalent to the backward-
time scheme where each individual chooses a single parent uniformly at random from
among the n individuals in the previous generation with probability 1− r, or chooses
a parental pair uniformly at random from among the n(n−1)/2 pairs in the previous
generation with probability r. Since the choices made at different generations are in-
dependent of each other, recording (backwards in time) the number of ancestors of a
sample gives us a rather simple Markov chain {n,rX(t)}t∈Z− over the state space of
ancestral sizes X := {1,2, . . . ,n}. Note that the time index set Z− := {0,−1,−2, . . .}
is negative to indicate the number of generations into the past. Note also that we only
trace the ancestry of our autosomal locus up to its minimal topological enclosure by
diploid individual karyons, and refer to such a locus-specific physical/karyotic ances-
try as a sub-karyotic ancestral graph. This construction is under the assumption that
we are not conditioning on a realization of the karyotic ancestral graph or population
pedigree with r = 1. Otherwise, we need to embed the sub-karyotic ancestral graph of
our locus within the karyotic ancestral graph by a particular r-thinning as described
in Remark 1. This is shown in Fig. 3 as a sub-graph (with thin black lines as edges)
that is embedded within the population’s karyotic ancestral graph (with thick dark
gray lines as edges).

{n,rX(t)}t∈Z− is the lumped Markov chain (c.f. Section 6.3, p. 123 in the book
by Kemeny and Snell (1960)), that is at the most interesting lowest resolution, of
finer Markov chains that describe the full genealogical relations of a random sample
from the recombining Wright-Fisher model of Sect. 1.1 with further complications
such as, coalescence within a karyon with probability 1/2, structure of the linked
locus, mutation, etc. Some classical examples of such finer genealogical resolutions
include: (i) the ARG of Hudson (1983) that describes sampled loci as unit intervals
of infinitely many sites and only tracks the recombining ancestry of the parts of the
intervals that have genetic material in the sample, (ii) the two-locus ARG of Griffiths
(1991) that allows recombination to occur between the loci but can track the complete
ancestry of the two-locus samples including the gene genealogies, and (iii) the ARG
of Griffiths and Marjoram (1997) that tracks the complete ancestry of the sampled
unit intervals of infinitely many sites and generalizes the previous two models.

Hence, studying the number of ancestors {n,rX(t)}t∈Z− is a necessary step to-
wards understanding the rate at which recombination and coalescence events occur
in the rescaled continuous-time approximations. It is also of importance in situations
where very small population sizes would tend to keep genetic diversity very low in
the absence of recombination. Indeed, the number of pedigree ancestors of the whole
population is a good indication of how efficiently recombination is able to foster or re-
store diversity. Note that the exact transition probability matrix n,rP of {n,rX(t)}t∈Z−
given in Theorem 1 is not available in the literature as most authors move directly
to the diffusive limit and only define the continuous-time process in terms of expo-
nential transition rates. This diffusive limit is thought to be valid, but never explicitly
derived from {n,rX(t)}t∈Z− , as n→ ∞ and r→ 0 such that nr approaches a constant
recombination rate. We establish this in Theorem 4 by showing the convergence of
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the transition probabilities in Theorem 1 to those of the standard continuous-time
ARG model.

Remark 1 (Thinning of ancestral graphs) Let us remark that we can mathemati-
cally embed the sub-karyotic ancestral graph A of a given locus (with recombination
probability r) into another sub-karyotic ancestral graph A ′ of some genetic material
containing the locus of interest (with recombination probability r′ ≥ r); thanks to a
simple rejection argument. Indeed, let us fix a realization of the latter. At each gener-
ation, for every lineage that chooses two parents in A ′ we decide that it chooses (the
same) two parents in A with probability r/r′, or it chooses only one of these parents
(each with probability 1/2) with probability 1− r/r′. Coalescences are not modified.
Averaging over the law of A ′, we obtain that each lineage recombines at a given gen-
eration with probability r′× (r/r′) = r and so A does have the desired law. In such a
nested construction, we see that the ancestor-counting process corresponding to A is
always smaller than or equal to that corresponding to A ′, as we would expect from
focusing on the ancestry of a smaller region of the genome. Moreover, we can em-
bed multiple sub-karyotic ancestral graphs {Ai}m

i=1, corresponding to m independent
unlinked loci each with intra-locus recombination probability r1,r2, . . . ,rm, respec-
tively, within the karyotic ancestral graph K with r = 1, by independently thinning
K through ri to obtain Ai for each i ∈ {1,2, . . . ,m}.

When studying large populations, it will be convenient to use the following slight
modification of our model: when a lineage recombines, two parents are chosen in-
dependently and uniformly at random within the previous generation (instead of a
pair of distinct individuals). The main difference is that one individual can then be
chosen twice as the parent (allowing self-fertilization as in Chang’s model), but since
n is supposed to be large, this will happen with probability O(1/n), negligible in
our analysis. For large values of n, we use the following approach of Chang to study
the ancestral process. Let the individuals in generation t ≥ 0 (forward in time start-
ing from some fixed generation t = 0) be denoted by It,i, i = 1,2, . . . ,n. For any i,
let the set of descendants in generation t of individual I0,i be denoted by G i

t , and the
cardinality of G i

t by Gi
t .

The probability that a given individual at generation t + 1 belongs to Gt+1,i, or
equivalently that it has at least one parent among G i

t is

(1− r)
Gi

t

n
+ r

(
1−
(

1− Gi
t

n

)2
)

= (1+ r)
Gi

t

n
− r

(Gi
t)

2

n2 .

Since the parental choices are made independently, the process {Gi
t}t∈Z+ is thus

a Markov chain with transition probabilities

(Gi
t+1 | Gi

t)∼ Bin

(
n,(1+ r)

Gi
t

n
− r

(Gi
t)

2

n2

)
, (1.4)

where Bin(n, p) denotes the binomial distribution with parameters n, p. We drop the
superscript i when there is no confusion. In particular, once we identify an individ-
ual, say I, who is unlikely to go extinct over generations, we follow the set of its
descendants in each generation, and denote the sizes of these sets as Gt .
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For the purposes of the proofs, we shall also consider another process: the indi-
viduals who are not descendants of i. In generation t, there are Bi

t such individuals.
The same kind of calculations gives us that

(Bi
t+1 | Bi

t)∼ Bin

(
n,(1− r)

Bi
t

n
+ r

(Bi
t)

2

n2

)
. (1.5)

Again, we drop the superscript when there is no confusion. In particular, we refer
to the number of individuals in generation t that are not descendants of a chosen
individual I in generation 0 by Bt . It will be convenient to study the process (Gt)t∈Z+

until Gt is at least n/2, and then it will be more convenient to study (Bt)t∈Z+ .

2 Main Results

We fix the population size n ∈N and the recombination probability r ∈ (0,1). We use
the notation x+ := max{0,x}.

Theorem 1 The exact transition probabilities of the ancestral process {n,rX(t)}t∈Z−
are

n,rPi, j =


(n

j

)
∑

i
k=( j−i)+

( i
k)rk(1−r)i−k

2kni−k(n
2)

k ∑
j
m=0(−1) j−m

( j
m

)
mi(m−1)k if 1 < j ≤ 2i,

(1−r)i

ni−1 if j = 1,
0 otherwise.

Theorem 2 Let Tn denote the number of generations, counting back in time from the
present, to an MRCA of all present-day individuals. Then for every ε > 0,

lim
n→∞

P
{
(1− ε)C(r) lnn≤Tn ≤ (1+ ε)C(r) lnn

}
= 1,

where

C(r) :=
1

ln(1+ r)
− 1

ln(1− r)
.

Theorem 3 Let Un denote the number of generations, counting back in time from
the present, to a generation in which each individual is either a CA of all present-day
individuals or an ancestor of no present-day individual. Let ρ = ρ(r) be the unique
solution in (0,1) to the equation x = e−(1+r)(1−x), and recall the definition of C(r)
given in the statement of Theorem 2. Then for every ε > 0,

lim
n→∞

P
{
(1− ε)

(
C(r)− 1

ln((1+ r)ρ)

)
lnn≤Un

≤ (1+ ε)

(
C(r)− 1

ln((1+ r)ρ)
− 1

ln(1− r)

)
lnn
}
= 1.
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Note that ρ(r) defined as in Theorem 3 is the extinction probability of a Galton-
Watson process with offspring distribution Poisson(1 + r) (see Appendix A and
Chapter 1 of the book by Athreya and Ney (2004) for a definition and first properties
of Galton-Watson processes — in Appendix A, we also argue that (1 + r)ρ < 1,
hence the minus sign in the expression involving the log of this quantity). Indeed, the
proofs of Theorems 2 and 3 show that a given individual will be common ancestor
of the whole population in the future if in the O(lnn) generations following him, his
family survives and grows exponentially. We shall show that at the early stages of
this family, its size can be approximated by a Galton-Watson process with offspring
distribution Poisson(1+ r). This gives us the following result.

Corollary 1 The fraction of individuals living Un generations ago that are CAs of
the current population converges in probability to 1−ρ as n tends to infinity, where
ρ = ρ(r) is the unique solution in (0,1) to the equation x = e−(1+r)(1−x).

Remark 2 The result of Corollary 1 also applies to any generation earlier than Un,
since if an individual from Un generations ago is a CA of the present population then
any of its ancestors will also be a CA of the present population. Of course the number
of CAs can still vary from one generation to another, but remains asymptotically
equivalent to (1−ρ)n as n becomes large.

Our final result relates the recombining Wright-Fisher model defined in Sect. 1.1
to the number of lineages in the classical ancestral recombination graph (ARG) with
recombination rate ρ > 0 appearing in the works of Griffiths (1991) and Hudson
(1983). This process Z = {Z(t), t ≥ 0} is the continuous-time jump process with
values in N, that jumps from z to z+1 at rate ρz due to recombination and from z to
z−1 at rate

(z
2

)
due to coalescence (with this coalescence rate being 0 when z = 1).

Theorem 4 Suppose that the recombination probability r decreases with increasing
population size n in such a way that ρ := nr remains a constant. Then as n tends to
infinity, the ancestral process {n,ρ/nX(bntc), t ≥ 0} converges in distribution towards
Z. The convergence is in the sense of weak convergence in the space DN[0,∞) of all
càdlàg paths with values in N.

In other words, the standard continuous-time ARG model can be recovered from the
recombining Wright-Fisher model in the regime of parameters where recombination
is weak and population size is large. In this case, we need to consider the population
ancestry over time intervals of length O(n) (as in the coalescent approximation of the
non-recombining Wright-Fisher model).

