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Modèles structurés de transmission

Cette thèse d'habilitation aborde deux thèmes. Le premier et principal est celui de la mo-
délisation et de la compréhension de l'évolution de la diversité génétique d'une population,
en particulier lorsque cette population a une structure spatiale continue. Dans le chapitre 2,
nous présentons les résultats obtenus la plupart du temps dans le cadre très général du pro-
cessus Λ-Fleming-Viot spatial. Ce processus à valeurs mesures est un outil très �exible pour
étudier l'évolution d'une population vivant dans un espace continu de dimension d, d = 2 étant
évidemment la dimension la plus pertinente pour les applications biologiques. Le chapitre 3
présente quelques résultats sur le pédigré d'une population avec et sans structure. Plus précisé-
ment, nous décrivons les relations généalogiques au sein d'un échantillon d'individus diploïdes
du point de vue de leur parenté � physique �, ces parents étant ensuite ou non des ancêtres
génétiques de l'échantillon. Dans le chapitre 4, nous discutons une nouvelle approche pour
la reconstruction de paramètres démographiques a�ectant la distribution des arbres généalo-
giques, et donc de la diversité génétique, de la même manière quel que soit l'endroit du génome
considéré. Cette approche est fondée sur l'idée simple de simuler les arbres généalogiques à leur
résolution optimale, qui dépend du type de données disponibles pour l'inférence.

Le second thème concerne la modélisation d'un certain type de partage de ressources dans
des réseaux de communication. Ceci correspond au chapitre 5, dans lequel nous analysons le
comportement en temps long et la stabilité d'un système de �les d'attente régulées à travers
un graphe d'incompatibilités de service. Par ailleurs, a�n d'empêcher une �le particulièrement
grande de monopoliser la capacité de service, nous supposons que chaque �le est servie à un
taux proportionnel au logarithme de sa taille. Nous décrivons la limite �uide du système lorsque
la taille de l'une des �les tend vers l'in�ni, en détaillant le rôle de di�érentes échelles de temps
intermédiaires dans le comportement asymptotique obtenu. Nous commençons par le cas d'un
réseau d'incompatibilités correspondant au graphe complet (i.e., une seule �le peut être servie
à la fois), puis nous considérons le réseau en étoile (les �les périphériques n'interférant qu'avec
la �le centrale).
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Structured models of transmission

This habilitation thesis revolves around two topics. The �rst and major one is the modelling
and understanding of the evolution of the genetic diversity in a population, in particular when
this population has a continuous spatial structure. In Chapter 2, we review the di�erent results
obtained most of the time in the quite general framework of the spatial Λ-Fleming-Viot process.
This measure-valued process is a very �exible tool to study the evolution of a population living
in some continuous d-dimensional space, d = 2 being of course the most relevant dimension
for biological applications. Chapter 3 presents some results on the pedigree of a population
with and without structure. More precisely, we describe the genealogical relationships within
a sample of diploid individuals at the level of their physical ancestry, these progenitors being
then, or not being, genetic ancestors to the sample. In Chapter 4, we discuss a new approach
for the reconstruction of demographic parameters a�ecting the distribution of the genealogical
trees, and thus of the genetic diversities, across the whole genome. It is based on the simple
idea of simulating the genealogical trees at their optimal resolution, which depends on the kind
of data available for inference.

The second topic concerns the modelling of a certain type of resource sharing in communi-
cation networks. This corresponds to Chapter 5, in which we analyse the long-term behaviour
and stability of a system of queues regulated through a network of service incompatibilities.
Furthermore, in order to prevent a very busy node to monopolise the service capacity, we as-
sume that each queue is served at a rate which is proportional to the logarithm of its current
size. We describe the �uid limit of the system as the size of one of the queues tends to in�nity,
disentangling the roles of di�erent intermediate timescales in the asymptotic behaviour obtai-
ned. This is done �rst in the case where the network of incompatibilities is the complete graph
(i.e., only one queue can be served at a time), and then for the star network (the peripheral
queues interfering only with the central queue).
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Chapitre 1

Diversité génétique au sein d'une

population structurée en espace

Modéliser l'évolution d'une population au cours des nombreuses générations ayant mené à
son état actuel est une tâche très complexe, car de multiples facteurs peuvent avoir in�uencé,
parfois de manière transitoire, la variabilité génétique observée dans un échantillon d'individus.
En e�et, la population peut avoir subi des �uctuations démographiques telles que des goulots
d'étranglement ou des périodes d'expansion, des épisodes de balayages sélectifs, elle peut être
(ou avoir été) structurée spatialement, ou soumise à des �uctuations de son environnement, ...
L'un des principaux rôles des modèles mathématiques est d'étudier les e�ets de chacun de ces
facteurs, ou d'une combinaison d'entre eux, pour mettre en évidence la signature qu'ils laisse-
raient dans la diversité génétique actuelle s'ils avaient contribué à l'évolution de la population
à un niveau su�sant.

Bien entendu, de nombreux modèles existent déjà et le lecteur intéressé pourra consulter
l'ouvrage [37] pour une présentation claire des plus classiques d'entre eux. La plupart de ces
modèles n'ont pas pour but de décrire la biologie des organismes dans le détail, mais sont
basés sur des approximations parfois très grossières de la manière dont les gènes sont transmis
de parents à enfants. Cependant, leur force réside dans leur capacité à rendre de compte
de l'évolution de la population au cours des dizaines, centaines, voire milliers de générations
pendant lesquelles la diversité génétique actuelle de la population s'est construite.

1.1 Le modèle de Wright-Fisher et le coalescent de Kingman

Le modèle d'évolution génétique le plus utilisé est le modèle de Wright-Fisher [47, 118]. Il
suppose que les individus sont haploïdes (i.e., ils n'ont qu'une seule copie de chaque chromo-
some), la population n'est structurée d'aucune manière (elle est panmictique) et l'évolution se
produit par générations discrètes au cours desquelles la taille de la population reste constante
égale à un certain (grand) nombre N . Si nous supposons en outre que le gène qui nous inté-
resse est neutre, au sens où aucune de ses versions possibles, ou allèles, ne confère d'avantage
reproductif aux individus qui la portent, alors le mécanisme de reproduction s'exprime ainsi :
pour former la génération t + 1, chacun des N individus vivant à ce moment � choisit � un
parent uniformément au hasard parmi la génération précédente, indépendamment les uns des
autres, et chaque descendant hérite de l'allèle de son parent. La �gure 1.1 montre un exemple
dans lequel N = 7.

Si le gène a seulement deux allèles, notés A et a, il su�t alors de suivre la proportion pN (t)
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14 CHAPITRE 1. POPULATIONS STRUCTURÉES EN ESPACE

Figure 1.1 � Le modèle de Wright-Fisher avec N = 7. Les individus peuvent être de deux
types génétiques (orange et vert ici) qui sont transmis de parents à descendants (symbolisé par
les lignes noires).

de l'allèle A à la génération t pour décrire complètement l'évolution de la diversité génétique
de la population. Dans le cas neutre présenté ici, par construction nous avons que pour tout
t ∈ N, conditionnellement à pN (t),

NpN (t+ 1) ∼ Binomiale
(
N, pN (t)

)
. (1.1)

Le comportement en temps long de la chaîne de Markov (pN (t))t∈N s'obtient aisément : avec
probabilité un, l'un des allèles se �xe dans (i.e., envahit) la population et la probabilité que
l'allèle chanceux soit A est égale à sa proportion initiale pN (0). Cependant, obtenir des infor-
mations plus précises sur le chemin menant à la �xation, par exemple la loi du temps nécessaire
pour que pN atteigne 0 ou 1, devient un problème combinatoire de plus en plus di�cile au
fur et à mesure que la taille de la population augmente. Puisque nous nous intéressons à de
grandes populations, l'astuce mathématique usuelle consiste à faire tendre N vers l'in�ni et à
voir si nous pouvons obtenir un objet limite qui soit une bonne approximation de l'évolution
d'une population de taille très grande mais �nie.

En utilisant (1.1), nous voyons immédiatement que pour tout t ∈ N, nous avons

E
[
pN (t+ 1) | pN (t)

]
= pN (t) et Var

(
pN (t+ 1) | pN (t)

)
=

1

N
pN (t)

(
1− pN (t)

)
.

Par conséquent, si nous faisons tendre N vers l'in�ni et si nous faisons l'hypothèse que la
proportion initiale pN (0) d'individus portant l'allèle A converge vers une constante p ∈ [0, 1],
alors le processus pN converge en loi vers le processus constant égal à p. En d'autres termes,
les fréquences de chaque allèle ne varient plus dans la population limite de taille in�nie. En
ré�échissant un peu à ce qu'il se passe ici, nous voyons que la variance de la �uctuation de pN

sur une génération est d'ordre 1/N . Par analogie avec la convergence d'une marche aléatoire
changée d'échelle vers le mouvement brownien, nous nous attendons en fait à avoir à attendre
un nombre de générations d'ordre N avant d'observer des variations macroscopiques de pN .
Ceci motive l'introduction du processus p̃N dé�ni comme suit :

p̃Nt := pN (bNtc), t ∈ R+, (1.2)
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où bxc est la partie entière de x ∈ R, de sorte qu'une unité de temps pour p̃N correspond à N
générations. Si nous faisons tendre N vers l'in�ni à nouveau, cette fois la suite de processus
(p̃N )N≥1 converge en loi (dans l'espace de Skorokhod D[0,1][0,∞) des trajectoires càdlàg à
valeurs dans [0, 1]) vers la di�usion de Wright-Fisher, unique solution de l'équation di�érentielle
stochastique

dpt =
√
pt(1− pt) dBt, p0 = p, (1.3)

où (Bt)t≥0 est un mouvement brownien standard. Une preuve de cette convergence se trouve
dans le chapitre 3.2 de [37]. Les �uctuations aléatoires décrites par (1.3) correspondent au
phénomène appelé dérive génétique dans la littérature biologiste. Comme dans le cas d'une
population �nie, elles sont causées par le remplacement aléatoire d'individus d'allèles a par des
descendants portant l'allèle A et inversement, ce qui explique que la variance in�nitésimale soit
proportionnelle au produit des fréquences des individus A et a. Grâce aux résultats généraux
du calcul stochastique, nous pouvons alors montrer à nouveau que l'un des allèles se �xe dans
la population en temps �ni p.s., cet allèle étant A avec probabilité p0, et de nombreuses autres
propriétés sont maintenant accessibles (temps moyen de �xation, lois conditionnelles pour les
trajectoires, ...).

En plus de caractériser le comportement à long terme d'une population in�nie évoluant
selon le modèle de Wright-Fisher, les résultats présentés dans le paragraphe précédent mettent
en avant le fait que l'évolution peut n'avoir un réel impact que sur une échelle de temps très
longue, de l'ordre de la taille de la population dans ce modèle. Nous verrons que trouver les
échelles temporelles et spatiales sur lesquelles nous pourrions observer un comportement non
trivial constituera une étape clé dans l'analyse des modèles étudiés dans les prochains chapitres
(y compris le chapitre 5). Ceci pourrait ressembler à un jeu un peu arti�ciel. Cependant, la
véritable question que cette approche pose est la suivante : en supposant que nous observons
une certaine forme de diversité génétique, quels sont les ordres de grandeur des di�érentes
forces évolutionnaires qui pourraient l'expliquer ?

Une approche particulièrement fructueuse pour l'étude du modèle de Wright-Fisher consiste
à retourner la �èche du temps et à essayer de comprendre la forme de la généalogie de quelques
individus échantillonnés au hasard dans la population actuelle. En e�et, plus deux individus
doivent remonter loin dans le passé pour trouver un premier ancêtre commun, plus il y a de
temps pour que des mutations ou des recombinaisons se produisent, laissant potentiellement
une trace détectable lorsque nous comparons leurs génomes. Sous les hypothèses du modèle
de Wright-Fisher neutre avec une taille de population N , l'ancêtre commun le plus récent de
deux individus échantillonnés uniformément au hasard dans la génération actuelle se trouve
TN2 générations dans le passé, où TN2 suit une loi géométrique de paramètre 1/N . Par consé-
quent, comme dans l'analyse des fréquences d'allèles les relations ancestrales entre les individus
évoluent réellement sur l'échelle de temps (Nt, t ≥ 0) et en e�ectuant le même changement
d'échelle que précédemment, nous obtenons que le temps de coalescence des lignées ancestrales
de deux individus sur la nouvelle échelle, T̃N2 = TN2 /N , satisfait

T̃N2
(d)−→ T2 lorsque N →∞, (1.4)

où T2 suit une loi exponentielle de paramètre 1.
Considérons à présent un échantillon de taille n ≥ 2, pris à nouveau uniformément au hasard

dans la génération actuelle. Pour simpli�er les notations, nous appellerons cette génération 0.
Puisque nous voulons décrire qui partage un ancêtre avec qui t générations dans le passé,
une manière naturelle de représenter l'état des relations ancestrales au sein de l'échantillon
à la génération −t est d'utiliser une partition πN (t) de [n] := {1, . . . , n} telle que i et j
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MRCA

1 2 3 4 5

T2

T3

T4

T5

{{1, 2}, {3}, {4}, {5}}

{{1}, {2}, {3}, {4}, {5}}

{{1, 2}, {3}, {4, 5}}

{{1, 2, 3}, {4, 5}}

{{1, 2, 3, 4, 5}}

Figure 1.2 � Représentations en arbre et en partitions de la généalogie d'un échantillon de
taille 5. Le temps généalogique va du bas vers le haut. Les carrés noirs représentent les individus
échantillonnés dans la population actuelle. Pendant le laps de temps Ti, la partition ancestrale
a i blocs, correspondant aux i arêtes (verticales) dans cette couche de l'arbre. Le Plus Récent
Ancêtre Commun de l'échantillon est atteint au bout de T5 + . . .+ T2 unités de temps.

appartiennent au même bloc de πN (t) si et seulement si le ième et jème individu de l'échantillon
ont le même ancêtre t générations dans le passé. La �gure 1.2 montre un exemple. De cette
manière, pour toutN nous obtenons une chaîne de Markov (πN (t))t∈N à valeurs dans l'ensemble
Pn de toutes les partitions de [n], partant de la partition en singletons {{1}, . . . , {n}} et dont
l'unique état absorbant est la partition triviale {{1, . . . , n}}. Celle-ci correspond à l'état dans
lequel tous les individus de l'échantillon partagent le même ancêtre et le nombre aléatoire
TNMRCA de générations à remonter avant que cet événement ne se produise est appelé temps du
plus récent ancêtre commun (Most Recent Common Ancestor en anglais). Si nous e�ectuons le
même changement d'échelle de temps, il n'est pas di�cile de montrer que

π̃N :=
(
πN
(
bNtc

))
t∈R+

(d)−→ (πt)t∈R+ lorsque N →∞, (1.5)

où (πt)t≥0 est le coalescent de Kingman. L'objet limite, formellement introduit dans l'ar-
ticle [67], est un processus de sauts markovien à valeurs dans Pn qui peut être décrit de
la manière suivante : son état initial est la partition de [n] en singletons, puis chaque paire
de blocs tente de fusionner à taux 1 jusqu'à ce que l'état �nal {{1, . . . , n}} soit atteint. Par
conséquent, lorsqu'il y a k blocs dans la partition ancestrale, le temps à attendre avant que
la prochaine coalescence ne se produise suit une loi exponentielle de paramètre

(
k
2

)
et cet évé-

nement résulte en la fusion d'une paire de blocs choisie uniformément au hasard parmi les(
k
2

)
paires possibles. De nombreuses propriétés du processus limite sont connues, cf. [34] et

[110] par exemple. Une propriété particulièrement intéressante est la relation de dualité entre
la di�usion de Wright-Fisher (1.3) et le coalescent de Kingman. En e�et, si nous notons |π| le
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nombre de blocs dans la partition π, alors pour tout n ∈ N, p0 ∈ [0, 1] et t ∈ R+,

Ep0
[
pnt
]

= En
[
p
|πt|
0

]
, (1.6)

où par abus de notation nous notons Pn la loi de (πt)t≥0 partant de {{1}, . . . , {n}}. Nous
renvoyons au chapitre 6.2 de [37] pour une preuve de (1.6). Cette relation dit essentiellement
que si nous échantillonnons n individus indépendamment et uniformément au hasard dans
la population en vie au temps t, la probabilité qu'ils portent tous l'allèle A est égale à la
probabilité que si nous retraçons la généalogie de l'échantillon pendant t unités de temps dans
le passé (en remontant donc jusqu'au temps 0), les |πt| ancêtres à ce moment portent l'allèle
A. La généralisation de la relation (1.6) au cas où la population a une structure spatiale sera
un ingrédient primordial de la plupart des résultats présentés dans les chapitres 2.4 à 2.6.

Le coalescent de Kingman est à présent un modèle central en génétique des populations.
L'une des raisons de son succès est qu'il est très robuste aux déviations des hypothèses d'ha-
ploïdie, panmixie, neutralité ou de taille de population constante, à condition de remplacer la
� vraie � taille N de la population d'intérêt par une taille de population e�ective (ou e�cace)
Ne. En d'autres termes, par analogie avec (1.5), Ne est (en général) dé�nie par la propriété
que (Net, t ≥ 0) est l'échelle de temps sur laquelle deux lignées ancestrales fusionnent en un
ancêtre commun à taux 1. En utilisant la relation entre le coalescent de Kingman et le modèle
de Wright-Fisher, nous pouvons également l'interpréter comme le nombre e�ectif de parents
potentiels à chaque génération. En pratique, la taille de population e�ective peut être bien
plus faible que sa taille démographique actuelle. Par exemple, on estime que Ne est de l'ordre
de 104 chez l'homme [106, 109] et de l'ordre de 106 chez Drosophila melanogaster [73], ces
deux estimations étant bien plus petites que le nombre actuel d'individus dans chaque espèce.
Ceci peut re�éter l'occurrence de balayages sélectifs récurrents au cours de l'histoire de la
population, réduisant le nombre de parents potentiels en favorisant ceux portant les allèles
alors favorables. Cela pourrait également avoir été causé par une expansion démographique
passée. Au contraire, une structure géographique (ou même une structure de population de
manière générale) tend à faire augmenter la taille de population e�ective puisque deux lignées
ancestrales doivent d'abord se rapprocher su�samment avant d'avoir une chance de descendre
du même individu et par là même de fusionner. Le résultat d'une combinaison de ces fac-
teurs d'e�ets opposés n'est donc pas évident à prédire. La taille de population e�ective, ou la
densité de population e�ective dans le cadre d'une population structurée en espace, sera une
quantité essentielle dans les résultats exposés dans les chapitres 2.5 et 3. Dans le chapitre 4,
nous supposerons que Ne �uctue au cours du temps (lorsque nous remontons dans le passé) et
nous décrirons une approche permettant de reconstruire sa trajectoire à partir de la variabilité
génétique observée dans un échantillon de séquences ADN.

1.2 Ajout d'une structure spatiale

La plupart des populations naturelles sont en fait disséminées sur une région géographique
donnée et les individus sont a priori plus susceptibles de disperser leurs descendants dans un
voisinage autour d'eux que dans l'intégralité du périmètre de l'espèce. Pour tenir compte de
ce type de structure de population, la grande majorité des modèles existants fait l'hypothèse
que la population est partagée en des sous-populations discrètes reliées entre elles par des
migrations. Dans le modèle d'îles de Wright [119], chaque communauté est connectée à toutes
les autres. Autrement dit, le graphe sous-jacent décrivant les migrations possibles est le graphe
complet. Dans le modèle stepping stone de Kimura [64], le graphe sous-jacent est généralement
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Z ou Z2 et le mécanisme de migration est encodé par un noyau (mij)i,j décrivant le �ot de
gènes entre les sous-populations i et j. Dans ces deux cadres de travail, l'une des nombreuses
variantes du modèle de Wright-Fisher décrit les reproductions internes à chaque communauté
(supposée avoir une taille constante au cours du temps) et des descendants migrants sont
échangés entre les sous-populations connectées.

Diverses déclinaisons de ces modèles et les généalogies qui leur correspondent ont été
étudiées, par exemple dans les articles fondateurs [65, 76, 114] ou les études plus récentes
[4, 25, 28, 54, 59, 75, 79, 108, 113, 122]. Dans le modèle d'îles, les individus sont à distance 0
ou 1 en fonction de s'ils appartiennent ou non à la même communauté. Par conséquent, l'im-
pact de la structure spatiale de la population sur sa di�érentiation génétique peut être décrite
par la statistique FST de Wright [120] :

FST =
f0 − f̄
1− f̄

, (1.7)

où f0 (resp., f̄) est la probabilité que deux individus échantillonnés uniformément au hasard
dans la même île (resp., dans la population totale) sont identiques par descendance. Ici, l'iden-
tité par descendance est la propriété que deux individus portent le même allèle hérité d'un
ancêtre commun. Dans un modèle où les lignées ancestrales mutent indépendamment les unes
des autres à un certain taux µ > 0 et si nous notons T le temps de coalescence de deux lignées,
nous pouvons réécrire FST ainsi :

FST =
E0[e−2µT ]− Epop[e−2µT ]

1− Epop[e−2µT ]
, (1.8)

où sous P0 (resp., Ppop) les deux individus sont échantillonnés dans la même île (resp., dans
la population totale). Lorsque µ est su�samment petit pour que le produit µT soit également
petit dans un sens approprié, nous pouvons utiliser l'approximation

FST ≈
Epop[T ]− E0[T ]

Epop[T ]
,

qui a l'avantage de ne pas nécessiter une estimation précise de µ. Les espérances apparaissant
dans ce ratio peuvent ensuite être calculées en résolvant un système de deux équations linéaires
reliant E0[T ] et Epop[T ]. Nous ne le précisons pas ici car il dépend des détails du modèle
considéré, mais nous renvoyons au chapitre 4.4 de [34] pour un exemple. Ceci ouvre la voie
à l'inférence du petit nombre de paramètres caractérisant l'évolution de la population, et ce
d'une manière relativement robuste au manque de précision dans l'estimation des taux de
mutation. Cependant, bien qu'en e�et les taux de mutation pour des gènes non-recombinants
(car plutôt petits en nombre de paires de bases) soient généralement faibles, nous verrons que
dans des modèles généraux de populations structurées l'espérance du temps de coalescence
de deux lignées peut être très grande (voire in�nie), cf. la remarque 2.6 de la section 2.5 en
particulier.

A notre connaissance, FST est la statistique principale utilisée pour mesurer l'e�et d'une
structure spatiale sur la diversité génétique d'une population à un locus (i.e., une région d'in-
térêt sur le génome) sans recombinaison. Cependant, pour des populations disséminées sur un
large territoire, nous nous attendons plutôt à ce que le temps de l'ancêtre commun le plus récent
de deux individus échantillonnés à distance x soit une fonction croissante de x, de sorte que les
corrélations entre les fréquences alléliques locales décroissent avec la distance (par un argument
similaire à l'heuristique expliquant (1.6)). Ce phénomène, appelé isolation par la distance [119],
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n'est pas du tout pris en compte dans la dé�nition (1.7) de FST et une étude approfondie de
modèles plus complexes (tels que le modèle stepping stone) est donc nécessaire pour décrire
l'empreinte laissée par une telle structure spatiale. Dans la section 2.5, nous introduirons une
généralisation de FST qui en fait une fonction de la distance entre deux points d'échantillon-
nage et nous montrerons que cette nouvelle statistique peut être utilisée pour développer des
méthodes d'inférence. Dans la perspective de reconstruire certains paramètres (éventuellement
composés) caractérisant l'évolution de la population, il est également important de ré�échir
aux plans d'échantillonnage et leurs liens avec les modèles mathématiques utilisés pour pré-
dire la diversité observée dans l'échantillon. En particulier, lorsque la population vit dans un
espace continu, il peut être di�cile de la diviser arti�ciellement en des communautés discrètes.
Dans ce cas, un modèle intégrant directement une structure spatiale continue est a priori plus
souhaitable. C'est cette direction que nous poursuivrons dans le reste de ce chapitre.

Une généralisation naturelle à un espace continu du modèle de Wright-Fisher décrit dans
le chapitre 1.1 serait d'ajouter un terme modélisant la di�usion spatiale des gènes. Si nous
supposons à nouveau qu'il y a seulement deux allèles et que nous suivons la fréquence pt(x) de
l'un d'entre eux à chaque site x et temps t, ceci nous donne l'équation suivante :

dpt =
σ2

2
∆pt dt+

√
1

Ne
pt(1− pt)W (dt,dx), (1.9)

où σ2 est le coe�cient de di�usion, Ne une � densité locale de population � (que nous pou-
vons voir comme l'inverse du taux auquel deux lignées ancestrales situées au même endroit
fusionnent) et W est un bruit blanc espace-temps. En une dimension, cette approche est va-
lable : l'équation (1.9) admet une unique solution à condition initiale �xée, qui peut être obtenue
comme la limite d'une suite de modèles stepping stone normalisés sur Z. Cette convergence
montre également que la généalogie duale est un système de mouvements browniens indé-
pendants qui fusionnent deux à deux à un taux proportionnel au temps local qu'ils passent
ensemble (i.e., au temps local en 0 de leur distance). Malheureusement, en dimension deux
l'équation (1.9) n'admet pas de solution et la suite de modèles stepping stone normalisés sur
Z2 converge vers la solution de l'équation de la chaleur, duale d'un système de mouvements
browniens indépendants ne fusionnant jamais (notons que contrairement au cas de la dimension
un, en deux dimensions deux mouvements browniens indépendants ne se rencontrent jamais).
Nous renvoyons au chapitre 2.6.1 pour la preuve d'un résultat similaire. Par conséquent, cette
approche n'est pas la bonne pour modéliser le phénomène de dérive génétique dans un espace
continu de dimension deux.

Dans les années 1940, Wright et Malécot ont tenté de modéliser des populations vivant
dans un continuum spatial [76, 119]. Leur modèle suppose que les individus sont disséminés
dans R2 suivant un processus ponctuel de Poisson d'intensité constante λ. Le mécanisme de
reproduction se veut proche de celui du modèle de Wright-Fisher : la population évolue en
générations discrètes et le nombre de descendants de chaque individu suit une loi de Poisson
de paramètre un. Les positions spatiales des descendants sont tirées indépendamment suivant
une loi gaussienne centrée en la position de leur parent. En outre, le modèle incorpore un
mécanisme de mutation : avec probabilité µ > 0 un descendant, au lieu d'hériter de l'allèle de
son parent, porte un nouvel allèle encore jamais vu dans la population. Wright et Malécot ont
alors calculé la probabilité d'identité par descendance de deux individus échantillonnés à une
séparation x ∈ R2. Notons F (x) cette quantité. En utilisant une récurrence, Malécot a obtenu
une approximation pour F (x) faisant intervenir la fonction de Bessel modi�ée du deuxième
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type d'ordre 0, K0 :

F (x) ≈ 1

N + ln(`/κ)
K0

(
‖x‖
`

)
, ‖x‖ > κ, (1.10)

où κ > 0 est une échelle locale sur laquelle nous supposons que F (x) est constante (pour passer
outre le problème de l'explosion deK0 en 0), σ2 est la variance de la distribution gaussienne qui
détermine la position spatiale des descendants, ` = σ/

√
2µ peut être vu comme une longueur

caractéristique et N est la taille de voisinage de Wright qui, en essence, mesure le nombre
de � parents potentiels � dans le voisinage de chaque descendant. L'approximation (1.10) est
appelée formule de Wright-Malécot.

Malheureusement, la récurrence backwards-in-time conduisant à (1.10) est fondée sur l'hy-
pothèse qu'à chaque génération, les positions des individus peuvent être décrites par un proces-
sus ponctuel de Poisson d'intensité λ sur R2. Ceci n'est pas cohérent avec l'évolution forwards-
in-time, qui conduit la densité locale d'individus à exploser dans certaines régions tandis que
d'autres régions se vident. Considérer un espace géographique compact au lieu de R2 ne résout
pas ce problème, car alors la population de mécanisme de reproduction critique s'éteint en
temps �ni. C'est ce que Felsenstein a nommé the pain in the torus [46]. Cependant, comme
discuté dans la section 2.3 de l'article de revue [BEV13b], la formule de Wright-Malécot avec
des paramètres appropriés décrit étonnamment bien la décroissance avec la distance de la
probabilité d'identité par descendance dans un modèle stepping-stone avec, par exemple, des
migrations aux plus proches voisins. Rappelons que dans ce modèle les tailles des communautés
sont supposées constantes, de sorte que l'approche récursive conduisant à (1.10) fonctionne.
De manière évidente, dans notre modèle d'évolution en espace continu nous avons besoin d'un
mécanisme garantissant la régulation locale de la densité de la population.

Dans cette perspective, plusieurs approches ont été tentées et nous renvoyons par exemple
aux articles [6, 9, 116, 117] et aux références qui y sont données. Le modèle présenté dans la
prochaine partie les uni�e dans un cadre de travail �exible et qui se prête aisément à l'analyse.

1.3 Le processus Λ-Fleming-Viot spatial

Le modèle décrit dans ce sous-chapitre a été introduit dans les notes [38] puis formalisé
dans l'article [BEV10]. La principale di�érence qui le sépare des modèles d'évolution précé-
dents est que les reproductions ne sont pas basées sur des horloges individuelles, mais sur une
suite aléatoire d'événements a�ectant chacun une zone donnée de l'espace. Au cours d'un tel
événement, des parents sont choisis de manière aléatoire et leurs descendants remplacent une
fraction de la population présente dans cette région. De cette manière, la densité de la popula-
tion reste constante mais les fréquences locales d'allèles sont mises à jour en tenant compte du
type génétique des parents et de la fraction des individus remplacés. Nous donnons ci-dessous
un exemple particulier de mécanisme de reproduction, mais celui-ci peut être généralisé de
nombreuses manières tant que nous conservons l'ingrédient essentiel d'un processus ponctuel
de Poisson d'événements de reproduction spéci�ant la zone géographique dans laquelle la di-
versité génétique locale va être modi�ée. C'est ce que nous ferons par exemple lorsque nous
ajouterons de la recombinaison (cf. chapitre 2.4.2), des mutations (cf. chapitre 2.4.4), de la
sélection (cf. chapitre 2.6.1), ou même des inhomogénéités spatiales (cf. [49]).

Supposons que la population est uniformément répartie sur Rd (d = 2 étant évidemment
la dimension la plus pertinente pour les populations biologiques) et que l'ensemble K de tous
les allèles possibles est compact. Nous considèrerons principalement K = {0, 1} comme dans
le modèle de Wright-Fisher, ou K = [0, 1] pour permettre à un nombre arbitrairement grand
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d'allèles d'être présents dans la population entière. À un temps t ≥ 0 donné, l'état de la
population est représenté par une mesure Mt(dx,dk) sur Rd ×K dont la première marginale
est la mesure de Lebesgue sur Rd. NotonsMλ l'ensemble de toutes ces mesures. Puisque toute
Mt ∈Mλ peut être décomposée en

Mt(dx,dk) = dx ρt(x, dk), (1.11)

où ρt : Rd →M1(K) est une fonction Lebesgue-mesurable à valeurs dans l'espace des mesures
de probabilité sur K (voir le chapitre 2.4.4 pour un énoncé plus précis), cette représentation
re�ète bien la répartition uniforme des individus dans l'espace et ρt(x,dk) peut être vu comme
la distribution de l'allèle d'un individu qui serait échantillonné au site x au temps t. En fait,
l'espace d'étatsMλ est relativement naturel lorsque nous pensons à la population représentée
ici comme la limite d'une population d'individus discrets dont les positions spatiales forment un
processus ponctuel de Poisson d'intensité λdx, lorsque λ tend vers l'in�ni. Cf. la remarque 1.2
ci-dessous.

Jusqu'à présent nous avons seulement spéci�é la manière dont nous encodons la diversité
génétique d'une population structurée. Nous avons maintenant besoin d'un mécanisme pour la
faire évoluer dans le temps. Pour ce faire, �xons une mesure σ-�nie µ sur (0,∞) et un ensemble
{νr, r > 0} de mesures de probabilité sur [0, 1]. Soit Π un processus ponctuel de Poisson sur
R+ × Rd × (0,∞)× [0, 1] d'intensité dt⊗ dz ⊗ µ(dr)νr(du). Autrement dit,

Π =
{

(ti, zi, ri, ui), i ∈ N
}

est un ensemble dénombrable aléatoire d'événements de reproduction décrits par leur temps
d'occurrence ti, leur centre zi, leur rayon ri et leur impact ui. Plus précisément, pour tout
i ∈ N, au temps ti un événement de reproduction se produit dans la boule fermée B(zi, ri). Un
parent est choisi uniformément au hasard dans B(zi, ri) et ses descendants, portant le même
allèle, remplacent une fraction ui de la population locale à chaque site de la boule (la fraction
1 − ui restante n'étant pas a�ectée). En des termes plus mathématiques, ceci signi�e qu'un
allèle parental κi est choisi suivant la distribution

1

Vol(B(zi, ri))

∫
B(zi,ri)

Mti−(y,dk)dy

des allèles dans B(zi, ri) juste avant l'événement et à chaque site y ∈ B(zi, ri), nous avons

ρti(y,dk) = (1− ui)ρti−(y,dk) + uiδκi(dk).

La �gure 1.3 montre un exemple avec K = {0, 1} et d = 1 ; seules les fréquences locales
d'individus de type 1 sont représentées.

La forme de la mesure d'intensité de Π impose que les événements de reproduction se pro-
duisent de manière uniforme en temps et en espace, tandis que les coordonnées r et u ont des
distributions plus générales et a priori corrélées. Ceci nous permet par exemple de modéliser
des événements de reproduction � réguliers � a�ectant de manière modérée des régions de pe-
tites tailles, en même temps que de rares catastrophes telles que des événements climatiques
extrêmes, a�ectant des zones bien plus étendues et pendant lesquelles une fraction signi�cative
de la population s'éteint et est rapidement remplacée par les descendants d'un petit nombre
d'individus survivants. Finalement, remarquons que dans le modèle formulé ainsi les indivi-
dus ne migrent pas au cours de leur vie (seules leurs propagules se dispersent), mais cette
généralisation n'est pas di�cile grâce à la construction décrite dans le chapitre 2.4.4.
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space
x y

Figure 1.3 � Le processus Λ-Fleming-Viot spatial en une dimension. Les individus portent
l'un des deux allèles 0 et 1 et la fréquence de l'allèle 1 à chaque site est représentée. La ligne
noire correspond à l'état initial, dans lequel tous les individus à gauche portent l'allèle 1 et
tous les individus à droite portent l'allèle 0. Un premier événement se produit dans la zone
délimitée par les lignes verticales rouges, un parent d'allèle 0 est choisi au site y et une fraction
u1 = 1/2 de la population locale en tout point de la boule est remplacée par ses descendants,
portant l'allèle 0 (ligne rouge). Quelques temps après, un événement se produit dans la zone
délimitée par les lignes bleues, un parent est choisi dans la fraction des individus au site x
qui portent à présent l'allèle 0 et une fraction u2 = 3/4 de la population dans la boule est
remplacée par ses descendants (ligne bleue).

L'existence et l'unicité du processus (ρt)t≥0 correspondant à cette évolution ont été dé-
montrées en premier lieu dans l'article [BEV10] en utilisant une technique de l'article [45]
basée sur la caractérisation de son semi-groupe via une famille bien choisie de fonctions tests.
Dans [VW15], ce processus est reformulé comme un processus aléatoire à valeurs mesures,
dont l'existence et l'unicité sont prouvées au moyen d'arguments plus constructifs (voir le
chapitre 2.4.4). Ces deux approches utilisent la relation de dualité entre l'évolution forwards-
in-time des fréquences alléliques (Mt)t≥0 et la généalogie d'un échantillon aléatoire d'individus,
retracée backwards-in-time. Avant de donner un énoncé précis de cette relation, imaginons ce
à quoi la généalogie de quelques individus devrait ressembler dans ce modèle.

Pour commencer, supposons qu'un individu est échantillonné au site x à un temps que nous
appelons le présent. Pour simpli�er les notations, nous notons ce temps 0 (et nous supposons
que la coordonnée temporelle du processus ponctuel de Poisson Π d'événements de reproduction
est à valeurs dans R au lieu de R+, de sorte que nous puissions revenir aussi loin dans le passé
qu'il est nécessaire). Notre but est de retracer la position ξt de l'individu au temps−t dont notre
individu échantillonné descend. Pour qu'un individu donné soit né au cours d'un événement
de reproduction, il doit se trouver dans la région a�ectée et appartenir à la fraction de la
population remplacée. Dans ce cas, puisque le parent est choisi uniformément au hasard dans
la boule où a lieu l'événement, sa position est distribuée uniformément dans la boule et cette
position est précisément celle que prend à ce moment la lignée ancestrale que nous suivons.
Puisque le processus ponctuel {(−ti, zi, ri, ui), i ∈ N} dont on a inversé la �èche du temps est
également un processus ponctuel de Poisson d'intensité dt⊗ dz ⊗ µ(dr)νr(du), nous pouvons
écrire que le taux auquel la lignée ancestrale de notre individu saute en une nouvelle position
lorsqu'elle se trouve en x ∈ Rd est donné par

J0 :=

∫
Rd

∫ ∞
0

∫ 1

0
1{x∈B(z,r)}u νr(du)µ(dr)dz =

∫ ∞
0

∫ 1

0
uVr νr(du)µ(dr), (1.12)

où Vr est le volume d'une boule de rayon r en dimension d. En supposant que J0 est une quantité
�nie (ce que nous ferons dorénavant, bien que des processus de Lévy plus généraux puissent
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être obtenus sous des conditions plus faibles) et en notant Lr(y) le volume de l'intersection
B(0, r)∩B(y, r), le processus (ξt)t≥0 est alors un processus de Poisson composé bien dé�ni qui
saute de x à x+ y avec une intensité donnée par

J (y) :=

∫
Rd

∫ ∞
0

∫ 1

0
1{x∈B(z,r)}u

1{x+y∈B(z,r)}

Vr
νr(du)µ(dr)dz

=

∫ ∞
0

∫ 1

0

uLr(y)

Vr
νr(du)µ(dr). (1.13)

En e�et, pour qu'un tel événement se produise, la position actuelle x de la lignée et la position
x + y de son parent doivent toutes les deux se trouver dans la région B(z, r) de l'événement
de reproduction et la position du parent est tirée en x+ y avec une densité 1/Vr.

Échantillonnons à présent un autre individu au site x′ au temps 0. Appelons (ξ′t)t≥0 le
processus retraçant la position de l'ancêtre de ce second individu t unités de temps dans
le passé. A priori (ξt)t≥0 et (ξ′t)t≥0 ne sont pas indépendants, puisqu'ils utilisent le même
processus ponctuel de Poisson d'événements pour sauter. Si tous deux se trouvent dans la
région d'un événement de reproduction donné, disons d'impact u, alors

� avec probabilité (1− u)2 aucun des deux n'appartient à la population locale remplacée
et aucune lignée ne bouge à cet instant,

� avec probabilité u(1−u) l'ancêtre du premier individu appartient à la fraction remplacée
mais pas l'ancêtre du second individu, auquel cas ξ saute en la position du parent et ξ′

reste là où il est,
� avec probabilité u(1− u) ξ′ saute mais pas ξ,
� avec probabilité u2 les deux ancêtres appartiennent à la descendance de l'unique parent

choisi durant l'événement. Dans ce cas, les deux lignées ancestrales fusionnent en une
seule, dont la position est distribuée uniformément dans la région de l'événement.

Nous pouvons déduire de cette observation que le taux auquel deux lignées ξ et ξ′ fusionnent
lorsqu'elles sont à une séparation y ∈ Rd s'écrit

C(y) =

∫ ∞
0

∫ 1

0
u2Lr(y) νr(du)µ(dr). (1.14)

Notons que cette quantité est bornée par le taux de saut J0 d'une seule lignée. Puisque J0 est
supposé être �ni, nous pouvons en déduire que le couple (ξ, ξ′) forme un système de processus
de Poisson composés corrélés qui fusionnent en une seule lignée à un taux instantané donné
par (1.14).

La même analyse peut être e�ectuée pour un échantillon de n'importe quelle taille �nie
pris au temps 0 à un ensemble donné de positions. Pour décrire plus formellement le système
de processus de sauts coalescents que nous obtenons, nous représentons à nouveau les relations
ancestrales au sein de l'échantillon au temps −t par une partition de {1, . . . , n}. Cependant,
contrairement au cas d'une population sans structure décrit dans le chapitre 1.1, ici il est
nécessaire de garder en mémoire la position spatiale de chaque ancêtre. Par conséquent, nous
utilisons des partitions marquées de {1, . . . , n} de la forme

A =
{

(b1, x1), . . . , (bk, xk)
}
,

où les blocs {b1, . . . , bk} forment une partition de [n] décrivant quels individus de l'échantillon
ont un ancêtre en commun au temps d'intérêt et xj ∈ Rd est la position de l'ancêtre à ce
moment des individus dont les étiquettes appartiennent à bj . Appelons Psn l'ensemble des
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partitions marquées de [n]. Le processus ancestral d'un échantillon de taille n est donc un
processus de sauts markovien à valeurs dans Psn, noté

(At)t≥0 =
({(

B1
t , ξ

1
t

)
, . . . ,

(
BNt
t , ξNtt

)})
t≥0

,

où Nt est le nombre de blocs (ou ancêtres distincts) t unités de temps dans le passé. Pour
éviter des notations trop lourdes nous ne donnons pas une description complète de ses taux
de saut, mais le lecteur intéressé trouvera tous les ingrédients nécessaires dans le paragraphe
précédent.

Nous pouvons à présent dévoiler la relation de dualité entre le processus Λ-Fleming-Viot
spatial (Mt)t≥0 (ou (ρt)t≥0, en se rappelant (1.11)) et le processus ancestral (At)t≥0. Notons
C(E) l'ensemble des fonctions continues f : E → R, Cc(E) le sous-ensemble de ces fonctions
qui sont à support compact, ℘n(x) la partition marquée {({1}, x1), . . . , ({n}, xn)} constituée de
singletons donc les marques sont données par le vecteur x = (x1, . . . , xn) ∈ (Rd)n et rappelons
la notationMλ pour l'espace des mesures sur Rd×K dont la première marginale est la mesure
de Lebesgue sur Rd. Nous avons alors le résultat suivant, qui correspond au théorème 4.2 de
[BEV10] ou au corollaire 2.4 de [VW15].

Theorem 1.1. Supposons que la quantité J0 dé�nie dans (1.12) soit �nie. Alors il existe un
unique processus de Hunt à valeurs dansMλ, noté (Mt)t≥0, tel que pour tous m ∈Mλ, t ≥ 0,
n ∈ N, F ∈ Cc((Rd)n) et g1, . . . , gn ∈ C(K),

Em
[ ∫

(Rd×K)n
F (x1, . . . , xn)

( n∏
i=1

gi(κi)

)
M⊗nt (dx1, dκ1, . . . ,dxn,dκn)

]
(1.15)

=

∫
(Rd)n

F (x1, . . . , xn)E℘n(x)

[∫
KNt

Nt∏
j=1

( ∏
i∈Bjt

gi(κj)

)
ρ
(
ξ1
t , dκ1

)
· · · ρ

(
ξNtt , dκNt

)]
dx1 · · · dxn,

où nous avons utilisé la décomposition m(dx,dκ) = dxρ(x,dκ).

La relation (1.15) aura l'air moins intimidante lorsque nous travaillerons avec deux allèles
seulement (cf. le chapitre 2.4.3). Ce qu'elle nous dit est que pour obtenir la distribution des
allèles de n individus échantillonnés à des positions distinctes x1, . . . , xn au temps t, nous
pouvons retracer qui partage un ancêtre commun avec qui t unités de temps dans le passé (re-
montant ainsi jusqu'au temps 0) et échantillonner leur allèle commun suivant la distribution
allélique au temps 0 à la position de l'ancêtre. Cette interprétation est à la base de la représen-
tation particulaire décrite dans le chapitre 2.4.4. Ce chapitre présente également les propriétés
générales de l'espace d'états Mλ, certaines propriétés trajectorielles du processus (Mt)t≥0 et
un résultat sur la (non) descente de l'in�ni du processus généalogique (At)t≥0 partant d'un
nombre in�ni d'individus.

Concluons cette partie par quelques remarques.

Remark 1.1. (Condition plus faible pour l'existence et l'unicité du processus).
Comme mentionné précédemment, l'hypothèse que J0 doive être �ni est plus forte que nécessaire
pour le résultat d'existence et d'unicité du théorème 1.1. La condition la plus générale que l'on
puisse requérir pour utiliser la technique de l'article [45] est que le mouvement (ξt)t≥0 d'une
seule lignée ancestrale doive être un processus de Lévy, ce qui est vrai sous la condition plus
faible ∫

Rd
(1 ∧ |y|2)J (y)dy <∞,
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où J (y) est dé�ni par (1.13). Cependant, lorsque nous voulons écrire un générateur in�nitési-
mal ou un problème de martingales pour identi�er le processus (Mt)t≥0 obtenu par dualité et le
processus potentiel que nous avons dé�ni en termes d'un processus ponctuel de Poisson d'événe-
ments de reproduction, des problèmes techniques (dans l'échange entre dérivation et espérance)
apparaissent. Puisqu'il n'y a pas grand intérêt biologique à considérer le cas où les lignées
accumulent une in�nité de sauts microscopiques, nous supposerons toujours que J0 <∞.

Remark 1.2. (Modèle basé sur des individus). Le processus Λ-Fleming-Viot spatial est
en fait la limite en grande densité d'un modèle basé sur des individus et évoluant grâce au même
processus ponctuel de Poisson Π d'événements de reproduction. Dans ce modèle, les individus
sont disséminés dans Rd suivant un processus ponctuel de Poisson d'intensité λ > 0. Lorsque
la région a�ectée par un événement de reproduction ne contient personne, cet événement est
simplement annulé. Sinon, un parent est choisi uniformément au hasard parmi les individus
présents dans cette zone, puis chacun de ces individus meurt avec probabilité u (l'impact de
l'événement) indépendamment les uns des autres et �nalement la région est repeuplée par un
processus ponctuel de Poisson de descendants d'intensité uλ, tous portant l'allèle de leur parent.
Dans l'article [12], les auteurs montrent que cette population aléatoire (sans allèle, comptant
simplement le nombre d'individus dans chaque région de l'espace) survit avec probabilité 1 dès
que λ est su�samment grand et ils décrivent alors son comportement ergodique. En revanche,
si λ est trop petit, la population s'éteint en temps �ni p.s. Bien qu'il semble plus naturel de
décrire une population d'individus discrets, ce modèle est très délicat à étudier tandis que sa
limite en grande densité λ→∞ conduit à un modèle bien plus simple à analyser (en particulier,
aucun événement n'est annulé puisqu'il y a toujours quelqu'un dans la région touchée). Une
preuve de cette convergence peut être trouvée dans [42].

Remark 1.3. (Modèle à base de noyaux gaussiens). Une version du modèle à indi-
vidus discrets et de sa limite en grande densité, utilisant des noyaux gaussiens (pouvant ef-
fectivement apparaître comme plus réalistes) au lieu de boules pour le choix du parent et les
naissances/morts d'individus, a été étudié dans [8]. En particulier, les auteurs montrent que
dans le modèle limite, lorsque les variances des noyaux gaussiens sont les mêmes pour tous les
événements la probabilité d'identité par descendance de deux individus échantillonnés à une sé-
paration x ∈ R2 est bien approchée par la formule de Wright-Malécot (1.10) avec des paramètres
appropriés. Nous généralisons ce résultat dans l'article [BEKV13].
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Chapter 2

Genetic diversity in a spatially

structured population

Modelling the evolution of a population over the many generations through which it went
until now is a very di�cult task, as many factors may have in�uenced, sometimes only for a
short amount of time, the pattern of genetic variation observed within a sample of individuals.
Indeed, the population may have undergone census �uctuations such as bottlenecks or demo-
graphic expansions, episodes of selective sweeps, it may be (or have been) spatially structured,
or experience(d) environmental �uctuations, ... One of the major roles of mathematical models
is thus to study the e�ects of each of these factors, or of a combination of them, to highlight
the signatures they would leave in the current genetic diversity assuming that they contribute
su�ciently strongly to the evolution of the population.

Of course a wealth of models already exist, and we refer to [37] for a clear exposition of
the most classical ones. Most of them are not meant to describe the biology of the organisms
in �ne detail, but are based on rather crude approximations for the way genes are transmitted
from parents to o�spring. However, their strength is that they are able to render the evolution
of the population over the tens, hundreds or even thousands of generations during which the
current genetic diversity of the population was built.

2.1 The Wright-Fisher model and Kingman's coalescent

The most widely used model of genetic evolution is the Wright-Fisher model [47, 118]. It
assumes that individuals are haploid (i.e., they have only one copy of each chromosome), the
population exhibits no structure of any kind (it is panmictic), evolution happens in discrete
generations over which the population size remains constant equal to some large number N .
If we further assume that the gene in which we are interested is neutral, meaning that none of
its possible versions, or alleles, provides a reproductive advantage to the individuals carrying
it, then the reproduction mechanism is easily expressed: to form generation t+ 1, each of the
N individuals living at that time chooses a parent uniformly at random within the previous
generation, independently of each other, and the o�spring inherit the alleles of their parents.
See Figure 2.1 for an example with N = 7.

If there are only two alleles, say A and a, then it su�ces to follow the proportion pN (t) of
allele A in generation t to fully describe the evolution of the genetic diversity of the popula-
tion. In the neutral case expounded here, it is straightforward to show that for every t ∈ N,

27
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Figure 2.1 � The Wright-Fisher model with N = 7. Individuals can be of two genetic types
(orange and green here) which are transmitted from parents to o�spring (as symbolised by the
black lines).

conditionally on pN (t) we have

NpN (t+ 1) ∼ Binomial
(
N, pN (t)

)
. (2.1)

The long-term behaviour of the Markov chain (pN (t))t∈N is then easily obtained: with proba-
bility one, one of the alleles becomes �xed in (i.e., invades) the population and the probability
of A being the lucky allele is equal to its initial proportion pN (0). However, obtaining more
precise information on the path to �xation, for example the distribution of the time it takes
for pN to reach 0 or 1, becomes more and more combinatorially tricky as the population size
increases. Since we are interested in large populations, the usual mathematical trick is to let
N tend to in�nity and see whether we can obtain a limiting object that may approximate the
evolution of a population with a large but �nite size.

Using (2.1), we readily see that for every t ∈ N, we have

E
[
pN (t+ 1) | pN (t)

]
= pN (t) and Var

(
pN (t+ 1) | pN (t)

)
=

1

N
pN (t)

(
1− pN (t)

)
.

As a consequence, if we letN tend to in�nity and if we suppose that the initial proportion pN (0)
of individuals with allele A tends to some constant p ∈ [0, 1], then the process pN converges
in distribution to the constant process equal to p. In other words, there are no �uctuations in
allele frequencies in the limiting in�nite population. Thinking a bit more about what happens
here, we see that the variance of the change over one generation, pN (t + 1) − pN (t), is of
the order of 1/N . By analogy with the convergence of rescaled symmetric random walks to
Brownian motion, we thus expect to have to wait of the order of N generations to observe
macroscopic variations of pN . This motivates us to de�ne

p̃Nt = pN (bNtc), t ∈ R+, (2.2)

where bxc denotes the integer part of x ∈ R, so that one unit of time for p̃N corresponds to
N generations. Letting N tend to in�nity, this time we obtain that the sequence of processes
(p̃N )N≥1 converges in distribution (in the Skorokhod space D[0,1][0,∞) of all càdlàg paths with



2.1. THE WRIGHT-FISHER MODEL AND KINGMAN'S COALESCENT 29

values in [0, 1]) to the Wright-Fisher di�usion, unique solution to the stochastic di�erential
equation

dpt =
√
pt(1− pt) dBt, p0 = p, (2.3)

where (Bt)t≥0 denotes standard Brownian motion. A proof of this convergence can be found
in Chapter 3.2 of [37]. The random �uctuations described in (2.3) are what is referred to as
genetic drift in the biology literature. As in the case of a �nite population, they are only caused
by the random replacement of individuals with allele a by o�spring carrying the allele A, and
conversely, which explains that their in�nitesimal variance is proportional to the product of the
current frequencies of alleles A and a. Using the toolbox of stochastic calculus, we can show
that again �xation of one allele occurs in �nite time a.s., this allele being A with probability
p0; in fact many more properties are now within reach (expected time to �xation, conditional
path distributions, ...).

Besides characterising the long-term evolution of an in�nite population following the
Wright-Fisher reproduction scheme, the results presented in the previous paragraph highlight
the fact that evolution may actually occur on a very long timescale, of the order of the size
of the population in this model. As we shall see, chasing the right time- and space-scales on
which we may observe some non-trivial behaviour will be a key step in the analysis of the dif-
ferent models studied in the next chapters (including Chapter 5). This may look like a slightly
arti�cial game. However, the real question after which we are is the following: assuming that
we observe a given pattern of diversity, how should the di�erent evolutionary forces compare
to each other to explain this pattern?

A particularly fruitful approach in the study of the Wright-Fisher model is to reverse
the arrow of time and to try to understand the genealogy of a few individuals sampled at
random from the current population. Indeed, the longer it takes to two individuals to �nd
a common ancestor in the past, the more time there is for mutation or recombination to
occur, (potentially) leaving a detectable trace when we compare their genomes. Under the
assumptions of the neutral Wright-Fisher model with population size N , the most recent
common ancestor to two individuals sampled uniformly at random in the present generation
can be found TN2 generations in the past, where TN2 has a geometric distribution with parameter
1/N . Therefore, as in the analysis of the allele frequencies, here the action takes place on the
timescale (Nt, t ≥ 0) and scaling time as before we obtain that the coalescence time of the
ancestral lineages of the two individuals on the new timescale, T̃N2 = TN2 /N , satis�es

T̃N2
(d)−→ T2 as N →∞, (2.4)

where T2 has an exponential distribution with parameter 1.
Let us now consider a sample of size n ≥ 2, again taken uniformly at random from the

present generation. To ease the notation, let us call this generation 0. Since we want to describe
who shares an ancestor with whom t generations back in the past, a natural way of representing
the state of the ancestral relations within the sample at generation −t is through a partition
πN (t) of [n] := {1, . . . , n} such that i and j belong to the same block of πN (t) if and only if the
i-th and j-th individuals in the sample have the same ancestor t generations ago. See Figure 2.2
for an example. In this way, for any N we obtain a Markov chain (πN (t))t∈N with values in
the set Pn of all partitions of [n], starting at the partition into singletons {{1}, . . . , {n}} and
whose only absorbing state is the trivial partition {{1, . . . , n}}. The latter corresponds to the
state in which everyone in the sample share the same ancestor, and the random generation
TNMRCA in the past at which this event occurs for the �rst time is called the time to the most
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MRCA

1 2 3 4 5

T2

T3

T4

T5

{{1, 2}, {3}, {4}, {5}}

{{1}, {2}, {3}, {4}, {5}}

{{1, 2}, {3}, {4, 5}}

{{1, 2, 3}, {4, 5}}

{{1, 2, 3, 4, 5}}

Figure 2.2 � Tree and partition representations of the genealogy of a sample of size 5. Ge-
nealogical time runs from bottom to top. The black squares represent the individuals sampled
in the present population. During the time Ti, the ancestral partition has i blocks, correspond-
ing to the i (vertical) edges in this layer of the tree. The Most Recent Common Ancestor to
the sample is reached after T5 + . . .+ T2 units of time.

recent common ancestor. Performing the same change of timescale, it is not di�cult to show
that

π̃N :=
(
πN
(
bNtc

))
t∈R+

(d)−→ (πt)t∈R+ as N →∞, (2.5)

where (πt)t≥0 is Kingman's coalescent. The limiting object, formally introduced in [67], is a
Pn-valued Markov jump process that can be described as follows: it starts from the partition
of [n] into singletons, and then every pair of blocks tries to merge at rate 1 until the �nal state
{{1, . . . , n}} is reached. Hence, when there are k blocks in the ancestral partition, the time it
takes for the next coalescence event to occur is exponentially distributed with parameter

(
k
2

)
and its outcome is the merger of a single pair of blocks chosen uniformly at random among all(
k
2

)
possible pairs. Many properties of the limiting process are known, as reviewed for example

in [34] and [110]. A particularly interesting one is the duality relation between the Wright-
Fisher di�usion (2.3) and Kingman's coalescent. Indeed, let us write |π| for the number of
blocks in the partition π. Then for every n ∈ N, p0 ∈ [0, 1] and t ∈ R+,

Ep0
[
pnt
]

= En
[
p
|πt|
0

]
, (2.6)

where we have abused notation and denoted the law of (πt)t≥0 starting at {{1}, . . . , {n}} by
Pn. We refer to Chapter 6.2 of [37] for a proof of (2.6). In essence, this relation says that if
we sample n individuals independently and uniformly at random within the population alive
at time t, the probability that they are all of allelic type A is equal to the probability that
if we trace back the ancestry of the sample for t generations into the past (thus coming back
to time 0), all |πt| ancestors carry the allele A. The extension of (2.6) to the case where the
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population is spatially structured will be a key ingredient in most of the results presented in
Sections 2.4 to 2.6.

Kingman's coalescent is now a central model in population genetics. One of the reasons for
its success is that it is very robust to deviations from the assumptions of haploidy, panmixia,
neutrality or constant population size, up to replacing the `true' size N of the population it
approximates by some e�ective population size Ne. In other words, by analogy with (2.5), Ne

is (usually) de�ned by the property that (Net, t ≥ 0) is the timescale on which two ancestral
lines merge into a common ancestor at rate 1. By the relation between Kingman's coalescent
and the Wright-Fisher model, it can also be interpreted as the e�ective number of potential
parents at each generation. In practice, the e�ective population size can be much smaller
than the current census size. For example, Ne is estimated to be of the order of 104 in
humans [106, 109] and of the order of 106 in Drosophila melanogaster [73], both estimates
being far lower than census numbers. This can re�ect the occurrence of recurrent selective
sweeps in the history of the population, reducing the number of potential parents by favouring
those carrying the selected alleles. It may also be caused by a past population expansion. In
contrast, geographical structure (or even population structure in general) tends to increase the
e�ective population size since two ancestral lineages �rst need to come within a reasonable
distance to each other before having a chance to descend from the same individual and thus
merge. The outcome of a combination of these factors with opposite e�ects is therefore non
trivial to predict. The e�ective population size, or the analogous e�ective population density
in the context of spatially structured populations, will be a key quantity in the results exposed
in Chapters 2.5 and 3. In Chapter 4, we shall instead assume that Ne is a function of time
(as we come back in the past) that we wish to infer from the genetic variability observed in a
sample of DNA sequences.

2.2 Adding a spatial structure

Most natural populations are distributed over some geographical area and individuals are
a priori more likely to disperse their o�spring in a neighbourhood around them than across
the whole range. To account for this type of population structure, the vast majority of the
existing models assume that the population is split into discrete subpopulations connected
through migration. In Wright's island model [119], each deme is connected to every other
deme. That is, the underlying graph on which the islands are organised is the complete graph.
In Kimura's stepping stone model [64], the underlying graph is usually taken to be Z or Z2 and
migration is encoded by a kernel (mij)i,j describing the �ow of genes between subpopulations
i and j. In both frameworks, a kind of Wright-Fisher resampling takes place within each
deme (assumed to have a constant size) and migrant o�spring are exchanged between the
subpopulations which are connected.

Many variants of these models and the corresponding genealogies have been investigated,
see for example [65, 76, 114] for historical works and [4, 25, 28, 54, 59, 75, 79, 108, 113, 122]
for more recent studies. In the island model, individuals are at distance 0 or 1 depending on
whether they belong to the same deme or not. As a consequence, the impact of population
subdivision on genetic di�erentiation can be described by Wright's FST statistics [120]:

FST =
f0 − f̄
1− f̄

, (2.7)

where f0 (resp., f̄) is the probability that two individuals sampled uniformly at random within
the same island (resp., in the whole population) are identical by descent. Here, identity by
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descent (or IBD) is the property that the two individuals carry the same allele that they
inherited from a common ancestor. In a model where lineages mutate independently of each
other at some rate µ > 0, and if we denote the coalescence time of the two ancestral lines by
T , we can rewrite FST as

FST =
E0[e−2µT ]− Epop[e−2µT ]

1− Epop[e−2µT ]
, (2.8)

where under P0 (resp., Ppop) the two individuals are sampled in the same deme (resp., in
the whole population). When µ is small enough for the product µT to be small too in some
appropriate sense, we have the approximation

FST ≈
Epop[T ]− E0[T ]

Epop[T ]
,

which has the advantage of not requiring a precise estimate of µ. The expectations involved
in this ratio can then be computed by solving a system of two linear equations relating E0[T ]
and Epop[T ]. We do not give it here as it depends on the detailed dynamics of the model
considered, but see Chapter 4.4 of [34] for an example. This opens the door to the inference
of the small number of parameters characterising the evolution of the population, in a way
which is relatively robust to the lack of precision in the estimation of mutation rates. However,
although mutation rates for non-recombining (hence rather short) genes are indeed usually
small, we shall see that in more general models of population structure the coalescence time
may have a very large expectation. See Remark 2.6 in Section 2.5 in particular.

To our knowledge, FST is the main statistics used to measure the e�ect of a spatial structure
on the genetic diversity of a population at a single non-recombining locus (region of interest
in the genome). However, for populations distributed over a large one- or two-dimensional
range, we expect the time to the most recent common ancestor for two individuals sampled at
distance x to increase as x increases, so that the correlations between local allele frequencies
should decay with distance (by an argument similar to the heuristics explaining (2.6)). This
phenomenon, called isolation by distance [119], is not at all taken in account in FST as de�ned
in (2.7) and the proper study of more complex models (such as the stepping stone model) is
de�nitely needed to describe the signature left by such a spatial structure. In Section 2.5, we
shall introduce a generalisation of FST which makes it a function of the distance between the
sampling points, and we shall show that this new statistics can be used for inference purposes.
In this perspective of reconstructing some of the (compound) parameters characterising the
evolution of the population, it is also important to think of sampling schemes and their relations
to the mathematical model used to predict the diversity observed in the sample. In particular,
when the population lives in a continuum it may be di�cult to split it arti�cially into discrete
demes. In this case, a model dealing directly with continuous space is a priori more desirable.
This is the direction we shall pursue in the rest of this chapter.

A natural generalisation to continuous space of the Wright-Fisher model described in Sec-
tion 2.1 would be to add a term modelling the spatial di�usion of genes. Assuming again that
there are only two alleles and that we follow the frequency pt(x) of one of them at each site x
and time t, this yields the following equation:

dpt =
σ2

2
∆pt dt+

√
1

Ne
pt(1− pt)W (dt,dx), (2.9)

where σ2 is a di�usion coe�cient, Ne is a `local population density' (of which we can think as
the inverse of the rate at which two ancestral lineages at the same location coalesce) and W is
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a space-time white noise. In one dimension, this approach is valid: there is a unique solution
to (2.9), which can be obtained as the limit of a sequence of rescaled stepping stone models
on Z. This convergence result also shows that its dual genealogy is a system of independent
Brownian motions which coalesce pairwise at a rate proportional to the local time that they
spend at the same location. Unfortunately, in two dimensions Equation (2.9) has no solution
and the sequence of rescaled stepping stone models on Z2 converges to the solution to the heat
equation, dual to a system of independent Brownian motions that never coalesce (note that
contrary to what happens in one dimension, in two dimensions two independent Brownian
motions never meet). See Section 2.6.1 for the proof of a similar result. As a consequence, this
approach is not appropriate if we want to model genetic drift in a continuous two-dimensional
space.

In the 1940s, Wright and Malécot attempted to model populations living in a spatial
continuum [76, 119]. Their model assumes that individuals are dispersed according to a Poisson
point process of constant intensity λ in R2. The reproduction mechanism mimics that of
the Wright-Fisher model: the population evolves in discrete generations and the number of
o�spring of each individual is Poisson with mean one. The spatial locations of the o�spring are
sampled independently from a Gaussian distribution centred on the position of their parent.
In addition, the model incorporates mutation: with probability µ > 0 an o�spring, rather than
inheriting the allele of its parent, mutates to an allele never before seen in the population.
Wright and Malécot computed the probability of identity by descent of two individuals sampled
at separation x ∈ R2. Let us denote this quantity by F (x). Using a recursion, Malécot obtained
an approximation for F (x) in terms of K0, the modi�ed Bessel function of the second kind of
order 0:

F (x) ≈ 1

N + ln(`/κ)
K0

(
‖x‖
`

)
, ‖x‖ > κ, (2.10)

where κ > 0 is a local scale over which we assume that F (x) is constant (to overcome the
problem of the explosion of K0 at 0), σ2 is the variance of the Gaussian distribution that
determines the o�spring location, ` = σ/

√
2µ can be seen as a characteristic length, and N is

Wright's neighbourhood size which, in essence, measures the number of `potential parents' in
the neighbourhood of each o�spring. The approximation (2.10) is referred to as the Wright-
Malécot formula.

Unfortunately, the backwards-in-time recursion leading to (2.10) is based on the assumption
that in any generation, the individual locations can be described as a Poisson point process
of intensity λ in R2. This is inconsistent with the forwards-in-time evolution, in which the
population forms clumps of larger and larger sizes, while some areas in space become empty.
Considering compact areas instead of R2 does not solve the problem, as in this case the
population with a critical reproduction mechanism dies out in �nite time. This is Felsenstein's
pain in the torus [46]. However, as discussed in Section 2.3 of the review paper [BEV13b], the
Wright-Malécot formula with appropriate parameters �ts astonishingly well the decay with
distance of the probability of identity by descent in a stepping-stone model with, for example,
nearest neighbour migration. Recall that in this model deme sizes are assumed to be constant,
and so the recursive approach leading to (2.10) works. Obviously, in our model of evolution
in a spatial continuum we need a mechanism to ensure a local regulation of the population
density.

In this respect, several approaches have been tried, see for example [6, 9, 116, 117] and
the references given therein. The framework presented in the next paragraph uni�es them in
a tractable way.
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2.3 The spatial Λ-Fleming-Viot process

The model described here was introduced in [38] and fully formalised in [BEV10]. The
main di�erence with former models of evolution is that reproduction is not based on individual
clocks, but instead on a random sequence of events each a�ecting a given area in space. During
such an event, a few parents are chosen at random and their o�spring replace a fraction of
the current population in the area. In this way, the population density remains constant but
the local allele frequencies are updated based on the genetic types of the parents and on the
fraction of individuals replaced. Below we give a particular formulation for the reproduction
mechanism, but it can be generalised in many ways as long as we keep the essential ingredient
of a Poisson point process of reproduction events specifying the geographical area in which the
local genetic diversity will be updated. This is what we shall do for example when we need to
add recombination (cf. Section 2.4.2), mutation (cf. Section 2.4.4), selection (cf. Section 2.6.1),
or even spatial inhomogeneities (cf. [49]).

Suppose that the population is uniformly distributed over Rd (d = 2 being of course the
most relevant dimension for most biological populations) and that the set K of all possible
alleles is compact. We shall mostly consider K = {0, 1} as in the Wright-Fisher model, or
K = [0, 1] to allow for arbitrarily many alleles to be present in the whole population. At any
given time t ≥ 0, the state of the population is represented by a measureMt(dx,dk) on Rd×K
whose �rst marginal is Lebesgue measure on Rd. We writeMλ for the set of all such measures.
Since any Mt ∈Mλ can be decomposed as

Mt(dx, dk) = dx ρt(x,dk), (2.11)

where ρt : Rd →M1(K) is a Lebesgue-measurable map with values in the space of all prob-
ability measures on K (see Section 2.4.4 for a more precise statement), this representation
indeed re�ects the uniform density of individuals in space and ρt(x, dk) can be seen as the
distribution of the allele of an individual which would be sampled at site x at time t. In fact,
the state spaceMλ is rather natural when we think of the population represented here as the
limit of a population with discrete individuals whose positions form a Poisson point process
with intensity λdx, as λ tends to in�nity. See Remark 2.2 below.

Up to now we have only speci�ed the encoding of the genetic diversity of the population.
We now need a mechanism to make it evolve in time. To this end, let us �x a σ-�nite measure
µ on (0,∞) and a collection {νr, r > 0} of probability measures on [0, 1]. Let Π be a Poisson
point process on R+ × Rd × (0,∞)× [0, 1] with intensity dt⊗ dz ⊗ µ(dr)νr(du). Thus,

Π =
{

(ti, zi, ri, ui), i ∈ N
}

is a random countable set of reproduction events described by their time ti, centre zi, radius
ri and impact ui. More precisely, for every i ∈ N, at time ti a reproduction event occurs in the
closed ball B(zi, ri). A parent is chosen uniformly at random within B(zi, ri) and its o�spring,
carrying the same allele, replace a fraction ui of the local population at every site of the ball
(the remaining fraction 1− ui is una�ected). In more mathematical terms, this means that a
parental allele κi is sampled according to the distribution

1

Vol(B(zi, ri))

∫
B(zi,ri)

Mti−(y,dk)dy

of alleles within B(zi, ri) just before the event, and at every location y ∈ B(zi, ri) we have

ρti(y,dk) = (1− ui)ρti−(y,dk) + uiδκi(dk).
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x y

Figure 2.3 � The spatial Λ-Fleming-Viot process in one spatial dimension. Individuals carry
one of the two alleles 0 and 1, and the local frequencies of allele 1 are represented. The
black line shows the initial state, in which all individuals to the left carry the allele 1, and
all individuals to the right carry the allele 0. A �rst event happens in the area delimited by
the red vertical lines, a parent with allele 0 is chosen at location y and a fraction u1 = 1/2 of
the local population at every point in the ball is replaced by its o�spring, carrying the allele 0
(red line). Some time later, an event occurs in the area delimited by the blue lines, a parent
is chosen in the fraction of individuals at location x which are now of allele 0 and a fraction
u2 = 3/4 of the population in the ball is replaced by its o�spring (blue line).

Figure 2.3 shows an example with K = {0, 1} and d = 1; there the local frequencies of type 1
individuals are represented.

Observe from the intensity measure of Π that the reproduction events occur uniformly
in time and space, while the coordinates r and u have more general distributions which are
a priori correlated. This enables us for instance to model `regular' reproduction events of
small geographical extent and moderate impact at the same time as rare catastrophes, such
as severe climatic events, a�ecting much larger areas and during which a signi�cant fraction
of the population goes extinct and is rapidly replaced by the descendants of a few lucky
individuals. Finally, let us also remark that individuals do not migrate during their lifetimes
in this formulation of the model (only their propagules disperse), but this generalisation is not
di�cult using the construction described in Section 2.4.4.

Originally, the existence and uniqueness of the process (ρt)t≥0 corresponding to this evo-
lution was shown in [BEV10] using a technique of [45] based on the characterisation of its
semigroup through a well-chosen family of test functions. In [VW15], it is reformulated as
a measure-valued process, whose existence and uniqueness is proved using more construc-
tive arguments (see Section 2.4.4). Both techniques make use of the relation between the
forwards-in-time evolution of allele frequencies (Mt)t≥0 and the genealogy of a random sam-
ple of individuals, traced backwards-in-time. Before giving a precise statement of this duality
relation, let us imagine what the ancestry of a few individuals should look like in this model.

First, suppose that we sample an individual at site x at a time that we call the present. For
simplicity we denote this time by 0 (and assume that the time coordinate of the Poisson point
process Π of reproduction events takes its values in R instead of R+, so that we may come
back as far as we want in the past). Our aim is to trace back the position ξt of the individual
at time −t from which our sampled individual descends. For a given individual to be born
during a reproduction event, it needs to lie within the area that is a�ected and to belong to
the fraction of the population replaced. In this case, since the parent is chosen uniformly at
random from the ball where the event takes place, its location is uniformly distributed over
this ball and so is the new position of the ancestral lineage we are following. Since the law of
the time-reversed point process {(−ti, zi, ri, ui), i ∈ N} is again that of a Poisson point process
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with intensity dt⊗ dz⊗µ(dr)νr(du), we obtain that the rate at which the ancestral lineage of
our individual jumps to a new location when it sits at x ∈ Rd is equal to

J0 :=

∫
Rd

∫ ∞
0

∫ 1

0
1{x∈B(z,r)}u νr(du)µ(dr)dz =

∫ ∞
0

∫ 1

0
uVr νr(du)µ(dr), (2.12)

where Vr stands for the volume of a d-dimensional ball of radius r. If we further assume that
J0 is �nite (which we shall do in the rest of this chapter, though more general Lévy processes
can be obtained under less stringent conditions) and if we write Lr(y) for the volume of the
intersection B(0, r) ∩ B(y, r), then the process (ξt)t≥0 is a well-de�ned compound Poisson
process which jumps from x to x+ y with an intensity given by

J (y) :=

∫
Rd

∫ ∞
0

∫ 1

0
1{x∈B(z,r)}u

1{x+y∈B(z,r)}

Vr
νr(du)µ(dr)dz

=

∫ ∞
0

∫ 1

0

uLr(y)

Vr
νr(du)µ(dr). (2.13)

Indeed, for such an event to happen, both the current location x of the lineage and the location
x + y of its parent should belong to the area B(z, r) of the reproduction event, and then the
parental position is chosen to be x+ y with density 1/Vr.

Let us now sample another individual at site x′ at time 0. Let us call (ξ′t)t≥0 the process
tracing back the location of the ancestor of this second individual t units of time in the past. A
priori (ξt)t≥0 and (ξ′t)t≥0 are not independent, since they use the same Poisson point process
of events to jump. If both of them happen to lie within the area of a given reproduction event,
say with impact u, then

� with probability (1− u)2 none of them belong to the local population replaced and the
lineages do not move at that time,

� with probability u(1 − u) the ancestor of the �rst individual belongs to the fraction
replaced but not the ancestor of the second individual, in which case ξ jumps to the
location of the parent and ξ′ stays where it is,

� with probability u(1− u) ξ′ jumps but not ξ,
� with probability u2 both ancestors belong to the o�spring of the (unique) parent chosen

during the event. In this case, the two ancestral lineages merge into a single one, whose
position is uniformly distributed over the area of the event.