Remark 3 In our models when two lineages share a common ancestral karyon we
consider them to have physically coalesced (in terms of being enclosed within a single
diploid karyon). If one is interested in the gene genealogies of samples of homologous
autosomal DNA sequences then we need to introduce an additional factor of 1/2 for
the probability that the two lineages found in the same diploid karyon actually come
from one of the two copies of DNA. Thus, our results can be interpreted with or
without this factor of 1/2.
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3 Simulations

We performed exact rational arithmetic, using Sage (Stein et al, 2009), to compute
the stationary distribution

lim
t→∞

(n,rP̄)t
= n,r

π

of the rescaled random walk
{n,rX(t)/n}t∈Z−

over state space X/n := {1/n,2/n, . . . ,1} for small values of n ∈ {10,50,100}. From
these exact computations of the stationary distributions depicted in Fig. 4 the follow-
ing qualitative observations stand out. First, for a given n and r there is a focal or
critical ratio

n,rx∗ = argmax
x∈[0,1]

n,r
π(x)

of the number of CAs for a given n and r about which the probability mass of the sta-
tionary distribution n,rπ of the rescaled random walk {n,rX(t)/n}t∈Z− on X/n is con-
centrated and therefore the random walk hovers about this focal ratio n,rx∗. Second,
as n approaches infinity, the stationary distribution n,rπ seems to converge weakly
towards a Dirac mass at some x∗r ∈ (0,1). Corollary 1 shows that x∗r = 1−ρ(r) and
this corresponds to what we observe from computations with the stationary distribu-
tion n,rπ for n as large as 100 and also from simulations for n as large as 105. Third,
the boundary behaviour is as expected: when r approaches 0 we recover the non-
recombining coalescent with a fraction of CAs very close to 0 (recall that eventually
there is only one CA in the Kingman coalescent) and when r approaches 1 we recover
the Chang’s karyotic pedigree model with a fraction of CAs close to 1−ρ(1)≈ 0.8.

Fig. 4 Cumulative distribution function (CDF) of the stationary distribution of the number of ancestors
for n = 10,50,100 with r = 1/10 (distributions closer to 0) and with r = 9/10 (distributions closer to 1).
The thickness of the CDF increases with n. The mass at the most likely state is shown by a stem plot for
each distribution.
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r population size n in simulation 100,rx∗ 1−ρ(r)

102 104 105

0.001 0.01(.01, .02) 0.0019(.0014, .0025) 0.002(.0018, .0022) 0.01 0.002
0.01 0.02(.01, .04) 0.019(.016, .022) 0.02(.019, .02) 0.02 0.0197
0.05 0.08(.04, .15) 0.093(.089, .097) 0.093(.091, .095) 0.09 0.0937
0.1 0.18(.07, .23) 0.17(.17, .18) 0.18(.17, .18) 0.18 0.176
0.25 0.34(.23, .45) 0.37(.36, .38) 0.37(.37, .37) 0.37 0.371
0.5 0.56(.44, .65) 0.58(.57, .6) 0.58(.58, .58) 0.59 0.583
0.75 0.71(.64, .77) 0.71(.7, .72) 0.71(.71, .72) 0.72 0.713
0.95 0.77(.71, .85) 0.78(.78, .79) 0.78(.78, .79) 0.79 0.783
0.99 0.8(.72, .87) 0.79(.79, .8) 0.79(.79, .8) 0.8 0.794
0.999 0.8(.69, .91) 0.8(.79, .8) 0.8(.79, .8) 0.8 0.797

Table 1 The median (minimum, maximum), based on 25 simulations, of the fraction of CAs at time Un,
100,rx∗ and 1−ρ(r) for different values of r and n.

Table 1 gives a tabular summary of 25 simulations of the fraction of CAs at Un
for a range of r and n values. It is compared with 100,rx∗, the value at which the
stationary distribution of the ancestral Markov chain attains the maximum probability
for n = 100. We see a nice pattern here that shows the maximum of the stationary
distribution n,rπ(x) and the concentrating fraction of CAs at Un from simulations for
various values of r as n ranges in {102,104,105}. According to Corollary 1, for a
large population with n = 105 the fraction of CAs at Un based on 25 simulations is
highly concentrated about x∗r = 1−ρ(r).

In Table 2 the approximation for Tn is working well uniformly over r as n in-
creases, albeit slower for smaller r. In Table 3 the approximation for Un is also im-
proving as n increases. One needs much larger n due to the loglog terms that have
been dropped in the limits in Theorems 2 and 3.

4 Proof of Theorem 1

Notice first that each individual of the sample chooses at most 2 parents, and so
n,rPi, j = 0 whenever j > 2i. Likewise, if j = 1 none of the current lineages can have
recombined, there are n potential ‘single’ parents and ni potential allocations of par-
ents for i non-recombining individuals, so that

n,rPi,1 = (1− r)i n
ni .

Let us thus consider the case 1 < j ≤ 2i. Let I be a fixed set of haploid lineages
in the current generation. Let |I| = i. We are interested in the probability P( j|I) that
these i lineages descend from exactly j ancestral haploid lineages in the previous
generation (see Fig. 5).

First, we have

P( j|I) = ∑
J:|J|= j

P(J|I) =
(

n
j

)
P(J0|I), (4.1)
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r population size n in simulation

103 104 105

0.001 1245(795,2741) 4564(3146,6665) 8186(7369,9711)
13815;0.0901 18420;0.248 23025;0.356

0.01 469(296,683) 842(758,1135) 1229(1143,1416)
1381;0.34 1842;0.457 2302;0.534

0.05 147(119,215) 224(202,253) 310(297,347)
276;0.533 368;0.609 460;0.674

0.1 82(65,100) 123(113,145) 165(159,173)
138;0.594 184;0.668 230;0.717

0.25 38(34,44) 54(51,62) 71(70,75)
54;0.704 73;0.74 91;0.78

0.5 21(20,23) 29(27,31) 37(37,38)
27;0.778 36;0.806 45;0.822

0.75 14(14,15) 20(19,21) 25(25,25)
17;0.824 23;0.87 28;0.893

0.95 11(11,12) 15(15,15) 19(19,19)
12;0.917 16;0.938 21;0.905

0.99 11(10,11) 14(14,15) 18(17,18)
11;1 15;0.933 19;0.947

0.999 11(10,11) 14(14,14) 18(17,18)
10;1.1 14;1 18;1

Table 2 The median (minimum, maximum) based on 25 simulations of Tn for different values of r and
n. In the second row for each r we compare with the limit and the limiting ratio, given in Theorem 2 by
bC(r) lnnc;median/bC(r) lnnc, where C(r) =

(
1

ln(1+r) −
1

ln(1−r)

)
.

where P(J|I) denotes the probability that the set of lineages ancestral to I in the
previous generation is J and J0 := {1, . . . , j} is taken as a typical block (here the
labels of the individuals have no influence on their fates and the above probability is
the same for any set J of j labels).

Let P(J0|I,K) be the probability that the set of lineages ancestral to I in the previ-
ous generation is J0 given that lineages in a fixed subset K of I are recombinants and
the lineages in I \K are non-recombinants. Since each individual is a recombinant
offspring with probability r, we obtain

P(J0|I) = ∑
K⊆I

r|K|(1− r)|I|−|K|P(J0|I,K) =
i

∑
k=0

rk(1− r)i−k
(

i
k

)
P(J0|I,Kk), (4.2)

where for any k, Kk denotes a given subset of I of size k.
Let us thus describe how to calculate P(J0|I,Kk) for a given k ∈ {0, . . . , i}. Let

B(J|I,Kk) be the set of bipartite graphs with vertex set I∪J, with bipartition J|I, such
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r population size n in simulation

103 104 105

0.001 2344(1153,4494) 9273(6249,13376) 15543(13543,19634)
[20724,27628]; 0.097 [27632,36838]; 0.288 [34540,46047]; 0.386

0.01 931(624,1429) 1626(1449,1995) 2333(2089,2786)
[2073,2760]; 0.385 [2764,3681]; 0.505 [3455,4601]; 0.579

0.05 297(238,380) 420(368,502) 559(498,645)
[415,550]; 0.616 [554,733]; 0.653 [692,917]; 0.695

0.1 154(140,195) 227(208,268) 301(285,328)
[208,273]; 0.64 [277,365]; 0.707 [347,456]; 0.75

0.25 74(63,83) 104(93,121) 128(122,150)
[83,107]; 0.779 [111,143]; 0.819 [139,179]; 0.805

0.5 41(35,57) 54(50,61) 67(65,75)
[41,51]; 0.891 [55,68]; 0.878 [69,86]; 0.865

0.75 28(26,31) 37(34,41) 46(44,51)
[27,32]; 0.949 [36,43]; 0.937 [45,53]; 0.939

0.95 22(19,27) 29(27,33) 36(33,39)
[20,23]; 1.02 [27,30]; 1.02 [34,38]; 1

0.99 21(19,24) 27(25,36) 34(32,37)
[19,20]; 1.08 [25,27]; 1.04 [32,34]; 1.03

0.999 21(19,24) 27(25,30) 33(32,37)
[18,19]; 1.14 [24,26]; 1.08 [31,32]; 1.05

Table 3 The median (minimum, maximum) based on 25 simulations of Un for different values of r and
n. In the second row for each r we compare with the limit and the limiting ratio, given in Theorem 3 by,
[bD(r) lnnc,bD(r) lnnc]; median/((D(r) lnn+D(r) lnn)/2), where D(r) = C(r)− 1

ln((1+r)ρ) and D(r) =

C(r)− 1
ln((1+r)ρ) −

1
ln(1−r) .

K

I

J

n

n

· · ·

· · ·

Fig. 5 Combinatorial structure diagram for a panmictic monoecious sample genealogy within a recom-
bining Wright-Fisher population of constant diploid size n in one generation from a set I to a set J with a
subset K of I being recombinants.
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that the vertices in Kk are of degree 2, the vertices in I \Kk are of degree 1, and no
vertices in J is isolated. This set is empty if j > 2k+(i− k) = k+ i, and so we may
consider only the case where k ≥ ( j− i)+. Since the parents are chosen uniformly at
random, we have

P(J0|I,Kk) =
|B(J0|I,Kk)|

ni−k
(n

2

)k . (4.3)

Indeed, there are exactly ni−k
(n

2

)k ways in which the lineages in I choose their an-
cestral lineages from the previous generation so that lineages in Kk are recombinants
and the lineages in I \Kk are non-recombinants.

Therefore, combining Eqs. (4.1), (4.2) and (4.3) (and since only the cardinalities
of |I|= i, |J0|= j and |Kk|= k matter) we have

P( j|i) =
(

n
j

) i

∑
k=( j−i)+

(
i
k

)
rk(1− r)i−k |B( j|i,k)|

ni−k
(n

2

)k , (4.4)

where we have extended the notation B(J|I,K) into B( j|i,k) in a natural way. We can
count |B( j|i,k)| by the inclusion-exclusion formula , given by the next lemma.

Lemma 1 For arbitrary values of i, j,k, we can count |B( j|i,k)| by the following
formula:

|B( j|i,k)|=
j

∑
m=0

(−1) j−m
(

j
m

)(
m
2

)k

mi−k (4.5)

Proof Suppose that the sets of vertices I,J,K, with cardinalities i, j,k, respectively,
are fixed. Let A be the set of parents of vertices in I. For L⊆ J, |L|= l, let P(L) denote
the number of bipartite graphs such that A ⊆ L and let Q(L) denote the number of
bipartite graphs such that A = L. We have

P(L) = ∑
M⊆L

Q(M).

Also,

P(L) =
(

l
2

)k

li−k,

since, for a fixed L, there are
( l

2

)
ways to choose 2 distinct parents of each vertex in

K and l ways to choose 1 parent of each vertex in I\K.
By Möbius inversion (see Chapter 5 in the book by Cameron (1994)), we have

Q(L) = ∑
M⊆L

(−1)l−mP(M) = ∑
M⊆L

(−1)l−m
(

m
2

)k

mi−k. (4.6)

When L = J, Equation ((4.6)) implies that

|B( j|i,k)|= Q(J) = ∑
M⊆J

(−1) j−m
(

m
2

)k

mi−k

= ∑
m
(−1) j−m

(
j

m

)(
m
2

)k

mi−k
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Finally, Eqs. (4.4) and (4.5) for ( j− i)+ ≤ k ≤ i, give the (n,r)-specific exact
one-step transition probability matrix

n,rP = ( n,rPi, j )i, j∈{1,2,...,n} ,

as

n,rPi, j =

(
n
j

) i

∑
k=( j−i)+

( i
k

)
rk(1− r)i−k


j

∑
m=0

(−1) j−m
( j

m

)(m
2

)kmi−k

ni−k
(n

2

)k


 , (4.7)

for the ancestral size Markov chain {n,rX(t)}t∈Z− .

5 Proof of Theorem 2

The proof of Theorem 2 is done in a number of steps as follows. In the next two
sections, we fix ε ∈ (0,1/2).

1. Stage G1: For some individual I := I0,i in generation 0, Gi
t reaches at least (lnn)2

after T
(G1)

n generations, where T
(G1)

n is about 2 ln lnn/ ln(1+ r) with high prob-
ability. Moreover, the probability that the family of I eventually goes extinct is
negligible.

2. Stage G2: The number of descendants of I increases from (lnn)2 to g2n in T
(G2)

n
generations, where g2 ∈ (0,1/2) is a well-chosen constant depending on the ε-
precision that we want, and T

(G2)
n is about lnn/ ln(1+ r). More precisely, the

probabilities

P
[
T

(G2)
n >

(
1+

ε

2

)
lnn

ln(1+ r)

]
and P

[
T

(G2)
n <

(
1− ε

2

)
lnn

ln(1+ r)

]
are both o(1/n).

3. Stage G3: The number of descendants of I increases from g2n to n/2 in T
(G3)

n

generations, where T
(G3)

n ≤ ln lnn with probability 1−o(1/n).
4. Stage B1: The number of non-descendants of I decreases from at most n/2 to

at most b1n in T
(B1)

n generations, where b1 ∈ (0,1/2) is another well-chosen
constant and T

(B1)
n ≤ ln lnn with probability 1−o(1/n).

5. Stage B2: The number of non-descendants of I decreases from at most b1n to
(lnn)2 in T

(B2)
n generations, where T

(B2)
n is about − lnn/ ln(1− r) generations.

More precisely, the probabilities

P
[
T

(B2)
n >

(
1+

ε

2

)
lnn

− ln(1− r)

]
and P

[
T

(B2)
n <

(
1− ε

2

)
lnn

− ln(1− r)

]
are both o(1/n).
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6. Stage B3: The non-descendants of I go extinct: the number of non-descendants
of I decreases from at most (lnn)2 to 0 in T

(B3)
n generations, where T

(B3)
n ≈

−2ln lnn/ ln(1− r) with high probability.

All these results combined show that, with probability tending to 1, the first time at
which an individual becomes CA of the whole population is bounded from above by

O(ln lnn)+
(

1+
ε

2

)
lnn

ln(1+ r)
+O(1)−

(
1+

ε

2

)
lnn

ln(1− r)
,

which entails the upper bound in Theorem 2. This is detailed in Sect. 5.7. The lower
bound is why we need the probabilities corresponding to the O(lnn)-long phases
to be o(1/n). Indeed, this will guarantee that with probability tending to 1, none
of the n families born from our initial individuals can reach size g2n in less than
(1− ε/2) lnn/ ln(1+ r) generations, and neither can any of the (at most n) families
reaching size n/2 increase to n−(logn)2 in less than−(1−ε/2) lnn/ ln(1−r). Thus,
with probability tending to 1 any individual needs at least (1−ε/2) lnn

(
1/ ln(1+r)−

1/ ln(1− r)
)

generations to become a CA of the whole population.
Here we follow rather closely the proof of Theorem 1 of Chang (1999). The

first 4 stages are nearly identical to Stages 1 to 4 of Chang (1999), and so we only
give a sketch of their proofs to recall the philosophy behind the maths. The main
difference comes in the last two stages. Indeed, in Chang’s (1999) framework the
rate of decrease of the number of non-descendants of I is quadratic. Here, because a
fraction 1− r of the population picks only one parent in the previous generation, the
rate of decrease is linear and extinction takes of the order of lnn generations to occur
(hence the additional− lnn/ ln(1−r) term compared to Chang’s result for r = 1). We
shall give more details about the proofs concerning Stages B2 and B3, although most
of the arguments are similar to those used in the other stages.

Before considering the different stages one after the other, let us recall the clas-
sical Bernstein’s inequality. We shall use it in the regime where G or B is large, to
show that the behaviour of these processes is very close to their expectations.

Lemma 2 (Bernstein’s inequality) If X ∼ Bin(n, p) and x > 0, then

P[X ≥ np+ x]≤ exp
{

−x2

2np(1− p)+(2/3)x

}
,

and

P[X ≤ np− x]≤ exp
{

−x2

2np(1− p)+(2/3)x

}
.

5.1 Stage G1: Finding an individual Ihat has at least (lnn)2escendants after
o(lnn)enerations

The proof is identical to that of Stage 1 in the article by Chang (1999) and is based
on the following argument (that we do not detail much).
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By Lemma 13 applied with bn = (lnn)2 and mn =
3

ln(1+r) ln lnn, the probability

that the process G starting at 1 reaches (lnn)2 in less than mn generations is asymptot-
ically equivalent to the same probability for a Galton-Watson process with offspring
distribution Poisson(1+ r). By a standard martingale argument, the liminf of the
latter is bounded from below by 1− ρ > 0, where we recall that ρ = ρ(r) is the
extinction probability of the Galton-Watson process. Therefore, if every mn gener-
ations we test whether the individual labelled by 1 at that time has at least (lnn)2

descendants another mn generations later, we obtain a geometric trial that ends with
a success in a finite number of steps with probability 1. In particular, this means that
the probability that no individuals at the origin have at least (lnn)2 descendants af-
ter (ln lnn)mn = o(lnn) generations is bounded from above (for any δ ∈ (0,ρ)) by
(1−ρ +δ )ln lnn→ 0 as n→ ∞. In formula:

lim
n→∞

P
[
T

(G1)
n >

3
ln(1+ r)

(ln lnn)2
]
= 0. (5.1)

From now on, we call I such a thriving individual and (Gt)t∈Z+ the process of its
family size.

5.2 Stage G2: From Gt ≥ (lnn)2 to Gt ≥ g2n

Here, we use the fact that G is already large enough to behave roughly like its
expectation. Indeed, suppose G0 ≥ (lnn)2 and let η ∈ (0,1) and g2 > 0 be such
that η > rg2 (we shall fix these quantities more precisely later). Since Gt+1|Gt ∼
Bin(n,(1+ r)Gt/n− r(Gt/n)2), Lemma 2 (with x = ηGt − rG2

t /n > 0 if Gt ≤ g2n)
tells us that for any t ∈ Z+,

P[Gt+1 < (1+ r−η)Gt , (lnn)2 ≤ Gt ≤ g2n]

≤ E
[

exp
{

−(ηGt − rG2
t /n)2

2n
[
(1+ r)Gt

n − r G2
t

n2

][
1− (1+ r)Gt

n + r G2
t

n2

]
+ 2

3 (ηGt − rG2
t /n)

}

×1{(lnn)2≤Gt≤g2n}

]
≤ E

[
exp
{
− (η− rg2)

2G2
t

2(1+ r)Gt +2ηGt/3

}
1{(lnn)2≤Gt≤g2n}

]
≤ exp

{
− (η− rg2)

2(lnn)2

2(1+ r)+2η/3

}
.

Let mn :=
⌈ lnn−2ln lnn+lng2

ln(1+r−η)

⌉
. If Gt+1 ≥ (1+ r−η)Gt for every t ≤ mn, necessarily

we have
Gmn ≥ (1+ r−η)mnG0 ≥ g2n.

Hence, as in the proof of Proposition 9 of Chang (1999) we can write

P[Gt < g2n, ∀t ≤ mn |G0 ≥ (lnn)2]≤
mn−1

∑
i=0

P[Gt+1 < (1+ r−η)Gt , (lnn)2 ≤ Gt ≤ g2n]

≤ mne−C(r,η ,g2)(lnn)2
= o(1/n). (5.2)
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Finally, if we choose η > 0 and g2 small enough so that

ln(1+ r−η)>
ln(1+ r)
1+ ε/2

and g2 <
η

r
, (5.3)

we can conclude from Eq. (5.2) that:

Lemma 3 Suppose G0 ≥ (lnn)2 and let T
(G2)

n := inf{t : Gt ≥ g2n}. As n tends to
infinity, we have

P
[
T

(G2)
n >

(
1+

ε

2

)
lnn

ln(1+ r)

]
= o

(
1
n

)
.