Based on this observation, we see that the rate at which the two lineages ξ and ξ′ merge when
they are at separation y ∈ Rd is given by

C(y) =

∫ ∞
0

∫ 1

0
u2Lr(y) νr(du)µ(dr). (2.14)

Note that this quantity is bounded by the jump rate J0 of a single lineage. Since J0 is
supposed to be �nite, we obtain that the pair (ξ, ξ′) form a system of correlated compound
Poisson processes which merge into a single lineage at an instantaneous rate given by (2.14).

The same analysis can be applied to any �nite sample of individuals chosen at time 0 at
a given set of locations. To describe the system of coalescing jump processes that we obtain
more formally, we again resort to representing the ancestral relations within the sample at
time −t as a partition of {1, . . . , n}. However, unlike the case of an unstructured population
described in Section 2.1, here we need to keep track of the location of each ancestor. Hence,
we use marked partitions of {1, . . . , n} of the form

A =
{

(b1, x1), . . . , (bk, xk)
}
,
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where the blocks {b1, . . . , bk} form a partition of [n] keeping track of which individuals in the
sample have a common ancestor at the time of interest, and xj ∈ Rd records the spatial location
of the ancestor at that time of the individuals with labels in bj . Let us denote the set of all
marked partitions of [n] by Psn. The ancestral process of a sample of size n is thus a Psn-valued
Markovian jump process

(At)t≥0 =
({(

B1
t , ξ

1
t

)
, . . . ,

(
BNt
t , ξNtt

)})
t≥0

,

where Nt denotes the number of blocks (or distinct ancestors) t units of time in the past. To
avoid cumbersome notation we do not give the full description of its jump intensity, but the
interested reader will �nd all the necessary ingredients in the previous paragraph.

We can now unveil the duality relation between the spatial Λ-Fleming-Viot process (Mt)t≥0

(or (ρt)t≥0, recalling (2.11)), and the ancestral process (At)t≥0. Let us write C(E) for the set
of all continuous functions f : E → R, Cc(E) for the subset of those which have compact
support, ℘n(x) for the marked partition {({1}, x1), . . . , ({n}, xn)} made of singletons whose
marks are given by the vector x = (x1, . . . , xn) ∈ (Rd)n, and let us recall the notationMλ for
the space of all measures on Rd ×K whose �rst marginal is Lebesgue measure on Rd. Then
we have the following result, which corresponds to Theorem 4.2 in [BEV10] or Corollary 2.4
in [VW15].

Theorem 2.1. Suppose that the quantity J0 de�ned in (2.12) is �nite. Then there exists
a unique Mλ-valued Hunt process (Mt)t≥0 such that for every m ∈ Mλ, t ≥ 0, n ∈ N,
F ∈ Cc((Rd)n) and g1, . . . , gn ∈ C(K),

Em
[ ∫

(Rd×K)n
F (x1, . . . , xn)

( n∏
i=1

gi(κi)

)
M⊗nt (dx1, dκ1, . . . ,dxn, dκn)

]
(2.15)

=

∫
(Rd)n

F (x1, . . . , xn)E℘n(x)

[∫
KNt

Nt∏
j=1

( ∏
i∈Bjt

gi(κj)

)
ρ
(
ξ1
t ,dκ1

)
· · · ρ

(
ξNtt ,dκNt

)]
dx1 · · · dxn,

where we have used the decomposition m(dx,dκ) = dxρ(x,dκ).

The relation (2.15) will look less daunting when we have only two alleles (see Section 2.4.3).
What it tells us is that to obtain the distribution of the alleles of n individuals sampled at
distinct locations x1, . . . , xn at time t, we can �nd who shared a common ancestor t units
of time earlier (thus corresponding to forward time 0) and sample their common allele from
the allelic distribution at time 0 at the location of the ancestor. This interpretation is at the
basis of the particle representation described in Section 2.4.4. See also this section for general
properties of the state spaceMλ, path properties of the process (Mt)t≥0 and a result on the
(not) coming down from in�nity of the genealogical process (At)t≥0 starting with in�nitely
many individuals.

We end this section with a few remarks.

Remark 2.1. (Weaker conditions for existence and uniqueness of the process). As
mentioned earlier, the assumption that J0 should be �nite is too strong for the existence and
uniqueness result of Theorem 2.1. The most general condition required to use the technique of
[45] is that the motion (ξt)t≥0 of a single ancestral lineage should be a Lévy process, which is
true under the weaker condition ∫

Rd
(1 ∧ |y|2)J (y)dy <∞,
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where J (y) was de�ned in (2.13). However, when we try to write down an in�nitesimal genera-
tor or a martingale problem to identify the process (Mt)t≥0 obtained by duality with the potential
process that we have de�ned in terms of the Poisson point process of reproduction events, some
technical problems (in the interchange of di�erentiation and taking expectations) appear. Since
there is not much biological interest in the case where lineages accumulate in�nitely many tiny
jumps, we shall always suppose that J0 <∞.

Remark 2.2. (Individual-based model). The spatial Λ-Fleming-Viot process is in fact the
high-density limit of an individual-based model driven by the same Poisson point process Π of
reproduction events. In this model, individuals are scattered on Rd according to a Poisson point
process with some intensity λ > 0. When the region a�ected by a reproduction event contains no
individuals, this event is simply cancelled. Otherwise, we choose a parent uniformly at random
among the individuals present in the area, then each of these individuals dies with probability u
(the impact of the event) independently of each other, and �nally the region is repopulated by
a Poisson point process of o�spring with intensity uλ, all carrying the allele of the parent. In
[12], the authors show that the population process (without alleles, just counting the number of
individuals in any region of space) survives with probability 1 whenever λ is large enough, and
they describe its ergodic behaviour. On the other hand, if λ is too small, the population becomes
extinct a.s. Although it looks more natural to describe a population of discrete individuals, this
model is very intricate to study. Taking the high-density limit λ → ∞ leads to a much more
tractable model (in particular, no events are cancelled since there is always someone in the
a�ected area). A proof of this convergence can be found in [42].

Remark 2.3. (Model with Gaussian kernels). A version of the individual-based model
and its high-density limit, using (arguably more realistic) Gaussian kernels instead of balls for
the choice of the parent and the birth/death of individuals, was studied in [8]. In particular,
the authors show that in the limiting model, when the variances of the Gaussian kernels are
the same for all events, then the probability of identity by descent of two individuals sampled
at separation x ∈ R2 is well approximated by the Wright-Malécot formula (2.10) with some
appropriate parameters. We generalise this result in [BEKV13].

2.4 Evolution under the hypothesis of neutrality

As a start, we assume that no alleles confer a reproductive advantage to the individuals
carrying them. This is an important �rst step, in particular if we want to detect deviations
from the null hypothesis of a neutral evolution.

2.4.1 Genealogies on a large torus

The �rst study carried out in the framework of the spatial Λ-Fleming-Viot process describes
the long-term behaviour of the genealogy of a sample of individuals sitting far from each other
on a continuous two-dimensional torus. It corresponds to Chapter 5 of my Ph.D. thesis [Véb09],
and is also published in [BEV10]. It was motivated by some results on the collapse of structure
in a stepping-stone model with �nite-range migration on a discrete two-dimensional torus
obtained in [26, 27] and then [25, 122]. In most of these works, the authors consider a torus
of sidelength L. They show that under some appropriate conditions on the population size in
each deme and on the migration kernel, the genealogy of a �nite number of individuals sampled
uniformly at random from the torus, when considered on the timescale ((L2 lnL)t, t ≥ 0),
converges to a time-changed Kingman coalescent as L tends to in�nity. Indeed, this timescale
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corresponds to the mixing time of a random walk on the torus whose step distribution has
�nite range. Since any given number of individuals sampled independently and uniformly
at random from the torus are at distance O(L) from each other with very high probability,
well-known results on random walks ensure that no pairs of lineages can physically meet on
a shorter timescale (see e.g. Section 2 in [24]). But after a time of the order of L2 lnL, the
positions of the di�erent lineages are uniformly distributed over the torus, and so each pair has
the same chance to be the �rst one to meet (and merge very quickly after). Finally, since the
probability that three independent random walks starting at distance O(L) gather at distance
O(1) in O(L2 lnL) units of time tends to zero as L tends to in�nity, in the limit we never see
any merger of more than two lineages. The limiting genealogy is thus Kingman's coalescent.

In [BEV10], we complement these studies in several ways. First, we consider the more
di�cult case of continuous space. In this framework, two lineages cannot be at exactly the same
position unless they have already merged, and coalescence occurs at a rate of the form (2.14)
which is a function of the distance between the two (or more) lineages. Second, we consider
reproduction events with bounded radii occurring at rate O(1), but also rare catastrophes
covering a region of diameter Lα for some α ∈ (0, 1]. This gives rise to a wider class of possible
genealogies in the limit as L → ∞. The motivation for including such large scale extinction-
recolonisation events comes from the observations that (a) on the timescale of evolution, i.e.,
hundreds to thousands of generations, many events like forest �res, epidemics, or severe climatic
conditions may happen; (b) the exponential decay of the probability of identity by descent
predicted by the Wright-Malécot formula (2.10) under the assumption that all reproduction
events are local is a good approximation over relatively short distances, but fails to explain
why local genetic diversities are correlated on much larger spatial scales than expected (see
e.g. [36]). Therefore, it seems important to characterise the signature left by large but a priori
rare catastrophes, to be able to compare it to that left by other evolutionary forces like natural
selection.

Let us suppose that the population is distributed over a continuous two-dimensional torus
TL of sidelength L, which we can identify with [−L/2, L/2]2 (with periodic boundary condi-
tions) if needed. Since we shall concentrate on the genealogy of a sample of individuals, we do
not specify the set of possible alleles. As explained above, we assume that there are two types
of reproduction events, small and big. To describe the corresponding reproduction dynamics,
we �x two measures µS and µB on (0,∞), with ranges bounded by some RS , RB <∞, and two
collections {νSr , r > 0}, {νBr , r > 0} of probability measures on [0, 1]. We also �x α ∈ (0, 1]
and a sequence (ρL)L≥1 in (0,∞] tending to +∞ as L→∞. Then:

� Small events are described by a Poisson point process ΠS on R×TL × (0,∞)× [0, 1]
with intensity dt⊗dz⊗µS(dr)νSr (du). If (t, z, r, u) ∈ ΠS , then at time t a reproduction
event occurs within B(z, r). A parent is chosen uniformly at random in this region and
its o�spring replace a fraction u of the current population at every site of the ball.

� Large events are described by a Poisson point process ΠB on R×TL× (0,∞)× [0, 1],
independent of ΠS and with intensity (ρLL

2α)−1dt⊗dz⊗µB(dr)νBr (du). If (t, z, r, u) ∈
ΠB, then at time t a reproduction event occurs within B(z, Lαr). Again, a parent is
chosen uniformly at random in the region and its o�spring replace a fraction u of the
current population there.

Note that since ΠS and ΠB are independent, we could have formulated the evolution in terms
of a single Poisson point process ΠS ∪ΠB. In what follows, we are interested in the genealogy
of a sample of n individuals picked uniformly at random from TL, which with high probability
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(when L is large) corresponds to considering sampling locations in

Γ(L, n) :=

{
{x1, . . . , xn} ∈ TnL : |xi − xj | ≥

L

lnL
∀i 6= j

}
.

Using (2.13), we see that a given lineage makes jumps of size O(1) at rate O(1) as well as
jumps of size O(Lα) at rate O(1/ρL). Hence, denoting the position of the ancestral lineage t
units of time in the past by ξLt , it looks sensible to consider the rescaled process `L de�ned by

`Lt :=
1

Lα
ξL2ρLt, t ≥ 0. (2.16)

The factor 2 in the rescaling of time comes from the fact that what we are really after is the
di�erence between the positions of two ancestral lineages. Recall that RB denotes our upper
bound on the support of the intensity measure µB of radii for the large events. Since two
ancestors cannot be hit by the same reproduction event unless they lie within distance 2RBLα

(in original units) of each other, they behave independently whenever they are far enough
apart. As a consequence, `L is a �nite-rate jump process with values in the torus L−αTL
of sidelength L1−α, starting at distance O(L1−α) from the origin and evolving like a single
rescaled lineage jumping twice as fast when it is not in the ball B(0, 2RB) (how it evolves
within this ball is slightly more delicate to describe). Using classical results on Poisson point
processes (see Section 6.1 in [BEV10]), we can show that the contribution of small (resp., big)
events to the variance of the displacement of `L over one unit of time (outside B(0, 2RB)) can
be written

2
ρL
L2α

(σ2
S + o(1)), resp., 2σ2

B + o(1). (2.17)

Comparing these contributions, we see that if ρL/L2α → 0 as L → ∞ only the big events
drive the evolution, whereas if ρL/L2α → b−1 > 0, both small and big events contribute to
the motion. Finally, if ρL/L2α → +∞ it is the small events that drive the evolution and the
rescaling (2.16) is not appropriate. In this case we work directly with the process (ξL2t)t≥0.

Assume �rst that α < 1, so that big events are still of a negligible size compared to the
whole population range. Then, an adaptation of the techniques developed in [24, 122] gives
us that the timescale (in original time units) on which ancestral lineages meet at a distance
which enables them to coalesce is ρLL2(1−α) ln(L1−α) when big events are su�ciently frequent
to have an impact on their motions, and L2 logL otherwise. Furthermore, once two lineages
have managed to come su�ciently close to each other, they spend enough time at distance less
than 2RBLα (or 2RS when only small events matter) to be a�ected by the same reproduction
event and coalesce. Adapting again the results of [122] to show that no more than two lineages
at a time can meet at distance less than 2RBLα, we obtain the following result. To set the
notation, for every n ∈ N and every L ∈ N, let An,L denote the process of marked partitions of
[n] describing the ancestry of n individuals sampled independently and uniformly at random
over TL. Let also An,L,u denote the unmarked process recording only the blocks of An,L.
Finally, let Kn stand for Kingman's coalescent with sample size n (cf. Section 2.1), starting
from the partition {{1}, . . . , {n}}, and let ⇒ denote weak convergence of càdlàg processes.

Theorem 2.2. (Th. 3.3 in [BEV10]). Let n ∈ N. As L→∞, we have

(An,L,u($Lt))t≥0 ⇒ Kn,
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where

$L =



(1−α)ρLL
2(1−α) lnL

2πσ2
B

if L2α

ρL
→ +∞,

(1−α)L2 lnL
2π(σ2

S+bσ2
B)

if L2α

ρL
→ b ∈ [0,∞) and L2α lnL

ρL
→ +∞,

L2 lnL
2πσ2

S
if

(
L4α

ρL

)
L≥1

is bounded or L2 lnL
ρL

→ 0.

The quantities σ2
S and σ2

B are de�ned in (2.17).

As a consequence, as long as the largest events have a radius much smaller than the
population range, the genealogy of a number of individuals sampled over the whole range is
approximately described by the unstructured Kingman coalescent, when considered on the
appropriate timescale.

If α = 1, each big event a�ects a nonnegligible fraction of the population. In this case,
the limiting ancestral process depends on how frequent these catastrophes are. Indeed, two
lineages originally at distance O(L) need of the order of O(L2 lnL) units of time to come
together and merge when they are a�ected only by small events. Thus, if ρL � L2 lnL, the
lineages move around by little steps thanks to the small events and jump from time to time
at distance O(L) due to a big event. Coalescence occurs after a �nite number of big events.
In this regime of parameters, the spatial structure still matters in the limit. If ρL ∝ L2 lnL,
the positions of the lineages have the time to homogenise over the torus before they are hit
by a big event. Then any lineage present in the area of a big event can be a�ected by it
with the same positive probability, and so we obtain a non-spatial coalescent with multiple
mergers (or Λ-coalescent, see [91]) in the limit. If ρL � L2 lnL, the big events are so rare
that Kingman-type coalescence events due to the small events reduce the ancestral process to
a single lineage before any big event occurs. With the same notation as above for the marked
and unmarked ancestral processes, we obtain:

Theorem 2.3. (Th. 3.7 in [BEV10]). Let n ∈ N and for every L ≥ 1, let

$L =

 ρL if ρL
L2 lnL

has a �nite limit,

L2 lnL
2πσ2

S
if ρL

L2 lnL
→ +∞.

Then as L tends to in�nity,
(a) If ρLL−2 → b ∈ [0,∞), the process ( 1

LA
n,L
$Lt

)t≥0 with marks multiplied by 1/L converges
weakly towards a process in which marks evolve according to independent Brownian
motions with variance parameter bσ2

S, and blocks coalesce whenever they are a�ected
by (i.e., the corresponding ancestors belong to the fraction of the population replaced
during) the same big event. Note that because of the rescaling of time, these big events
happen at rate O(1) in the limit.

(b) If ρLL−2 → +∞, 2πσ2
SρL

L2 lnL
→ β ∈ [0,∞) and if the total rate of occurrence of large

events is �nite (i.e., µB has �nite mass), the unmarked process (An,L,u$Lt
)t≥0 converges

weakly to a non-spatial Λ-coalescent in which lineages are involved in a multiple merger
coalescence event at a rate equal to the rate at which an individual sampled uniformly
at random from the torus belongs to the fraction of the population replaced during a
big event (again, big events occur at rate O(1) on the timescale considered). Pairs of
lineages also merge in Kingman-type events at rate β.
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(c) If ρL/(L2 lnL) → +∞, the unmarked process (An,L,u$Lt
)t≥0 converges weakly towards

Kingman's coalescent Kn.
Here weak convergence always refers to weak convergence of càdlàg processes in the standard
Skorokhod topology.

Thus, when the catastrophes can cover a signi�cant part of the population range, depending
on how fast these events occur we see again a collapse of structure (potentially with multiple
mergers) when big events are su�ciently rare, or the in�uence of space remains in the limit.

Even when the genealogy of a random sample of individuals is well-approximated by the
non-spatial Kingman coalescent, the in�uence of space, and large catastrophes in particular,
is still felt through the timescale $L on which common ancestors are found. Recall from Sec-
tion 2.1 that this timescale corresponds to an e�ective population size describing how much
shorter or longer genealogies are compared to the panmictic case with a `volume' L2 of indi-
viduals. In the presence of small events only, the e�ective population size is of the order of
L2 lnL and the spatial structure gives rise to longer genealogical trees. When big events are
su�ciently frequent, on the other hand, the e�ective population size $L can be much smaller
than L2 and genealogies are much shorter than expected in the panmictic case. These results
open the door to the detection of the occurrence of rare but recurrent catastrophes of large
geographic extent in the history of a population.

2.4.2 A more precise signature of the e�ect of space

In the previous section, we have seen that in most of the cases considered, the spatial
structure of the population left a trace in the genealogy at a given locus of a random sample
of individuals (recall that a locus is a region of interest in the genome). However, natural
selection or �uctuations in census size could have similar e�ects on the timescale of common
ancestry in a panmictic population. Hence, we need to look for a more detailed �ngerprint of
space to be able to detect its in�uence on the genetic diversity of the population.

A natural approach is to consider two loci on the same chromosome and measure their
linkage disequilibrium. More precisely, because the two loci are on the same chromosome, we
may suppose that any pair of alleles (A,B) at these loci is transmitted as such from parent
to o�spring. However, in sexual populations the mechanism of recombination can break this
link, and an individual with two parents of alleles (A,B), (a, b) may inherit a combination
(A, b) or (a,B) instead. (This description is in fact not quite true as recombination occurs
between the parental chromosomes during meiosis, but when considering many generations
this simpli�cation is reasonable). The association between the alleles observed at the two loci
in an individual picked at random from the population is thus looser when the recombination
rate is high, the extreme being the case of no linkage in which alleles at each locus are inherited
from one of the parents in an independent way. When there are only two alleles A, a at the �rst
locus, and B, b at the second locus, several measures of linkage disequilibrium in the population
are classically used. For example, the r2 statistics is de�ned by

r2 :=
(pAB − pApB)2

pA(1− pA)pB(1− pB)
,

where pA (resp., pB) is the frequency of individuals in the population carrying the allele A at
the �rst locus (resp., B at the second locus) and pAB is the frequency of individuals carrying
the pair of alleles (A,B). In particular, r2 = 0 when there is no linkage between the two
loci. Deriving an analytic expression for the expectation of r2 is already di�cult in the neutral



2.4. NEUTRAL EVOLUTION 43

panmictic case, and is probably impossible for a spatially structured population. However, by
analogy with the duality relating the moments of the Wright-Fisher di�usion and the number
of blocks/ancestors in Kingman's coalescent, we may expect to be able to relate the expectation
of the numerator and of the denominator in the expression of r2 to the correlation between the
coalescence times of two lineages at each locus. Indeed, in [82], McVean shows that considering
the ratio

σ2
d =

E[(pAB − pApB)2]

E[pA(1− pA)pB(1− pB)]

of expectations instead of the expectation of the ratio r2 is a reasonably good approximation
as long as all allele frequencies are bounded away from 0 (larger than 0.1, for example), and
furthermore that σ2

d can itself be approximated by

Cov
(
T

(1,2)
A , T

(1,2)
B

)
− 2Cov

(
T

(1,2)
A , T

(1,3)
B

)
+ Cov

(
T

(1,2)
A , T

(3,4)
B

)
E
[
T

(1,2)
A

]2
+ Cov

(
T

(1,2)
A , T

(3,4)
B

) ,

where {1, 2, 3, 4} are the labels of four individuals picked at random from the current population

and T (i,j)
A (resp., T (i,j)

B ) stands for the time to the most recent common ancestor of individuals i
and j at the �rst (resp., second) locus. In [112], Wakeley and Lessard �nd analytical expressions
for σ2

d in an island model with a potentially very large number of demes, and apply their results
to data from human populations. The distribution of r2 and of other measures of linkage
disequilibrium in a stepping-stone model with �nitely many demes is explored by simulations
in [28].

To study linkage disequilibrium in a population living in a continuum, let us thus introduce
recombination in the spatial Λ-Fleming-Viot process and let us describe the correlations be-
tween the ancestries of two individuals at two linked loci. The results we shall describe below
can be readily extended to any �nite number of loci and of individuals. They will also apply
to a discrete stepping-stone model with equivalent reproduction and scattering mechanisms.

Since we need more than one parents for recombination to occur (excluding sel�ng, i.e. self-
fertilisation), let us extend the model described in Section 2.4.1 by choosing several parents
during a reproduction event and allowing recombinant o�spring to arise. To this end, let us �x
two distributions λS and λB on N, such that λS({1}) < 1. To slightly simplify the analysis, let
us �x RS , RB ∈ (0,∞) and uS , uB ∈ (0, 1), and let us suppose that all small events have radius
RS and impact uS , and all big events have radius RBLα and impact uB. Let also (rL)L≥1 be
a nonincreasing sequence with values in (0, 1]. Because there are many possible asymptotic
behaviours for the genealogy at a single locus, as described in Section 2.4.1, in the remaining
of this section we shall focus on the case where

α ∈ (0, 1), ρL ≥ lnL for all L ≥ 1 and
ρL
L2α

→ C ∈ [0,∞),

in which large events are driving the evolution of the genealogies, possibly with some contri-
bution from the small events. As in Section 2.4.1, we consider two kinds of events:

� Small events given by a Poisson point process on R × TL with intensity dt ⊗ dz.
During an event (t, z), we choose a number k according to the law λS and we sample
k individuals (or alleles) independently and uniformly at random within B(z,RS). If
k = 1, the o�spring of the single parent replace a fraction uS of the population at every
site y ∈ B(z,RS). If k > 1, at each site of the ball a fraction 1− uS of the population
remains the same as just before the event, a fraction uS(1− rL) is replaced by o�spring
of each parent in equal proportions and the remaining fraction uSrL is replaced by
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recombinant o�spring inheriting their loci from two distinct parents (again, all pairs of
parents have descendants in equal proportions).

� Big events given by an independent Poisson point process on R × TL with intensity
1

ρLL2αdt ⊗ dz. During an event (t, z), we choose a number k of parents according to
λB and sample k parents independently and uniformly in B(z,RBL

α). Their o�spring
replace a fraction uB of the current population in the ball, without recombining.

The assumption of no recombination during the big events is not compulsory, but it makes
the analysis easier. Analogous results would be obtained if we allowed recombination to occur
during all events, with a di�erent timescale of decorrelation.

Let us reformulate the evolution of allele frequencies during an event slightly more formally.
Using the notation Mt(dx,dκ) = ρt(x,dκ)dx of Section 2.3 with κ = (κ(1), κ(2)) ∈ K1 ×K2,
during a small event we sample k ∼ λS pairs of alleles κ1, . . . , κk ∈ K1 ×K2, and for every y
in the area of the event we have (assuming that k ≥ 2)

ρt(y,dκ) = (1− uS)ρt−(y,dκ) +
uS(1− rL)

k

k∑
i=1

δκi +
uSrL

k(k − 1)

∑
i 6=j

δ(κi(1),κj(2)).

On the other hand, during a big event we sample k ∼ λB pairs of alleles κ1, . . . , κk ∈ K1×K2

and for every y in the area of the event,

ρt(y,dκ) = (1− uB)ρt−(y,dκ) +
uB
k

k∑
i=1

δκi .

Let us now focus on the genealogies of a sample of individuals at both loci. Let β ∈ (α, 1]
and suppose that we sample two individuals at a distance O(Lβ) much larger than the radius of
the biggest reproduction events. We write (A,B) and (a, b) for their respective genetic types,
τLAa (resp., τ

L
Bb) for the coalescence time of the lineages ancestral to the two individuals at the

�rst (resp., second) locus. As explained earlier, what we are interested in is the correlation
between τLAa and τ

L
Bb. In particular, we ask the following question: Is there a distance D∗L such

that if the two individuals are sampled at a distance smaller than D∗L, the genealogies at their
two loci are correlated, whereas if they are sampled at a distance much larger than D∗L, the
two genealogies are essentially independent. The results we expose below give an answer in
the asymptotic regime L → ∞, which of course depends on the rate at which recombination
occurs. Before stating them, let us give an extension of Theorem 2.2 which is very similar to
what is proved in [26, 122] for the voter model and the stepping stone model with �nite-range
migration. To �x the notation, under PxL two individuals are sampled at distance xL on the
torus TL of sidelength L.

Proposition 2.1. (Prop. 1.2 in [EV12]). Let (xL)L≥1 be a sequence in (0,∞) such that
lnxL
lnL → β ∈ (α, 1] as L→∞. Then

(a) For all t ∈ [β, 1],

lim
L→∞

PxL
[
τLAa > ρLL

2(t−α)
]

=
β − α
t− α

.

(b) For all t > 0,

lim
L→∞

PxL

[
τLAa >

1− α
2πσ2

ρLL
2(1−α)(lnL)t

]
=
β − α
1− α

e−t,

where
σ2 = lim

L→∞

ρL
L2α

σ2
S + σ2

B.
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Indeed, if we consider again a single rescaled lineage L−αξLρL·, its mixing time on the rescaled

torus of sidelength L1−α is L2(1−α) ln(L1−α). On a much shorter timescale, it does not feel
that space is limited and thus behaves like in R2.

Proposition 2.1 gives the asymptotic coalescence time at a single locus. Let us now consider
both loci, de�ning τL := τLAa∧τLBb. There are two regimes, depending on how fast recombination
occurs.

Theorem 2.4. (Th. 1.4 in [EV12]). Let again (xL)L≥1 be a sequence in (0,∞) such that
lnxL
lnL → β ∈ (α, 1] as L→∞. Then if

lim sup
L→∞

ln
(
1 + (ln ρL)/(rLρL)

)
2 lnL

≤ β − α, (2.18)

we have
(a) For all t ∈ [β, 1],

lim
L→∞

PxL
[
τL > ρLL

2(t−α)
]

=
(β − α)2

(t− α)2
.

(b) For all t > 0,

lim
L→∞

PxL

[
τL >

1− α
2πσ2

ρLL
2(1−α)(lnL)t

]
=

(β − α)2

(1− α)2
e−2t.

Consequently, under Condition (2.18) (satis�ed for example when rL ≡ r ∈ (0, 1] does
not depend on L), asymptotically the coalescence times at the two loci become indepen-
dent. Note that, in fact, we would need to consider more general event probabilities such as
PxL(τLAa > ρLL

2(t−α), τLBb > ρLL
2(t′−α)) with t, t′ ∈ [β, 1] to draw such a conclusion. However,

Proposition 2.1, Theorem 2.4 and the Markov property are su�cient to give their asymptotic
behaviours and show the decorrelation claimed here.

When recombination is slower, we have instead:

Theorem 2.5. (Th. 1.5 in [EV12]). Suppose that (xL)L≥1 is as in Proposition 2.1 and that
there exists γ ∈ (β, 1) such that

lim
L→∞

ln
(
1 + (ln ρL)/(rLρL)

)
2 lnL

= γ − α, (2.19)

Then:
(a) For all t ∈ [β, γ],

lim
L→∞

PxL
[
τL > ρLL

2(t−α)
]

=
β − α
t− α

.

(b) For all t ∈ (γ, 1],

lim
L→∞

PxL
[
τL > ρLL

2(t−α)
]

=
(β − α)(γ − α)2

(γ − α)(t− α)2
.

(c) For all t > 0,

lim
L→∞

PxL

[
τL >

1− α
2πσ2

ρLL
2(1−α)(lnL)t

]
=

(β − α)(γ − α)2

(γ − α)(1− α)2
e−2t.
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Hence, until `time' ρLL2(γ−α) the genealogies at the two loci remain fully correlated and
conditional on not having coalesced by this timescale, they start behaving independently. Using
the de�nition of γ given in (2.19), we obtain that the amount of time the two loci need to
decorrelate is of the order of ρL(1 + ln ρL/(rLρL)). To phrase it di�erently and answer the
question on the critical sampling distance formulated earlier, we see that

D∗L := Lα

√
1 +

ln ρL
rLρL

.

Indeed, (1 + ln ρL/(rLρL)) is the order of magnitude of the time that two rescaled lineages
L−αξLρL· need to start evolving independently of each other. Hence, if they start a (rescaled)

distance much larger than (1 + ln ρL/(rLρL))1/2, the probability that they meet and merge
before the decorrelation timescale tends to 0 as L tends to in�nity.

Below we give the elements of the proof of Theorems 2.4 and 2.5 which explain the expres-
sion for the timescale of decorrelation. These elements give some clear insights into the local
mechanisms responsible for the correlation between nearby lineages and how to `escape' them.
In particular, this work led us to introduce the concept of e�ective recombination, which will be
at the basis of the most promising approach presented in Section 2.5 to infer some key statistics
of the evolution of a spatially structured population. Before that, let us draw some conclusions
on the linkage between the two loci. Theorems 2.4 and 2.5 give the behaviour of the lengths of
the genealogies at the two loci, when the lineages are sampled at a distance much larger than
the radius of the biggest events but possibly much smaller than the population range. Let us
now assume that mutations occur at some small rates θ1, θ2 > 0 along each ancestral lineage,
independently between lineages and between loci. As in Section 2.2, the probability of identity
by descent at the �rst locus (resp., at both loci) for two individuals sampled at some distance
xL is given by

ExL
[
e−2θ1τLAa

]
, resp., ExL

[
e−2(θ1τLAa+θ2τLBb)

]
.

Thanks to Theorems 2.4 and 2.5, approximate analytical expressions for these quantities can
be computed, see Equations (4) and (5) in [EV12]. Figure 2.4 and 2.5 illustrate the impact
of purely local reproduction events, as well as of rare but recurrent big catastrophes on the
probability of identity by descent (at one and then two loci) as a function of sampling distance.
We see from Figure 2.4 that already at a single locus, identity by descent decays much more
slowly in the presence of large events, implying that the correlation between local allele fre-
quencies at a given locus persists over longer spatial scales. Figure 2.5 compares the di�erent
curves obtained when decorrelation always happens (γ ≤ α), when the genealogies are always
fully correlated (γ ≥ 1) and when we have a transition between these two regimes (γ ∈ (α, 1)).
As expected, we see that the probability of identity by descent at both loci is higher in the
presence of large events (when ρL ≤ L2α), and there may be correlation between the two loci
even when individuals are sampled over large spatial distances.

Elements of the proofs of Theorems 2.4 and 2.5: The core of the proofs resides in
Figure 2.6. Indeed, we need to understand why and in how much time the lineages ancestral
to the alleles at the two loci of a single individual start behaving as if they were independent. To
this end, let us consider the individual carrying the pair of alleles (A,B). At the beginning, the
two lineages are merged since they start in the same individual. When the �rst recombination
event occurs, this lineage splits into two distinct ancestors sitting at distance less than 2RS of
each other (recall that recombination occurs only during small reproduction events). Because
they are geographically close, the two lineages are then very likely to merge again quickly
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Figure 2.4 � Probability of identity by descent at a single locus, as a function of β. Here,
L = 105, α = 0.1, ρL/L2α = 0.01 and θ1 = 10−3. The solid line corresponds to the case with
small and large events, the dash-dot line to the case with only small events. Geographical
correlations vanish around β = 0.32 without large events, and are positive up to β = 0.52
when large events occur.

Figure 2.5 � Probability of identity by descent at both loci, as a function of β. As in Figure 2.4,
L = 105, α = 0.1, ρL/L2α = 0.01 and θ1 = θ2 = 10−3. The solid line corresponds to the case
γ ≥ 1 (complete correlation for any β), the dotted line to the case γ ≤ α (decorrelation for
any β), and the dashed line to the intermediate case γ = 0.4. The dash-dot line corresponds
to the case without large events.

before moving far apart. However, if at least one of them were a�ected by a big event at a
time when the two lineages sit within two distinct individuals, their distance would become
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Figure 2.6 � Ancestral lineages of a single individual at two loci. Until a recombination event
occurs, the ancestors at the two loci are identical and so the ancestral lines are merged into a
single lineage. Then this lineage splits into two distinct lineages starting at nearby locations,
which are therefore likely to coalesce again after a short time. The number of such excursions
until they remain separated for a time long enough for at least one of them to be a�ected by
a large event when the two lineages are distinct (the red arrow) is of the order of ln(ρL).

of the order of O(Lα) and this would constitute an e�cient �rst step towards independence.
Let us thus de�ne an e�ective recombination as a recombination event followed by the lineages
becoming well-separated before merging again.

Let us �nd out how much time an e�ective recombination needs to take place. When the
ancestral lineages are merged, the time to the next recombination event is of the order of
O(r−1

L ) (since small events hit the lineage at a rate O(1) and the recombination probability is
rL during each event). Then the two distinct lineages start a small excursion away from each
other, during which they behave essentially like two independent �nite-variance random walks
on R2 until they come back at a small distance and merge again. For such an excursion to be
long enough to see a big event, it needs to last at least O(ρ−1

L ) units of time. Now, standard
results on �nite-variance random walks tell us that the probability that a given excursion lasts
at least ρL units of time is of the order of (ln ρL), which means that we need about ln ρL
excursions to see this happen. Considering that each `small' excursion lasts O(1) units of time,
we obtain that the time until the lineages jump far apart due to a big event is of the order of

(ln ρL)
(
r−1
L + 1

)
+ ρL ≈ ρL

(
ln ρL
rLρL

+ 1

)
.

Once they are separated, we can show that only a �nite number of big events are su�cient to
send the lineages far enough apart for them to start evolving independently. There only remains
to add the second individual with alleles (a, b) in the picture, and to compare the decorrelation
time of the lineages ancestral to A and B to the coalescence time of the lineages ancestral to A
and a. When decorrelation does not have the time to occur, the lineages starting in the same
individuals remain geographically close until they coalesce with the lineages ancestral to the
other individual, implying that τLAa ≈ τLBb. 2

Note that the results presented in this section concern the genealogy of pairs of individuals
sampled at very large distances. The separation of timescales between the very large amount
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of time that lineages starting in di�erent individuals need to come su�ciently close and the
remaining short time required to coalesce afterwards does not hold when the individuals are
sampled too close together. Nevertheless, in Section 2.5 we shall see how to use the main ideas
developped here to set up an inference method based on relatively local sampling to reconstruct
two paramount statistics of the genetic evolution of the population, namely the di�usion rate σ2

of lineages (or genes) through space and the neighbourhood size N summarising the competition
between gene di�usion and local coalescence.

2.4.3 Evolution at an interface

Up to now we have been mainly concerned with the ancestral relations within a sample of
individuals. Thanks to the duality relation (2.15) (which has not been explicitly given in the
case with recombination because of its notational load), we can then translate the information
we obtain on the system of coalescing marked partitions into properties of the more complicated
measure-valued forwards evolution. This is what we do in this section, in a slightly di�erent
setting than in the two studies reviewed earlier. The results presented here correspond to the
publication [BEV13a].

In Sections 2.4.1 and 2.4.2 we were interested in a population living in some large but �nite
range. In particular, we found the largest timescale on which several lineages sampled very far
apart could �nd a common ancestor. However, when the range of the population is very large,
it is likely that the past few hundreds of generations of evolution that we want to understand
are not su�cient to reach this largest timescale, corresponding to the mixing time of ancestral
lineages in the whole population range (that is, the amount of time after which a lineage has
been able to cross the population range many times). We now want to focus on an intermediate
time- and space-scale, during which ancestral lineages (and thus local genetic diversities) will
not feel that space is limited. To start with a simple case, we assume that individuals can be of
two types, or alleles, and we want to understand how the interface between two regions `held'
by di�erent alleles evolves in the long run. Again, we consider two cases: when reproduction
is only local, and when rare but large extinction-recolonisation events may happen.

In the notation of Section 2.3, we thus take Rd as the geographical space and K = {0, 1} as
the allele space. Since the density of individuals is constant across space and time, instead of the
measure Mt(dx,dκ) = dxρt(x,dκ) we can simply consider the local frequencies of individuals
carrying the allele 1, namely

wt(x) = ρt(x, {1}). (2.20)

Of course the mapping x 7→ ρt(x,dκ) used in the decomposition of Mt is de�ned up to a
Lebesgue nullset of Rd, and so is the function x 7→ wt(x). But what we are interested in is
the convergence of a rescaling of the measure wt(x)dx, and so the de�nition (2.20) does make
sense. We abuse notation and write again Mλ for the set of all mappings w : x → [0, 1]
quotiented by the equivalence relation

w ∼ w′ if Vol{x ∈ Rd : w(x) 6= w′(x)} = 0.

In this case, the duality relation (2.15) takes a simpler form: For every w0 ∈Mλ, t ≥ 0, k ∈ N
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and F ∈ Cc((Rd)k),

Ew0

[ ∫
(Rd)k

F (x1, . . . , xk)

( k∏
i=1

wt(xi)

)
dx1 · · · dxk

]

=

∫
(Rd)k

F (x1, . . . , xk)Ex

[ Nt∏
j=1

w0(ξjt )

]
dx1 · · · dxk, (2.21)

where in somewhat sloppy notation ({ξ1
t , . . . , ξ

Nt
t })t≥0 is the system of coalescing jump pro-

cesses recording the positions in Rd of the Nt ancestors, t units of time in the past, of a sample
of k individuals taken at x = {x1, . . . , xk} under Px.

Let us now introduce the two evolution rules in which we shall be interested. In both cases,
for simplicity we assume that the impact of all events is �xed to some u ∈ (0, 1], but the results
would hold in much greater generality.

� Case A (Local evolution): We also �x the radius of all events to some R > 0. That
is, µ(dr) = δR(dr) and the evolution happens through a Poisson point process of events
of intensity dt⊗ dz on R× Rd. All events have radius R and impact u.

� Case B (Rare large events): We �x α ∈ (1, 2) and set

µ(dr) =
1{r>1}

rd+α+1
dr.

This time the evolution is described in terms of a Poisson point process on R×Rd×(0,∞)
with intensity dt⊗ dz ⊗ µ(dr), all events having impact u.

Again, more general de�nitions of `local' or `rare large events' would lead to similar results,
but we concentrate on the most notationally simple framework. Recalling the expression for
the total rate of jump of a single lineage, J0 de�ned in (2.12), it is straightforward to check
that the condition J0 < ∞ is satis�ed in both cases. In Case B, this is guaranteed by the
indicator function 1{r>1} which prevents the lineage from accumulating in�nitely many tiny
jumps (as it would do if µ was de�ned without the indicator function).

Recall from the beginning of this section that we want to understand the evolution on an
`intermediate' timescale of an interface between two regions originally occupied by individuals
carrying di�erent alleles. Thus, we de�ne H as the half-space of positions in Rd whose �rst
coordinates are negative and we set w0 = 1H . That is, all individuals in H carry the allele
1, while all individuals in Rd \ H carry the allele 0. In addition, we consider the timescale
(nt, t ≥ 0), where n→∞ encodes what we mean by `intermediate'. The game is then to �nd
which spatial scales are relevant, in the sense that scaling space appropriately should lead to a
nontrivial limit as we let the parameter n tend to in�nity. To answer this question, the easiest
approach is to think again of the genealogies of a sample of individuals. In Case A, when
time is accelerated by a factor n, a given lineage jumps at rate nuVR (where VR is the volume
of the d-dimensional ball of radius R) to a new location at distance O(1). Thus, if we scale
down space by

√
n, we expect n−1/2ξn· to converge to Brownian motion with a clock speed σ2

given by the variance of the displacement of ξ over one (original) unit of time. Furthermore,
using the same arguments as in the proof of Theorem 2.2, we can show that whenever two
scaled lineages come within distance 2R/

√
n of each other, the additional time they need to

coalesce on the new timescale is negligible. Before gathering at a distance that enables them to
be in the range of the same reproduction events, the lineages evolve independently (again by
the independence of Poisson point processes restricted to disjoint subsets). Putting all these
ingredients together, and recalling that two independent Brownian motions meet only in one
dimension, we obtain the following result.
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Proposition 2.2. (Case A, Lem. 4.1 and 4.2 in [BEV13a]). For every k ∈ N and every
distinct x1, . . . , xk ∈ Rd, the scaled ancestral process({

1√
n
ξ1
nt, . . . ,

1√
n
ξNntnt

})
t≥0

starting at {x1, . . . , xk} converges, in the sense of the convergence of the �nite-dimensional
distributions, towards a system of independent Brownian motions with clock speed σ2. When
d = 1, the Brownian motions coalesce instantaneously upon meeting; in higher dimension they
never coalesce.

In fact we expect the sequence of scaled ancestral processes to be tight when starting from
distinct positions, and hence the convergence stated above should hold also in the sense of
weak convergence of càdlàg processes. But only the convergence of the �nite dimensional
distributions was necessary to obtain that of the corresponding forwards process, and so we
did not prove tightness in [BEV13a].

Let us now consider Case B. The form of the jump intensity (2.13) of a single lineage that
we obtain using the de�nition of µ makes us suspect that an α-stable process should appear
with the right scaling of space. This time a direct analysis of the genealogies of a sample, as
was done for the �rst case, is not easy. Instead, we write down the in�nitesimal generator of
the motion of a single lineage with time multiplied by n and space scaled down by n1/α, to
�nd out that indeed our scaled lineage converges to a symmetric α-stable process under this
scaling. Obtaining the limit of the generator of the scaled ancestral process with more than
one lineage is more di�cult, as the speed at which two nearby lineages coalesce through a very
quick series of small events explodes as n → ∞. However, if tε stands for the �rst time at
which at least two scaled lineages lie at distance less than ε > 0 without having coalesced, we
are able to show that for every set of distinct initial locations x = {x1, . . . , xk}, we have

lim
ε→0

Px

(
tε <∞

)
= 0.

This gives us that the martingale problem associated to the limiting generator has a unique
solution whenever the initial state {x1, . . . , xk} is such that mini 6=j |xi − xj | > 0 (see Lemma
5.2 in [BEV13a]). This generator Gα takes the form: for every f compactly supported and of
class C2, and every set x of distinct points in Rd with cardinality |x| <∞,

Gαf(x) =

∫
Rd

dy

∫ ∞
0

dr

rα+d+1

∫
B(y,r)

dz

Vr

∑
I⊂J(y,r,x),|I|≥2

u|I|(1− u)|J\I|
[
f
(
ΦI(x, z)

)
− f(x)

]

+ u

|x|∑
i=1

∫
Rd

dy

∫ ∞
0

dr
1{xi∈B(y,r)}

rα+d+1
(1− u)|J(y,r,x)|−1

×
∫
B(y,r)

dz

Vr

[
f
(
Φ{i}(x, z)

)
− f(x)−

〈
z − xi,∇if(x)

〉
1{|z−xi|≤1}

]
+u

|x|∑
i=1

∫
Rd

dy

∫ ∞
0

dr
1{xi∈B(y,r)}

rα+d+1
(1− u)|J(y,r,x)|−1

∫
B(y,r)

dz

Vr

〈
z − xi,∇if(x)

〉
1{|z−xi|≤1},

where J(y, r,x) = B(y, r) ∩ x is the number of points in x sitting in the area B(y, r) of an
event, ΦI(x, z) is obtained from x by withdrawing all the points of x∩ I and adding the single
point z, and 〈·, ·〉 is the scalar product in Rd. The last two terms describe the motion of a single
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lineage due to an event a�ecting it but not a�ecting the other lineages (even the |J(y, r,x)|−1
others lying in the region of the event). The �rst term describes the merger of several lineages
and the uniform choice of the parental location over the area B(y, r). We can now phrase the
analogue of Proposition 2.2 in the case of rare but large events.

Proposition 2.3. (Case B, Prop. 5.1 in [BEV13a]). For every k ∈ N and every distinct
x1, . . . , xk ∈ Rd, the scaled ancestral process({

1

n1/α
ξ1
nt, . . . ,

1

n1/α
ξNntnt

})
t≥0

starting at {x1, . . . , xk} converges, in the sense of the convergence of the �nite-dimensional
distributions, towards the system of coalescing symmetric α-stable Lévy processes solution to
the martingale problem associated to (Gα,x). Furthermore, in the limiting ancestral process
the number of lineages reaches 1 in �nite time a.s.

The last property says that any �nite sample of individuals will �nd a common ancestor
in �nite time a.s. This is not easy to see directly from the generator Gα, but �nding a lower
bound on the probability that two lineages coalesce before their distance doubles or is divided
by two, and observing that the time before any such event occurs when the two lineages are
at distance x is of the order of xα, we can show the following result.

Lemma 2.1. (Lem. 5.3 in [BEV13a].) Suppose two individuals are sampled at distance
x > 0 and their genealogy is described by the limiting process of Proposition 2.3. Let τ be
the coalescence time of their ancestral lineages. Then τ < ∞ a.s., and there exists a random
variable Z, a.s. �nite and independent of x, such that

τ � xαZ,

where � stands for stochastic domination.

Let us now see how these results translate into properties of the landscape of allele frequen-
cies. First, inspired by our analysis of the ancestries, let us set α = 2 in Case A and de�ne wn

for all n ∈ N by
wnt (x) := wnt

(
n1/αx

)
, x ∈ Rd, t ≥ 0.

Since w0 = 1H , we also have wn0 = 1H for all n. A simple change of variable shows that the
duality relation (2.21) holds also between wn and the scaled ancestral processes. Now the set of
functions of w considered in (2.21) is su�cient to characterise the convergence of a process with
values inMλ, and Theorem 4.1 in [45] (or a straightforward generalisation of this result in Case
B) asserts that there exists a unique Mλ-valued process dual to each limiting ancestry. We
can therefore conclude from Propositions 2.2 and 2.3 that in both cases A and B, the sequence
of scaled spatial Λ-Fleming Viot processes converges to the dual to the corresponding limiting
ancestral processes, in the sense of convergence of the �nite dimensional distributions (in fact
the one-dimensional distributions, but the �nite-dimensional distributions can be obtained by
considering a heterochronous ancestral process in which some subsamples are taken at di�erent
times). But the relation (2.21) does not readily give an explicit description of the local allele
frequencies. For example, we cannot obtain the moments of a given wt(x) since the k sampling
locations are a.s. distinct. However, the following general result enables us to fully describe
the forwards processes in these cases.
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Lemma 2.2. (Lem. 3.2 in [BEV13a]). Suppose that (wt)t≥0 is an Mλ-valued process
dual to an exchangeable and consistent system of coalescing Markov processes (Ξt)t≥0 through
the relations (2.21). Let (ξt)t≥0 denote the Markov process followed by a single lineage, and
suppose that the initial condition of w is such that for every t > 0, the map z 7→ Ez[w0(ξt)] is
continuous on Rd.

(a) If for every ε > 0 we have

lim
|y−x|→0

P
[
lineages 1 and 2 have not coalesced by time ε | ξ1

0 = x, ξ2
0 = y

]
= 0,

where the convergence is uniform with respect to x ∈ Rd, then for every t > 0 and a.e.
x ∈ Rd, wt(x) is a Bernoulli random variable with parameter Ex[w0(ξt)].

(b) If (Ξt)t≥0 is a system of independent Markov processes which never coalesce whenever
they start from distinct locations, then for every t > 0 and a.e. x ∈ Rd, wt(x) is
deterministic and equal to Ex[w0(ξt)].

Here, `exchangeable' means that the law of Ξ is independent of the way we label the
lineages; `consistent' means that for any j ∈ N, if Ξ starts with j + 1 lineages but we only
follow the evolution of the �rst j of them, we obtain a system of coalescing Markov processes
which has the same law as Ξ started with only j lineages. These two properties hold in the
framework of the spatial Λ-Fleming-Viot process. The proof of Lemma 2.2 is based on the
fact that thanks to the continuity of z 7→ Ez[w0(ξt)], we can recover the moments of wt(x) by
looking at the moments of the average frequency of allele 1 in small balls around x.

Using Lemma 2.2 and the di�erent properties we have shown on the limiting ancestries, we
can �nally conclude that:

Theorem 2.6. (Case A, Th. 1.1 in [BEV13a]). There exists an Mλ-valued process

(w
(2)
t )t≥0 such that

wn −→ w(2) as n→∞,

in the sense of weak convergence of the (temporal) �nite-dimensional distributions. Further-
more, at every time t ≥ 0, the local density of individuals of allele 1 can be described as follows.
If X denotes standard d-dimensional Brownian motion and

p2
t (x) := Px

[
Xσ2t ∈ H

]
, t ≥ 0, x ∈ Rd,

then
(a) If d = 1, for every t ≥ 0 and a.e. x ∈ R, w(2)

t (x) is a Bernoulli random variable
with parameter p2

t (x). The correlations between their values at distinct sites of R are
non-trivial and can be derived using the duality relation (2.21) with the ancestral process
obtained in Proposition 2.2.

(b) If d ≥ 2, for every t ≥ 0 and a.e. x ∈ Rd, w(2)
t (x) is deterministic and equal to p2

t (x).

Hence, in one dimension two alleles almost surely do not coexist at any given point, whereas
in higher dimensions the two alleles 0 and 1 do coexist at every site instantaneously. When
large reproduction events can happen, we obtain instead:

Theorem 2.7. (Case B, Th. 1.5 in [BEV13a]). There exists an Mλ-valued process

(w
(α)
t )t≥0 such that

wn −→ w(α) as n→∞,
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Figure 2.7 � Fixed radius in d = 1 on a line of length 20. (a) initial conditions; (b) after 105

events; (c) after 107 events. The model parameters are u = 0.8, r = 0.033, n = 103.

in the sense of weak convergence of the (temporal) �nite-dimensional distributions. Further-
more, there exists a symmetric α-stable process Xα such that if

pαt (x) := Px
[
Xα
t ∈ H

]
, t ≥ 0, x ∈ Rd,

then for every t ≥ 0 and a.e. x ∈ R, w(α)
t (x) is a Bernoulli random variable with parameter

pαt (x). The correlations between their values at distinct sites of Rd are non-trivial and can be
derived using the duality relation (2.21) with the ancestral process obtained in Proposition 2.3.

This time segregation between alleles occurs in any dimension. Comparing the results of
Theorems 2.6 and 2.7, we see that very large extinction-recolonisation events create correlations
between local genetic diversities over much larger spatial scales (n1/α �

√
n) than purely local

reproduction events. We also see that even in the dimensions where the α-stable process
describing the spatial motion of a single lineage does not hit points, the large events are
frequent enough to bring together two lineages which are far apart and make them coalesce
in �nite time. Let us end this section with a few simulations, performed by Jerome Kelleher
(University of Oxford).

In Figure 2.7, which shows an example of evolution with purely local reproduction in one
dimension, we can observe that starting from a half-line of individuals with allele 1, at any later
time we recover the same pattern. The only di�erence is that the boundary has moved. This is
due to the fact that in the limiting genealogies, lineages cannot jump over each other without
coalescing, and so we cannot �nd an individual with allele 0 inside a patch of individuals of
allele 1. In this case, the boundary moves according to Brownian motion with clock speed σ2.
On the other hand, when large events occur the lineages may jump over each other without
coalescing, and at any time t > 0, w(α)

t is the indicator function of a complex set. Figures 2.8
and 2.9 show an example in dimensions 1 and 2. In both �gures, the initial state mimicks the
occurrence of a large event, and the simulations show how quickly small events make the local
allele frequencies come back to 0 or 1 afterwards. It would de�nitely be of interest, at least
mathematically, to understand the fractal properties of the set of sites where individuals carry
the allele 1.
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Figure 2.8 � Variable radius in d = 1 on a line of length 20. (a) initial conditions; (b) after 100
events, full range; (c) after 100 events, zooming in; (d) after 106 events, full range; (e) after
106 events, zooming in. The model parameters are u = 0.8, n = 104 and α = 1.3.

Figure 2.9 � Model in d = 2 after (a) 105; (b) 106; and (c) 107 events. We have a square range
of edge 8, and the initial patch is a circle of radius 4 with frequency 0.8 (white is frequency 1,
black is 0). The model parameters are u = 0.8, α = 1.3 and n = 103.

2.4.4 The spatial Λ-Fleming-Viot process and its di�erent sources of ran-

domness

Until now we have remained a bit vague about the state space of the spatial Λ-Fleming-
Viot process (SLFV), the associated topology and possible path properties of the process
or its genealogies. Clarifying these points is the �rst goal of this section. Second, in this
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model di�erent sources of randomness combine to make the local genetic diversities evolve
in time. Indeed, once the Poisson point process of events is realised, the genealogies of a
set of individuals are still random, since the lineages present in the area of an event decide
independently of each other, and at random, whether they are a�ected by this event or not.
When we want to have an interpretation of the model in terms of a population of in�nitely
many individuals evolving through time, this additional randomness should thus appear. We
shall carry out a quenched particle construction of the spatial Λ-Fleming-Viot process which
will disentangle the di�erent sources of randomness and will enable us to add mutations in
a straightforward manner. However, this construction is not dynamic, in the sense that we
recover the value of the SLFV at a �xed time t ≥ 0 as the empirical distribution of a countably
in�nite collection of particles tagged by their alleles, but there are no links between the discrete
populations at two distinct times s and t. Our third goal is thus to turn the main ideas of the
individual-based construction into a system of interacting paths with levels, giving rise to a
look-down construction of the SLFV. These results correspond to the publication [VW15].

State space of the SLFV

Let us place ourselves in the general framework of Section 2.3. Recall that the geographical
space on which the population is distributed is Rd (for example) and the compact space of
possible alleles is denoted by K. The state space of the SLFV is the setMλ of all nonnegative
Radon measures on Rd ×K whose �rst marginals are Lebesgue measure on Rd. A standard
disintegration theorem (see e.g. [61], p.561) gives us thatMλ is in one-to-one correspondence
with the quotient of the space of all Lebesgue-measurable maps ρ : Rd → M1(K) by the
equivalence relation

ρ ∼ ρ′ ⇔ Vol
({
x ∈ Rd : ρ(x,dκ) 6= ρ′(x, dκ)

})
= 0

(recall thatM1(K) denotes the set of all probability measures on K). As mentioned several
times already, this correspondence is given by

m(dx, dκ) = dxρ(x, dκ).

We endowMλ with the topology Tv of vague convergence and the associated Borel σ-�eld. For
every k ∈ N, F ∈ Cc((Rd)k), and g1, . . . , gk ∈ C(K), we write Gg(κ1, . . . , κk) :=

∏k
j=1 gj(κj)

and de�ne the function Ik(· ; F ; g1, . . . , gk) onMλ by

Ik(m ;F ; g1, . . . , gk) :=
〈
m⊗k, F ⊗Gg

〉
. (2.22)

The following lemma gives some properties of the state space of the SLFV.

Lemma 2.3. (Lem. 2.1 in [VW15]).
(a) The space (Mλ, Tv) is compact.
(b) For every k ∈ N, F ∈ Cc((Rd)k), and g1, . . . , gk ∈ C(K), the function

Ik(· ; F ; g1, . . . , gk) is Tv-continuous onMλ.
(c) The linear span of the set of constant functions and of functions of the form

Ik(· ; F ; g1, . . . , gk), k ∈ N, F ∈ Cc((Rd)k) and g1, . . . , gk ∈ C(K) is dense in C(Mλ).

In particular, the set of functions of the form Ik constitute a wide enough family of tests
functions to show the vague convergence of a sequence of measures. In addition, we can put a
metric on the space DMλ

[0,∞) of all càdlàg paths with values inMλ, which will be useful for
instance in the look-down construction carried out below. The following lemma can be found
for example in Section 1 of [31].



2.4. NEUTRAL EVOLUTION 57

Lemma 2.4. (Lem. 2.2 in [VW15]). There exists a sequence (fn)n≥1 of uniformly bounded
functions in Cc(Rd × K) which separates points in Mλ. Furthermore, if (fn)n≥1 is such a
sequence, then

d(m,m′) :=
∞∑
n=1

1

2n
|〈m, fn〉 − 〈m′, fn〉|, m,m′ ∈Mλ,

de�nes a metric for the topology of vague convergence onMλ, while

∆
(
(mt), (m

′
t)
)

:=

∫ ∞
0

e−td
(
mt,m

′
t

)
dt

is a metric for the topology of locally uniform convergence on DMλ
[0,∞).

The quenched SLFV and its genealogies

Having speci�ed the state space on which we want to work, let us now de�ne again the
spatial Λ-Fleming-Viot process as in Section 2.3, but in a more constructive way. Indeed, to
make the link with biological populations (in particular for statistical purposes), we would like
to see the individuals of the population at some time t ≥ 0, or a large subset of them, as a
Poissonian sample from the measure Mt describing the landscape of local allele frequencies.
The functional duality relation (2.15) suggests that the alleles of these individuals may be
constructed from the initial state M0 ∈ Mλ in three steps. First, we �x a realisation of the
sequence of reproduction events; second, we trace back the genealogy of the countably many
individuals by choosing at random which lineages are a�ected or not by a given reproduction
event; lastly, every individual in the sample from time t receives the allele of its ancestor at
time 0, drawn from the allele distribution ρ0(ξt) at its location. Seen in this way, it is then
easy to add mutations in the evolution: Instead of inheriting the allele of its ancestor at time
0, each individual carries an allele obtained by starting a given mutation process from the
ancestral allele, and letting it run along the path in the genealogy leading to our individual.
A related motivation for the quenched approach (with respect to the law of the Poissonian
sequence of events) adopted below is that, if we now consider several loci or even a fraction
of the genome, the genetic diversities observed at these sites are correlated �rst and foremost
by the fact that they all �ow through the same sequence of events. Hence, any information on
this sequence brought by the analysis of the diversity at one locus yields some constraints on
the genetic diversity at other loci. A good understanding of these correlations is thus needed
to devise statistical tests of the occurrence of massive extinction-recolonisation events or of the
e�ect of natural selection.

Let us introduce some slightly di�erent notation, only for this section. Let µ be a σ-�nite
measure on (0,∞) and {νr, r > 0} be a collection of probability measures on [0, 1], satisfying∫ ∞

0

∫ 1

0
uVrνr(du)µ(dr) = J0 <∞.

(Again, Vr is the volume of the d-dimensional ball of radius r.) Let Π be a Poisson point
process on R × Rd × (0,∞) × [0, 1] with intensity measure dt ⊗ dz ⊗ µ(dr)νr(du). We write
P for the law of Π. The condition J0 < ∞ ensure that P assigns full measure to the set Ω of
point con�gurations ω = (ti, zi, ri, ui)i∈N with the properties that ti 6= t′i for i 6= i′ and that for
all s < t ∈ R and every bounded subset B of Rd,∑

i:s≤ti≤t,zi∈B
rdi ui <∞. (2.23)
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Figure 2.10 � An example of quenched genealogies. The area covered by each event is rep-
resented by a black horizontal line, whose height gives the time of occurrence of this event.
Four individuals are sampled at present time (corresponding to forward time t) at locations
x1, . . . , x4. Coming back into the past, the lineage ancestral to the �rst individual is a�ected
by the �rst event it encounters but not the second lineage, which is also in the area of the
event. However, they are both a�ected by the next event they encounter, and at that time
they merge into a single lineage starting from the uniformly chosen location of the parent.

In what follows, we call any con�guration ω an environment. We want to construct the random
SLFV measure Mt given an environment ω as the empirical distribution of the locations and
alleles of a set of countably many individuals. To this end, we start by introducing the quenched
genealogy of a sample.

Recall the notation ℘k(x) = {({1}, x1), . . . , ({k}, xk)} for the marked partition representing
a set of k distinct lineages whose positions are described by the vector x = (x1, . . . , xk). For
P-a.a. ω ∈ Ω and t ∈ R, let Pω,t℘k(x) denote the law of a system (Ah)h≥0 of coalescing marked
partitions evolving as follows:

� The evolution of A starts at time h = 0 and uses (backwards in time) only the events
(ti, zi, ri, ui) ∈ ω such that ti ≤ t.

� Whenever one or more lineages belong to the range of an event, each of the lineages
within B(zi, ri) takes part in this event with probability ui, or remains una�ected with
probability 1 − ui, independently of each other. All those lineages which are a�ected
merge into a single lineage whose location is uniformly distributed over B(zi, ri). Then
A remains constant equal to its new value At−ti until the next event of ω in the past
which encompasses at least one of the lineages and for which at least one of these
lineages takes part in the merger.

See Figure 2.10 for an example.

The condition J0 < ∞ guarantees that for any given t ∈ R, for P-a.e. environment ω,
with probability 1 no lineage in A started at `forwards' time t has an accumulation point of
jumps in the time interval [0,∞). Hence, for P-a.a. ω we can de�ne Pω,t℘k(x) (for all k ∈ N and

dx⊗k-a.a. x ∈ (Rd)k) on the space D of coalescing marked partitions whose mark processes
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have càdlàg paths in Rd. We write P t℘k(x) for the joint distribution on Ω×D de�ned by

P t℘k(x)(dω,da) := P(dω)Pω,t℘k(x)(da).

For a ∈ D and h > 0, we write a[h] for the restriction of a to the time interval [0, h].
Let us now introduce our �nal ingredient, namely a mutation mechanism. Let (Kt)t≥0 be a

Feller process with values in K, de�ned on some probability space (D̃, F̃ ,Q). For every κ ∈ K
and every genealogical tree a, rooted in a single individual and having n leaves at some time
h > 0, let us write

Qa
κ

[
n∏
j=1

gj
(
Kjh
)]
, g1, . . . , gn ∈ C(K)

to characterise the distribution of the alleles at the leaves when the root is of allele κ and
alleles evolve along the branches of a according to the mutation process K (we assume that
this evolution occurs independently along distinct subtrees emanating from the same vertex).
We can now de�ne the quenched spatial Λ-Fleming-Viot process with mutation.

Theorem 2.8. (Th. 1 in [VW15]). For P-almost all ω, there exists a unique Mλ-valued
time-inhomogeneous Hunt process (Mt)t∈R whose two-parameter semigroup is characterised as
follows: For every s ≤ t = s+ h ∈ R, m ∈Mλ, k ∈ N, F ∈ Cc((Rd)k) and g1, . . . , gk ∈ C(K),

Eωs,m
[〈
M⊗kt , F ⊗Gg

〉]
=

∫
(Rd)k

F (x1, . . . , xk)E
ω,t
℘k(x)

[∫
KNh

Nh∏
i=1

Q
Ai

[h]
κi

[ ∏
j∈Bih

gj
(
Kjh
)]
ρ
(
ξ1
h, dκ1

)
· · · ρ

(
ξNhh ,dκNh

)]
dx1 · · · dxk,

where m = dxρ(x,dκ) and A1
[h], . . . ,A

Nh
[h] is the forest of Nh trees describing the genealogy of

the sample between times 0 and h (in the past, starting from the `forwards' time t).

This is just a formalisation of the construction given in words a few paragraphs earlier.
Taking s = 0 and using the time homogeneity of the Poisson point process of events, we obtain
the annealed SLFV as a direct corollary to Theorem 2.8.

Corollary 2.1. (Cor. 2.4 in [VW15]). There exists a unique Mλ-valued Hunt process
(Mt)t≥0 such that for every m ∈Mλ, t ≥ 0, k ∈ N, F ∈ Cc((Rd)k) and g1, . . . , gk ∈ C(K),

Em
[〈
M⊗kt , F ⊗Gg

〉]
=

∫
(Rd)k

F (x1, . . . , xk)E℘k(x)

[∫
KNt

Nt∏
i=1

Q
Ai

[t]
κi

[ ∏
j∈Bit

gj
(
Kjt
)]
ρ
(
ξ1
t ,dκ1

)
· · · ρ

(
ξNtt ,dκNt

)]
dx1 · · · dxk.

When there are no mutations, i.e., when K is the constant process equal to its initial value,
we recover the de�nition of the SLFV given in (2.15).

Before expounding the main ideas of the proof of Theorem 2.8, let us give a few properties
of the quenched SLFV which can be proved using this construction. First, Theorem 2.8 tells
us that it is a strong Markov process with càdlàg paths. In the absence of mutation, it has
even stronger paths properties, due to the P-a.s. property (2.23).
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Lemma 2.5. (Lem. 2.6 in [VW15]). For P-a.e. environment ω, the quenched SLFV
without mutation has paths of �nite variation Pω-a.s.

Finally, again using the analysis carried out in the proof of Theorem 2.8, we can also show
an interesting property of the genealogical process. A coalescent is said to come down from
in�nity if, starting with countably many lineages, there exists a time in the past at which
the number of ancestors is �nite. For non-spatial (exchangeable) coalescents, it is known that
whenever the quantity corresponding to the impact u here is always less than 1, then either
the coalescent comes down from in�nity instantaneously with probability 1, or the number of
ancestors remains in�nite for all times a.s. (see, e.g., [100] and references therein). The question
is more di�cult when the population has a spatial structure, since migration could separate the
lineages before they have an occasion to merge in the same local population. Several results
of coming down or not coming down from in�nity have been obtained in di�erent models, for
instance in [4, 50, 75]. In the framework of the SLFV, we can show that whenever the condition∫ ∞

0
νr({1})µ(dr) = 0 (2.24)

holds, a countable sample of individuals taken from some region of space has in�nitely many
ancestors at any time in the past, with probability 1. In other words, when the impact
parameter of an event is always less than 1 (which is the meaning of Condition (2.24)), the
structured coalescent describing the genealogy of an in�nite sample never comes down from
in�nity. More formally:

Proposition 2.4. (Prop. 5.2 in [VW15]). Suppose that (2.24) holds. Let N be a Poisson
point process on B(0, 1)×[0,∞) with intensity measure 1B(0,1)(x)dx⊗d` (i.e., Lebesgue measure
for both coordinates), and let us use {({i}, xi) : (xi, `i) ∈ N} as the initial value for the
ancestral process corresponding to the quenched SLFV. Then for P-a.e. environment ω, at any
time t > 0 the set of ancestral locations at time t contains a Poisson point process on B(0, 1)
with in�nite intensity. In particular, the spatial Λ-coalescent never comes down from in�nity.

The proof of this result reveals that, more precisely, at any time in the past a positive
fraction of the lineages have not yet been a�ected by an event (and therefore are still singletons).

Elements of the proof of Theorem 2.8: an individual-based construction

The key concept in the proof of Theorem 2.8 is that of parental skeleton. To �x ideas,
take s = 0 and �x an environment ω. We want to construct a countably in�nite population
at time t > 0, uniformly spread over Rd, in which the allele of each individual is determined
by the allele of its ancestor at time 0 (possibly modi�ed by a mutation process). Now, to
each event of ω occurring in the time interval [0, t] corresponds a parent, whose location zi is
chosen uniformly at random in the area of the event. Identifying the parent with its location
and reproduction time, we can thus start an ancestral lineage from each of these space-time
points (zi, ti) and make them be a�ected and potentially merge, or not, during each event in
the past in which they sit. See Figure 2.11. We stop this process once we have come back
to forwards time 0. To allocate an allele to every parent, it now su�ces to sample the alleles
of their ancestors at time 0 according to the initial distribution ρ0 at their locations, and to
run the mutation process K along the branches of the genealogies. This gives us a parental
skeleton labelled by the alleles of all parents.

Let now Ñ1 be a Poisson point process on Rd with intensity dx, representing countably
many individuals living at time t. To decide of their alleles, we simply have to see whether
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Figure 2.11 � Parental skeleton. Each horizontal line represents the area and time of a re-
production event. The location of the corresponding parent is represented by a circle. The
ancestral lineage of this parent remains at its position until the �rst event in the past during
which it belongs to the fraction of o�spring created. At this time, it jumps to the location of
the parent in this event. See the paragraph around Figure 2 in [VW15] for a full description
of the notation.

and when their ancestral lines joins the parental skeleton. Indeed, if a given lineage is a�ected
for the �rst time by an event occurring at time ti ∈ [0, t], then we start the mutation process
from the allele of the parent during this event, and run it for t− ti units of time to obtain the
allele of the corresponding individual. If it is not a�ected by an event in [0, t], then we sample
an allele from the allelic distribution ρ0 at its location and run the mutation process, starting
from this allele, for t units of time. In this way, we can de�ne a random point measure N1 on
Rd×K by considering each pair of x ∈ Ñ1 and the associated allele. Letting now Ñ1, Ñ2, ... be
an i.i.d. sequence of Poisson point processes and performing the same construction to obtain
a sequence (Nn)n∈N of point measures on Rd × K, we see that conditionally on the labelled
parental skeleton, the Nn's are i.i.d. and so it is straightforward to conclude from the strong
law of large numbers that 1

n(N1 + · · ·+Nn) converges almost surely, for the topology of vague
convergence, towards a random limit M0,t. There remains to check that this random measure
satis�es the duality relation stated in Theorem 2.8, which can be done by using simple moment
properties of Poisson point processes.

Remark 2.4. We see from this sketch of proof that we may have chosen many other repro-
duction mechanisms based on a Poisson point process Π of events. For example, an event
could be speci�ed by its time, centre, the variance of the Gaussian kernel from which we draw
a parental location (around the centre of the event), and the variance of the Gaussian kernel
used to kill and replace individuals depending on their distance to the centre of the event. As
detailed in Section 4.3 of [VW15], many variants of the SLFV process presented in this thesis
can be constructed by a similar procedure.

Remark 2.5. We have to note that in our model, mutations occur between the reproduction
events, and not during them as we could expect. But the construction carried out here is only
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an example of the many ways in which mutations may be included in the evolution of the
population. It corresponds to a situation where most reproductions have a microscopic e�ect
on the local allele frequencies but allow mutations to occur and the events of ω model the rarer
events having a macroscopic e�ect. We could instead decide that the process of mutations along
the branches of the tree jumps only at the internal nodes, which would lead to another SLFV
with mutations.

A look-down construction

As we mentioned earlier, the individual-based construction carried out in the proof of The-
orem 2.8 does not give a dynamic picture of a population of countably many individuals repro-
ducing and dying as time goes on, since the marked Poisson point processes Nn constructed for
any given pair (s, t) of times have nothing to do with those corresponding to another pair (s′, t′)
of times. A now standard way of obtaining such a global particle representation, constructing
the measure-valued forwards process (Mt)t≥0 and the backwards ancestral process (At)t≥0 on
the same probability space, is to set up a look-down construction. This type of construction
was introduced in [31, 32] and since then they have been used in various contexts, see for
example [13, 14, 71]. Introducing a spatial structure complicates the matter as a lot of the
exchangeability required between the ancestral lineages is lost due to the dependence of their
behaviours on their spatial locations. It was done in [30] for continuum-sites stepping-stone
models in which the genealogy consists in Feller processes which coalesce upon meeting, and in
[42] to obtain (as a particular case) the convergence of the individual-based Poissonian model
mentioned in Remark 2.2 to the spatial Λ-Fleming-Viot process as the density of individuals
tends to in�nity. These two approaches are rather di�erent from that described below.

The main ideas of our construction are the following. Let us �x an environment ω and an
initial measure m ∈ Mλ. We start at time t = 0 with a Poisson con�guration of particles on
Rd× [0,∞) with intensity measure dx⊗d`. The �rst component is the particle's position, and
the second will be called the particle's level. While the levels stay �xed in time, the locations
ζjt , given the environment ω = (ti, zi, ri, ui)i∈N, perform independent jump processes: At each
time ti such that ζjti− ∈ B(zi, ri), the particle at level `j tosses a coin with success probability
ui, independently of everything else. If the coin comes up with `success', the particle jumps
to a location ζjti which is chosen uniformly at random within B(zi, ri) (again independently of

everything else). This mimicks the death of the individual sitting at ζjti− and the birth of a
new individual at some uniformly distributed location.