The same reasoning using the second Bernstein inequality gives us (up to taking
g2 even smaller):

Lemma 4 Suppose that (lnn)2 ≤ G0 ≤ (lnn)3. As n tends to infinity, we have

P
[
T

(G2)
n <

(
1− ε

2

)
lnn

ln(1+ r)

]
= o

(
1
n

)
.

5.3 Stage G3: From Gt ≥ g2n to Gt ≥ n/2

The very same reasoning as in Stage G2 gives the next lemma.

Lemma 5 Suppose G0 ≥ g2n and let T
(G3)

n := inf{t : Gt ≥ n/2}. As n tends to infin-
ity, we have

P
[
T

(G3)
n > ln lnn

]
= o

(
1
n

)
.

Remark 4 In fact ln lnn is a very crude upper bound here, and could be replaced by
d((ln(1/2)− lng2)/ ln(1+ r−η)e as in the previous stage. The advantage of ln lnn
is that it does not depend on ε , contrary to η and g2.

5.4 Stage B1: From Bt ≤ n/2 to Bt ≤ b1n

Recall that in Chang’s notation, Bt is the number of individuals in generation t that
are not descendants of I. Hence, (Bt+1 | Bt) is binomially distributed as

(Bt+1 | Bt)∼ Bin

(
n,(1− r)

Bt

n
+ r

B2
t

n2

)
.

In this stage, Bt decreases almost deterministically (being of the order of n) at a
rate which is at least 1− r+ r/2 = 1− r/2. Hence, exactly as in Stage G3 we have:

Lemma 6 Suppose B0 ≤ n/2 and let b1 ∈ (0,1/2). Set T
(B1)

n := inf{t : Bt ≤ b1n}.
As n tends to infinity, we have

P
[
T

(B1)
n > ln lnn

]
= o

(
1
n

)
.
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5.5 Stage B2: From Bt ≤ b1n to Bt ≤ (lnn)2

Here we can proceed exactly as in Stage G2. Let η ∈ (0,1− r) and fix b1 > 0 such
that η > rb1. Using again Lemma 2, we can write that

P
[
Bt+1 > (1− r+η)Bt , (lnn)2 ≤ Bt ≤ b1n

]
≤ exp

{
− (η− rb1)

2(lnn)2

2+2η/3

}
.

Let mn :=
⌈ lnn−2ln lnn+lnb1
− ln(1−r+η)

⌉
. If Bt+1 ≤ (1− r+η)Bt for every t ≤ mn, we must have

Gmn ≤ (1− r+η)mnB0 ≤ (lnn)2.

Hence,

P
[
Bt > (lnn)2, ∀t ≤ mn |B0 ≤ b1n

]
≤ mne−C′(r,η ,b1)(lnn)2

= o(1/n),

and if we choose η > 0 and b1 small enough so that

ln(1− r+η)≤ ln(1− r)
1+ ε/2

and b1 <
η

r
, (5.4)

we obtain that

Lemma 7 Suppose B0 ≤ b1n and let T
(B2)

n := inf{t : Bt ≤ (lnn)2}. Then as n→ ∞,

P
[
T

(B2)
n >

(
1+

ε

2

)
lnn

− ln(1− r)

]
= o
(

1
n

)
.

Likewise, up to taking smaller η and b1, we have

Lemma 8 Suppose n/ logn≤ B0 ≤ b1n. Then as n→ ∞,

P
[
T

(B2)
n <

(
1− ε

2

)
lnn

− ln(1− r)

]
= o
(

1
n

)
.

5.6 Stage B3: Extinction of (Bt)t∈Z+

Suppose that B0 ≤ (lnn)2 and let us show that the number T
(B3)

n of generations that
(Bt)t∈Z+ needs to reach 0 is of the order of ln lnn at most. By Lemma 13(ii) (with
α = 0 and γ = 1/4, say) we have

PB0

[
T

(B3)
n >C ln lnn

]
= PB0

[
τ

Y−
0 >C ln lnn

]
(1+o(1)),

where τ
Y−
0 is the first time at which a Poisson(1− r) Galton-Watson process be-

comes extinct (starting from the same initial condition B0). Now, by Lemma 11 and
the branching property of Galton-Watson processes, we can write that

PB0

[
τ

Y−
0 ≤C ln lnn

]
= P1

[
τ

Y−
0 ≤C ln lnn

]B0

≥
(
1− (1− r)C ln lnn)(lnn)2

= e−(lnn)2[(1−r)C ln lnn+o((1−r)C ln lnn)],

which will tend to 1 as n→ ∞ whenever C >−2/ ln(1− r).
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5.7 Proof of Theorem 2: putting the stages together

Proof (Proof of the upper bound in Theorem 2) Let us call Ei the event that everything
goes well during stage i. That is,

E1 =

{
a successful individual I exists and T

(G1)
n ≤ 3(ln lnn)2

ln(1+ r)

}
;

E2 =

{
G does not reach 0 and T

(G2)
n ≤

(1+ ε

2 ) lnn
ln(1+ r)

}
;

E3 =
{

G does not reach 0 and T
(G3)

n ≤ ln lnn
}

;

E4 =
{

B does not reach n and T
(B1)

n ≤ ln lnn
}

;

E5 =

{
B does not reach n and T

(B2)
n ≤

(1+ ε

2 ) lnn
− ln(1− r)

}
;

E6 =
{

B does not reach n and T
(B3)

n ≤C ln lnn
}
.

Notice that the events {G does not reach 0} and {B does not reach n} both coincide
with the survival of the family of I during the stage considered. Since if all these
events hold we have

Tn ≤
(

1+
ε

2

)(
1

ln(1+ r)
− 1

ln(1− r)

)
lnn+

3(ln lnn)2

ln(1+ r)
+(2+C) ln lnn

≤ (1+ ε)

(
1

ln(1+ r)
− 1

ln(1− r)

)
lnn,

when n is large enough, we can write that

P
[
Tn > (1+ ε)

(
1

ln(1+ r)
− 1

ln(1− r)

)
lnn
]

≤
5

∑
i=1

P
[
E1, . . . , Ei−1 hold, Ei does not

]
≤ o(1)+o(1/n)→ 0

as n→ ∞, where we have used the results of the previous paragraphs in the last line.
This gives us the desired upper bound on Tn.

Proof (Proof of the lower bound in Theorem 2) We want to show that for any indi-
vidual j living at time 0 (with family size process (G j

t )t∈Z+),

P
[

G j goes from above (lnn)2 to above n− (lnn)2 in less than

(1− ε)

(
1

ln(1+ r)
− 1

ln(1− r)

)
lnn generations

]
= o
(

1
n

)
. (5.5)

More precisely, we want to show that if G j takes off and grows above (lnn)2 at some
time (we call σ

j
n the first such time), then starting at this new value G j

σ
j

n
the time that
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G j needs to reach n− (lnn)2 is at least (1−ε)
( 1

ln(1+r) −
1

ln(1−r)

)
lnn with probability

1−o(1/n). Once this is shown, we can then write

P
[
Tn < (1− ε)

(
1

ln(1+ r)
− 1

ln(1− r)

)
lnn
]

≤
n

∑
j=1

P1

[
G j reaches n− (lnn)2 in less than

(1− ε)

(
1

ln(1+ r)
− 1

ln(1− r)

)
lnn
]
= o(1)

as n→ ∞, and the lower bound on Tn is proved.
Let us thus show Eq. (5.5). The only difficulty here is to control the size of G j at

the first time σ
j

n at which it goes above (lnn)2, and at the first time θ
j

n at which it goes
above (1− b1)n. Indeed, then Lemma 4 and Lemma 8 tell us that each of the long
stages takes the appropriate minimal amount of time with probability 1− o(1/n).
Now, writing G := G j

σ
j

n−1
for the value of G j just before the first jump over (lnn)2

to simplify the notation (hence G < (lnn)2 by definition), by Lemma 2 applied with
x = (lnn)3− (1+ r)G+ r2G2/n we have

P1

[
G j

σ
j

n
> (logn)3

]
= P1

[
Bin

(
n,(1+ r)G− r2 G2

n2

)
> (lnn)3

]
≤ E

[
exp
{
−
[
(lnn)3− (1+ r)G+ r2G2/n

]2×
1

2n
[
(1+ r)G

n −
r2G2

n2

][
1− (1+ r)G

n + r2G2

n2

]
+ 2

3

[
(lnn)3− (1+ r)G+ r2G2

n

]}]
≤ e−Cr(lnn)3

= o
(

1
n

)
,

where the last inequality uses the fact that G < (lnn)2. Likewise, writing B for the
value B j

θ
j

n−1
of B j just before the jump that makes it smaller than b1n, we have

P1

[
G j

θ
j

n
> n(1−1/ lnn)

]
≤ P1

[
Bin

(
n,(1− r)B+ r

B2

n2

)
<

n
lnn

]
≤ e−C′rn = o

(
1
n

)
.

Summing up the above and using Lemmas 4 and 8, we obtain that the quantity in the
l.h.s. of Eq. (5.5) is bounded by

P1

[
G j

σ
j

n
> (logn)3

]
+P1

[
G j

σ
j

n
≤ (logn)3 , T

(G2)
n < (1− ε)

lnn
ln(1+ r)

]
+P1

[
G j

θ
j

n
> n(1−1/ lnn)

]
+P1

[
G j

θ
j

n
≤ n(1−1/ lnn) , T (B2)

n < (1− ε)
lnn

− ln(1− r)

]
= o
(

1
n

)
,
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as desired. The proof of the lower bound is thus complete.

6 Proof of Theorem 3

Here again, we follow Chang’s proof rather closely and the main difference comes in
the last part, where all the families Gi having taken off eventually reach n.

Let us give the outline of the proof. As before, the stages that are very close
to Chang’s ones will not be detailed much. Recall that ρ = ρ(r) is the extinction
probability of a Galton-Watson process with offspring distribution Poisson(1+ r),
that is the unique solution in (0,1) to the equation x = e−(1+r)(1−x).

1. In about − lnn/ ln((1+ r)ρ) generations, each individual in generation 0 has ei-
ther at least (lnn)2 descendants or has no descendants.

2. After
( 1

ln(1+r) −
1

ln(1−r)

)
lnn generations each successful individual has at least

n− (lnn)2 descendants.
3. After another− lnn/ ln(1−r) generations at most, all successful individuals have

become CAs of the whole population.