More formally, let us de�ne the forwards in time motion (ζt)t≥0 of the (sequence of) in-
dividual(s) occupying a given level as above. Let us write Pωx for the probability measure
on D under which ζ starts at x ∈ Rd (where D de�ned earlier is seen here as the space of
coalescing càdlàg paths with values in Rd). Let us now de�ne a Poisson point process N on
Rd × D × [0,∞) with intensity measure dxPωx (dζ) ⊗ d`. In words, we de�ne a Poisson point
process of trajectories starting at a Poissonian set of points of Rd and jumping thanks to the
events of ω. In addition, each of these trajectories receives a label in R+, which will serve later
to decide who reproduces. Because Lebesgue measure is invariant under the dynamics of ζ, at
any time t ≥ 0 the set of pairs (ζjt , `j) still forms a Poisson point process on Rd × [0,∞) with
intensity dx ⊗ d`. This result holds true in particular at the �xed times of the events of ω,
which guarantees that the spatial location of the individual with lowest level that jumps during
a given event is uniformly distributed over the ball of the event. Thus, let us decree that this
individual is the one which reproduces during the event, and that all `newborns' (i.e., levels j
such that ζj jumps during the event) look down on this lowest level and adopt its allele. Of
course we have to assign an allele to each of the individuals living at time 0, which we do by
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sampling this allele from the distribution at time 0 at its location. In this way, we obtain a
well-de�ned system of countably many paths in Rd×K, labelled by levels in R+. Then it is not
di�cult to show that the genealogical process of a sample of individuals taken at time t, i.e.
the process of ancestral partitions marked by the locations of the individuals in the past from
which our sample inherited their alleles, has the same distribution as the genealogical process
of the quenched SLFV between times 0 and t. Consequently, as in the proof of Theorem 2.8,
the empirical measure of the set of pairs of locations and alleles of all individuals alive at time
t and with levels in [0, n],

Mn
t :=

1

n

∑
j:`j≤n

δ
(ζjt ,K

j
t )
,

converges in distribution as n → ∞ to the quenched SLFV at time t, Mt (with initial value
M0 = m). Note that to simplify the exposition there are no mutations in this construction,
but it su�ces to let the mutation process run independently on each level between two events
to obtain the quenched SLFV with mutation.

In fact, the convergence holds in a pathwise manner. Recall from Lemma 2.4 the topology
of uniform convergence over compact time intervals with which DMλ

[0,∞) is equipped.

Theorem 2.9. (Th. 2 in [VW15]). For P-a.e. environment ω, the sequence (Mn)n≥1

converges Pω-a.s. towards a process (M∞t )t≥0 which has the same law as the quenched spatial
Λ-Fleming-Viot process of Theorem 2.8 with initial condition M0 = m. This convergence is
uniform over compact time intervals.

The proof of Theorem 2.9 is inspired by the technique of [14]. The facts that we work with
a �xed con�guration of events and that reproduction occurs only locally in space introduce
some technical issues that are overcome by controlling the number of events occurring and of
particles present in a given area over a �xed interval of time (see the proof of Lemma 4.5 in
[VW15]).

2.5 Inference in two dimensions

The spatial Λ-Fleming-Viot process, like other detailed models of evolution for a spatially
structured population, is formulated in terms of a set of parameters. Even when there is only
a small number of them, trying to reconstruct all of them may not be the most relevant goal to
pursue. Indeed, these parameters describe the idealised way in which the individuals reproduce
and transmit their genes in the model, but as we saw with the Wright-Fisher model for instance,
they are not necessarily meant to re�ect the biology of the organisms. Hence, to gain some
understanding of the evolution of the population, instead of focusing on the reconstruction of
the whole collection of parameters (among which there may be some auxiliary quantities), we
should rather try to �nd a few summary statistics describing the �uctuations in local genetic
diversities in a quantitative way, and devise statistical methods to infer them from data. This
is our aim in this section, which corresponds to the publication [BEKV13a]. We focus on the
most biologically relevant case of a two-dimensional spatial distribution.

To start with, recall from (2.10) the Wright-Malécot approximation for the probability
F (x) of identity by descent of two individuals sampled at some separation x ∈ R2 when the
individual mutation rate is µ > 0 (which can also be seen as the Laplace transform of the
coalescence time T of their ancestral lineages):

F (x) = Ex
[
e−2µT

]
≈ F̃ (x) :=

1

N + ln(`/κ)
K0

(
‖x‖
`

)
, ‖x‖ > κ,
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where K0 is the modi�ed Bessel function of the second kind of order 0, σ2 is the speed of
the di�usion that describes the motion of a single lineage in the long run, ` = σ/

√
2µ is

a characteristic length, N is Wright's neighbourhood size which compares gene di�usion to
local coalescence rates (see below), and �nally κ is the local scale over which we consider the
probability of identity by descent as being approximatively constant. (In practice, κ is not
a very interesting parameter, as it is only a mathematically convenient way to cope with the
explosion of the Bessel function at 0, and does not have a real biological meaning.) This
approximation holds in a quite general class of models, in which the motions of two ancestral
lineages have �nite variance and are independent whenever they are far enough from each
other, and coalescence can occur only when the lineages are `reasonably' close together. For
instance, in a stepping stone model with Wright-Fisher resampling within each deme of �xed
size 2N and migration according to a discretised Gaussian kernel with variance s2, it holds
with σ2 = s2 and N = 2πσ2 × (2N) (where the 2N should be read as the inverse of the local
coalescence rate 1/(2N)). In the SLFV with all events having a �xed radius R, a �xed impact
u ∈ (0, 1) and such that a �xed number ν ≥ 1 of individuals reproduce during each event, we
have σ2 = uπR4/2 and N = ν/u (see Figure 2.12). Since we suppose that the probability of
identity by descent is approximately constant over distances less than κ, in both examples κ
can be obtained (as a function of σ2, µ and N ) by solving F̃ (κ) = F̂ (0), where F̂ (0) is the
supposedly observable probability of identity by descent for two individuals sampled close-by
(here we have abused notation by seeing F̃ as a function of distance instead of separation
in R2). The quantity F̂ (0) can be obtained by simulation if we want to �t the probability
of identity by descent in a given model with its Wright-Malécot approximation, or it can be
estimated by sampling pairs of individuals locally when we want to apply this approximation
to some real population. More generally, if σ2

e is the e�ective variance of the long-term motion
of a single lineage and if we de�ne ρe, the e�ective population density, as half of the inverse of
the integral over all x ∈ R2 of the rate at which two lineages at separation x coalesce, we have
N = 4πσ2

eρe. Note that ρe could be considerably lower than the actual population census size,
as we already discussed in the context of the Wright-Fisher model without space. We refer to
[6] and Appendix A of [BEKV13a] for the derivation of this result and more examples.

We thus see that the two (or three) compound parameters σ2 and N (and κ) summarise
the long-term evolution of the population somewhat independently of the �ne details of the
two-dimensional structure of the population. Hence, let us suppose that our population evolves
in such a way that the Wright-Malécot formula is a good approximation for the probability
of identity by descent of two individuals sampled at some `intermediate' distance. We want
to devise some statistical methods to reconstruct σ2 and N from di�erent types of data. The
�rst approach presented below uses measures of the local allele frequencies. We shall see
that, unfortunately, it enables us to infer N and an analogue of κ, but not σ2. Our second
approach is based on the typical length of a block of conserved sequences. More precisely,
instead of sampling many individuals to estimate the local allele frequencies at a given locus at
distinct locations, we sample a moderate number of individuals at several pairwise distances
and consider a long stretch of their DNA. For each pair sampled at distance r, we look at
the typical length of a connected region of DNA at which the two individuals' sequences are
identical because they were inherited from a recent common ancestor.

In all that follows, we suppose that we sample our individuals in a large region of space
D such that we can �nd a reference time t∗ (of the order of a few hundred generations ago)
satisfying

diam(D)2

σ2
� t∗ � 1

µ
, (2.25)
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Figure 2.12 � Probability of identity by descent plotted against distance for the spatial Λ-
Fleming-Viot model with parameters ν = 1, R = 1.5, λ = 1, u = 0.5 with a mutation rate
µ = 10−4 on a torus of diameter 64 (Here we assume that each lineage is hit by a mutation at
rate µ). The numerical solution to the integro-di�erential equation satis�ed by the probability
of IBD, simulations and the Wright-Malécot solution (with κ ≈ 1.34), are shown. Simulation
results report the mean identity over 105 replicates.

where σ and µ are as in the Wright-Malécot formula and diam(D) stands for the diameter
of D. The left part of Condition (2.25) ensures that over the last t∗ units of time in the
past, the lineages of a sample of individuals have the time to homogenise their positions in
D or to leave the area for a very long while. As in the study presented in Section 2.4.1, this
enables us to assume that the allelic distribution in D (i.e., the average allele frequencies over
the whole region D) has remained approximately constant to some quasi-equilibrium over this
lapse of time. Moreover, if an escapee �nally comes back and �nds some common ancestor
with the rest of the sample, the time it took it to come back allows for the apparition of
mutations di�erentiating its allele from the others, rendering its long excursion observable.
On the other hand, the right part of Condition (2.25) ensures that those lineages which did
not escape coalesce before mutating. In particular, the alleles present in a sample are all
distinguished from each other by mutations much deeper than t∗ in the genealogy. This makes
our two methods robust to the deep and possibly complex history of the population, since
they are based only on the dichotomy quick coalescence/long excursion away separated by our
intermediate reference time t∗.

Inference based on allele frequencies

This �rst approach is based on a variant of Wright's FST statistic (2.7). Suppose we
observe m alleles in the region D, and write pi(x) for the frequency of the i-th allele at
location x at sampling time. Let also p̄i be the frequency of the i-th allele in D (assumed
to have remained at a quasi-equilibrium over the last few hundred generations). We want to
compare the correlations in allele frequencies between two sampling sites at a speci�c distance
r to those between two sampling sites chosen uniformly at random within D. To �x the
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notation, let us write Pr for the distribution of the paths in R2 followed by the ancestral
lineages of two individuals sampled at distance r and T for their coalescence time. Under PD,
the two individuals are sampled independently and uniformly over D. In accordance with our
assumption of local equilibrium in D, we assume that if the two lineages have not coalesced by
time t∗, the chance that they are of di�erent alleles is independent of their initial separation
and is given by H(t∗), the heterozygosity at time t∗ in the past. Hence, if

Hr = 1− E
[ m∑
i=1

pi(x)pi(y)

]
is the heterozygosity between two sites x, y sitting at distance r, we have

Hr = Pr(T > t∗)H(t∗)

and if we now de�ne our distance-dependent analogue of Wright's FST by

F ′(r) :=
HD −Hr

HD
, (2.26)

(where HD is the average heterozygosity over pairs of locations in D), we obtain that

F ′(r) =
PD(T > t∗)− Pr(T > t∗)

PD(T > t∗)

is independent of H(t∗).

Remark 2.6. Note that the classical approach that we have seen in particular in the island
model and (2.7) is based on a comparison of the coalescence times with the timescale of mu-
tation instead of the reference time t∗, which corresponds to replacing t∗ by an exponential
random variable with parameter 2µ in the de�nition of F ′(r). However, the return time to a
neighbourhood of the origin for a �nite variance symmetric random walk in two dimensions
has in�nite expectation, and so has the coalescence time of two lineages. As a consequence, the
approximation

Er[e−2µT ]− ED[e−2µT ]

1− ED[e−2µT ]
≈ ED[T ]− Er[T ]

ED[T ]

does not hold and the statistic we would obtain in this way would depend on our estimate of
the mutation rate µ (usually not available).

Using some estimates on continuous-space random walks to compare Pr(T > t∗) to the
reference P0(T > t∗), we can write that

F ′(r) ≈ F̃ ′(r) :=
ln(r̄/r)

N + ln(r̄/κ′)
,

where r̄ is the geometric mean of the distance of all possible pairs of individuals sampled
from D, N is as in the Wright-Malécot formula and κ′ is a local scale chosen so that

F̂ ′(0) ≈ F̃ ′(κ′) =
ln(r̄/κ′)

N + ln(r̄/κ′)
,

where as before F̂ ′(0) is the supposedly observable value of F ′ for very small sampling distances.
Here again, the parameter κ′ is a model- (or data-)dependent distance over which F ′ is assumed
to be nearly constant (its relation to the parameter κ appearing in the Wright-Malécot formula
is not clear).
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Figure 2.13 � Likelihood surface based on ten `loci' sampled from a 10 × 10 patch within the
40×40 population; log likelihood is plotted against N (x-axis) and κ′ (y-axis). The MLE (red
dot) is N = 34.75, κ′ = 0.475; the true N = 31.4, κ′ = 0.48 (black dot), with log-likelihood
lower by 1.5. Contours are spaced at 2 units of log-likelihood, so that the inner circle indicates
the support limits for each parameter.

Remark 2.7. Observe that, unfortunately, the approximation for F ′(r) is independent of σ
which will thus not be reconstructible by such a method. By analogy with the Wright-Malécot
formula for which we usually do not know the mutation timescale 1/µ, and thus cannot estimate
σ2 from the knowledge of N , κ and F̂ (0), here we do not know exactly the timescale to which the
coalescence times are compared (the dichotomy between quick coalescence and long excursions
away is very crude) and r̄ only implicitly contains some information on σ2 (via the condition
diam(D)2 � σ2t∗).

On the other hand, if for every pair of sampling sites x and y we de�ne

F(x, y) :=
1

m− 1

m∑
i=1

(pi(x)− p̄i)(pi(y)− p̄i)
p̄i

,

then using the quasi-equilibrium assumption for the average allele frequencies and the fact that
Hr = Pr(T > t∗)H(t∗), we can show that

E
[
F(x, y)

]
= F ′(‖x− y‖),

so that F(x, y) provides a statistic for F ′(r). A maximum likelihood approach based on these
results and on the assumption that the current local allele frequencies pi(x) are small Gaussian
deviations from their means p̄i is presented in Section 4.2 of [BEKV13a]. Figure 2.13 shows
an example of likelihood surface for the parameters N and κ′ obtained by implementing this
method. Since it does not allow us to reconstruct σ2, we do not give more details but rather
turn to the more promising second approach.
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Inference based on lengths of conserved blocks

The previous method fails to identify σ2 because it is only based on the dichotomy between
short or long coalescence times, and therefore does not enable us to date the recent coalescence
events su�ciently precisely to obtain an estimate of how quickly two lineages initially at some
distance r took to meet and coalesce. However, if we consider long stretches of DNA instead
of a set of independent nonrecombining loci, recombination will have occurred relatively often
in the recent past and will provide an additional evolutionary clock. Indeed, two genomes that
share an ancestor t generations in the past will share a portion 2−t of their genomes, in blocks
of map length ∼ 1/t. Here and thereafter, lengths of blocks of DNA are measured in Morgans,
a Morgan being de�ned as the sequence length over which we see on average one recombination
per generation. Thus, sharing exceptionally long blocks indicates recent common ancestry and
the block size gives an approximate date for that ancestry. This idea is exploited by [93] to
identify recent shared ancestry in a sample of 2257 Europeans (the POPRES dataset).

There is a subtlelty that we must take into account if we want to exploit recombination
in this way. If a recombination event occurs, then at that moment in time, the two resulting
ancestral lineages are adjacent to one another. As we have seen in Section 2.4.2, often they
will coalesce again before time t∗ and, since we are assuming that there will be no mutations
over that period, the recombination event will not be visible in our data. However, with some
probability they do not coalesce by time t∗. If this happens, this is typically because they
have escaped far from one another. As a result, they only coalesce in the distant past and
we do expect to see some mutations occur before that time. It is these recombination events
that we expect to be able to detect and in keeping with Section 2.4.2, we call them e�ective
recombination events. Because an `ine�ective' recombination can change the genealogy of the
sample in a way which is not detectable in the data, the resulting distribution of detectable
blocks is very complex. We thus consider only two particular regimes, (a) when neighbourhood
size is so large that two recombinants never coalesce again before t∗ (i.e., all recombination
events are e�ective) and (b) when neighbourhood size is small enough that if they do not
manage to escape from each other, two recombinants coalesce back very quickly and this
`ine�ective recombination' does not change the genealogy (this case corresponds to the regime
of parameters studied in Section 2.4.2 over much larger spatial scales, and with the additional
occurrence of large events). In what follows we suppose that we sample two individuals at
some distance r (still in the region D) and look at the length of a block of DNA which is
identical in the two individual sequences. Again, we write T for the coalescence time of the
ancestral lineages of the sample.

Let us start with the case of large N . Recall that recombination occurs at rate 1 on every
unit length of sequence measured in Morgans, independently between the two lineages we
consider. Thus, if we �x a focal locus and move along the genome in a given direction from
there, conditionally on the coalescence time T at the focal locus the length B of the portion of
genomes shared by the two individuals is an exponential random variable with parameter 2T .
Now, the Wright-Malécot formula gives us an approximation for the Laplace transform of the
distribution of T , and so from this it is easy to obtain that

Pr[B ≥ b] ≈
− ln r − ln(

√
1− e−2b/σ)

N − ln(
√

1− e−2b)
.

Since recombinants never coalesce again, distinct `half-blocks' of shared sequence are indepen-
dent and so the above probability can be inferred from the tail distribution of the empirical
CDF of the size of a half-block.



2.5. INFERENCE IN TWO DIMENSIONS 69

In the more complicated case of small neighbourhood size, we need to �x a model to
compute an approximation for the escape probability of two nearby lineages. The expression
we obtain below is actually not exactly in terms of σ2, N and κ, but we shall argue that
the tail of the distribution of the conserved blocks depends only on these three parameters.
Hence, let us work with the SLFV in which all events have radius R > 0, impact u ∈ (0, 1)
and ν ≥ 2 parents are chosen each time. We also suppose that loci are discrete (instead of
continuous as in the previous case) and linearly organised on the genome, and that during
a reproduction event seen backwards in time the probability that two neighbouring loci are
inherited from distinct parents is ρ ∈ (0, 1). Assume again that we sample two genomes
at distance r, supposed to be large compared to the radius R of a reproduction event. As
we already mentioned, for a given individual, whenever two recombinant lineages are created
(both of which being ancestral to that individual but at di�erent loci), either they coalesce very
quickly or they manage to escape from one another and only coalesce in the distant past, by
which time they have accumulated many mutations. For a given locus, in order to see identity
by descent at this locus in our sample of size two, the lineages ancestral to the two individuals
must have coalesced in the recent past. Thus, a block of consecutive loci that are identical
by descent will have length b if an e�ective recombination happens for one of the individuals
between the b-th and b + 1st loci, the (very few) lineages ancestral to the two individuals at
the b loci in IBD coalesce quickly, while the lineages ancestral to the two individuals at the
b+ 1st locus escape from one another instead of coalescing quickly. To be a bit more precise,
let us de�ne a coalescence to be quick or early for two lineages initially at distance r if it takes
place before an exponentially distributed time with mean r2/2σ2 (the minimal amount of time
required for two lineages at distance r � R to meet and possibly coalesce). The reason for
this de�nition is that we then implicitly suppose that if a coalescence is quick, it happens in
this minimal exponentially distributed amount of time indeed; we then expect these `early'
coalescence events to generate the largest blocks of identity by descent. Let us also de�ne a
recombination to be e�ective if the recombinant lineages become separated by distance r before
they coalesce again. Because the probability that a recombination is e�ective is very small, we
can make the approximation that e�ective recombination events between two neighbouring loci
occur at rate ρeff(r) := (πR2uρ)α(r), where πR2uρ is (truly) the rate at which recombination
occurs between these loci in the SLFV and α(r) is the probability that the resulting lineages
move away at distance r instead of coalescing. As shown in Appendix C2 of [BEKV13a],
the function α is solution to an equation that can be solved numerically. Putting all these
ingredients together, we obtain that the probability that an e�ective recombination occurs
between the b-th and b+1st loci in one of the two individuals' ancestry is approximately equal
to

2ρeff(r)

2ρeff(r) + 2σ2/r2
.

(Note that the quantity ζ(r) appearing in the statement of Theorem 1 in [BEKV13a] is not
r2/(2σ2) as it is unfortunately de�ned in the paragraph just before this statement, but instead
is ζ(r) = (σ/r)2 as de�ned in Appendix C1.) Finally, the probability that the lineages at
the b+ 1st locus, which have reached distance r, do not coalesce quickly is obtained from the
Wright-Malécot formula with µ = σ2/r2 (and N = ν/u):

Pr(no early coalescence) = 1− K0(
√

2)

N + ln(r/(κ
√

2))
.

Combining the above, we obtain the following result.
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Theorem 2.10. Suppose we sample two individuals at distance r and let X be the length of
a block of consecutive loci at which the two individuals are identical by descent because of an
early coalescence. Then X follows approximately a geometric distribution with parameter γ(r)
given by

γ(r) =
ρeff(r)

ρeff(r) + σ2/r2

(
1− K0(

√
2)

N + ln(r/(κ
√

2))

)
,

where all the quantities have been de�ned above.

In Figure 2.14, we see that the geometric block length distribution predicted here is reason-
ably accurate if we sample from far enough apart. There the red curve represents the average
length of a block due to early coalescence, de�ned as above as a block of consecutive loci at
which coalescence happens before (a given realisation of) an exponentially distributed time
with parameter 2σ2/r2. Such a block may have undergone some non-e�ective recombination
events, and so two loci belonging to the same `early' block may not have exactly the same (but
highly correlated) coalescence times. If we now focus on the average length of a block due to
early coalescence and such that all loci should have exactly the same coalescence time (the blue
curve), then somewhat surprisingly, we see that the geometric distribution of Theorem 2.10
�ts the empirical distribution of these `equal' block lengths better. We have no explanation
for this fact, but it should be noted that the discrepancy between early coalescence and equal
coalescence vanishes as the sampling distance grows.

Finally, let us comment on the di�erent terms appearing in the expression of γ(r). First,
πR2uρ is the total rate at which two neighbouring loci recombine. When dealing with data, this
compound term should be replaced by an estimate of the recombination rate. Second, α(r) is
the probability that two nearby lineages (at initial distance O(R)) separate at distance r before
coalescing. If r is large compared to R, this probability is essentially the same as the probability
that two lineages starting at distance κ do not coalesce before the time O(r2/σ2) that they
need to travel a distance r. Hence, using the Wright-Malécot formula with 2µ = σ2/r2, we
arrive at

α(r) ≈ 1− ln(r/(κ
√

2))

N + ln(r/(κ
√

2))
,

which depends only on N and κ. Thus, for su�ciently large r the quantity γ(r) is really a
function of σ2, N and κ alone.

Perspectives: a real inference method based on lengths of shared sequences

The ideas developped in this section, and especially the second part of it, are essentially
proofs of concept. In [94], the authors set up a practical inference method based on the results
of the second part of [BEKV13a] and assuming a large neighbourhood size. Because two
recombinant lineages essentially never coalesce again quickly in this regime, the lineage `freed'
by recombination will move far away before coming back and coalescing with the ancestry of
the second individual. This implies that with high probability it will experience a mutation
which will render this event observable, and furthermore that we can make the approximation
that distinct blocks of shared sequence are independent. Their empirical distribution is thus
a good proxy for the distribution of a given block length of conserved sequence. In contrast,
when neighbourhood size is small, only a very few of the recombination events are e�ective and
two blocks of shared sequences cannot be considered as independent. Indeed, the occurrence
of a very long block is due to very recent coalescence, and so many portions of the genome
are still carried by the same ancestor at that time. Hence, the formation of such a long block
is rare, but when it occurs several long blocks are produced at the same time. Consequently,
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Figure 2.14 � Block lengths due to early coalescence; (a) plots mean block length against
sampling distance r and (b) shows the distribution of block lengths for r = 20. Simulations
trace the ancestry of two individuals sampled at distance r until time Tζ in the past, where Tζ
is an exponentially distributed value with rate 2σ2/r2 chosen independently for each replicate.
The length of blocks of loci are then calculated in two di�erent ways: we have early and equal
blocks. An early block is de�ned as a set of contiguous loci that have coalesced by time Tζ .
An equal block is a set of contiguous loci that have coalesced by Tζ and have equal coalescence
times. In (a) we have ∼ 106 early blocks and ∼ 1.2× 106 equal blocks from 7911 independent
simulations (many simulations have no early coalescences); there is an excellent correspondence
between the predicted block length 1/γ(r) and the length of equal blocks. Panel (b) shows
the CDF of the length of equal blocks for r = 20, and compares the empirical CDF of block
lengths from simulations with a geometric distribution with parameter γ(20). Also shown is
the geometric distribution with parameter estimated from simulation data; this agrees very
closely with the predicted value.
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the empirical distribution of lengths of blocks which are identical by descent between pairs of
individuals in a sample cannot a priori be used to estimate γ(r). The �rst step in overcoming
this issue is to investigate about the correlations between adjacent blocks of shared sequence
thoroughly and build up on this knowledge to understand the full sequence of conserved blocks
along the genome.

Of course the approaches expounded here can also be complemented by the MCMCmethods
set up recently in the context of the SLFV, see Chapter 2.5 in [70] and [55] (the �rst one
being based on the look-down construction reviewed in Section 2.4.4). These techniques are
quite interesting and have been applied for example to the estimation of dispersal distance
and population density of the in�uenza virus in [55]. However, they remain computationally
intensive (despite the smart simulation algorithms for the SLFV devised by Kelleher and his
co-authors [62, 63]), and it is still desirable to think of which summary statistics are important
to reconstruct and to try to turn �ne analytical results into reliable inference methods.

2.6 The e�ects of natural selection

Up to now we have only considered neutral evolution, in which no alleles gave a repro-
ductive advantage to the individuals carrying them. This was a mandatory �rst step, at least
for comparison purposes. Indeed the reduction in e�ective population sizes observed in many
species, compared to what would be expected under the absolute null model of neutral panmic-
tic evolution, could be caused by a spatial structure with or without recurrent catastrophes,
natural selection, �uctuations in population sizes, etc., or some combination of these factors.
It is thus important to understand the signature left by each evolutionary scenario to be able
to detect the main forces at work.

In this section, we study the e�ect of natural selection in a spatially structured population.
The �rst work reviewed here is again based on the spatial Λ-Fleming-Viot process with and
without large-scale extinction-recolonisation events, generalised to incorporate selection. The
second tries to understand the e�ect of a selective sweep at an associated neutral locus, in a
population with a discrete or continuous geographical structure and when reproduction events
are local. Natural selection and population structure are also at the core of the third work
presented below, but in a more hidden way. There we �nd conditions on the pedigree of
a population (which will typically be in�uenced by selection on a given set of traits in the
main application of these results) for the in�nitesimal model to be an accurate description of
the phenotypic evolution of the population over a few tens or hundreds of generations. See
Section 2.6.3 for a de�nition of all these terms.

2.6.1 Large-scale e�ects of a weak selection pressure

The results expounded in this section correspond to the work currently in progress [EVY17].
They are in the same spirit as those presented in Section 2.4.3, with the notable di�erence that
the impact u of an event will now tend to zero as the scaling parameter n tends to in�nity.
This will of course a�ect the shape of the genealogies. We shall confer a selective advantage
to the individuals carrying the allele 1, this e�ect becoming weaker and weaker as n → ∞.
The main questions we want to address are: For which range of parameters and over which
time- and space-scales can we observe an evolution of the local allele frequencies which is
well-approximated by the solution to the Fisher-KPP equation (possibly with noise)? How are
these di�erent ranges modi�ed by the occurrence of rare but large extinction-recolonisation
events?
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Fisher introduced what is now referred to as the Fisher-KPP equation [48, 69] to model
the wave of advance of a favourable allele in a continuously structured population. If we
assume that individuals can be of only two allelic types and if w(t, x) stands for the fraction
of individuals at site x ∈ Rd at time t that carry the unfavoured allele, then this equation can
be written as

∂w

∂t
=
σ2

2
∆w − sw(1− w), (2.27)

where σ2 is the speed at which alleles di�use locally in space, in a symmetric way, and s
quanti�es the strength of the selective (dis)advantage. (In the usual form of this equation,
w(t, x) stands for the frequency of the favourable allele, i.e. 1 − w(t, x) here, and so the last
term is +sw(1−w).) Note in particular the product w(t, x)(1−w(t, x)) appearing in the term
modelling the e�ect of selection, which encodes the fact that the favourable allele wins over
the other one by being more often that carried by an individual reproducing and replacing
someone at random at its current position. We thus expect this e�ect to be proportional to
the local rate of encounter between individuals of the two types, although many other sorts of
selective advantages could be considered instead.

Equation (2.27) has solutions in any dimension, which have been extensively studied. In
particular, it admits travelling wave solutions with constant speed. In one dimension we can
add a noise term modelling the local e�ect of random drift. The Fisher-KPP equation with
noise reads

∂w

∂t
=
σ2

2
∆w − sw(1− w) +

√
1

Ne
w(1− w)Ẇ, (2.28)

where by analogy with the Wright-Fisher di�usion (2.3), Ne can be seen as an e�ective local
population size and W denotes space-time white noise. Equation (2.28) has no solutions in
more than one dimensions. In one dimension, it does have a solution and the e�ects of a small
noise (or large Ne) have received a lot of attention (see [84] and references therein). Because
of the success of this equation in the modelling of the spatial expansion of a favourable allele,
we want to see whether we can recover it from our model, and if so under which conditions on
the parameters.

As a last remark before describing the framework adopted in this work, let us emphasise that
the regime of parameters considered below will indeed look very particular, especially when we
allow large-scale extinction-recolonisation events to happen. However, as we already discussed,
the identi�cation of the orders of magnitude of the parameters which lead to the desired
asymptotic behaviour is an essential step to understand how the di�erent factors (spatial
di�usion, selection, genetic drift) should compare to give rise to such a limit. Other studies
have considered di�erent regimes and obtained a variety of limiting evolutions depending on the
assumptions made on the strength of selection and on the local population density (modelled
through the fraction of individuals replaced during an event). See [39, 40, 41].

Suppose that our population is distributed over Rd and that individuals can be of two
allelic types, 0 and 1. Allele 1 is the one favoured by natural selection. For every t ≥ 0 and
x ∈ Rd, let wt(x) denote the fraction of individuals carrying the unfavoured allele 0 at site x
at time t (later this will depend on our scaling parameter n, but we shall not report it to ease
the notation). Let us �x u ∈ (0, 1] and s > 0, and for every n ≥ 1, let us de�ne

un =
u

nγ
, sn =

s

nδ
, and wnt (x) = wnt(n

βx) (2.29)

for some β, γ, δ > 0 whose values will depend on the cases considered. In fact, because wt(x)
is only de�ned up to a Lebesgue nullset of Rd, we shall instead work with its local average
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around each point x:

w̄nt (x) =
1

V1n−βd

∫
B(x,n−β)

wnt (y)dy. (2.30)

In words, we want to look at very high local population densities and very small selective
e�ects, averaged over large spatial and temporal scales. As in Section 2.4.3, we consider two
cases for the sequence of reproduction events.

� Local evolution: We �x some R > 0 and suppose that all events have radius R. That
is, µ(dr) = δR(dr) in our previous notation.

� Rare large events: We �x α ∈ (1, 2) and choose as an intensity measure for the radii

µ(dr) =
1{r>1}

rd+α+1
dr.

Now for every �xed n and each of these scenarii, we de�ne two independent Poisson point
processes corresponding to neutral and selective reproduction events.

� Neutral events: Let ΠN
n be a Poisson point process on R×Rd× (0,∞) with intensity

dt⊗dz⊗µ(dr). During such an event (t, z, r), we choose one allele κ ∈ {0, 1} according
to the allele distribution in B(z, r) just before the event. Then for every y ∈ B(z, r),
we set

wt(y) = (1− un)wt−(y) + unδ{κ=0}.

� Selective events: Let ΠS
n be a Poisson point process on R×Rd× (0,∞) with intensity

sndt ⊗ dz ⊗ µ(dr), independent of ΠN
n . During such an event (t, z, r), we choose two

alleles κ, κ′ independently and according to the allele distribution in B(z, r), and for
every y in this ball we set

wt(y) = (1− un)wt−(y) + unδ{κ=κ′=0}.

Again this can be generalised in many ways, but we concentrate on the cases which minimise
the notation. Observe that the selective events favour allele 1 indeed, since the o�spring are
of type 0 if and only if both `potential parents' are of type 0. Since selective events occur sn
times as fast as neutral events, the parameter sn tunes the relative frequency at which type 1
individuals have a reproductive advantage over the others.

To get a handle on the evolution of the process of local allele frequencies, it is useful to
think of the ancestry of a sample of individuals. Let us start with the simpler case of local
reproduction, and with a single individual taken from position 0, say, at some time t > 0.
First, the neutral events make the lineage ancestral to this individual (again traced backwards
in time) jump at rate O(un) to a new position at distance O(1). If time is run n times as fast
and space is scaled down by nβ , we thus expect the rescaled lineage to converge to Brownian
motion whenever

n× n−γ ∝ n2β, i.e. 1− γ = 2β. (2.31)

Now let us consider what happens during a selective event. By construction there are two
potential parents, and we need to know the alleles carried by both of them to determine the
allelic type of the o�spring. We thus need to track the ancestry of both potential parents,
creating a branching event in the ancestral process of our sample. Now the two new rescaled
lineages emanating from this branching event are born at a separation of order O(n−β). If
we are to `see' the event, they must move apart to a separation of order one before (perhaps)
coalescing. The number of excursions they must make away from the region in which they
can both be a�ected by an event (and thus coalesce) before we can expect to see such a `long'
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excursion is of order O(1) in d ≥ 3, of order O(log n) in d = 2 and of order O(nβ) in d = 1.
On the other hand, when they are su�ciently close together that they can be hit by the same
event, given that one of them jumps, there is a probability of order un = u/nγ that the other
one is a�ected by the same event and so they coalesce. So the number of times they come
close to one another before they coalesce is of order O(nγ). Thus, in the limit as n → ∞,
for each branching event in the dual, in dimensions at least 2, the probability that there is
a long excursion before coalescence (and so we `see' the event) tends to one. Moreover, the
same argument tells us that we shall never see the coalescence of any other lineages in our
system. In one dimension, we can expect to see both branching and coalescence provided that
the number of excursions we expect to wait before seeing a coalescence and the number we
expect to wait before the lineages escape to a distance of order one are comparable, that is

1

un
∝ nβ, or γ = β. (2.32)

Combining with Condition (2.31), we �nd β = γ = 1/3. Finally, selection events occur at a
rate proportional to nunsn in the rescaled process, and so we choose

1− γ − δ = 0, (2.33)

i.e., δ = 2/3 to make this order one. Note that only Equations (2.31) and (2.33) need to be
satis�ed in dimension more than 1 (since there are no parameter values for which we would
see coalescence occur anyway) to obtain the results stated below.

Let us turn to the case of rare large events. As before, we �rst consider the motion of a
single rescaled lineage and we see that if we choose nun = nαβ , then in the limit as n → ∞
its motion will converge to a symmetric stable process. Now let us consider selection. Since
un → 0 as n → ∞, although it is now the case that two lineages can always be a�ected by
the same event, `most of the time' they will not and the motions are almost independent.
Moreover, since `small' events are so much more frequent than `big' events, selection events are
almost always `small' and, moreover, lineages only have a realistic chance of coalescing when
they are close together. We now use the same argument as before. The number of excursions
away from each other before they are `visible' under our rescaling is of order O(1) in d ≥ 2
and of order O(n(α−1)β) in d = 1. Equating this to the number of visits together before we
expect to see a coalescence event yields γ = (α − 1)β. In order to see any selection events at
all, we need nunsn to be of order one, so 1− γ − δ = 0. We now have three equations in three
unknowns (in one dimension) and solving yields

β =
1

2α− 1
, γ =

α− 1

2α− 1
, and δ =

α

2α− 1
. (2.34)

As in the neutral case, we can show that a duality relation holds (for any n and in much
greater generality than the framework considered here) between the spatial Λ-Fleming-Viot
process with selection as de�ned above, and the system (Ξt)t≥0 of branching and coalescing
jump processes tracking backwards in time the positions of the potential ancestors of a sample
of individuals. This is where we use the fact that wt describes the frequencies of the less
favoured allele. Indeed, by construction, for an individual to be of allelic type 0, all its potential
ancestors must carry the allele 0. This yields the same form of duality relation as in (2.21):
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Proposition 2.5. (Prop. 2.2 in [EVY17]). For every w0 ∈ Mλ, t ≥ 0, k ∈ N and
F ∈ Cc((Rd)k), we have

Ew0

[ ∫
(Rd)k

F (x1, . . . , xk)

( k∏
i=1

wt(xi)

)
dx1 · · · dxk

]

=

∫
(Rd)k

F (x1, . . . , xk)Ex

[ Nt∏
j=1

w0(ξjt )

]
dx1 · · · dxk.

The analysis carried out in the previous paragraph suggests that when reproduction is
purely local, the rescaled potential ancestry of a sample of individuals de�ned by

Ξnt :=

{
ξ1
nt

nβ
, . . . ,

ξNntnt

nβ

}
, t ≥ 0, (2.35)

should converge to a system of independent Brownian motions that branch into two at rate
usVR (the two resulting lineages being born at the location of their `parent') and coalesce
pairwise in one dimension at a rate which is proportional to the local time at zero of their
distance. When large extinction-recolonisation events happen, because large selective events
can be neglected both for branching and coalescence (since the probability that they are of
size at least nε adds another n−αε in their rate of occurrence), we expect the rescaled potential
ancestry to converge to a system of independent symmetric α-stable Lévy processes that branch
into two at a rate proportional to us (the two lineages starting at the location of their `parent')
and again coalesce pairwise in one dimension at a rate which is proportional to the local time at
zero of their distance. In d ≥ 2, this result can indeed be proved by working directly with the
rescaled system of coalescing and branching jump processes corresponding to each n. However,
this approach does not allow us to characterise the coalescence mechanism in one dimension.
Thus, in contrast with the usual method of proof for these complex measure-valued evolutions,
this time we �rst show the convergence of the process of rescaled local allele frequencies, and
then use this convergence to deduce that of the ancestral processes. This gives us the following
results in the case of local reproduction. Recall the de�nition of w̄n given in (2.30).