The main distinction between Theorems 2 and 3 is that at the end of Stage G1 of The-
orem 2, we only require that at least one individual should have (lnn)2 descendants.
At the end of the first stage of Theorem 3, we require each individual in generation
0 to have become successful or extinct, which is why we expect this stage to take
longer than Stage G1 of Theorem 2. Similarly, we expect Stage 3 of Theorem 3 to
take longer than Stage B3 of Theorem 2 since all the families of successful individ-
uals have to reach n and not just one. Stage 2 of Theorem 3 is already detailed in
Stages G2 to B2 of Theorem 2 and so we do not analyze it here.

6.1 Stage 1: extinction or ‘explosion’ of the Gis

As a start, we show that by time − 1+ε/2
ln((1+r)ρ) lnn, all the families generated by an

individual alive at time 0 are either extinct or have reached size (lnn)2. That is,

Lemma 9 Define
τ

i
0,b := inf

{
t : Gi

t = 0 or Gi
t ≥ b

}
,

and let

An :=
n⋃

i=1

{
τ

i
0,(lnn)2 >−

1+ ε/2
ln((1+ r)ρ)

lnn
}
,

Then
lim
n→∞

P[An] = 0.

The proof is identical to that of Lemma 17 of Chang (1999) and is based on the fol-
lowing ideas. First, by Lemma 13(i), the probability that a given family size has not
reached 0 or (lnn)2 by the prescribed time is asymptotically the same as the cor-
responding probability for a Poisson(1+ r) Galton-Watson process Y . Now, since
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{τY
0,(lnn)2 > t} ⊂ {0 <Yt < (lnn)2}, Lemma 12(iii) guarantees that for any δ > 0 and

n sufficiently large,

lnP1

[
τ

Y
0,(lnn)2 >−

1+ ε/2
ln((1+ r)ρ)

lnn
]
≤
[

ln((1+ r)ρ)+δ
] 1+ ε/2
− ln((1+ r)ρ)

lnn,

and by choosing δ small enough, we can conclude that for any i ∈ {1, . . . ,n},

P1

[
τ

i
0,(lnn)2 >

(
− 1+ ε/2

ln((1+ r)ρ)

)
lnn
]
= o
(

1
n

)
.

Summing over i yields the result of Lemma 9.
Let us now show that at time − 1−ε/2

ln((1+r)ρ) lnn, there are still a lot of individuals

whose family sizes lie between 1 and (lnn)2− 1. This corresponds to the following
lemma.

Lemma 10 Let tn :=
⌊
− 1−ε/2

ln((1+r)ρ) lnn
⌋

and let

Nn := Card
({

i ∈ {1, . . . ,n} : Gi
tn ∈ {1, . . . ,(lnn)2−1}

})
There exists γ ∈ (0,1) such that

lim
n→∞

P[Nn > nγ ] = 1.

Proof We may proceed as in the proof of Lemmas 19 and 20 of Chang (1999). In-
stead, to shorten a bit the proof (although our arguments are in fact similar to Chang’s
ones), we observe that the proof of Lemma 13 works also when we compare the pair
of processes (G1,G2) to the pair (Y 1,Y 2) of independent Galton-Watson processes
with offspring distribution Poisson(1 + r). That is, the transition probabilities of
both processes starting at (1,1) (and with values in Z+×Z+) are equivalent as long
as we look at times sufficiently small for both Gi’s to remain negligible compared to
n (the reader not enthralled by the idea of checking the transition probabilities may
instead call on an easy modification of Theorem 2.2 of Möhle (1994)). This is the
case with the timescale tn and so we can write that (using also the exchangeability of
the family sizes)

E[Nn] = nP1
[
1≤ G1

tn < (lnn)2]= nP1
[
1≤ Y 1

tn < (lnn)2](1+o(1)),

and likewise

Var(Nn)∼ n(n−1)P(1,1)
[
1≤ Y 1

tn ,Y
2

tn < (lnn)2]+nP1
[
1≤ Y 1

tn < (lnn)2]
−n2P1

[
1≤ Y 1

tn < (lnn)2]2
= nP1

[
1≤ Y 1

tn < (lnn)2](1−P1
[
1≤ Y 1

tn < (lnn)2]),
since P(1,1)[1≤Y 1

tn ,Y
2

tn < (lnn)2] = P1[1≤Y 1
tn < (lnn)2]2 by independence of Y 1 and

Y 2.
Now, by Lemma 12(iii), for any δ > 0 and n large enough we have

P1
[
1≤ Y 1

tn < (lnn)2]≥ etn(ln((1+r)ρ)−δ ) = n−(1−ε/2)(1−δ/ ln((1+r)ρ)) > n−1+ 5ε
12
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where the last inequality holds if we choose δ small enough. Likewise,

P1
[
1≤ Y 1

tn < (lnn)2]< n−1+ 7ε
12 .

Hence,
E[Nn]≥ n

5ε
12 , Var(Nn)≤ n

7ε
12 ,

and by the Markov inequality

P
[
|Nn−E[Nn]|> n

ε
3

]
≤ n−

2ε
3 Var(Nn)≤ n−

ε
12 → 0.

Taking γ < 5ε

12 yields the desired result.

Since Nn tends to infinity with probability 1 and since the survival probability of a
Galton-Watson process with offspring distribution Poisson(1+ r) is strictly greater
than zero, with probability tending to 1 at least one (and in fact a lot) of the Nn
families will reach size (lnn)2 and grow nearly deterministically to n. This fact will
be used in the proof of the lower bound on Un, since it shows that these families have
to be taken into account in the time needed to reach a state where all individuals at
time 0 are either CAs or extinct.

6.2 Stage 3: extinction of the families of ‘non-descendants’

Here, we bound the remaining amount of time needed to see the number Bi of ‘non-
descendants’ of a given individual i go from at most (lnn)2 down to 0.

To this end, let us use Lemma 13(ii), the branching property of Galton-Watson
processes and then Lemma 11 to write that for any 0 < x≤ (lnn)2

Px

[
B becomes extinct before time

−(1+ ε/2) lnn
ln(1− r)

]
≈ Px

[
Y− becomes extinct before time

−(1+ ε/2) lnn
ln(1− r)

]
= P1

[
Y− becomes extinct before time

−(1+ ε/2) lnn
ln(1− r)

]x

≥
(

1−C(1− r)−(1+
ε
2 ) lnn/(ln(1−r))

)x
≥ 1− C′(lnn)2

n1+ε/2 ,

so that

Px

[
B does not become extinct before time

−(1+ ε/2) lnn
ln(1− r)

]
= o
(

1
n

)
(6.1)

uniformly in 0 < x ≤ (lnn)2. Here, as in Lemma 13, Y− denotes a Galton-Watson
process with offspring distribution Poisson(1− r). As in the previous section, this
rapid decay of the probability of slow extinction will guarantee that with probability
tending to one, all Bi’s starting below (lnn)2 will become extinct in less than −(1+
ε/2) lnn/ ln(1− r) steps.
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6.3 Proof of Theorem 3

Let us start by the lower bound. From Lemma 10, we know that with probability
tending to one, there are Nn ≥ nγ individuals at time 0 whose family sizes at time
tn :=

⌊ 1−ε/2
− ln((1+r)ρ) lnn

⌋
belong to {1, . . . ,(lnn)2− 1} (we call these families slow).

Furthermore, the probability that such a family will eventually have more than (lnn)2

descendants is bounded from below by the probability that a Poisson(1+ r) Galton-
Watson process survives (starting from Gi

tn ≥ 1), which itself is bounded from below
by 1− ρ . We shall see below that this suffices to guarantee that the number N̄n of
those families that eventually reach size (lnn)2 is positive with probability tending
to 1. A successful family then grows nearly deterministically to n− (lnn)2 in about
C(r) lnn generations and reaches n in at least O(ln lnn) generations with probability
tending to 1 (by comparison with a Poisson(1− r) Galton-Watson process). This
yields

P
[
Un < tn +C(r)(1− ε/2) lnn

]
≤ P[Nn < nγ ]+P

[
N̄n = 0, Nn ≥ nγ

]
+P
[
all the N̄n successful slow families reach size n− (lnn)2 in less than

C(r)(1− ε/2) lnn generations, E1, E2
]

+P[all the successful slow families become extinct before reaching n, E1, E2, E3],
(6.2)

where

E1 := {Nn ≥ nγ}, E2 := {N̄n ≥ 1},
E3 := {some of the N̄n successful slow families reach size n− (lnn)2 in more than

C(r)(1− ε/2) lnn generations}.

Now, the first term in the r.h.s. of Eq. (6.2) tends to 0 by Lemma 10.
For the second term, an easy adaptation of the proof of Theorem 2.3 of Möhle

(1994) shows that for any k ≥ 1,

limsup
n→∞

P
[
N̄n = 0, Nn ≥ nγ

]
≤ ρ

k.

Indeed, if we choose one individual among k of the Nn ≥ nγ sets of individuals at time
tn constituting the slow families, the subfamilies they subsequently produce converge
to independent Poisson(1+ r) Galton-Watson processes and the probability that all
of them become extinct (which bounds our probability of interest) is precisely ρk.
Since this is valid for any k ≥ 1, the second term in the r.h.s. of Eq. (6.2) tends to
zero.

The third term is bounded by

nP(lnn)2 [G grows to n− (lnn)2 in less than C(r)(1− ε/2) lnn generations] = o(1)

by the analysis of Stages G2 to B2 of Theorem 2. Finally, the last term is bounded by
the probability that a given family starting at size n− (lnn)2 becomes extinct before
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reaching n, which is itself bounded by the probability that the associated process
(Bt)t∈Z+ , starting at (lnn)2, grows to (lnn)5 before reaching 0. By Lemma 13, the
latter is equivalent to the probability of the same event for a Poisson(1− r) Galton-
Watson process (that we denote by Y below). Let us show that this event cannot occur
with probability tending to 1 as n→ ∞. First, by Lemma 11 we know that

P1[Y survives until time C ln lnn]≤ (1− r)C ln lnn = (lnn)−C| ln(1−r)|,

which combined with the independence of the subfamilies generated by individuals
of the same generation tells us that

P(lnn)2 [Y survives until time C ln lnn]≤ (lnn)2−C| ln(1−r)|→ 0

whenever C| ln(1− r)|> 2. Second, by Lemma 12(ii) (Yt/(1− r)t)t∈Z+ is a nonneg-
ative martingale. By Doob’s maximal inequality, we thus have that

P1

[
sup

t≤C ln lnn

Yt

(1− r)t > (lnn)3
]
≤ E1[Y0]+2E1[YC ln lnn/(1− r)C ln lnn]

(lnn)3 =
2

(lnn)3 .