Theorem 2.11. (Th. 1.3 in [EVY17] - Local evolution). Let β = γ = 1/3 and δ = 2/3.
Suppose that w̄n0 converges inMλ to some w0. Then as n→∞, the process (w̄nt )t≥0 converges
weakly in DMλ

[0,∞) towards a process (w∞t )t≥0 with initial value w∞0 = w0. Furthermore,
(a) When d = 1, (w∞t )t≥0 is the unique process for which, for every f ∈ C∞c (R),

〈w∞t , f〉 − 〈w∞0 , f〉 −
∫ t

0

{
uΓR

2
〈w∞s ,∆f〉 − 2Rus 〈w∞s (1− w∞s ), f〉

}
ds

is a zero-mean martingale with quadratic variation

4R2u2

∫ t

0
〈w∞s (1− w∞s ), f2〉ds,

where

ΓR =
1

dVR

∫
B(0,R)

∫
B(x,R)

‖z‖2dzdx.

(b) When d ≥ 2, (w∞t )t≥0 is the unique deterministic process for which, for every f ∈
C∞c (Rd),

〈w∞t , f〉 = 〈w∞0 , f〉+

∫ t

0

{
uΓR

2
〈w∞s ,∆f〉 − usVR 〈w∞s (1− w∞s ), f〉

}
ds,
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where ΓR > 0 is de�ned as above.

In other words, in one space dimension, the limiting process (w∞t )t≥0 is a weak solution to
the stochastic partial di�erential equation

∂w

∂t
=
uΓR

2
∆w − 2Rusw(1− w) + 2Ru

√
w(1− w) Ẇ,

with w0 = w0, and W a space-time white noise. In dimension d ≥ 2, on the other hand,
the noise term disappears in the limit and (w∞t )t≥0 is a weak solution to the deterministic
Fisher-KPP equation

∂w

∂t
=
uΓR

2
∆w − usVR w(1− w), w0 = w0.

The proof of this result is not yet complete. It goes through the standard steps of (i) showing
the tightness of (w̄n), which is easily done by controlling the frequency and e�ects of the
reproduction events a�ecting a given compact region of space and using the Aldous-Rebolledo
criterion, and (ii) showing that the generator of w̄n converges to that of the limit w∞ when
applied to the appropriate test functions. The convergence of the terms which are linear in w̄nt
follows from the martingale problem formulation. What remains to show is that the part of the
martingale problem which is `quadratic' in w̄nt converges to a process which can be expressed
in terms of (w∞t )2. We expect this to hold true thanks to the continuity estimates which can
be obtained from the duality with Ξn.

Tightness of the sequence of rescaled ancestral processes can also be proved by controlling
the frequency and e�ects of the reproduction events. Assuming that Theorem 2.11 is proved,
the duality relation described in Proposition 2.5 enables us to show the following convergence
result.

Theorem 2.12. (Th. 2.5 in [EVY17] - Local evolution). For every n ∈ N, let
(ξ1
t , . . . , ξ

Nt
t )t≥0 be the system of branching and coalescing jump processes which is dual to

the unscaled process (wt)t≥0 with parameters µ = δR, �xed impact un and selection strength
sn. De�ne the rescaled process (Ξnt )t≥0 as in (2.35), and suppose that the initial condition Ξn0
converges weakly towards some Ξ0 as n→∞. Then, if d ≥ 2, as n→∞, (Ξnt )t≥0 converges in
distribution (as a càdlàg process) to a branching Brownian motion (Ξ∞t )t≥0, in which individ-
uals follow independent Brownian motions with variance parameter uΓR, which branch at rate
usVR into two new particles, started at the location of the parent. When d = 1, the correspond-
ing object is a branching and coalescing system with the same di�usion constant and branching
rate, but in addition each pair of particles, independently, also coalesces at rate 4R2u2 times
the local time at zero of their distance.

In fact the identi�cation of the limit is not completely obvious from the duality relation
with the limiting forwards process. It is based on the fact that if we guess the limit of Ξn (from
our heuristics) and if we use a generalisation of the construction of Chapter 7 of [74] to obtain
the corresponding forwards in time evolution, we �nd that the uniqueMλ-valued process dual
to the limiting ancestry in Theorem 2.12 is indeed the limit of w̄n obtained in Theorem 2.11.

Using the same chain of arguments, together with some technical continuity estimates on
w̄n, we (should) obtain the following results in the case of rare large events.

Theorem 2.13. (Th. 1.5 in [EVY17] - Rare large events). Let β = 1/(2α − 1),
γ = (α − 1)/(2α − 1) and δ = α/(2α − 1). Suppose that w̄n0 converges weakly to some w0 ∈
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Mλ. Then, as n→∞, the process (w̄nt )t≥0 converges weakly in DMλ
[0,∞) towards a process

(w∞t )t≥0 with initial value w0. Furthermore, there exists a symmetric α-stable Lévy process
Xα such that if Dα denotes the generator of Xα, then

(i) When d = 1, (w∞t )t≥0 is the unique process for which, for every f ∈ C∞c (R),

〈w∞t , f〉 − 〈w∞0 , f〉 −
∫ t

0

{
〈w∞s ,Dαf〉 −

2us

α
〈w∞s (1− w∞s ), f〉

}
ds

is a zero-mean martingale with quadratic variation

4u2

α− 1

∫ t

0
〈w∞s (1− w∞s ), f2〉ds.

(ii) When d ≥ 2, (w∞t )t≥0 is the deterministic process for which, for every f ∈ C∞c (Rd),

〈w∞t , f〉 = 〈w∞0 , f〉+

∫ t

0

{
〈w∞s ,Dαf〉 −

usV1

α
〈w∞s (1− w∞s ), f〉

}
ds.

Theorem 2.14. (Th. 2.6 in [EVY17] - Rare large events). For every n ∈ N, let
(ξ1
t , . . . , ξ

Nt
t )t≥0 be the system of branching and coalescing jump processes which is dual to the

unscaled process (wt)t≥0 corresponding to the case with rare large events. De�ne the rescaled
process (Ξnt )t≥0 as in (2.35). Then, if the initial condition Ξn0 converges weakly towards some
Ξ0 as n → ∞, (Ξnt )t≥0 converges in distribution (as a càdlàg process) to a system (Ξ∞t )t≥0

of independent symmetric α-stable processes, which branch at rate usV1/α into two particles
starting at the location of their parent. The motion of a single particle has the same law as
the process Xα de�ned in Theorem 2.13. In addition, when d = 1 each pair of particles,
independently, coalesces at rate 4u2/(α− 1) times the local time at zero of their distance.

We see that in this regime of parameters, the e�ect of the occurrence of rare large events is
to create correlations between local allele frequencies over much larger scales (n1/(2α−1) � n1/3

when α ∈ (1, 2)), as in the neutral case. These large events do not contribute to selection and
coalescence, which remain local in the limit, but the spatial di�usion of alleles is now described
by a fractional Laplacian. In one dimension it is known that travelling wave solutions to this
equation exist, but the front position now moves exponentially in time [20].

2.6.2 Selective sweeps in spatially extended populations

As we have seen in the previous section, the Fisher-KPP equation can describe the wave
of advance of a favourable allele over large spatial and temporal scales, when the selective
advantage of this allele is weak and local population density (proportional to the inverse of the
impact parameter in the SLFV) is very high. However, in a real population distributed over
some large region of space, it is unlikely that local population densities reach such extremely
large values. In fact, the noise term in the stochastic version of the Fisher-KPP equation was
added in part to model the e�ect of actually �nite (still reasonably large) local populations.
It is thus natural to enquire about the genetic consequences of the random �uctuations at the
wave front, assuming the Fisher-KPP equation with noise is a good approximation for the
way a favourable mutation sweeps to �xation in a spatially extended population. This section
describes the results of the publication [BEKV13b].

When the favourable allele goes to �xation in the population, it is likely to boost the
frequency of the allele to which it was originally associated at a given linked neutral locus. This
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is called genetic hitchhiking, as the `lucky' neutral allele gets a lift from the successful mutation
at the locus under selection. During the course of the sweep, recombination may break the link
between the alleles at the two loci, and so in general some diversity remains at the neutral locus.
Already in a panmictic population, the e�ects of a selective sweep on the allele frequencies or
on the genealogies at a linked locus are delicate to describe [5, 35, 43, 80, 101, 104]. The longer
the sweep takes, the more time there is for recombination to occur and dissociate the neutral
alleles from the selected one. The length of the sweep depends on the strength of selection and
on the size of the population to invade.

When the population has a spatial structure, it is not at all obvious whether the net e�ect
of a sweep on the genetic diversity at a linked neutral locus will be stronger or weaker than
in a panmictic population. On the one hand, �xation will take much longer, extending the
timescale over which recombination can happen; on the other hand, local founder e�ects at the
wave front may greatly increase genetic drift and lead to faster local �xation. To quantify the
strength of hitchhiking in such a population, we focus on the net rate of coalescence of neutral
genes due to sweeps at linked loci passing through the population. We mainly consider the case
of a one-dimensional spatial structure, assuming that the wave of advance of the favourable
allele is well described by the Fisher-KPP equation with noise. These results can be extended
to two dimensions by assuming that the invasion front is linear, but simulations shows that
this approximation is poor due to the complex transverse �uctuations in the wave front.

Recall the model in one dimension from (2.28):

∂w

∂t
=
σ2

2
∆w + sw(1− w) +

√
1

ρ
w(1− w)Ẇ, (2.36)

where to match the notation of [BEKV13b] we write ρ for the population density to which
the variance of the noise is inversely proportional, and to confuse the reader we have changed
our point of view and now consider the equation satis�ed by the frequencies of the favourable
allele. In the absence of noise, it is well-known that this equation has a whole family of
travelling wave solutions, and that if we start from any nonnegative initial condition that
looks like 1{x<0}, then the solution to the deterministic Fisher-KPP equation converges to
the nonnegative travelling wave of the smallest possible velocity c∞ = σ

√
2s. If we write the

corresponding travelling wave solution as w(t, x) = wc∞(x − c∞t), then as Fisher showed, at
the front (i.e., where wc∞(z) is small) it can be approximated by exp(−c∞z/σ2).

Three consequences of the presence of small amounts of genetic drift have been explored,
mostly by analysing related models meant to mimick noisy Fisher waves. First, the rate of
advance of the wave is slowed down by a factor proportional to 1/(ln(ρσ

√
s/2))2, as shown in

[18, 85]. That is, if we set

η := ρσ

√
s

2
(2.37)

and write cη for the speed of the asymptotic wave solution to the stochastic Fisher-KPP
equation with noise (2.36), we have

cη ≈ c∞
(

1− A

(ln η)2

)
(2.38)

for some A > 0. Observe in passing that if w̃ is solution to the `canonical' form of the equation

∂w̃

∂t
= ∆w̃ + w̃(1− w̃) +

√
1

η
w̃(1− w̃)Ẇ,
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then for every t ≥ 0 and x ∈ R, we have

w(t, x) = w̃

(
st,

√
2s

σ
x

)
.

This allows us to translate all the results obtained for the canonical equation into properties
of the solutions to (2.36). Second, the shape of the wave front of the stationary travelling
wave solution is well approximated by that of the deterministic wave wcη corresponding to cη,
truncated at the smallest position where it hits 0 (recall that since cη < c∞, the corresponding
travelling wave does not remain nonnegative), c.f. [85]. In fact, the analysis carried out in [11]
on a related model suggests that at least for large η, this approximation is good most of the
time, but every O((ln η)3) units of time there are appreciable �uctuations. These �uctuations
are essentially due to the fact that an individual manages to get signi�cantly ahead of the bulk
of the wave and reproduce without competition until the wave catches up again. As a result
of the occurrence of these transiently proli�c individuals, the third e�ect of the small noise
component is that the genealogy at the locus under selection of a sample from the wave front
will be dominated by founder e�ects resulting from rare but large �uctuations in the wave front.
In the appropriate timescale ((ln η)3t, t ≥ 0) it is approximated by the Bolthausen-Sznitman
coalescent [17] (with multiple mergers) instead of Kingman's coalescent [11, 18]. In particular,
one of the main di�erences between the travelling wave solutions to the equation with and
without noise is that if we start from an initial condition of the form 1{x<0} (or more generally
from an initial condition in which the set of locations such that w(0, x) /∈ {0, 1} is bounded),
then in the stochastic case the region {x : w(t, x) /∈ {0, 1}} remains bounded for all times [86].

Based on these three points, it is not di�cult to see how a single lineage at a linked
neutral locus, sampled after the sweep has passed through a (stationary) travelling wave, should
behave. Initially, everyone around it carries the bene�cial allele at the selected locus, and so
the lineage moves around according to Brownian motion. But backwards in time, the wave
moves back towards its origin at a linear speed, and thus at some point the lineage becomes
caught by the wave and starts experiencing a drift. Since most of the time the (deterministic)
truncated wcη is a good approximation for the actual stochastic wave, the drift term is given
by σ2w′cη/wcη . As a consequence, if we write Xt for the position of the lineage relative to the
wave front, we obtain that (Xt)t≥0 is (`most of the time') solution to

dXt =

(
σ2w′cη(Xt)

wcη(Xt)
− cη

)
dt+ σdBt,

where (Bt)t≥0 denotes standard Brownian motion. Using the theory of one-dimensional dif-
fusion we �nd that if X has a stationary distribution, then its density f(x) is proportional
to

w2
cη(x) exp

(
− 2cηx

σ2

)
(2.39)

(assuming this function is integrable). In this case, the lineage becomes trapped within a
narrow front whose width is of the order of σ2/c∞ ∝

√
σ2/s, until it manages to recombine

with an individual of the unfavoured allele and thereby escape the wave. The e�ects of the
rare �uctuations in the front are not at all clear.

Let us now consider a sample taken from the population, again after the wave passed. By
the same arguments as above, we can anticipate that their ancestral lineages will move around
in space according to independent Brownian motions until they are (one by one) caught by
the backward wave. From then on, they may recombine away from the wave. In the absence
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of �uctuations in the wave front, each pair of lineages may also coalesce at a rate proportional
to 1/(ρwcη(x)) upon meeting at a relative position to the front equal to x. However, the work
of [11, 18] suggests instead that for large η, the rare large �uctuations in the front create
multiple merger events that dominate the genealogy of the sample. The resulting genealogy on
the timescale ((ln η)3t, t ≥ 0) mentioned earlier should then be described by the Bolthausen-
Sznitman coalescent, except for those lineages who manage to escape by recombining.

Our aim is to see whether these heuristics hold true in a population with the moderate
local densities that we would expect from natural populations. These questions are investigated
through simulations of a discrete stepping stone model with Wright-Fisher resampling within
each deme of �nite size ρ ∈ N and nearest neighbour migration with migration probability
σ2 ∈ (0, 1), and we restrict our attention to large but biologically realistic parameter values:
ρ = 10, . . . , 106, σ2 = 0.25 and s = 0.01, 0.05, 0.1, corresponding to values of η ranging from
10−1 to 105. We expect the same conclusions to hold in more general models of discrete or
continuous population structure sharing the same characteristics.

The �rst conclusions we can draw from these simulations is that the speed and shape of the
resulting stationary wave indeed behave as expected under the `large η' assumption, except at
the very tip where the frequency of the favourable allele tends to be substantially larger than
predicted. Because these results are obtained by calculating average allele frequencies (at each
relative separation from the front) over 105 generations, this could be due to occasional large
�uctuations taking the front well ahead of the centre of mass of the wave. See Figures 2-4 in
[BEKV13b]. There we measure the position of the wave front by its centre of mass and we use
twice the total number of heterozygotes, that is

W (t) = 4

∫
w(t, x)(1− w(t, x))dx,

as a proxy for its width. This way, the expected rate of advance c(t) = d/dt
∫
w(t, x)dx (of

which we can make sense because the area over which w(t, ·) is not constant has �nite size) is
equal to sW (t)/4.

In Figure 2.15, the positions of ancestral lineages relative to the centre of mass of the
wave are plotted. We superimpose on this the approximation for the stationary distribution
predicted by (2.39), with wcη determined by the truncated deterministic Fisher wave and cη
obtained by �tting the constant A in (2.38) empirically. The �t is quite good, and it seems that
�uctuations in the wave front are too rare to distort this distribution. Next, in Figure 2.16
we show the locations of coalescence events within the front as predicted by the pairwise
merger rate f2/(ρwcη) (where f was de�ned just above (2.39) as the density of the stationary
distribution of a single lineage in the front). We see that the distribution of coalescence events
is close to the prediction based on the actual locations of ancestral chromosomes, although
slightly more spread towards the front. In particular, for η not too large the expected rare but
large �uctuations in the front do not seem to dominate the genealogy. In fact for moderately
large values of η, the lineages do not even seem to be trapped within the front and we expect
a fraction of the coalescence to occur within the bulk of the wave.
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Figure 2.15 � The dots show the distribution of locations of ancestral lineages, relative to
the centre of mass, for ρ = 10, 100, . . . , 106 (left to right); s = 0.05, m = 0.25. The curves
show the predicted locations, f ∝ w2

cηe
2cηx/σ2

, where the allele frequency is calculated using
the deterministic Fisher-KPP equation. For each ρ, four replicate lineages were propagated
back through 105 generations, using a single realisation of the forwards process. Ancestors
tend to be ahead of the deterministic prediction, which may be because of the upturn in allele
frequency which we attribute to random �uctuations.
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Figure 2.16 � The distribution of coalescence events, plotted against the position x relative to
the centre of mass of the cline. Three sets of curves are shown for ρ = 100, 104, 106 (black, blue,
red). Each set is based on a single forwards sweep of 105 generations,with s = 0.5, m = 0.25.
The smooth curve is the prediction f2/(ρwcη) ∝ w3

cηe
2cηx/σ2

/ρ. The middle jagged curve,
drawn in a lighter shade, is the prediction f2/ρwcη obtained by using the actual distribution
of the location of ancestral lineages in the simulation for f . The broadest curve in each set is
the observed distribution of coalescence events. Each is based on sampling one pair of lineages,
replicated 400 times from each of 10 time points at t = 0, 104, . . . , 9×104 (counting backwards).
The distribution of coalescence events is close to the prediction based on the actual locations
of ancestral locations, though somewhat further out to the front. The prediction based on the
deterministic Fisher-KPP equation is sharper and lies further back - especially for the largest
deme size, ρ = 106 (red curves at the right).
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Genealogies with recombination at the wave front

Up to now we have left aside recombination. Let us now investigate its e�ects on genealogies
as a function of the separation r on the genetic map between the locus under selection and the
neutral locus of interest. Recall that the distance between two loci is measured in Morgans,
so that recombination happens at rate r between two sites at genetic distance r. In all that
follows, we suppose that the range of the population is �nite (still one-dimensional) and that
its size L satis�es

L� ` := σ
√

2/s,

where ` is the characteristic length of the wave front in the stationary deterministic wave. This
assumption allows us to suppose that from its inception, the travelling wave front of favoured
alleles is in its stationary form. Furthermore, we shall consider that lineages di�use in space
according Brownian motion with variance σ2 before being caught by the wave. To set the
notation, let us write λ for the approximate coalescence rate within the front

λ :=

∫ ∞
0

f(x)2

ρwcη(x)
dx, (2.40)

disregarding the coalescence due to large �uctuations. In Appendix B of [BEKV13b], we show
that λ takes the form 2g(η)/(ρ`) (although we have no explicit form for the function g). Note
that ρ` is the order of magnitude of the `number' of individuals in the wave front which are of
the favoured allele. The term g(η) gives a correction to this e�ective population density which
accounts for the impact of the �uctuations in the front.

Figure 2.17 gives an overview of how recurrent selective sweeps, originating from random
points in space and at random locations over a genetic map of length R, drive the genealogy
of a sample. Consider one selective sweep. Suppose the wave is travelling at speed c and that
a lineage is currently at distance y behind the wave front. Then the time before the lineage
becomes caught by the wave can be approximated by the hitting time of 0 of Brownian motion
with drift −c and di�usion coe�cient σ2. The mean of this time is thus y/c. Assume next that
the selected mutation arose at distance x away from the location where the lineage is taken
by the wave. The expected remaining time until the origin of the favourable mutation is x/c.
Then assuming that the lineage can recombine into the unfavourable background at a rate
which is essentially r, the map distance between the neutral locus considered and the selected
one, we obtain that the lineage will move with the wave front, and towards the origin of the
bene�cial mutation, by a distance which is the minimum between an exponentially distributed
distance with parameter c/r and the distance x to the origin of the sweep. In particular,
the probability that the lineage returns to the ancestral background without recombining is
approximately exp(−rx/c). If we now assume that sweeps are uniformly distributed over space
and over the genetic map, and if the overall rate of sweeps is Λ, and if �nally we assume that
RL/c� 1, then we can compute that the mean square displacement per unit time of a lineage
due to hitchhiking, relative to that without hitchhiking, is

σ2
eff

σ2
≈ 8

3

L

`

Λ

R
.

Now let us consider two lineages. Because population density is high, in the timescale we
consider we can neglect coalescence due to events outside the front of the wave. Thus, the
lineages will di�use independently until they are both caught by the wave, at which point
they start having the possibility of coalescing, or of recombining away from the favourable
background (again, at rate r given by the map length between the selected site and the neutral
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Figure 2.17 � The e�ect of 5 successive selective sweeps on the ancestry of three genes, sampled
at x = 300, 500, 700; genes di�use at a rate σ2 = 1. The origin of �ve selective sweeps is
shown by the red dots, and the advancing wavefronts by the orange lines. The origin, speed
and position on the genetic map were drawn from a uniform distribution; in this example, the
map location, relative to the focal locus, is −0.90cM, +0.80cM, −0.77cM, +0.83cM, −0.19cM.
When a lineage hits a wavefront, it is carried back towards the favourable mutation (red dot)
but may escape by recombination. The population is assumed very dense, so that coalescence
only occurs within the wavefront. In this example, the purple and black lineages lie within the
same wavefront (x ∼ 600 − 750, t ∼ 3500), but escape from it without coalescing. The only
coalescence event occurs at the origin of the oldest selective sweep (x ∼ 700, t ∼ 6800), when
both the purple and black lineages are carried back to coalesce on the genome that carried the
favourable mutation.
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site considered). We neglect the probability that they recombine again into the favourable
background, since at the front the frequency of the favourable allele is very low. If they were
stuck for an in�nite amount of time in the wave, the two lineages would coalesce before one
of them recombines with a probability approximately equal to λ/(λ + 2r), where λ is the
approximate coalescence rate de�ned in (2.40). In this case we can compute the probability of
coalescence of two lineages sampled at distances x1, x2 behind the wave front. These expressions
need to be corrected to account for the fact the lineages may trace back to the origin of the
sweep without recombining or coalescing, but this has a small chance to happen if Lr � c.
As we would expect, the probability that the two lineages actually meet in the front (instead
of the �rst lineage caught by the wave front recombining away before the second is caught)
depends on the scaled distance from the front, xi/`, and on the rate of recombination relative
to selection r/s. If linkage is tight, i.e. r � s, the lineages are more likely to indeed meet
at the wave front if their initial separation is not too big. In contrast, when linkage is loose
(r/s ≈ 1) this probability is low and very sensitive to the original scaled distance |x1 − x2|/`.
The mean rate of coalescence, averaged over random locations of loci and sweeps, and over a
genetic map of length R� 1 is

2
Λ

R

c

L
h

(
Lλ

c

)
,

for a function h(θ) which tends to 0 as θ → 0 and is equivalent to

2

(
ln

(
θ

2

)
+ γ − 1

)
for large θ, where γ is Euler's gamma. Since h increases only logarithmically with θ, the net
rate of coalescence is rather insensitive to the rate of coalescence within the front. The limiting
factor is the rate at which tightly linked sweeps occur.

The average coalescence rate per sweep per map length is inversely proportional to L/c,
which is roughly the time a sweep takes to cross the population's range. Since this is typically
large, and Λ/R is expected to be small, the rate of coalescence due to hitchhiking will be very
small. However, if the local density of individuals is high, then genetic drift will be negligible,
so that hitchhiking may still be the main cause of coalescence [51, 80]. The e�ective size of a
neutral haploid one-dimensional population is ρL + 1

12

(
L
σ

)2
, where ρL is the total number of

haploid individuals [22]. The contribution of hitchhiking will be larger than this essentially if

2
Λ

R

c

L
h

(
Lλ

c

)
>

1

ρL
,

The factor cρ that appears when we reorganise this condition is proportional to ρsW , where
W is twice the total number of heterozygotes which we took as a proxy for the width of the
wave. We expect W to be proportional to ` = σ

√
2/s, and so ρsW will proportional to what

we de�ned to be η in (2.37). Thus, in one dimension, if the product of the rate of sweeps per
map length and the parameter η is large, hitchhiking will be the main cause of coalescence.

Finally, comparing the probabilities that a sweep causes two lineages to coalesce with or
without space (see Section 4.2.2 and Appendix C.1 in [BEKV13b] for their computations), we
can conclude that the e�ect of a sweep on coalescence falls away much faster on the genetic
map in a panmictic population than in one spatial dimension (∼ e−r/s vs. ∼ 1/r for two
nearby lineages). However, if two individuals are sampled at di�erent locations, there will be
an additional time of order |x1−x2|/c during which only one of their two lineages will be able to
recombine, the other having not yet been trapped in the wave front. Thus, the e�ectiveness of
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hitchhiking in a spatially structured population will be greater than in a panmictic population
for samples taken at small separations, but smaller for far-fetched individuals.

Two spatial dimensions

We can ask the same questions when the geographical structure is two-dimensional. Re-
member that Equation (2.36) has no solution in two dimensions, and so instead we suppose
that the wave spreads with a linear wave front. Hence, on top of meeting in the coordinate
orthogonal to the front, the lineages di�using in two dimensions also have to meet in the coor-
dinate transverse to the front. We can then build upon the results obtained in one dimension.
Unfortunately, if this putative analysis were correct, the di�usion of lineages transverse to the
wave would be so slow that genetic hitchhiking would be remarkably ine�ective in two dimen-
sions. Simulations as those displayed in Figure 2.18 show that coalescence events tend to be
strongly clustered, contrasting with what you would expect from a system of two-dimensional
Brownian motions trapped in a narrow front and coalescing at a given rate upon meeting.
This suggests that �uctuations in the wave front produce multiple mergers that dominate the
ancestry of a sample, even when (and in fact all the more so as) η is of moderate size.

2.6.3 The in�nitesimal model

In this section, we consider the e�ect of selection and population structure on the evolution
of the distribution of a phenotypic character (which we shall also call a trait), whose value
depends on a very large number of genetic loci each having an in�nitesimal e�ect. With in
mind possible applications to animal breeding, the kind of traits we may want to consider are
milk production, resistance to some pests, etc. In fact, we shall more generally condition on
the pedigree of the population, that is the `physical' ancestral relations in a sexual population
where each individual has two parents. Knowing this pedigree and the parental traits, which
are themselves in�uenced by selection, structure, or other factors, we want to know the dis-
tribution of the traits of the o�spring within a given family. Our aim is to justify the model
known in quantitative genetics as the in�nitesimal model, which states that under some not
so restrictive (but always elusive) conditions, the distribution of the trait of an o�spring is a
normal distribution centred on the mean of the parental traits and with a variance independent
of these parental traits. Furthermore, the allelic distribution at every locus is barely distorted
by conditioning on the resulting trait, which justi�es that selection acting at the level of the
phenotype does not a�ect much (at least for a few generations) the genetic diversity of the
population at each locus. This corresponds to the preprint [BEV17].

More precisely, we �nd some conditions on the allelic distributions and trait values seen in
the population so that if the trait of interest is the sum of M genetic components all of order
M−1/2, then as the numberM of loci tends to in�nity, the values of the traits of a given number
of o�spring of the same pair of parents converges to a Gaussian multivariate distribution with
mean the average trait of the parents, and a variance that depends only on the trait variance in
some reference (ancestral) population and on the matrix of probability of identity by descent of
the parental alleles at a given locus. Here we present only the simplest case of an additive trait,
which is by de�nition the sum of the allelic e�ects corresponding to each locus, but in [BEV17]
we extend our analysis to the presence of epistasis. The latter refers to the fact that some
groups of alleles may interfere to add some nonlinear component to the trait value. Of course
these interactions need to be of the right order of magnitude, which is detailed in Section 3.2 of
[BEV17]. See also this preprint for more motivations, applications and an extended historical
review of this model, which has been extensively used in quantitative genetics over the last 50
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Figure 2.18 � Coalescence events in two dimensions cluster onto three paths, where most
ancestors are located. The habitat is a cylinder with circumference 200 demes (vertical axis);
the sweep runs from left to right, moving ∼ 520 demes in 4000 generations; s = 0.05, m = 0.25,
a) ρ = 106, b) ρ = 100. Coalescence was simulated in two ways. First, 100 pairs of genes
were started at each of 20 locations y = 0, 10 . . . , 190 at right; coloured blue. . .red); large dots
show where these coalesce. By 4000 generations, 461/2000 = 23% had coalesced. Second, 50
single ancestral lineages were propagated back from y = 0, 10 . . . , 190 (coloured in the same
way); small dots show where any pair that started from the same location coincide in the same
deme. The lower panel shows the same for ρ = 100. In that case 85% had coalesced by 4000
generations.

years without any thorough investigation of the assumptions under which it holds and of the
accuracy of this approximation.

Thus, suppose that we consider a population of, say, haploid individuals, each with two
parents (sel�ng is allowed, so that the two parents could in fact be identical). The population
in each generation is supposed to be �nite, with Nt individuals in generation t. Assume also
that each individual has a trait Z which is given by some average z̄0 plus the sum over M loci
of allelic e�ects of the form ηl/

√
M . A last term contributing to the value of the trait is an

environmental noise, independent of the allelic components, which we take to be Gaussian so
that the law of the observed trait in the limit M →∞ is Gaussian too. This form of noise is
not compulsory, it only makes the calculations simpler. Let us describe the ingredients of the
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model in more detail.

1. Allelic e�ect at locus l. We denote the allelic e�ect at locus l in the jth individual
by ηjl /

√
M . We centre ηjl relative to the mean allelic e�ect at locus l in the ancestral

population. The scaling of 1/
√
M ensures that the additive genetic variance is of order

one. The random variable ηjl is assumed to be uniformly bounded over all loci, with
|ηjl | ≤ B. We sometimes refer to it as the scaled allelic e�ect.

2. Genetic component of the trait value and inheritance. The genetic component of the
trait value in the jth individual in the present generation will be denoted by Zj . It will
always be written as z̄0, its average value in the ancestral population, plus a sum over
loci of allelic e�ects.

That is, in the notation just de�ned, the genetic component of the trait of the jth
individual is

Zj = z̄0 +
M∑
l=1

1√
M
ηjl . (2.41)

We suppose that the loci are unlinked, that is the jth allelic e�ect of an individual
is inherited from one of its two parents chosen uniformly at random, independently
between loci.

3. Environmental noise and observed trait value. We suppose that the observed trait value
is

Z̃j = Zj + Ej ,

where the Ej are independent normally distributed random variables with mean zero
and variance σ2

E .

4. Ancestral population. Although it is not strictly necessary, we assume that in generation
zero, the individuals that found the pedigree are unrelated. They are sampled from an
ancestral population in which all loci are assumed to be in linkage equilibrium.

The genetic component of the trait value in the jth individual in generation zero is
written as

Zj = z̄0 +
M∑
l=1

1√
M
η̂jl , (2.42)

where the η̂jl are independent for di�erent values of j, with the same distribution as η̂l
where E[η̂l] = 0 for all l. The random variables η̂l are assumed to be independent but
not necessarily identically distributed.

We shall write

σ̂2
M =

1

M

M∑
l=1

Var(η̂l)

and assume that σ̂2
M converges to a �nite limit σ̂2 as M →∞.

5. Parents. To distinguish the parents of an individual we order them. The symbols [1]

and [2] will refer to the �rst and second parents of an individual, respectively. Thus ηj[1]
l

is the scaled allelic e�ect at locus l in the �rst parent of the jth individual. Similarly,
Zj[1] will denote the genetic component of the trait value of the �rst parent of individual
j. Note that we allow sel�ng, in which case parents 1 and 2 are identical.
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Let P(t) denote the pedigree relationships between all individuals up to and including
generation t, and let Z̃(t) denote the observed traits of all individuals in the pedigree from the
ancestral population to (and including) generation t. We shall condition on knowing P(t) and
Z̃(t− 1), and derive the conditional distribution of the traits of the individuals in generation
t in the limit M →∞.

Theorem 2.15. (Additive case in [BEV17]). Fix a generation t ≥ 0 and de�ne the vector

(
Rj,M

)
j=1,...,Nt

:=

(
Zj − Zj[1] + Zj[2]

2

)
j=1,...,Nt

.

(We do not report the dependence on M in the r.h.s. to alleviate the notation.) Then con-
ditional on P(t) and Z̃(t − 1), as M → ∞ the vector (Rj,M ) converges in distribution to a
multivariate normal random variable with mean zero and diagonal covariance matrix Σt, with
the jth diagonal entry (Σt)jj given by the segregation variance

σ̂2
{

1− P
(
j[1] and j[2] identical by descent at locus 1

)}
(2.43)

among o�spring of the parents of individual j. More precisely, let Φ stand for the cumulative
distribution function of a standard normal random variable and de�ne the function C(σ2, x)
by

C(σ2, x) =
C ′x√
σ2
E + σ2

+
C ′′

σp(σ2
E + σ2, x)

(
1 +

1

σ2

)
,

where C ′, C ′′ are two constants whose values depend only on B (the bound on the η's) and
p(σ2

E + σ2, x) is the density at x of a N (0, σ2
E + σ2) distributed random variable. Then for

every j ∈ {1, . . . , Nt},∣∣∣∣∣P
[
Zj − Zj[1]+Zj[2]

2√
(ΣM

t )jj

≤ y

∣∣∣∣∣P(t), Z̃(t− 1) = z

]
− Φ(y)

∣∣∣∣∣ ≤ t√
M

C
(
ΣM
t , ∆̄

M
t (z)

)
,

where

(ΣM
t )jj =

1

4M

M∑
l=1

E
[(
η
j[1]
l − ηj[2]

l

)2∣∣∣P(t)
]

(2.44)

is the segregation variance among the o�spring of the parents j[1] and j[2] of individual j in
generation t conditional only on the pedigree (not the traits), ΣM

t is the minimum segregation
variance of any family in the pedigree up to generation t, and ∆̄M

t (z) is the maximum over the
pedigree up to time t− 1 of ∣∣∣∣zj − zj[1] + zj[2]

2

∣∣∣∣.
Theorem 2.15 can be extended to include mutation, a small amount of linkage (allelic

e�ects being inherited by packets of O(1) loci) and epistasis, see [BEV17]. Even in its simplest
form this result is very informative. First, it says that indeed the in�nitesimal model is a
good approximation for the trait distribution in a population under some explicit and rather
general conditions on the genetics underlying the phenotype of interest. Even in the presence
of selection acting on the trait, or of population structure, if many loci contribute each to a
tiny fraction of the trait value then the distribution of the genetic component of the trait is
Gaussian, with mean the average of the genetic components of the parental traits. Furthermore,
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the variance of this distribution is independent of the parental traits and is equal to the
genetic variance in the ancestral population, reduced by a factor that depends on the pedigree
only through the probability that the two parents are identical by descent at a given locus
(this probability is constant across loci, since we assumed no linkage between loci in the
ancestral population or during the process of inheritance). From (2.44) it is easy to see why
this probability of identity by descent comes in the segregation variance. Indeed, identity by
descent implies that the two parental allelic e�ects are identical at each concerned locus and
thus reduces the variability among the siblings at some fraction of the M loci.

Second, the re�ned statement shows that the convergence of the vector (Rj,M )j=1,...,Nt

happens at a rate proportional to t/
√
M . Hence, the accuracy of the in�nitesimal model

is good over O(
√
M) generations, at least theoretically. In fact, simulations suggest that

convergence could be as fast as 1/M is some cases.

Third, the accuracy of the approximation is also dictated by the two quantities ΣM
t and

∆̄M
t (z). This shows that the in�nitesimal model will fail if either the genetic variability within

a given family becomes too low, so that all their descendants inherit traits that are more and
more alike as identity by descent erodes what remains of the additive variance; or if at least
one trait seen in the population becomes too extreme, so that knowing the value of the trait
gives some nonnegligible information on the allelic e�ects that built it.