Since (1− r)t ≤ 1 for any t, this entails

P1

[
sup

t≤C ln lnn
Yt > (lnn)3

]
≤ 2

(lnn)3 ,

and so again we obtain that (here ‘subfamilies’ refer to the families generated by each
of the (lnn)2 initial individuals)

P(lnn)2
[
at least one subfamily grows to (lnn)3 before time C ln lnn

]
→ 0

as n→∞. Summing up what we have proved, and using the fact that one of the (lnn)2

subfamilies has to reach size (lnn)3 for Y to reach (lnn)5, we can conclude that

P(lnn)2
[
Y ever reaches (lnn)5]→ 0

and the last term in Eq. (6.2) tends to 0 as well. This completes the proof of the lower
bound.

Now we turn to the upper bound. We shall use the facts that all family sizes have
reached either 0 or (lnn)2 by time ((1+ ε/2)/(− ln((1+ r)ρ))) lnn (cf. Lemma 9)
and that the successful families will need at most another (C(r)− 1/ ln(1− r))(1+
ε/2) lnn generations to contain the whole current population (cf. Stages G2 to B2 of
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Theorem 2 and Stage 3 above). That is, we have (in the notation of Lemma 9):

P
[
Un > (1+ ε)

(
−1

ln((1+ r)ρ)
+C(r)− 1

ln(1− r)

)
lnn
]

≤ P[An]+P[at least one successful family does not reach size n− (lnn)2 in
C(r)(1+ ε/2) lnn generations]

+P
[

at least one successful family having reached size n− (lnn)2

needs more than − 1+ ε/2
ln(1− r)

lnn generations to reach n
]

≤ P[An]+nP(lnn)2 [G does not reach n− (lnn)2 by time C(r)(1+ ε/2) lnn]

+nP(lnn)2

[
B does not become extinct before time

−(1+ ε/2)
ln(1− r)

lnn
]
→ 0

as n→ ∞ by Lemmas 9, 3, 5, 6 and 7 and Eq. (6.1). The upper bound is proved.

7 Proof of Corollary 1

Let us consider the random fraction Fn of individuals that are CAs of the whole pop-
ulation Un generations later. Recalling the notation I0,i for the individual labelled by
i at the generation that we call 0, Fn is formally defined as

Fn :=
1
n

n

∑
i=1

1{I0,i is a CA Un generations later}.

All we need to show is that E[Fn] tends to 1−ρ and Var(Fn) tends to 0 as n→ ∞.
Let us start with the expectation of Fn. Since in our model individuals are ex-

changeable, the probability that individual i at time 0 becomes a CA is the same for
all i ∈ {1, . . . ,n}, and so

E[Fn] =
1
n

n

∑
i=1

P[I0,i is a CA Un generations later] =P[I0,1 is a CA Un generations later].

Now, we can write

P[I0,1 becomes a CA]

= P[G1 reaches (lnn)2]P[G1 reaches n− (lnn)2 |G1 reaches (lnn)2]

×P[G1 reaches n |G1 reaches n− (lnn)2]. (7.1)

By Lemma 13(i), the first term in the r.h.s. of Eq. (7.1) is equivalent to the same
probability for a Poisson(1+ r) Galton-Watson process Y starting at 1. But for any
k ∈ Z+ and any n sufficiently large we have

P1[Y survives]≤ P1[Y reaches (lnn)2]≤ P1[Y reaches k],
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and so

P1[Y survives]≤ liminf
n→∞

P1[Y reaches (lnn)2]

≤ limsup
n→∞

P1[Y reaches (lnn)2]≤ P1[Y reaches k].

Since these inequalities hold for any k, taking the limit k→ ∞ and observing that the
events {Y reaches k} form a decreasing family whose intersection over k ∈Z+ equals
{Y survives}, we obtain that

lim
n→∞

P1[Y reaches (lnn)2] = P1[Y survives] = 1−ρ.

Next, by the analysis carried out in Stages G2 to B2 of Theorem 2, the second
term in the r.h.s. of Eq. (7.1) tends to 1 as n tends to infinity.

Finally, using the same reasoning as in the study of the third term in the r.h.s. of
Eq. (6.2), we can write

P[G1 does not reach n |G1 reaches n− (lnn)2]

≤ sup
x≤(lnn)2

Px[B1 survives during at least ln lnn generations]

+ sup
x≤(lnn)2

Px[B1 reaches (lnn)5 in less than ln lnn generations]→ 0

as n→ ∞ (here we have used again Lemma 13(ii) to compare the process B1 to a
Poisson(1− r) Galton-Watson process).

Combining these 3 steps, we obtain that

lim
n→∞

E[Fn] = lim
n→∞

P[I0,1 becomes a CA] = 1−ρ.

Let us now show that the variance of Fn tends to 0 as n→∞. Again by exchange-
ability of the individuals of the population, we can write that

Var(Fn) = E[F2
n ]−E[Fn]

2 =
n(n−1)

n2 P[I0,1 and I0,2 become CAs]

+
1
n
P[I0,1 becomes a CA]−E[Fn]

2.

The second term in the r.h.s. tends to 0 and the third term to −(1−ρ)2 as n→ ∞.
There remains to show that the first term tends to (1− ρ)2. But as we noticed at
the beginning of the proof of Lemma 10, in the first phase of exponential growth or
extinction, the family sizes of individuals I0,1 and I0,2 can be approximated by a pair
of independent Poisson(1+ r) Galton-Watson processes (starting at (1,1)) and so
the probability that they both survive this first period tends to (1− ρ)2 as n grows
to infinity. Then the same reasoning as above shows that conditionally on the two
families surviving the first stage, they both reach size n with probability tending to
one. Hence, we do obtain that

lim
n→∞

P[I0,1 and I0,2 become CAs] = (1−ρ)2,

and thus Var(Fn)→ 0 as n→∞. A simple use of the Markov inequality then ends the
proof of Corollary 1.
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8 Proof of Theorem 4

8.1 Approximate probabilities for large nnd any ror small samples

The n-specific probability of i ancestral sample lineages in the current generation be-
coming j ancestral lineages in the previous generation can be obtained from Eq. (4.4),
and is given by

n,rPi, j =



(1− r)i
( i

2

) 1
n +O

(
1
n2

)
if j = i−1,

(i
s

)
rs(1− r)i−s

(
1−
{(i+s

2

)
− s
}

1
n

)
+
( i

s+1

)
rs+1(1− r)i−s−1 (i−s−1)(i+3s+2)+4s(s+1)

2(n−1)

+O
(

1
n2

)
if j = i+ s,0≤ s≤ i,

O
(

1
n2

)
if j ≤ i−2,

0 otherwise.
(8.1)

Equation (8.1) is proved in Appendix B. Observe that the probability that at least
3 lineages have a common ancestor in the previous generation is of the order of
O(1/n2), and so is the probability that at least two pairs of lineages have a common
ancestor, these ancestors being different. Hence, the probability that the number of
lineages decreases by more than 1 due to some coalescence (independently of how
many new lineages are created by recombination at the same time) is of order O(n−2).
This explains the cases j ≤ i−2, but also tells us that the other formulae correspond
to at most one coalescence (and potentially many recombinations).

8.2 Hudson-Griffiths’ ARG as a special limiting case

Let us prove Theorem 4. Recall that we assume that r = ρ/n for some ρ > 0. Plugging
in this relation into Eq. (8.1), we obtain that:

1. When j = i−1,

n, ρ

n Pi,i−1 =
1
n

(
1− ρ

n

)i( i
2

)
+O

(
1
n2

)
=

1
n

(
i
2

)
+O

(
1
n2

)
.

2. When j = i,

n, ρ

n Pi,i =

(
1− ρ

n

)i(
1− 1

n

(
i
2

))
+O

(
1
n2

)
= 1− 1

n

{(
i
2

)
+ iρ

}
+O

(
1
n2

)
.
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3. When j = i+1,

n, ρ

n Pi,i+1 = i
ρ

n

(
1− ρ

n

)i−1(
1+O

(
1
n

))
+O

(
1
n2

)
=

iρ
n
+O

(
1
n2

)
.

4. When j ≥ i+2,
n, ρ

n Pi, j = O

(
1
n2

)
.

By Eq. (8.1), the other transition probabilities are either 0 or O(n−2). As a conse-
quence, seeing n, ρ

n P as an infinite matrix, we can write

n, ρ

n P = Id+
1
n

A+
1
n2 Bn, (8.2)

where Id denotes the identity matrix, A is defined by

Ai,i =−
(

i
2

)
− iρ, Ai,i−1 =

(
i
2

)
, Ai,i+1 = iρ,

and Ai, j = 0 otherwise, and for any i∗ ∈ Z+, all the coefficients of the submatrix
(Bn)1≤i, j≤i∗ are bounded by some C(i∗)> 0 uniformly in n.

To prove Theorem 4, we shall use an auxiliary process Zn,k living in the finite
state space {1, . . . ,k} (contrary to n, ρ

n X which can take arbitrarily large values). We
shall first prove that, as n tends to infinity, the process {Zn,k(bntc), t ≥ 0} converges
in distribution towards the jump process {Z∞,k(t), t ≥ 0} which jumps from z to z−1
at rate

(z
2

)
and from z to z+ 1 at rate zρ , until it goes above k + 1 and falls into a

cemetery state ∆ in which it remains stuck forever. We shall then show that for any
initial condition x ∈N of n, ρ

n X , any T > 0 and any ε > 0, there exists k∗ = k∗(x,T,ε)
such that

liminf
n→∞

Px
[
{n, ρ

n X(bntc), 0≤ t ≤ T}= {Zn,k∗(bntc), 0≤ t ≤ T}
]
≥ 1− ε. (8.3)

In particular, Zn,k∗ does not reach the cemetery state ∆ before time nT since n, ρ

n X
does not. But on the event that ∆ is not reached, Zk∗ and Hudson-Griffiths’ ARG
have the same law, and so Theorem 4 will be proved.

Let us proceed with the first part of our plan. Let us fix k ∈ N and for any n ∈ N,
let us define the process Zn,k as jumping like n, ρ

n X as long as it remains below k, and
then jumping into some cemetery state ∆ (where it remains stuck forever) whenever
it is supposed to go over k+1. More precisely, Zn,k lives in {1, . . . ,k,∆} and if Π n,k

denotes its (k+1)× (k+1) transition matrix, we have

Π
n,k
i, j = n, ρ

n Pi, j if 1≤ i, j ≤ k, Π
n,k
i,∆ =

∞

∑
j=k+1

n, ρ

n Pi, j if 1≤ i≤ k, Π
n,k
∆ ,∆ = 1.

As in Eq. (8.2), we have

Π
n,k = Id+

1
n

A[k]+
1
n2 Bn,k,
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where A[k]
i, j = Ai, j for 1 ≤ i, j ≤ k, A[k]

i,∆ = ∑
∞
j=k+1 Ai, j, A[k]

∆ ,∆ = 0, and all the coeffi-
cients of Bn,k are bounded by some C(k)> 0 uniformly in n. Hence, Möhle’s Lemma
(Möhle, 1998) applies to Π n,k and enables us to conclude that for any t ≥ 0,

lim
N→∞

(
Π

n,k)bntc
= etA[k]

.

In words, the semigroup associated to the process {Zn,k(bntc), t ≥ 0} converges to-
wards that of the process {Z∞,k(t), t ≥ 0} with infinitesimal generator A[k]. That is:

– If z ∈ {2, . . . ,k− 1}, Z∞,k jumps from z to z+ 1 at rate ρz and from z to z− 1 at
rate

(z
2

)
;

– Z∞,k jumps from 1 to 2 at rate ρ and cannot jump to 0;
– Z∞,k jumps from k to ∆ at rate ρk and from k to k−1 at rate

(k
2

)
;

– Z∞,k is absorbed at ∆ .

Furthermore, since {1, . . . ,k,∆} is a finite space, this convergence is uniform (i.e.,(
Π n,k

)bntc f converges uniformly towards etA[k]
f for any continuous function f on

{1, . . . ,k,∆}), and so Theorem 4.2.12 in the book by Ethier and Kurtz (1986) tells
us that {Zn,k(bntc), t ≥ 0} converges in distribution towards Z∞,k in the space of all
càdlàg processes with values in {1, . . . ,k,∆} given by D{1,...,k,∆}[0,∞).

As concerns the second step, let us fix an initial value x∈N, a time horizon T > 0
and ε ∈ (0,1). Recall that Z = {Z(t), t ≥ 0} denotes Hudson-Griffiths’ ARG (with
values in N). Since Z grows at a linear rate and decreases at a quadratic rate, there
exists k∗ = k∗(x,T,ε) such that

Px

[
sup

t∈[0,T ]
Z(t)≥ k∗

]
≤ ε

2
. (8.4)

Observing that we can construct the processes Z∞,k∗ and Z in such a way that they
coincide until the first time at which both leave {1, . . . ,k∗}, we can write that Eq. (8.4)
holds for Z∞,k∗ too. Now, sup[0,T ] is a continuous function on D{1,...,k∗,∆}[0,∞) and so
the convergence in distribution of Zn,k∗(bn·c) towards Z∞,k∗ gives us the existence of
n∗ such that for every n≥ n∗,

Px

[
sup

t∈[0,T ]
Zn,k∗(bntc)≥ k∗

]
≤ ε.

Since we can construct Zn,k∗ and n, ρ

n X in such a way that they coincide until the first
time at which both leave {1, . . . ,k∗}, the above inequality yields Eq. (8.3) and the
proof of Theorem 4 is complete.
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A Galton-Watson processes with Poissonian offspring distribution

In this section, we collect a few facts about Galton-Watson processes. These facts are used in the proofs
of Theorems 2 and 3. Recall that a Galton-Watson process with offspring distribution µ (a probability
distribution on Z+) counts the number of individuals alive in each generation in a population evolving
as follows: each individual in generation k ≥ 0 gives birth to a random number of descendants with law
µ , independently of each other; generation k + 1 is then made of all these offspring. If the population
becomes extinct at some time, its remains extinct for all later generations (and by extension we say that
the Galton-Watson process becomes extinct - stuck at 0 - at that time).

The following lemmas summarize Lemmas 4 and 16 of Chang (1999) (with minor modifications,
since Chang’s results are for a Galton-Watson process with offspring distribution Poisson(2)) and some
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well-known general results from Chapter 1 of the book by Athreya and Ney (2004). Therefore, we do not
give all of their proofs here. We write m for the expectation of µ , σ2 for its variance, and Pi (and Ei) for
the law under which the population starts with i individuals.

Lemma 11 Let (Yt)t∈Z+ be a Galton-Watson process with m< 1. Let τ0 := inf{t : Yt = 0} be the extinction
time of (Yt)t∈Z+ . Then for any k ∈ Z+,

P1[τ0 > k]< mk.

Furthermore, if σ2 < ∞ we have for large k

P1[τ0 > k]≥ 1−m
σ2 mk+1.

When µ is the law Poisson(λ ) for some λ > 0, we have m = λ = σ2 < ∞.

Lemma 12 Let (Yt)t∈Z+ be a Galton-Watson process with offspring distribution Poisson(λ ) for a given
λ > 0. Let ψ be the probability generating function of X, where X is a random variable with Poisson(λ )
law. That is, for any z ∈ [0,1], ψ(z) = E[zX ] = e−λ (1−z). Let also ρ be the smallest solution in [0,1] to
ψ(x) = x. Then

(i) The probability P1[τ0 < ∞] that (Yt)t∈Z+ becomes extinct in finite time, starting with 1 individual, is
equal to ρ > 0.

(ii) The Markov chain (Yt/λ t)t∈Z+ is a martingale. As t tends to infinity, it converges a.s. to a random
variable M satisfying {M > 0}= {Y survives forever}.

(iii) Let (bt)t≥0 be a sequence of positive integers such that lnbt = o(t) as t→ ∞. Then

lim
t→∞

lnP1[1≤ Yt ≤ bt ]

t
= ln(λρ).

The first two points in Lemma 12 hold in fact for any Galton-Watson process (with λ replaced by its
mean offspring distribution in (ii)). The last point says in essence that, up to polynomial prefactors, the
probability that Yt is still positive but grows less than exponentially in t decays like e−| ln(λρ)|t as t → ∞.
Observe that the product λρ is always less than one (except in the critical case λ = 1 in which we shall not
be interested), since when λ < 1 we have ρ = 1, and when λ > 1, λρ = ψ ′(ρ)< 1 (ψ is strictly convex,
ψ(0)> 0 and ρ < 1 is the smallest positive value at which ψ(x) = x, the largest being x = 1).

Finally, let us give a comparison result between a single family size (Gt)t∈Z+ (resp., the size of the
family of non-descendants (Bt)t∈Z+ ) and a Galton-Watson process with offspring distribution Poisson(1+
r) (resp., Poisson(1− r)).

Lemma 13 Let (Y+
t )t∈Z+ (resp., (Y−t )t∈Z+ ) be a Galton-Watson process with offspring distribution given

by Poisson(1+ r) (resp., Poisson(1− r)). For any b > 0, let τY
b := inf{t : Yt ≥ b}, τY

0,b := inf{t : Yt ≥
b or Yt = 0} and τY

0 := inf{t : Yt = 0} (where Y =Y+ or Y−). Define the same quantities for the processes
G and B. Here again, Pi denotes the probability measure under which the process under consideration
starts at i.

(i) If k and b grow with n in such a way that kb2 = o(n), then as n→ ∞

P1
[
τ

G
b > k

]
= P1

[
τ

Y+

b > k
]
(1+o(1)) and P1

[
τ

G
0,b > k

]
= P1

[
τ

Y+

0,b > k
]
(1+o(1)).

(ii) If for some α ∈ (0,1/4) and γ ∈ (2α,1/2) we have i = O(nα ) and k = o(n1−2γ ), then as n→ ∞

Pi
[
τ

B
0 > k

]
= Pi

[
τ

Y−
0 > k

]
(1+o(1)).

Remark 5 Note that i = O(nα ) means that i is bounded by a constant times nα , which allows to take i
constant in n or growing more slowly than nα .

In words, despite the dependency between the different family sizes in our original model, the early
development of a single family (Gt)t∈Z+ is very close to that of a Poisson(1+ r) Galton-Watson process.
Likewise, as soon as there remains much less than n individuals in B, the extinction of this subpopulation
occurs in the same way as in a Poisson(1− r) Galton-Watson process.
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Proof The proof of (i) is similar to that of Lemma 3 of Chang (1999), and so we omit it here. The proof
of (ii) follows the same lines but is a bit more complex. Our main aim is to show that as long as the
processes do not grow too much and we do not look at too many generations, their transition probabilities
are equivalent. Then, since Y− starting below nα will not grow beyond nγ before going extinct with very
high probability, neither will B and extinction will occur roughly at the same time (in distribution) for both.

Let us thus consider x,y ≤ nγ . Recall that conditionally on Bt = x, Bt+1 ∼ Bin(n,(1− r) x
n + r x2

n2 ).
Since the sum of x independent Poisson(1− r) random variables has the law Poisson((1− r)x), we
have for any t ∈ Z+

P[Bt+1 = y |Bt = x]
P[Y−t+1 = y |Y−t = x]

=

(n
y

)(
(1− r) x

n + r x2

n2

)y(1− (1− r) x
n − r x2

n2

)n−y

e−(1−r)x(1− r)yxy/y!

=
n!

(n− y)!ny

(
1+

r
1− r

x
n

)y

exp
{
(1− r)x+(n− y) ln

(
1− (1− r)

x
n
− r

x2

n2

)}
But x,y≤ nγ � n, and so a first order Taylor expansion gives us that(

1+
r

1− r
x
n

)y

= e
r

1−r
xy
n +O

(
yx2

n2

)
≤ e

2r
1−r n2γ−1

and

exp
{
(1− r)x+(n− y) ln

(
1− (1− r)

x
n
− r

x2

n2

)}
≤ eC

(
x2+xy

n

)
+O
(

yx2

n2

)
≤ eC′n2γ−1

.

Together with the fact that n!/((n− y)!ny)≤ 1, we obtain that

P[Bt+1 = y |Bt = x]
P[Y−t+1 = y |Y−t = x]

≤ eCrn2γ−1
(A.1)

for a constant Cr > 0 independent of x and y (recall that γ < 1/2).
The same analysis, separating the cases y = 0,1 and y ≥ 2 and using the fact that for 1 < y ≤ nγ we

have
n!