Notice that we have not given the asymptotic behaviour of the observed traits, only their
genetic components. The environmental component is necessary to the proof of Theorem 2.15
because it `smoothes' the state space of the trait. Indeed, if for instance each allelic e�ect can
only take the values 0 and 1, then for any �nite M the genetic component of the trait value
can take only a �nite number of values too and this impedes the use of the local central limit
theorem that we sketch below. Because the environmental noise has a continuous distribution,
the observed trait value is also continuously distributed. Now, in the presence of this compo-
nent, the observed trait is the sum of the genetic and of the environmental contributions and
we cannot observe each separately. Instead, let us consider the vector

(
∆Z̃j

)
i=1,...,Nt

:=

(
Z̃j − Z̃j[1] + Z̃j[2]

2

)
i=1,...,Nt

=

(
Rj + Ej − Ej[1] + Ej[2]

2

)
i=1,...,Nt

.

From Theorem 2.15 we know that (Rj)j=1,...,Nt is a multivariate Gaussian vector which is ap-
proximately independent of Z̃(t−1), and by construction the same holds true for (Ej)j=1,...,Nt .
The parental environmental noises are not independent of Z̃(t − 1), but a classical result on
conditional multivariate distributions gives us the distribution of the vector (Ej)j=1,...,Nt−1

conditional on P(t) and Z̃(t− 1) (see Appendix F in [BEV17]). We can thus obtain the con-
ditional law of Z̃(t), which is also multivariate Gaussian and a recursion propagates the result
to later generations.

Finally, let us sketch the main argument in the proof of Theorem 2.15. We proceed by
recursion. In generation 0 the result is straightforward using an extension of the Central Limit
Theorem which was established in [95]. Note that the Central Limit Theorem cannot be used
directly as the allelic e�ects at di�erent loci are assumed to be independent but not necessarily
identically distributed. Suppose that we have our result for generation (t− 1). The key step is
then to show that for individual j in generation t, conditioning on knowing P(t) and Z̃(t− 1)

provides negligible information on the values ηj[1]
l , ηj[2]

l of the scaled allelic e�ects of locus l in
its parents. Through an application of Bayes' rule, this will essentially boil down to showing
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that ∣∣∣∣∣P
[
Z̃j[1] = z1

∣∣ηj[1]
l = x,P(t)

]
P
[
Z̃j[1] = z1

∣∣P(t)
] − 1

∣∣∣∣∣ ≤ t√
M

C
(
ΣM
t , ∆̄

M
t (z)

)
, (2.45)

where, since Z̃ is a continuous random variable, the ratio on the left should be interpreted as
a ratio of probability density functions, and the function C(σ2, x) was de�ned earlier. This

result is due to the fact that the contribution of ηj[1]
l /
√
M to Z̃j[1] is so small that both

Z̃j[1] − η
j[1]
l /
√
M and Z̃j[1] converge to the same normal distribution. The proof depends

crucially on knowing the rate of convergence of the distribution of the parental trait values to
a multivariate normal.

What (2.45) allows us to deduce (via Bayes' rule) is that knowing the trait of an individual
gives very little information about the allelic state at a single locus. As we discussed earlier,
although intuitively clear this result will break down if the segregation variance somewhere
in our pedigree is small or if a trait in the pedigree is too extreme. Armed with (2.45), we
can approximate the distribution of the allelic e�ects conditioned on P(t) and Z̃(t− 1) by
those conditioned just on P(t) and then it is an easy matter to identify the limiting variance-
covariance matrix of the random variables (Rj)j=1,...,Nt in generation t.

Convergence of the vector of the genetic components of the trait values in generation t to a
multivariate normal is then an application of the extended Central Limit Theorem. Knowing
the rate of this convergence allows us to prove the analogue of (2.45) for generation (t + 1),
and so on.

2.6.4 Perspectives

As we have seen in Section 2.6.1, many possible ranges of parameters could be investigated
and would give rise to di�erent long-term evolutions for the genetic diversity of the population.
Without drawing up a catalogue of possible behaviours, it is important to look for detectable
signatures of selection in a spatially structured population. This can be done by analysing
the pattern of allele frequencies at the locus under selection. But this pattern can be very
�at if selection is su�ciently strong for the favourable allele to have already swept to �xation
in a large region of space. Instead, or to complement this �rst approach, we can also try
to understand the e�ects of the selection pressure on linked neutral loci, as was initiated in
the work presented in Section 2.6.2. In particular, the study carried out there is much more
intricate in two dimensions because of the �uctuations in the front of the `invasion' wave. This
is a very natural and biologically relevant question that needs to be addressed in the future.

Talking about invasions, let us also mention that taking the selection strength to in�nity
leads to a model in which only one type of individuals reproduces and invades space in a wave-
like manner. This kind of processes can model the expansion of a species into a new habitat.
Some heuristics on such a population expansion and its links to classical growth models (like
the Eden model) already exist, but they appear to be very di�cult to justify rigourously.
Of particular interest is the phenomenon of gene sur�ng, whereby deleterious mutations can
remain present in the population for a large amount of time by literally sur�ng on the front of
the wave of advance of the population, where there is only limited competition for space (so
that carrying a deleterious allele is not such a burden). See for example [57] and references
therein.
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Chapter 3

Some models of pedigrees

In this chapter, we review two works investigating the shape of the `physical' ancestry
of a number of individuals taken in a panmictic sexual population with two-parent Wright-
Fisher resampling �rst, and in a spatially extended sexual population next. The last work
presented here is slightly di�erent. It introduces a model of random trees which generalises a
construction of Blum and François [15], and could be used to model species trees, transmission
trees of infections, or cell lineage diagrams, for example.

3.1 Ancestries of a panmictic sexual population

In the celebrated paper [21], Chang considers a modi�cation to the Wright-Fisher model
presented in Section 2.1, in which each of theN individuals forming the next generation chooses
two parents uniformly and independently at random within the current generation. The main
motivation is to model the pedigree of a diploid population, in which each individual inherits
its genes from two parents. Considering large population sizes, Chang proves the two following
results. For a given population size N (constant through time), let TN denote the number of
generations we need to come back in the past to �nd the �rst individual which is an ancestor
to the whole present population. That is, we trace back the bi-parental ancestry of every
individual living in the current generation, and stop when we reach the �rst generation in the
past in which we see an individual belonging to the ancestry of everyone. Observe that in
contrast with the standard Wright-Fisher model, ancestral lines can not only merge but also
branch into two since each individual has two parents. As a consequence, there may be more
than one such common ancestors in a given generation.

Theorem 3.1. (Th. 1 in [21]). As N →∞,

TN
log2N

(prob)−→ 1.

Furthermore, if UN denotes the number of generations to come back to �nd the �rst gen-
eration in which every individual is either an ancestor to everyone in the present generation,
or an ancestor to no present-day individuals, we have the following asymptotic result.

Theorem 3.2. (Th. 2 in [21]). Let γ denote the smaller of the two numbers satisfying the
equation γe−γ = 2e−2, and let ζ = −1/(log2 γ) ≈ 0.7698. Then as N →∞,

UN
(1 + ζ) log2N

(prob)−→ 1.

93
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Finally, the fraction of individuals in generation −UN which are common ancestors to the
whole present population is 1 − γ/2, where γ is de�ned in the statement of Theorem 3.2
and corresponds to twice the extinction probability of a Galton-Watson process with o�spring
numbers drawn from a Poisson(2) random variable.

Chang's results quickly received a lot of attention and were discussed in [33] by some of
the most famous population geneticists. Indeed, they showed that contrary to the ancestry
at a non recombining locus in which the most recent common ancestor to the population is
found after coming back at least O(N) generations, in the biparental pedigree describing the
(potential) ancestry at the level of the whole genome, common ancestors can be found in much
less time, of the order of log2N . In about 1.77 log2N generations, everyone shares the same
ancestors. Note in passing that in any generation earlier than UN , again every individual is
also either a common ancestor to every present-day individual, or to none of them. Of course
being a pedigree ancestor does not necessarily imply being a genetic ancestor, especially if we
consider only a restricted part of the genome. In the extreme case where this stretch of genome
never recombines, every individual inherits its DNA from one of the two parents only and we
are back in the standard haploid Wright-Fisher framework to describe the genetic ancestry
at this locus. Even in the presence of recombination, the genetic contribution of a pedigree
ancestor may become lost by a series of recombination events and this ancestor then becomes
a ghost (genetically speaking). The relation between pedigree ancestry and genetic ancestry
has been the object of several studies, which focus on the fate of independent non-recombining
loci [78, 111] or that of the genetic content of an individual within a pedigree [7, 52].

We instead focus on a region of DNA in which there can be recombination with probability
r ∈ [0, 1] or not during each reproduction event, and we study the shape of the genealogy made
of all ancestors potentially contributing to the genetic state in each individual of the present
population. That is, in the version of the Wright-Fisher model we consider, each individual has
two parents with probability r, which are then chosen independently and uniformly at random
in the previous generation, or only one parent with probability 1−r, again chosen at random in
the previous generation. We are thus at an intermediate level where we take (the absence of)
recombination into account to keep only the ancestors that are likely to transmit some of their
genes, but do not model the fact that the genetic contribution of such ancestors could vanish
because of a `bad' series of recombinations. This model can also be applied to other phenomena
such as paternal leakage in mitochondrial DNA, which corresponds to paternal mitochondria
entering the egg cytoplasm at fertilisation (mitochondria and consequently mitochondrial DNA
are predominantly maternally inherited). Such biparental mitochondrial inheritance has been
documented in mammals, birds, reptiles, �sh, molluscs, nematodes and arthropods, and is the
norm in some bivalves, see [115]. The parameter r in this case is the probability of paternal
leakage per generation.

Remark 3.1. The ancestry in the model we consider here is the discrete analogue of the
ancestral recombination graph (see for instance Chapter 7 of [110]). In fact, Theorem 4 in
[STV16] states that if the recombination probability rN tends to 0 as N → ∞ in such a way
that NrN → ρ ≥ 0, then as N → ∞ the ancestral process of a �nite sample of individuals on
the timescale (bNtc, t ≥ 0) converges in distribution to the ancestral recombination graph with
recombination rate ρ and pairwise coalescence rate 1. The proof is rather combinatorial and
seems to have never been done before.

Recall the notation TN for the (backward) generation of the �rst common ancestor to the
whole present population, and UN for the number of generations, counting back in time from
the present, to the �rst generation at which each individual is either a common ancestor to
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all present-day individuals or to none of them. Notice that the case r = 0 corresponds to
the haploid Wright-Fisher model with Kingman-like genealogies, while r = 1 corresponds to
Chang's biparental Wright-Fisher model. Hence, there remains to consider the case r ∈ (0, 1).
Generalising the method of Chang, in [STV16] we show the following results.

Theorem 3.3. (Th. 2 in [STV16]). Let r ∈ (0, 1). As N →∞, we have

TN
C(r) lnN

(prob)−→ 1,

where

C(r) :=
1

ln(1 + r)
− 1

ln(1− r)
.

Theorem 3.4. (Th. 3 in [STV16]). Let r ∈ (0, 1). Let also ρ = ρ(r) be the unique solution
in (0, 1) to the equation x = e−(1+r)(1−x). Then for every ε > 0,

lim
N→∞

P
[
(1− ε)

(
C(r)− 1

ln((1 + r)ρ)

)
lnN ≤ UN

≤ (1 + ε)

(
C(r)− 1

ln((1 + r)ρ)
− 1

ln(1− r)

)
lnN

]
= 1.

The result of Theorem 3.4 is less sharp than the corresponding result of Chang. As ex-
plained below, this is due to the fact that in the case r ∈ (0, 1) the extinction of the set of
`non-descendants' of a given individual in the past ends much more slowly and with a greater
variability than in the case r = 1. This phenomenon was overlooked in the conjecture that
C(r) should be equal to 1/ ln(1 + r) proposed in [33]. The same mistake was made in a few
biology papers like [72], and so it seemed important to provide a correct statement for this
result.

Finally, concerning the fraction of individuals in generation−UN who are common ancestors
to the whole present population, we have:

Proposition 3.1. (Cor. 1 in [STV16]). Let r ∈ [0, 1]. The fraction of individuals living UN
generations ago that are common ancestors to the current population converges in probability
to 1− ρ as N →∞, where ρ was de�ned in the statement of Theorem 3.4 and corresponds to
the extinction probability of a Galton-Watson process with o�spring distribution Poisson(1+r).

The main idea of the proof of these results is to start from some ancestral generation `0'
and to consider the evolution of the family size of a given individual forwards in time. Let us
�x an individual in generation 0 and for any t ∈ N, let Gt denote the number of descendants of
this individual living t generations later. Because an individual in generation t+ 1 belongs to
the family of size Gt+1 if and only if at least one of its parents (or its single parent if there was
no recombination) belong to the descendants in generation t, the Wright-Fisher resampling
mechanism enables us to write that conditionally on Gt,

Gt+1 ∼ Bin

(
N, (1− r)Gt

N
+ r

(
1−

(
1− Gt

N

)2))
= Bin

(
N, (1 + r)

Gt
N
− r G

2
t

N2

)
.

We also have G0 = 1. As a consequence, when Gt is small, it essentially behaves like the
supercritical Galton-Watson process with o�spring law the Poisson(1+r)-distribution. On the
other hand, when Gt is big enough it is nearly equal to its mean. Making these two statements
precise are key ingredients in the proof, see Lemmas 2 and 13 in [STV16]. Assuming that
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Gt does become large (instead of being absorbed at 0), we then consider the number Bt of
individuals in generation t which are not descendants. This time, conditionally on Bt we have

Bt+1 ∼ Bin

(
N, (1− r)Bt

N
+ r

B2
t

N2

)
,

and again when Bt is large it is very close to its mean whereas once it has become small, it
evolves approximately like the subcritical Poisson(1− r) Galton-Watson process.

Let us now brie�y sketch the proof of Theorem 3.3. It consists in splitting the creation and
evolution of a successful family into 4 stages. We �x an ε > 0 small.

� Stage 1: there exists an individual I in generation 0 for which (GIt )t∈N reaches (lnN)2

in less than 3(ln lnN)2/ ln(1 + r) generations with probability tending to 1. To see
this, let us look at the family of individual 1. At the beginning it behaves like a
supercritical Galton-Watson process for which we know that the probability that the
size of the population reaches (lnN)2 in less than 3(ln lnN)/ ln(1+r) is asymptotically
bounded from below by the survival probability 1 − ρ. If the family of individual 1
becomes larger than (lnN)2 in less than 3(ln lnN)/ ln(1 + r) generations we have our
successful individuals, otherwise we consider individual 1 in generation 3(ln lnN)/ ln(1+
r) + 1 and start again the same reasoning. Proceeding incrementally, the number of
attempts before we �nd an `individual 1' whose family manages to grow su�ciently
fast is stochastically bounded by a geometric random variable with success probability
1 − ρ − δ (for some δ su�ciently small). The probability that this number is larger
than ln lnN thus tends to 0 as N → ∞. From now on we consider the family of this
successful individual.

� Stage 2: GI grows from (lnN)2 to more than N/2 in less than τ (2)
N generations, where

P
(
τ

(2)
N >

(
1 +

ε

2

)
lnN

ln(1 + r)

)
= o

(
1

N

)
,

and

P
(
τ

(2)
N <

(
1− ε

2

)
lnN

ln(1 + r)

)
= o

(
1

N

)
.

These results are obtained by using a Bernstein inequality recalled in Lemma 2 of
[STV16]. In e�ect, we have to split this stage (and the next one) into two steps in the
full proof of Theorem 3.3, but this is only for an uninteresting technical reason.

� Stage 3: The family of non-descendants of I, of size BI
t , goes down from less than N/2

to less than (lnN)2 in τ (3)
N generations, where

P
(
τ

(3)
N >

(
1 +

ε

2

)
− lnN

ln(1− r)

)
= o

(
1

N

)
,

and

P
(
τ

(2)
N <

(
1− ε

2

)
− lnN

ln(1− r)

)
= o

(
1

N

)
.

� Stage 4: BI starting from less than (lnN)2 is absorbed at 0 in less than
−3(ln lnN)/ ln(1− r) generations with probability tending to 1. This result is obtained
by comparing BI to a Poisson(1− r) Galton-Watson process.

Based on these four results we easily obtain that TN ≤ (1+ε)C(r) lnN with probability tending
to 1. Since the probabilities described in Stages 2 and 3 are of order o(1/N), summing over all
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individuals in generation 0 tells us that the probability that at least one of the corresponding
families reach size N in less than (1− ε)C(r) lnN tends to 0 as N →∞.

As concerns the result of Theorem 3.4, the (positive) term −(lnN)/ ln((1 + r)ρ) describes
the additional time needed for all the families of the N individuals in generation 0 to either go
extinct or be successful and reach size (lnN)2. The term −(lnN)/ ln(1− r) is an upper bound
on the time required for all the successful families to eventually reach size N . In Chang's case
r = 1, the rate of decay of a family of non-descendants is quadratic in N , and so Stage 4
and this last amount of time for the complete success of all successful families are negligible
compared to lnN . In the case r ∈ (0, 1), it is di�cult to quantify the amount of `slow' successful
families, whose sizes reach (lnN)2 in about (lnN)( 1

ln(1+r) −
1

ln((1+r)ρ)) generations, and their
reaching N could in fact take much less than −(lnN)/ ln(1− r) generations to happen.

Finally, Proposition 3.1 is proved by observing from the proof of Theorem 3.3 that the frac-
tion of individuals in generation 0 that will reach the state of common ancestor UN generations
later is made of those individuals whose families are initially successful.

3.2 Pedigree vs. genetic ancestry in a spatial population

The last section was concerned with the pedigree of a panmictic population of sexually
reproducing individuals. A spatial structure will inevitably modify the form of the pedigree,
and this is what we enquire here. This section corresponds to the publication [KEVB16].

Let us suppose that the population of interest is distributed over some large one-dimensional
space. In [KEVB16], we work with three models of spatial structure: (i) a spatial Λ-Fleming-
Viot process with local reproductions only, two parents being drawn at random during each
event, and the population evolving on a continuous torus of length L (su�ciently large to
mimick R over the timescale of interest in the simulations); (ii) a stepping stone model with
biparental Wright-Fisher resampling within each of the L demes in the discrete torus Z/LZ, and
with nearest neighbour migration; (iii) another stepping stone model on Z/LZ with nearest
neighbour migration but biparental Moran resampling within each deme (that is, only a pair
of individuals reproduces at a time). We only present the results based on the SLFV, but the
same approach leads to analogous results in the three models. A particularly interesting point,
though, is that the statistics describing the wave of pedigree ancestors are heavily dependent
on the details of the model, whereas the wave of genetic ancestors depends only on a few
compound parameters which have the same interpretation in all three models (among which
σ2, the variance parameter of the long-term di�usion of a single lineage).

Let us also suppose that individuals are haploid, each with two parents. We consider a
�nite number l of linearly arranged loci, with recombination occurring with some probability
ρ between any pair of neighbouring loci during a reproduction event. In what follows we
shall consider the case ρ = 1/2 of free recombination (equivalent to each locus `choosing'
independently the parent from which it inherits its allele), but this concerns only the genetic
ancestry and can be generalised. In general, we assume that the population size is large but
regulated in such a way that it remains approximately constant locally (as in the three models
mentioned above).
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Pedigree ancestry

We sample a single individual, say at location 0, and we �rst trace back the spatial distri-
bution of its ancestors as a function of time (running backwards into the past). Recall that
an individual always has two parents, and so the pedigree ancestry is made of a set of lin-
eages which branch into two nearby lineages at some given rate, but may also coalesce when
they reach a common ancestor. During both types of events, the lineages also jump to new
locations, which are the spatial positions of the corresponding ancestors. Initially, the set of
ancestral lineages behaves essentially like a branching random walk and coalescence has only
a small e�ect. However, the local density of ancestors cannot grow inde�nitely because of our
assumption of regulated local population densities. At this time, either the lineages manage
to escape to less populated areas further away from the origin, or they coalesce locally. We
thus expect the population of pedigree ancestors to develop into a travelling wave advancing
in space at some speed that depends on the characteristics of the model. In Sections 3.1
and 3.2 of [KEVB16], we �nd some analytic approximations for the wave of advance of the
pedigree ancestors. Although they capture the essence of the evolution of this population of
ancestors, the approximation is still too crude to derive an estimate of the most important
summary statistics of the wave, such as its speed, width, or front shape. Instead we resort to
simulations. De�ning pt(x) to be the size of the population at x relative to the mean size of
the population at the origin, all this considered at time t in the past, we can use again the
de�nition of the wave centre zt and width Wt made in Section 2.6.2:

zt =

∫
pt(x)dx, Wt = 4

∫
pt(x)(1− pt(x)) dx.

We want to compare our three models, as well as to compare them to the classical Fisher-KPP
travelling wave. Thus, as in Section 2.5 we de�ne the dispersal rate σ2 as the variance of
the Brownian motion which approximates the long-term behaviour of a single lineage, and the
e�ective population density ρe by

1

2ρe
=

∫
h(x)dx,

in the continuum, and
1

2ρe
=
∑
i

h(i)

for the discrete space Wright-Fisher and Moran stepping stone models. Here h(x) is the
instantaneous coalescence rate of two lineages at separation x and the integral or sum is over
all possible separations (in R) between two lineages. We then choose our model parameters so
that these two statistics are identical between the models.

Figure 3.1 shows the mean wave shapes in the three models and compares them to that
predicted by the Fisher-KPP equation. We see that they are all quite di�erent, which suggests
that the shape of the wave is very sensitive to the details of the model. Figure 3.2 shows
simulations of the wave centre and width for the three models and three di�erent e�ective
population densities. We see that after an initial period of time during which the wave estab-
lishes, the position zt of the wave moves linearly in time at a speed which is independent of ρe
(like the travelling wave solution to the Fisher-KPP equation, we expect the wave of ancestors
to be a pulled wave and so its speed should be independent of the population density in the
bulk). Likewise, the width of the wave depends on the model but not on ρe.
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Figure 3.1 � Mean wave shapes in the simulated continuum, Wright-Fisher and Moran models
with ρe = 100 and σ = 1/

√
2, along with theoretical predictions. On the x-axis is distance

relative to the front centre, and on the y-axis (on a logarithmic scale) is p(x)/(1−p(x)), where
p(x) is the ancestral population size relative to the mean size at the origin. (A logistic curve
would be linear.) Also shown is the predicted wave shape for the Gaussian approximation
along with a solution to the Fisher-KPP equation.

Genetic ancestry

Recall that we consider l linearly arranged loci in the genome and free recombination
between them (i.e., ρ = 1/2). Let us now keep track of the pedigree ancestors carrying genetic
material ancestral to our sampled individual. The number of such ancestors is limited, since
there cannot be more than l of them at any given time in the past. Since there cannot either
be more genetic ancestors than pedigree ancestors, we expect the early development of the
population of genetic ancestors to be essentially the same as that of the population of pedigree
ancestors. However, after some time recombination and di�usion (and the slow coalescence
rates due to our assumption of large ρe) will have split the genetic ancestry into approximately
l lineages moving around in space like �nite-variance random walks. For reasonably large times
t, the area in which these ancestors can be found has a width of the order of 2σ

√
t and the

genetic ancestors are well spread therein, evolving nearly independently of each other. Thus, we
expect the wave of genetic ancestors to be much slower than that of pedigree ancestors, which
is con�rmed by simulations. Figure 3.3 shows the same summary statistics as in Figure 3.2,
but for the wave of genetic ancestors. This time we see that these statistics are insensitive to
the details of the model (recall that we only imposed that σ2 and ρe should be the same in all
models).

Two spatial dimensions

The analysis and comparisons through simulations expounded above can also be carried
out in the more biologically relevant case of a two-dimensional population range. This is
summarised in Section 5 of [KEVB16], where we show that essentially the same results hold
true in this case.
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Figure 3.2 � Estimated pedigree wave centre and width for a range of e�ective densities
in the continuum, Wright-Fisher and Moran models. The mean wave centre and width are
estimated from 1000 replicate simulations. For each replicate, we estimate the centre and
width independently and then take the mean of these values over all replicates.
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3.3 A model of asymmetric ancestral relationships

In this section, we present a model of random tree topologies which can encode the potential
asymmetry between the two child nodes of a given internal node. For example, a speciation
event could be seen as the divergence of one new species from an ancestral species which carries
on existing. In this case, the two `new' species play di�erent roles and it may be relevant to
include this asymmetry in the model. As an other example, in the transmission tree of an
epidemics (which records who infected whom in which order), a priori the infector carries on
being infectious after transmitting the disease to a susceptible individual, and it could be of
interest to keep track of who plays which role. This example is developped in [98], where the
disease transmission tree is constrained by the network over which the population of infectors
and infectees is distributed. There the authors show that the parameters α, β introduced below
can serve to classify the underlying individual networks into classes of (oriented, weighted)
graphs which are equivalent with respect to the transmission of a disease.

Disregarding the modelling of the times between the events, which can usually be added
later as a topology-dependent process, we wish to provide a family of random topologies
characterised by a small number of parameters and o�ering a large panel of tree shapes. Indeed,
the topology of Kingman's coalescent, which happens to be the same as the topology of the Yule
process [121] (extensively used in phylogenetics, for example), is by far the most commonly
used model for the topology of the tree describing the ancestral relationships between a sample
of individuals within a population, or a sample of species within a clade. But many processes
such as natural selection or population structure at the population level, or adaptive radiation
at the species level, may give rise to more balanced or unbalanced trees. Therefore, a model
in which the balance of the tree can be tuned by a parameter would enable us to quantify the
e�ects of such processes on the shape of the tree of evolutionary relationships, or to test the
adequacy of the standard null model of the Kingman-Yule topology.

In [2], Aldous introduces a one-parameter family of random cladograms, called the Beta-
splitting model. Here a cladogram is de�ned as a binary tree shape with a speci�ed number
of leaves in which there is no `left' and `right' ordering of the child nodes of an internal
node. The leaves are labelled by the sampled species, or by {1, . . . , n} for simplicity. The
parameter β > −2 modulates the shape and balance of the tree produced by this model by
determining the split distribution of a node subtending m leaves. More precisely, Aldous'
recursive construction involves a �xed n, the number of leaves representing the extant species
in a tree with at least two leaves and {qβn(i) : i = 1, 2, . . . , n − 1}, a symmetric probability
distribution (i.e., qβn(i) = qβn(n − i)) which speci�es the numbers i and n − i of descendants
along the two branches emanating from the root node of the tree. Once this split (i, n− i) is
�xed, the construction carries on recursively in the two subtrees pending from the root, with
respective numbers of leaf nodes i and n− i, and stops when all subtrees considered have only
one leaf. In the Beta-splitting model with β > −2, the split distribution qβn takes the form

qβn(i) =
1

an

(
n

i

)∫ 1

0
xi+β(1− x)n−i+βdx (3.1)

for 1 ≤ i ≤ n− 1, where an is a normalizing factor given by

an =

∫ 1

0

(
1− xn − (1− x)n

)
xβ(1− x)βdx.

This Markov branching model has now become a reference in the literature [15, 90], in particu-
lar because it provides a family of random tree topologies indexed by a single parameter, which
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contains the most commonly used Kingman-Yule tree (β = 0) and Proportional to Distinguish-
able Arrangements (or PDA) model in which every cladogram is equally likely (β = −3/2).
The parameter β tunes the balance of the tree, since `β = −2' corresponds to the totally
unbalanced tree or comb, whereas the generated trees become more and more balanced as β
tends to in�nity. In [3], Aldous also proposes a measure of the balance of a tree which has the
advantage of being independent of the tree size, at least for large n's: the median of the split
distribution qβn . This measure is used to perform maximum likelihood estimation of β or to
compare the global balance of several trees [3, 15].

Unfortunately, there seems to be no underlying evolutionary process whose outcome is the
random cladogram obtained for a given value of β (unless β = 0, corresponding to Yule's pure
birth process). Indeed, since the number of leaves has to be known before recursive splitting
begins, Aldous' Beta-splitting model is not based on an incremental construction from one
ancestral to n present species/individuals, nor is it de�ned jointly on the product space of
tree topologies and branch-lengths for every value of β > −2. It thus lacks evolutionary
interpretability.

To overcome this problem, in [15], Blum and François introduce an evolutionary Beta-
splitting model based on ideas of Kirkpatrick and Slatkin [68] and Aldous [2]. The idea is that
the `speciation potential' is shared between the two o�spring species in a random way, as may
occur e.g. in the case where speciation is in�uenced by available niche or geographical space
that is shared between the two new species. In this model, a (rooted binary non-planar) tree
is constructed incrementally by starting from a single node (the root) with speciation rate (or
`potential') 1. When this �rst species branches, a parameter p1 is sampled in [0, 1] according
to a Beta(β+1, β+1) distribution. Then the �rst o�spring species is given the speciation rate
p1, and the second the speciation rate 1 − p1. The next species to split is thus the �rst one
with probability p1, or the second one with probability 1− p1. Carrying on the construction,
upon the split of a species with speciation rate λ, a new parameter pi is sampled independently
of the previous ones according to the same Beta(β + 1, β + 1) distribution, and the two sister
species receive the speciation rates λpi and λ(1 − pi). Then, each species is the next one to
branch with a probability equal to its speciation rate/potential.

Though the Blum-François and the Aldous Beta-splitting models coincide for β = 0, in
general they do not yield the same distribution on cladograms. See the Supplementary Material
of [15] for a discussion of the relations between the two families of processes. Nevertheless,
the principles behind the two constructions are similar and the Blum-François model o�ers
an approximate evolutionary construction of Aldous' Beta-splitting model, with a slightly
restricted range of parameters (β > −1 instead of β > −2). In fact, the range of topologies
covered by the Blum-François model is quite wide as well, since `β = −1' corresponds to the
totally unbalanced trees while `β =∞' corresponds to highly balanced trees.

In [SV16], we extend the Blum-François model by allowing asymmetric Beta-distributions
for the split distribution. That is, the fraction of `speciation potential' allocated to the �rst
o�spring species is now distributed according to a Beta(α + 1, β + 1) distribution, for some
α > −1 and β > −1. Of course this lack of symmetry makes sense only if we distinguish a
�rst and second (or later `left' and `right') o�spring species. That is, instead of cladograms we
now work with planar trees. In order to include some information on relative speciation times
without keeping track of the full set of speciation times, we also rank the split events in the
trees. Because various tree shape statistics are functions of the unranked and/or non-planar
lumping of such trees, we consider four types of (rooted binary) trees:

� Ranked planar trees: In this case, we distinguish the left and right child nodes of
an internal node, and every internal node is labelled by an integer keeping track of the
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ordering in which the splits occur during the construction of the tree. Since a binary
tree with n leaves has n − 1 internal nodes, the labels run from 1 (the root) to n − 1
(the last split).

� Unranked planar trees: Left and right child nodes are distinguished, but the internal
nodes are not labelled (so that the order of the splits is not recorded).

� Ranked non-planar trees: In this case, the internal nodes are ranked and labelled
according to the splitting order, but left and right child nodes play equivalent roles.

� Trees: Unranked and non-planar trees. Aldous' cladograms are such trees whose leaves
are further labelled by the n taxa.

We can give explicit expressions for the probability of any tree at the resolutions of ranked
planar and unranked planar trees for any α, β > −1, and for the probability of any tree at the
resolutions of ranked or unranked non-planar trees for any α = β > −1. For example, at the
resolution of the ranked planar trees we have the following expressions. For a given ranked
planar tree and an internal node labelled by i, let us write nLi (resp., nRi ) for the number of
internal nodes in the left (resp., right) subtree below node i. In particular, if node i subtends
two leaves, then nLi = 0 = nRi .

Theorem 3.5. (Th. 3.1 in [SV16]). For any ranked planar binary tree τ with n leaves, we
have

P(τ) =
n−1∏
i=1

{
1

B(α+ 1, β + 1)

∫ 1

0
b
nLi +α
i (1− bi)n

R
i +βdbi

}

=

n−1∏
i=1

B(nLi + α+ 1, nRi + β + 1)

B(α+ 1, β + 1)
, (3.2)

where

B(α, β) :=

∫ 1

0
xα−1(1− x)β−1dx.

The probabilities for the other tree resolutions are obtained by computing how many ranked
planar trees are lumped into the tree of interest. In the case of the unranked planar tree, it
only boils down to multiplying (3.2) by a combinatorial factor for any α, β. When we consider
non-planar trees, on the other hand, unless α = β there are no simpli�cations (due to the fact
that B(nLi +α+ 1, nRi + β + 1) 6= B(nRi +α+ 1, nLi + β + 1) in general) and the probability of
a given non-planar tree is the sum of all probabilities of corresponding planar trees. All these
probabilities can be found in Sections 3 and 4 of [SV16].

Our generalisation of the Beta-splitting model can be constructed via an evolutionary pro-
cess, in which it is then easy to add death or freezing of lines (although computing probabilities
of trees with freezing becomes tricky once the labels have been erased.) We present here the
simpler construction without death. Let us �x α, β > −1. Let (Bi)i∈N be an i.i.d. sequence of
Beta(α+ 1, β+ 1) random variables, and (Ui)i∈N be an independent i.i.d. sequence of uniform
random variables on [0, 1]. The form of the parameters of the Beta distribution is chosen so
that its density (proportional to xα(1−x)β) matches that of Aldous' and Blum and François's
Beta-splitting models. Once these sequences are realised, we proceed incrementally from the
root and for n− 1 steps, where n is the number of leaves we want to reach (at the end of step
i, the tree has i+ 1 leaves). We start with a single root node, labelled by the interval [0, 1].

� Step 1: Split the root into a left leaf labelled by [0, b1] and a right leaf labelled by
[b1, 1]. Change the label of the root to the integer 1.
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b′ = b1b2 + b3b1(1− b2)

Figure 3.4 � An example of construction for n = 4.

� Step 2: If u2 ∈ [0, b1], split the left child node of the root into a left leaf and a right leaf
respectively labelled by [0, b1b2] and [b1b2, b1]. If u2 ∈ [b1, 1], then instead split the right
child node of the root into left and right leaves with respective labels [b1, b1 +(1−b1)b2],
[b1 + (1− b1)b2, 1]. Label the former leaf that is split during this step by 2.

� Step i: Find the leaf whose interval label [a, b] contains ui. Change its label to the
integer i and split it into a left leaf with label [a, a + (b − a)bi] and a right leaf with
label [a+ (b− a)bi, b].

� Stop at the end of Step n− 1.

An example is provided in Figure 3.4. We see that as long as we have not erased the interval
labels of the leaves, we can resume the construction and add another m leaves in the tree.
Furthermore, once a realisation of the sequence ((Bi, Ui))i∈N is �xed, the construction of the
tree is entirely deterministic, and so the sequence characterises the tree. To add the freezing of
leaves which prevents them from being split at some later stage, we �x some freezing probability
δ ∈ [0, 1) and we augment the vector (Bi, Ui) driving the ith step by adding two coordinates
(Vi, Di) which are both uniformly distributed on [0, 1] (and independent of every other random
variable). These new components are then used to decide whether the ith move is a split or a
freezing, and which leave is chosen to freeze if needed.

To give a few examples of the kind of topologies we can obtain, it is not di�cult to see from
Theorem 3.5 that α = β = 0 corresponds to the Kingman-Yule tree, α = β → −1 gives rise to
comb trees, and α = β → +∞ yields very balanced trees (see Section 3.2 in [SV16]). Because
this family of random tree topologies contains a large range of tree balances and allows to give
asymmetric roles to the two child nodes of a given node, while being parametrised by two real-
valued parameters only, we believe that it could be a relevant statistical model to compare and
classify di�erent ancestral, evolutionary, or transmission trees without imposing mechanistic
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rules explaining their shapes. The code developped for this model is publicly shared at
https://cloud.sagemath.com/projects/2c5f7f68-e689-4c70-a4b4-5b5d4dc4f93f/

files/2015-10-27-082849.sagews.

3.4 Perspectives

The di�erent models explored in the previous sections show a high dependence of the form
of the pedigrees on the biology of the organisms. Of course gene genealogies are embedded in
the physical ancestry of the individuals of the population, and so a priori the whole pedigree
constrains the genetic diversity observed in the population. Yet, in Section 2.6.3 we have
seen that these constraints may not be signi�cant at the genetic level and, in many cases,
statistically the genealogy/diversity at a typical locus depends only on a few summary statistics
of the evolution of the population (see for example [111] and Section 3.2). However, when
considering large recombining stretches of genome with linkage, or loci on sex chromosomes
and autosomes, the shape of the physical ancestry is likely to have a much larger impact and,
in particular, to explain much of the correlations across loci. For example, if males and females
in a sexual population do not behave and reproduce in the same way during their lifetimes,
we expect the correlation between the genetic diversities at two loci situated on an autosomal
and a sex chromosome to have a speci�c form. Indeed, they are both transmitted through
the same pedigree but the �rst locus can be inherited from both parents, while a gene on
the Y-chromosome (in mammals), or mitochondrial DNA (maternally inherited in general)
can come from one of the two parents only. This problematic is at the intersection between
population genetics and behavioural ecology and further studies of the relationship between
pedigrees and gene genealogies could shed some light on questions like why sex di�erences in
dispersal seem to be promoted in many species of birds and mammals [29, 53], or what is
the e�ect of monogamy, territoriality, dispersal distances, etc. on the genetic diversity of the
population (work in progress with Raazesh Sainudiin).