(n− y)!ny =
y−1

∏
j=0

(
1− j

n

)
≥ e−

y(y−1)
n ≥ e−1/n,

shows that
P[Bt+1 = y |Bt = x]
P[Y−t+1 = y |Y−t = x]

≥ eC′rn−1
(A.2)

for a constant C′r independent of x and y. Putting together Eq. (A.1) and Eq. (A.2), we obtain that

P[Bt+1 = y |Bt = x] = P[Y−t+1 = y |Y−t = x]
(
1+o(n2γ−1)

)
,

where the remainder is uniform in x∈{1, . . . ,nγ} and y∈{0, . . . ,nγ}. As a consequence, for any x0, . . . ,xk−1 ∈
{1, . . . ,nγ} and xk ∈ {0, . . . ,nγ}, we have

P[B0 = x0, . . . ,Bk = xk] = P[Y−0 = x0, . . . ,Y−k = xk]
(
1+o(n2γ−1)

)k

= P[Y−0 = x0, . . . ,Y−k = xk]eo(kn2γ−1).

Summing over all paths corresponding to the event considered and using the fact that kn2γ−1 = o(1) as
n→ ∞, we can write that

Pi
[
τ

B
0,nγ > k

]
= Pi

[
τ

Y−
0,nγ > k

](
1+o(1)

)
and

Pi
[
τ

B
0,nγ ≤ k ; Bτ0,nγ ≥ nγ

]
= Pi

[
τ

Y−
0,nγ ≤ k ; Y−τ0,nγ

≥ nγ
](

1+o(1)
)
,

the latter being the probabilities that the process leaves {1, . . . ,nγ −1} before time k and by going over nγ .
Now,

Pi
[
τ

B
0 > k

]
= Pi

[
τ

B
0,nγ > k

]
+Pi

[
τ

B
0,nγ ≤ k ; τ

B
0 > k

]
. (A.3)
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From the above, the first term in the r.h.s. is equal to the corresponding term for Y− up to a vanishing error
term. As concerns the second quantity in the r.h.s., it is bounded by

Pi
[
τ

B
0,nγ ≤ k ; Bτ0,nγ ≥ nγ

]
= Pi

[
τ

Y−
0,nγ ≤ k ; Y−τ0,nγ

≥ nγ
](

1+o(1)
)

To finish the proof, let us show that the probability that Y−, starting below nα , reaches nγ before becoming
extinct tends to 0 as n→ ∞. Together with Eq. (A.3), this will give us the desired result since Eq. (A.3)
holds also with B replaced by Y−.

Since Y− cannot grow beyond nγ unless one of the i ≤Cnα families emanating from an initial indi-
vidual reaches nγ−α/C, we have

Pi
[
τ

Y−
0,nγ ≤ k ; Y−τ0,nγ

≥ nγ
]
≤ iP1

[
Y− ever reaches nγ−α/C

]
≤ nα

∞

∑
j=1

P1
[
Y−j ≥ nγ−α/C

]
.

But E1[Y−j ] = (1− r) j , and so the Markov inequality applied to each term in the sum gives us

Pi
[
τ

Y−
0,nγ ≤ k ; Y−τ0,nγ

≥ nγ
]
≤ nα

∞

∑
j=0

Cnα−γ (1− r) j =
C
r

n2α−γ .

As γ > 2α , this quantity goes to zero as n tends to infinity.

B Proof of Eq. (8.1)

Here we derive the approximation of Eq. (8.1) in detail.
Note first that we have the following approximation:

n[ j]
n j :=

n(n−1) · · ·(n− ( j−1))
n j =

j−1

∏
k=1

(
1− k

n

)
= 1−

(
j
2

)
1
n
+O

(
1
n2

)
.

We will first consider some special cases. Fix I,J,K as before such that |I| = i, |K| = k, |J| = j. For
M ⊆ I, let A(M) be the set of parents of vertices in M.

Lemma 14
|B(i+ s|i,s)|= (i+ s)!

2s . (B.1)

Proof We have |I|= i, |K|= s, |J|= i+ s. In this case, no two vertices in I have a common parent, hence

|B(i+ s|i,s)|=
(

i+ s
2s

)(
2s

2,2, . . . ,2︸ ︷︷ ︸
s times

)
(i− s)! =

(i+ s)!
2s .

The first factor is the number of ways to select A(K). The second factor is the number of ways to assign
parents to vertices in K, each vertex being assigned 2 distinct parents. The last factor is the number of
ways to assign parents to vertices in I\K, each vertex being assigned a distinct parent.

Lemma 15
|B(i+ s|i,s+1)|= (i+ s)!((i− s−1)(i+3s+2)+4s(s+1))

2s+2 (B.2)

Proof We have 3 cases.

Case 1: |A(K)|= 2s+2, |A(I\K)|= i− s−2, and A(I\K) = J\A(K). The contribution to |B(i+ s|i,s+1)|
in this case is (

i+ s
2s+2

)(
2s+2

2,2, . . . ,2︸ ︷︷ ︸
(s+1) times

)(
i− s−1

2

)
(i− s−2)! =

(i+ s)!(i− s−1)(i− s−2)
2s+2 (B.3)
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The first factor is the number of ways to select A(K). The second factor is the number of ways to assign
parents to vertices in K, each vertex being assigned 2 distinct parents. The last two factors together give
the number of ways to assign parents to vertices in I\K; which is the number of onto maps from A(I\K) to
J\A(K).

Case 2: |A(K)|= 2s+2, |A(I\K)|= i−s−1, and |A(K)∩A(I\K)|= 1. The contribution to |B(i+s|i,s+1)|
in this case is (

i+ s
2s+2

)(
2s+2

2,2, . . . ,2︸ ︷︷ ︸
(s+1) times

)
(2s+2)(i− s−1)! =

(i+ s)!(i− s−1)(2s+2)
2s+1 (B.4)

The first two factors are as in Case 1. The third factor is the number of ways to select the (only) vertex in
A(K)∩A(I\K). The last factor is the number of ways to assign distinct parents to vertices in I\K.

Case 3: |A(K)|= 2s+1 and A(I\K) = J\A(K). We have |A(I\K)|= i−s−1. Also, there are s−1 vertices
in K with two distinct parents each, 2 vertices in K with one common parent, and i− s−1 vertices in I\K
with distinct parents. The contribution to |B(i+ s|i,s+1)| in this case is(

i+ s
2s−2,3, i− s−1

)(
s+1

2

)
6
(

2s−2
2,2, . . . ,2,︸ ︷︷ ︸

s−1 times

)
(i− s−1)! =

(i+ s)!s(s+1)
2s (B.5)

The first factor gives the number of partitions of J in 3 parts as described above. The second factor is
the number of ways to select the two vertices in K that have a common parent; and the third factor is the
number of ways to assign 2 parents to each of them, with one parent in common. The forth factor is the
number of ways to assign parents to the remaining s−1 vertices in K, each vertex being assigned 2 distinct
parents. The last factor is the number of ways to assign distinct parents to vertices in I\K.

Now |B(i+ s, i,s+1)| is obtained by adding the contributions in Eqs. (B.3),(B.4) and (B.5).

Let us now return to the Proof of Eq. (8.1) and consider the case j ≥ i. We must have k ≥ j− i, i.e.,
more recombinants than additional lineages. To find an approximation of n,rPi, j , we use the expression
obtained in Theorem 1 (more precisely, we use Eq. (4.4)). We first evaluate the order of magnitude (in n)
of each term appearing in the sum over k ∈ { j− i, . . . , i}. We have

(
n
j

)
1

ni−k
(n

2

)k =
2kn!

j!(n− j)!ni(n−1)k =
2k

j!ni− j(n−1)k

(
1−
(

j
2

)
1
n
+O

(
1
n2

))
. (B.6)

Hence, the term corresponding to k will be of the order of O(n−2) whenever k ≥ j− i+2. From now on,
we thus consider the terms k = j− i and k = j− i+1 only. Let us write j = i+ s, with 0≤ s≤ i. Suppose
first that k = s. Using again the notation |B( j|i,k)| for the number of bipartite graphs defined in Sect. 4
(where we replaced the sets I, J, K by their cardinalities since only these quantities matter), we can write(

n
i+ s

)
1

ni−s
(n

2

)s

(
i
s

)
rs(1− r)i−s|B(i+ s|i,s)|

=

(
1−
(

i+ s
2

)
1
n
+O

(
1
n2

))
2s

(i+ s)!(1−1/n)s

(
i
s

)
rs(1− r)i−s (i+ s)!

2s

=

(
i
s

)
rs(1− r)i−s

(
1−
(

i+ s
2

)
1
n
+O

(
1
n2

))(
1+

s
n
+O

(
1
n2

))
=

(
i
s

)
rs(1− r)i−s

(
1−
{(

i+ s
2

)
− s
}

1
n
+O

(
1
n2

))
,

where the first equality uses Eq. (B.6) and Eq. (B.1).
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Let us now suppose that k = s+1. This time, we have(
n

i+ s

)
1

ni−s−1
(n

2

)s+1

(
i

s+1

)
rs+1(1− r)i−s−1|B(i+ s|i,s+1)|

=
2s+1

(i+ s)!(n−1)(1−1/n)s

(
1−
(

i+ s
2

)
1
n
+O

(
1
n2

))(
i

s+1

)
rs+1(1− r)i−s−1

×
(i+ s)!

(
(i− s−1)(i+3s+2)+4s(s+1)

)
2s+2

=
1

2(n−1)

(
i

s+1

)
rs+1(1− r)i−s−1((i− s−1)(i+3s+2)+4s(s+1)

)
+O

(
1
n2

)
,

where we have used Eq. (B.2). Combining the above, we obtain the desired approximation when j ≥ i.
Next, we consider the case where j = i− s, with s > 0. Using again Eq. (B.6), we see that the terms

appearing in the sum over k in the expression of n,rPi, j will be O(1/n2) whenever s+ k ≥ 2, which will
be the case whenever k ≥ 1 or k = 0 and s ≥ 2. We thus concentrate on the case k = 0 and s = 1 only,
corresponding to the scenario where a single pair of lineages coalesces and no recombinations occur. Since
there are

( i
2

)
possible choices for the pair of lineages that coalesces and then (i−1)! possible allocations

of parents, we have |B(i−1|i,0)|= (i−1)!
( i

2

)
and thus(

n
i−1

)
1
ni (1− r)i|B(i−1|i,0)|= 1

(i−1)!n

(
1−O

(
1
n

))
(1− r)i(i−1)!

(
i
2

)
=

1
n

(
i
2

)
(1− r)i

(
1−O

(
1
n

))
.

This entails the approximation given on the first line of Eq. (8.1).
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