Chapter 4

A new approach for the inference of

demographic parameters

4.1 Motivations

Population genetics methods based on genealogies can be used to infer demographic pa-
rameters such as e�ective population sizes, rates of exponential growth or decline, bottleneck
times and strengths, geographical structure, etc. Indeed, each of these phenomena a�ects the
genealogies at all loci in the same way. Assuming that we can consider L loci as evolving inde-
pendently, the allelic distributions observed at these loci in a sample of individuals can thus be
seen as L realisations of the same genealogical and mutational random processes, and we can
therefore hope to extract some information on the demographic parameters of the population
from this data. In the same vein, we can also try to detect outlier loci, in particular those
subject to natural selection. Di�erent types of data can be used to infer the parameters of
interest. Those we shall discuss further below are the site frequency spectrum (or SFS) and
sequence alignments.

Let us consider a single non-recombining gene. Assuming the corresponding locus is long
and the per-base mutation rate is small, we can make the approximation that every mutation
falls on a di�erent site (or base pair). This is the in�nitely many sites model of mutation.
In this case, for a sample of n individuals the most precise data we can observe is the set
of n locus-speci�c DNA sequences. This is what we call a sequence alignment. In general
only the segregating sites, where a mutation occurred, are represented, in the form of a binary
incidence matrix of 0's (ancestral or reference bases) and 1's (derived bases). See Figure 4.1
for an example in which some non segregating sites are also shown. We may also restrict our
attention to the less detailed site frequency spectrum S = (S1, . . . , Sn−1), where

Sk = # mutations carried by exactly k individuals (4.1)

counts the number of segregating sites at which the mutation is carried by k individuals of the
sample. In the example of Figure 4.1, we have n = 4 and S = (2, 1, 2). Note that this de�nition
supposes that we know which base is ancestral and which is derived at every site, which may be
possible if we can compare the sequences to an outgroup, i.e. an homologous sequence sampled
in a closely related species. When this identi�cation is not possible, we instead consider the
folded site frequency spectrum de�ned for every k ∈ {1, . . . , bn/2c} as the number of sites at
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Figure 4.1 � A genealogical tree with mutations for a sample of 4 individuals and the corre-
sponding binary incidence matrix and site frequency spectrum. The coloured dots represent
the mutations, and the associated numbers indicate the site a�ected by each of them. Here
there are �ve segregating sites, namely 2, 3, 6, 7, 9.

which k individuals carry one base and n− k carry another base. That is:

S̃k =
Sk + Sn−k

1 + δ{k=n−k}
.

On top of the mutation model, we must also choose a model for the genealogical tree
on which the mutations that we observe in the sample appeared at some point in the past.
Recall Kingman's coalescent introduced in Section 2.1 as a continuous-time Markov process
on the set of all partitions of {1, . . . , n}. The whole trajectory until it reaches the absorbing
state {{1, . . . , n}} can be represented more graphically as a genealogical tree topology whose
leaves are labelled by 1, . . . , n, accompanied by a time vector (T2, . . . , Tn) where for every
i ∈ {2, . . . , n},

Ti = duration of the epoch during which the sample has i ancestors. (4.2)

See again Figure 2.2. In the case of Kingman's coalescent, Ti is an exponential random variable
with parameter i(i − 1)/2, since we suppose that each of the i(i − 1)/2 pairs of blocks tries
to merge at rate 1. Because of its simple evolution rule, many computations can be done to
describe its topology and the lengths of some portions of the tree of interest. For example,
conditionally on the total length Lk of all the edges of the tree subtending k individuals in
the sample, the number Sk of mutations carried by k individuals follows a Poisson distribution
with parameter µLk, where µ is the per-locus mutation rate. The average number of such
mutations is thus proportional to the expectation of Lk.

Based on the intuition that the larger the population, the longer it takes to two lineages to
reach a common ancestor, a natural (and now classical) generalisation of Kingman's coalescent
to the case of a panmictic population with �uctuating census sizes is to suppose that t units
of time in the past, each pair of lineages tries to coalesce at the instantaneous rate 1/Nt (see,
e.g., Chapters 4.2 to 4.4 of [34] and references therein). In other words, for any sampling size
n, the probability that none of the n(n− 1)/2 initial pairs of lineages has coalesced by time t
in the past (t = 0 corresponding to the present) is given by

E
[

exp

{
−
∫ t

0

n(n− 1)

2Ns
ds

}]
. (4.3)
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To fully specify the model, we need a description of the backward process (Nt)t≥0 of (e�ective)
population sizes. As an example, if we want to model an exponential growth at rate g from
the past towards the present, we can take

Nt = N0e
−gt,

where N0 is the current population size. To model a bottleneck occurring between a and b
units of time in the past and during which the population is reduced by a factor ε, we can take

Nt =


N0 if t ∈ [0, a),

εN0 if t ∈ [a, b),

N0 if t ≥ b.

These are examples of parametric models, but we may also consider nonparametric models.
For instance, the work presented in Section 4.3 makes the assumption that (ln(Nt))t≥0 is a
Gaussian process whose correlation function needs to be estimated (see also [88]).

A large panel of methods already exist to infer demographic parameters from mutation
data. To name a few:

� The Poisson Random Field approach [56, 87, 99] considers a series of independent
SNPs in a sample of size n (SNP stands for `Single Nucleotide Polymorphism', or
`segregating site' in the terminology introduced earlier). Assuming the in�nitely many
sites mutation model with a very low mutation rate, the distribution of the number
of mutations carried by k ∈ {1, . . . , n − 1} individuals is approximated by a Poisson
distribution. In general the parameter of the Poisson distribution corresponding to each
k must be estimated by means of simulations, but we can then derive an approximate
likelihood expression for (Nt)t≥0.

� Methods based on the probability generating functions of the branch lengths
in the genealogy are available, see for example [19]. These methods are untractable
for n ≥ 5 (at best).

� Skyline plots form another family of inference methods for demographic history, as
reviewed in [60]. These nonparametric methods rest on the assumption that there is
not much variability in the data-compatible reconstructed tree on which the estimation
of the local harmonic means of e�ective population size is based (c.f., [92]). However,
this will typically not be the case when the per-locus mutation rate is low and the data
contains only a few mutations.

� Methods based on the Sequential Markov Coalescent [77, 81] have been set up
to relax the strong assumption of independent loci, and to exploit the information
provided by recombination and partial linkage. This tree-valued random process is a
Markovian approximation for the sequence of genealogical trees relating a sample of
n individuals at each locus, as we go along the genome. More precisely, we assume
that the tree at each locus follows the law of Kingman's coalescent, but as we scan
the genome, we encounter breakpoints at which the genealogy of the sample changes
due to a recombination event. The true sequence of trees that we obtain in this way is
not Markovian because the lineage which splits o� from the current genealogy during
a recombination event could correspond to an ancestor present in a genealogy seen
previously. For a few example of such studies, see [58, 88, 103].

� To overcome the di�culty of computing analytical (or even approximate) likelihoods in
potentially complex population models, a simple simulation-intensive approach known
as Approximate Bayesian Computation or ABC [10] is now routinely used in a
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wealth of studies. These methods consist in simulating a large number of trees with
mutations for each parameter in a given subset of the parameter space, and to com-
pute approximate likelihoods by keeping only the realisations which are close, in some
appropriate sense, to the data. See for instance [16, 89] for recent works in this direction.

The approach we propose in this section is not fundamentally di�erent from those reviewed
above. It originated from the observation made by Raazesh Sainudiin that many summary
statistics of mutation data do not actually depend on the full description of Kingman's coa-
lescent. A caricature of this point is the following. Suppose we want to reconstruct the past
�uctuations in population size based on the number of segregating sites (of course noone would
do that but for very simple models, since the likelihood surface is likely to be very �at). In the
in�nitely many sites model, this statistics corresponds to the number of mutations which sit
on the genealogical tree of the sample. Let µ be the per-locus mutation rate, n be the sample
size and recall the notation Tk for the amount of time during which the sample has exactly
k ancestors. Let also (|πt|)t≥0 be the process counting the number of blocks in Kingman's
coalescent starting at {{1}, . . . , {n}}. Then the total length of the tree is

L(n) =

n∑
k=2

kTk =

∫ Tn+···+T2

0
|πt|dt.

Conditionally on L(n), the number of segregating sites has a Poisson distribution with param-
eter µL(n). As a consequence, we see that recording the labels of the individuals of the sample
and who merges with whom during each coalescence event is useless, and the law of the data
depends only on the process (|πt|)t≥0 counting the number of blocks in the coalescent. In
particular, the state space of this Markovian lumping of Kingman's coalescent is much smaller
than the number of partitions of {1, . . . , n}, even for relatively small sample sizes. As we shall
see below the same holds true for data made of site frequency spectra, or even sequence align-
ments, except that the optimal resolution (or lumping) of Kingman's coalescent is obtained
by erasing less information than in our caricatural example. Although this observation does
not look very deep, it does not seem to be used in practice and could drastically enhance the
exploration of the set of possible topologies and the computation of (approximate) likelihoods.

To illustrate the last point, suppose we have a parametric family of models, indexed by
some parameter space Θ. In general, computing the probability of the data directly from the
law Pθ is not feasible. However, the law of the data knowing the hidden genealogical tree
is much easier to obtain (under the in�nitely many sites model in particular) and in many
examples the law of the tree itself under Pθ is accessible. Thus, writing D for the data and
(C,T) for the discrete topology and the vector of epoch times (4.2) of the genealogical tree,
the likelihood of θ ∈ Θ is computed as the integral

Pθ(D) =
∑
c∈Cn

∫
Rn−1
+

Pθ(D | (c, t))Pθ(C = c,T ∈ dt). (4.4)

As discussed in Section 4.2, already for n = 10 the state space Cn of all possible topologies with
n labelled leaves is huge, and the computation of the sum in (4.4) needs to be done through an
exploration of Cn by Monte Carlo or importance sampling methods. Replacing the sum over
Cn by a sum over a much smaller state space would enable us to either exhaustively explore
this new space and compute the true likelihood, or at least improve the exploration of the set
of all possible topologies to obtain an approximate likelihood at a much lower computational
cost.
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In Section 4.2, we list the di�erent Markovian resolutions of Kingman's coalescent and
give a few examples of types of data for which coarser resolutions than the standard Kingman
labelled coalescent are optimal. In Section 4.3, we outline the results of a work currently in
progress in which we use Tajima's ranked tree shapes instead of Kingman's labelled topologies
to reconstruct (Nt)t≥0 in a nonparametric way. In Section 4.4, we present the construction of an
importance sampler which produces only unlabelled and sized coalescents which are compatible
with a given site frequency spectrum. In this work, the law of the tree shape is given by Aldous'
Beta-splitting model (see Section 3.3). This enables us to test whether the tree underlying the
site frequency spectrum departs signi�cantly from Kingman's coalescent, which corresponds
to the case where the balance parameter β is equal to 0.

4.2 How to make good resolutions

The results presented in this section correspond to the publication [SSV15]. They con-
stitute a preliminary step in the program consisting in developping inference tools based on
appropriate tree resolutions. In fact, Kingman's coalescent is only an example of random mod-
els of genealogies. Because this model is used quite extensively, we found it useful to provide
the transition probabilities of all Markovian resolutions to have them gathered in one place.
We expect that these derivations may be extended to more general models, as in Section 3.3.

Recall that what we call a resolution is a process which is a function of the coalescent. In
what follows, we focus on the tree topologies without times, corresponding to the embedded
chains of the six continuous-time resolutions of Kingman's coalescent which are Markovian.
These discrete-time resolutions are:

� The vintaged and labelled coalescent: it is Kingman's coalescent, except that to
each block of the partition is associated a number called its vintage. This number records
the epoch in which the block was created by the merger of two blocks. That is, a block
has vintage k ∈ {2, . . . , n} if it was created at the end of the epoch during which the
coalescent has k blocks. The state space Bn of this resolution is an augmentation of the
set Cn of partitions of {1, . . . , n} with vintage tags. But since there is one and only one
way to label the blocks of a Cn-valued coalescent, there is a one-to-one correspondence
between the full Bn- and Cn-valued sequences. The interesting feature of the vintaged
and labelled coalescent is that, at any stage, we know in which order the blocks which
constitute the current state of the process were created.

� The unvintaged and labelled coalescent, corresponding to Kingman's (discrete)
coalescent. It takes its values in Cn.

� The vintaged and sized coalescent, obtained from the vintaged and labelled coa-
lescent by keeping track only of the vintage and the size of each block of the partition,
and dropping the integer label 1, . . . , n. Its state space Dn is the space of all ordered
integer partitions.

� The vintaged and shaped coalescent, obtained from the vintaged and sized coales-
cent by keeping track only of the vintages of the blocks present at each time step, and
throwing away the sizes of these blocks. In other words, this coalescent records only
the presence (1) or absence (0) of a block with vintage k in each epoch and for every
k ∈ {2, . . . , n}. Its state space Gn is a subset of {0, 1}n−1. The sequence of states visited
by this process gives Tajima's evolutionary relationships (see [105], Figures 1-4), which
are ranked, rooted binary tree shapes. Since by knowing the states through which this
process goes until the k-th transition enables us to reconstruct the size of each block in
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Figure 4.2 � The di�erent ranked tree shapes and the corresponding lower resolutions for a
sample of size 5. The superscripts a, . . . , e are simply meant to give a name to each example.

the k-th state of the Markov chain, there is a one-to-one correspondence between the
full Dn- and Gn-valued sequences.

� The unvintaged and sized coalescent is obtained from the unvintaged and labelled
coalescent by keeping track only of how many blocks there are of each size. Its state
space Fn is the set of all integer partitions of n.

� The block-counting process, which simply records the number of blocks in the
coalescent. The discrete block counting process of Kingman's coalescent is always
(n, n− 1, . . . , 1) (its continuous-time version is slightly more exciting).

See Figure 4.2 for an example of di�erent resolutions with n = 5. Table 4.1 compares the
cardinalities of the state spaces of the most interesting resolutions. We see that the reduction
in size from the state space of Kingman's coalescent to that of lower resolutions is signi�cant.

Computing the law of each of these resolutions of Kingman's coalescent is rather straight-
forward and we refer to [SSV15] for the corresponding probabilities. Let us now give a few
examples of statistics of the tree shape or of the observed mutation pattern which depend on
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n 4 10 30 60 90 120
|Cn| 15 1.2× 105 8.5× 1023 9.8× 1059 1.4× 10101 5.1× 10145

|Gn| 5 88 1.3× 106 2.5× 1012 4.7× 1018 8.7× 1024

|Fn| 5 42 5.6× 103 9.7× 105 5.7× 107 1.8× 109

Table 4.1 � Cardinalities of the state spaces Cn, Gn and Fn.

particular coalescent resolutions.

Mutation statistics

We have already seen that in the in�nitely many sites mutation model, the total number
of segregating sites depends only of the block-counting process.

In Section 4.4, we shall see that the law of the site frequency spectrum (4.1) depends
only on the unvintaged and sized coalescent resolution. Indeed the mutations carried by k
individuals in the sample are those which fall on the branches of the tree subtending k leaves,
or equivalently those hitting a block of size k in the partition. For every k ∈ {1, . . . , n − 1},
the total length Lk of all these edges can be computed from the knowledge of the vector of
epoch times and the number of blocks of size k in each epoch.

Finally, in Section 4.3 we shall see that the optimal resolution to characterise the law of the
pattern of mutations seen in a sequence alignment (also encoded by the binary incidence matrix,
or BIM) is that of the vintaged and sized coalescent. Indeed, the additional information that
the BIM contains compared to the site frequency spectrum is which mutations are carried by
the same individuals. Thus, to compute the probability of the data knowing the genealogical
tree, we need to be able to say that a particular block/ancestor (whose lineage may have
experienced a mutation event already) is the one that takes part to the next merger to create a
larger block (on which another mutation may appear). This is the role of the vintages. Observe
that singletons do not have vintages as they have not been created by a coalescence event. But
these blocks are interchangeable, since there is no history before their creation.

Tree shape statistics

In a slightly di�erent perspective, we may want to understand the properties a given an-
cestral or evolutionary tree reconstructed from the observed mutation pattern. This question
is more common in phylogenetics, in which the precise realisation of the tree matters (we want
to know the evolutionary relationships between a given set of species). In population genetics,
in general we do not care about the idiosyncratic genealogy of a sample of individuals taken at
random in the population, what matters is the law of this tree which tells us something about
the way in which the population evolves.

Many statistics of a tree shape have been introduced. In Sections 4.2 and 4.3 of [SSV15], we
argue that the most famous ones are fully described by a coarser resolution than the classical
unvintaged and labelled coalescent. For example, Sackin's index [96] is the sum of the number
of leaves subtended by each internal node. But the number of leaves subtended by an internal
node is simply the size of the corresponding block, and so Sackin's index can be computed
from the unvintaged and sized coalescent. Colless' index [23] is de�ned as the sum of the
absolute values of the di�erences between the number of leaves subtended by the two branches
bifurcating from each internal node (up to a constant factor). This statistics also depends only
on block sizes, scanned in any order, and so on the unvintaged and sized coalescent resolution.
See [SSV15] for more examples.
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4.3 BESTT: an inference methodology based on Tajima's trees

This section describes the work in progress [PVWR17]. In this project, we use the vintaged
and sized coalescent to reconstruct the variations in e�ective population size (Nt)t≥0 under the
assumption that Kingman's coalescent with �uctuating population size is an appropriate model
for the genealogies.

In [88], the authors already use this resolution to infer (Nt)t≥0 from the knowledge of the
sequence of local genealogies of a sample that we encounter as we go along the genome. They
assume that this sequence of trees (including the epoch times) is observed and moreover that
it can be modelled by a sequential Markov coalescent. As they consider long stretches of
DNA, the state space of all sequences of labelled trees is huge and they argue that considering
this optimal resolution drastically reduces the computational cost. Then, they assume as a
prior distribution that (ln(Nt))t≥0 follows a Gaussian process, and they compute the posterior
distribution of the process thanks to an MCMC sampling algorithm on the state space of the
suitably discretized process (joint with the space of parameters of interest).

Observe that up to now we have not mentioned mutations. The implicit assumption in
the previous paragraph is that the pattern of mutations observed in the sample enabled us to
propose a sequence of underlying hidden trees on which to perform the techniques expounded
above. In [PVWR17], we make a second step towards the inference of (Nt)t≥0 based on whole
sequence polymorphism data, which we present here. In what follows, we consider a stretch
of DNA which has not recombined between the time of the most recent common ancestor to
the sample at this locus and the present. A binary incidence matrix describes the mutations
observed in the sample, and again we assume the in�nitely many sites model of mutation.
Our aim is to compute the probability a given BIM knowing the trajectory (Nt)t≥0. This
probability is at the basis of the calculation of the likelihood of a population size trajectory,
again under the assumption that it is log-Gaussian.

As in [88], we encode a vintaged and sized (discrete) coalescent by an n× n matrix D. To
do so, let us call ti the time at which the number of blocks or ancestors decreases from i to
i− 1. Recalling the epoch times Ti introduced in (4.2), we thus have ti = Tn + Tn−1 + . . .+ Ti
for every i ∈ {2, . . . , n}. By convention, we set tn+1 = 0. Now for every 2 ≤ j ≤ i ≤ n, let us
de�ne D(i, j) by

D(i, j) = # lineages/blocks which do not coalesce in [ti+1, tj). (4.5)

The �rst row is �lled with zeros just for completion. Proposition 2 in [88] states that there is a
one-to-one correspondence between vintaged and sized coalescents (or ranked tree shapes) and
D-matrices. The set of all such matrices can be characterised by a small number of conditions
ensuring that a given integer-valued matrix indeed encodes a tree. We do not detail these
conditions here, see instead Figure 4.3 for an example. Our approach rests on the likelihood
decomposition (4.4), in which we replace the sum over Cn by a sum over the much smaller
space Dn of vintaged and sized coalescents. Of course we need to compute each conditional
probability at this coarser resolution. The `probability' of the tree topology and epoch times
knowing (Nt)t≥0 can be written as the product of the probability of the topology, given in
[SSV15], and of the density of the epoch times, which can be obtained from p.g.f.'s of the form
(4.3). The last step is to compute the probability of the observed BIM knowing the underlying
tree topology and time vector.

To compute the latter probability in the in�nitely many sites model, we can use the tree
structure to proceed incrementally. We sort the observed mutations into groups of mutations
carried by exactly the same individuals. We then have to place them on the tree and to
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Figure 4.3 � A ranked tree shape with �ve leaves and the corresponding matrix D counting
the number of lineages which do not coalesce in the time interval [ti+1, tj).

compute the probability of observing such an arrangement of mutations (using the Poissonian
structure of the cloud of mutations). To this end, we �rst consider the mutations carried by the
largest number of individuals in the sample. Let us write k for this number. For any allocation
of edges in the tree (or vintages) subtending k leaves to each of these groups of mutations,
we can then compute the probability of seeing these mutations on these edges, no mutations
on edges in the tree subtending more leaves, and call recursively our likelihood function on
the subtrees pending from the k-edges, using the sub-pattern of other mutations carried by a
subset of their leaves. This enables us to calculate the likelihood of a BIM given the vintaged
and sized coalescent with epoch times.

Now the sum in (4.4) is still over a very large set, and so we devise an MCMC method to
explore the space of D-matrices in an e�cient way. All these techniques can then be extended
to heterochronous coalescents, in which all individuals are not sampled at the same time. This
should enable us to add ancient DNA polymorphism to present-time samples to improve the
accuracy of the reconstruction. The last step will then consist in merging the techniques of [88]
and [PVWR17] to infer population size trajectories based on whole sequence polymorphism
data.

4.4 An importance sampler of trees compatible with a site fre-

quency spectrum

Another way of improving the exploration of the space of possible tree topologies to compute
the likelihood of a given population trajectory is to consider only tree topologies which are
compatible with the data. Indeed, for a given pattern of mutations that we observe, we can �nd
many trees that cannot explain this pattern because they have no edges subtending a given
number k of leaves on which we may place an observed mutation carried by k individuals.
These trees contribute nothing to the decomposition (4.4) of the likelihood, and therefore it
would be (much) more e�cient to restrict our attention to data-compatible trees. This is the
basis of the work in progress [SV17] which we describe in this section. Here we shall work with
site frequency spectrum instead of BIM data.

In [97], the authors set up a controlled Markov chain method to produce unvintaged and
sized Kingman's coalescents which are always compatible with a given site frequency spectrum.
The idea is that each positive coordinate of the SFS yields a constraint on the topology of the
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tree, since there needs to be a block of size k somewhere in the path from {{1}, . . . , {n}} to
{{1, . . . , n}} to explain a mutation carried by k individuals in the sample. As we have already
mentioned, the unvintaged and sized coalescent resolution is the optimal one for this problem:
knowing the epoch times Ti during which there are i blocks in the ancestral process (or i edges
in the corresponding layer of the tree), and the sizes of the blocks present in each epoch, we
can compute the total length Lk of the edges in the genealogy which subtend k leaves. Then
if µ is the per-locus mutation rate, conditional on (L1, . . . , Ln−1) the coordinates of the SFS
are independent Poisson random variables with parameters µLi. The method developped in
[97] is speci�c to Kingman's coalescent, and we extend it in several ways in [SV17].

First, we consider more general a priori distributions on tree topologies. More precisely,
we use Aldous' Beta-splitting model with parameter β > −2, of which Kingman's topology is
a particular case (β = 0, see Section 3.3 for the de�nition of this model). Second, as a prior
distribution on the vector of epoch times, we use a vector of n − 1 independent exponential
distributions whose parameters A(2), . . . , A(n) are the inverse of the average epoch times in
the model for which we want to do likelihood calculations (independently of the observed
data, which means that these times can either be obtained analytically or by a quick round
of simulations). Our aim is to inform the sampler with a minimal number of parameters
describing the general shape and length of the tree, and see how this information is turned
into a posterior distribution once we add the constraints given by the SFS.

Thus, the input of our sampler consists of a vector (A, β, n, S, µ), where A is the vector of a
priori rates for the n− 1 exponentially distributed epoch times, β is the parameter of Aldous'
Beta-splitting model, n is the sample size, S is the observed site frequency spectrum and µ is
the per-locus mutation rate. Its output is a vector (F,M, T,wF , wM , wT ), where:

� F is a matrix encoding an unvintaged and sized coalescent as follows. For every i ∈
{2, . . . , n} and j ∈ {1, . . . , n− 1},

F (i, j) = # edges in epoch i subtending j leaves.

� M is a matrix of mutation placements on the topology. For every i ∈ {2, . . . , n} and
j ∈ {1, . . . , n− 1},

M(i, j) = # mutations placed on one of the F (i, j) j-edges in epoch i.

� T is a vector of n− 1 epoch times.
� wF , wM and wT are the importance weights associated respectively to the topology F ,

the mutation placement M and the time vector T .
The construction of a particle (F,M, T,wF , wM , wT ) is incremental and is based on the same
idea as in Section 4.3 of using �rst the mutations carried by the largest numbers of individuals.
Initially all the coe�cients of the matrices F and M are set to 0 and the vector T is initialised
by sampling each coordinate from an exponential distribution with parameter A(i), 2 ≤ i ≤ n.
We start with the mutations carried by n − 1 individuals. If Sn−1 > 0, such mutations are
observed indeed and this imposes that the �rst split in the tree (seen from the root to the
leaves) should separate the sample into a subsample of size n − 1 and a subsample of size 1,
so that the edge in epoch 2 which subtends n − 1 leaves may carry the Sn−1 mutations. If
Sn−1 = 0, we have no constraints on the �rst split and we can use the Beta-splitting model to
decide at random whether we create an (n − 1)-edge in epoch 2 or not. If it is created then
F (2, n− 1)← 1 and F (2, 1)← 1, if not we do not update the F matrix. Since epoch 2 is the
only layer in the tree where we can see an (n − 1)-edge, the updating of F stops here. We
updateM by placing the Sn−1 mutations carried by n−1 individuals on the (n−1)-edge (which
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necessarily exists if Sn−1 > 0) by settingM(2, n−1)← Sn−1. Finally, if Sn−1 > 0, we resample
T2 according to the distribution of an exponential r.v. with parameter A(2) conditioned on
Poisson(µT2) = Sn−1, which turns T2 into a Gamma(1 + Sn−1, A(2) + µ) r.v. All these moves
have probabilities (or densities for T ) that we use to update the importance weights too.

Let us just do another step and consider the mutations carried by n− 2 individuals in the
sample. Again, we proceed from the top of the tree, epoch 2, down to the bottom (knowing
that an (n−2)-edge can be found only in epochs 2 and 3). If an (n−1)-edge was created in the
previous step, then we go directly to epoch 3 and force the presence there of an (n− 2)-edge if
Sn−2 > 0, or use the Beta-splitting distribution to decide whether such an edge is created or
not if Sn−2 = 0. If it is created, then F (3, n − 2) ← 1, F (3, 1) ← 2 (recall that the �rst split
already created a 1-edge). If F (2, n− 1) = 0, then we decide or not to create an (n− 2)-edge
in epoch 2 using the same rules. If it is created, we choose at random with a probability
depending on the block sizes in epoch 2 whether this edge still exists in epoch 3 or is split into
two edges subtending less individuals. In the �rst case, F is updated by setting F (3, n−2)← 1
and necessarily F (3, 1)← 2 (the 2-edge in epoch 2 is split into 2 1-edges). In the second case,
we only update F (3, 1) ← 1 since we do not know the sizes of the edges created by the split
yet. Epoch 4 cannot have (n − 2) edges and so the updating of F stops there. We then
distribute the Sn−2 mutations carried by n− 2 individuals by using the fact that conditionally
on their number, the mutations are independently and uniformly distributed over the total
length F (2, n− 2)T2 +F (3, n− 2)T3 of (n− 2)-edges in the tree. Consequently, the number of
these mutations which are placed in epoch 2 follow a Binomial distribution with parameters
Sn−2 and F (2, n− 2)T2/(F (2, n− 2)T2 + F (3, n− 2)T3). Finally, for each epoch i ∈ {2, 3} in
which we could have placed some mutations (i.e., such that F (i, n− 2) > 0), we update Ti by
sampling a new time according to its distribution Gamma(1 +M(i, n− 1), A(i) + µF (i, n− 1)
in the previous step conditioned on Poisson(µF (i, n − 2)Ti) = M(i, n − 2). This turns the
distribution of Ti into a Gamma distribution with parameters 1 + M(i, n − 1) + M(i, n − 2)
and A(i) + µ(F (i, n− 1) + F (i, n− 2)) (this stability of the Gamma distribution with respect
to the Poissonian conditioning was one of the main motivations for the choice of this form of
prior distributions). Again, the importance weights are updated at the same time.

We carry on updating F , M , T , wF , wM and wT as described above, by considering the
mutations carried by k individuals for k = n−3 down to k = 1. Each time, we take into account
the information on these objects brought by the previous steps to build a tree topology and
a vector of epoch times which are necessarily compatible with the observed site frequency
spectrum. The matrix M is only here to relate the constructions of F and T , but its weight
needs to be taken into account in the approximate likelihood calculations for which we want
to use the sampler.

The code for the sampler and the likelihood procedure is publicly shared at
https://cloud.sagemath.com/projects/ac7f397f-eab9-45fc-9278-f486af09ca55/

files/FullLikelihoodInferenceSFS.sagews

It is more proof of concept than made to be e�cient, and still we can compute approximate
likelihoods of basic scenarii for a reasonable number (∼ 20) of parameter values, assuming the
data is made of site frequency spectra at up to 1000 independent loci and producing about
100 particles for each locus, in a few hours. The code would need to be optimised to consider
larger subsets of the parameter space.
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4.5 Perspectives

The idea of using the appropriate resolution of the genealogical trees in simulations and
likelihood computations deserves to be developped into practical tools, at least for its com-
putational e�ciency. In particular, the sampler of Section 4.4 considers only one locus and
the associated likelihood computations assume that we can �nd su�ciently many independent
loci to reconstruct the parameter values from a series of data correlated only through the
population size history. It could be generalised to several loci with recombination, in order to
take into account the additional information brought by linkage, in the same spirit as what
we want to develop with BIM data from the results of Section 4.3. We expect this generali-
sation to be di�cult, as a recombination point modi�es the genealogies only locally and the
mutation placements on the genealogies are much less constrained when we know only the site
frequency spectrum. However, if we could set up such a multi-locus sampler building sequences
of unvintaged and sized coalescents always compatible with a series of SFSs, the signi�cant
reduction of the size of the state space would surely compensate for the loss of information
due to summarizing a sequence alignment into a set of site frequency spectra.



Chapter 5

Communication networks with

logarithmic weights

The �nal chapter of this thesis deals with the modelling of a network of interacting queues,
in which the sharing of common resources (servers) follows a particular policy with logarithmic
weights. Indeed, it is a desirable property of such systems that the fraction of the servers'
capacity received by a queue should be an increasing function of the number of pending requests
in this queue. In this way, larger queues are served more often and this discipline should
regulate the global number of requests in the network.

To illustrate why logarithmic policies may be of interest, let us suppose that J queues share
a single server. Let us write Li(t) for the size of the ith queue at time t. We assume that new
requests arrive in queue i at rate λi > 0 and that the instantaneous rate at time t at which
queue i is served is given by

µi
f(Li(t))∑J
j=1 f(Lj(t))

, (5.1)

where µi > 0 and f : N→ (0,∞) is an increasing function. Arrivals and service are supposed
to be independent between the queues. Such processes can be obtained as limits of rather
classical models of wireless networks, as the size of the quantum of information transmitted
during one service time and the amount of time between two transmissions from the same non-
empty queue both tend to zero. See [1, 83, 107] for historical references. The �rst examples
which come to mind are f(l) = l, or more generally f(l) = lα for some α > 0. To derive
some stability properties of the system when the global number of pending requests is large,
a standard approach is to look for a �uid limit. That is, we suppose that each queue starts
with an initial number of jobs of the form Nli, where li ≥ 0, and that the parameters λNi
and µNi are of the form Nλ̃i and Nµ̃i respectively. This corresponds to looking at a regime of
high turnover, which in the light of the di�erent scalings done in the previous chapters could
also be seen as looking at the behaviour of the system with parameters λ̃i, µ̃i, but on the
timescale (Nt, t ≥ 0). To describe the queues by quantities which remain of order 1 as N
tends to in�nity, for every i ∈ {1, . . . , J} we consider the evolution of (LNi (t)/N)t≥0. If we
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take f(l) = lα with α > 0 in (5.1), we obtain that for every i ∈ {1, . . . , J},

L̄Ni (t) :=
LNi (t)

N
= li +

Nλ̃it

N
− Nµ̃i

N

∫ t

0

(LNi (s))α∑J
j=1(LNj (s))α

ds+
MN
i (t)

N

= li + λ̃it− µ̃i
∫ t

0

(L̄Ni (s))α∑J
j=1(L̄Nj (s))α

ds+
MN
i (t)

N
, (5.2)

where MN
i is a martingale with a quadratic variation

〈MN
i 〉(t) = Nλ̃it+Nµ̃i

∫ t

0

(LNi (s))α∑J
j=1(LNj (s))α

ds.

Hence, as N tends to in�nity, MN
i (t)/N tends to 0 for any i ∈ {1, . . . , J} and any t ≥ 0,

and ((L̄N1 (t), . . . , L̄NJ (t)))t≥0 converges in distribution to the solution to the system of ordinary
di�erential equations

d`i(t)

dt
= λ̃i − µ̃i

(`i(s))
α∑J

j=1(`j(s))α
, `i(0) = li, 1 ≤ i ≤ J. (5.3)

Summing these equations over i ∈ {1, . . . , J}, we obtain that the weighted sum L(t) =
(µ̃1)−1`1(t) + · · ·+ (µ̃J)−1`J(t) satis�es

dL(t)

dt
=

J∑
i=1

λ̃i
µ̃i
− 1.

Thus, writing ρi = λ̃i/µ̃i for the load of queue i, a necessary and su�cient condition for the
total `number' of requests to come back to 0 is to impose that

ρ1 + · · ·+ ρJ < 1. (5.4)

This is the stability condition of the system. However, we also see from (5.3) that if queue 1
starts at `1 = 0, corresponding to an initial state for LN1 which is negligible compared to N ,
then at least for some amount of time the service term in (5.3) will be very small and the other
queues will monopolise the server. Consequently, instead of being emptied rapidly as we would
expect from its small size, queue 1 keeps on increasing until it reaches some macroscopic size
which enables it to compete with the other queues.

One way to overcome this problem of monopoly by the largest queues is to use a function f
which is still increasing in the number of requests, but much more slowly than polynomially. In
all that follows we choose f(l) = ln(1+ l), but we could conduct analogous analyses with other
slowly increasing functions. Related algorithms based on log policies have been considered in
the context of wireless networks, see [102] and references therein. However, to our knowledge
no detailed mathematical analysis had been carried out before those presented here.

Below we consider two di�erent networks of queues. This underlying structure encodes
the interference between the di�erent users of the same servers. In Section 5.1, we consider
the case of a single server which can be used by only one queue (or node of the network) at
a time. In this case, all the nodes interfere since they cannot be served at the same time.
In Section 5.2, we consider a star network, in which the central node interferes with all the
peripheral nodes. Peripheral nodes can be served at the same time. This di�erence of network
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topologies will appear in the service rates of the queues which di�er between the two models.
To study the response of these systems to the appearance of a very large queue, we focus on
the particular case where one queue starts at some large value N and the others start at 0.
We look for the behaviour of each queue on the timescale (Nt, t ≥ 0) over which the largest
queue varies macroscopically.

Observe that an approach like (5.2) does not work when f(l) = ln(1 + l), since it does not
lead to a system of autonomous equations in (ln(1 + Li))1≤i≤J . To obtain a �uid limit, we
have to study �rst what happens on timescales of the form Nγ , γ ∈ (0, 1). Indeed, it is on this
timescale that the initially empty queues start increasing until they reach some equilibrium
values that will dictate the behaviour of the largest queue on the timescale (Nt, t ≥ 0). These
equilibria and the �uid limit of the system depend on the network considered.

5.1 Interacting queues on the complete graph

The work presented here corresponds to the publication [RV15]. As mentioned earlier, we
suppose that all queues interfere, and that queue i receives a weight proportional to ln(1 +Li)
when the idle server chooses a next queue to serve. If furthermore the service time of a client
in this queue follows an exponential distribution with parameter µi, we can model the service
of clients in queue i as occurring at rate

µi
ln(1 + Li)∑J
j=1 ln(1 + Lj)

,

as in (5.1). We again assume that new clients arrive in queue i at rate λi > 0. Finally, we also
assume that LJ(0) = N and Li(0) = 0 for every i ∈ {1, . . . , J − 1}, and we add a superscript
N to each Li to recall the dependency on N . The load of queue i is de�ned as ρi = λi/µi.

Suppose as a start that J = 2. That is, there are only two queues and the �rst one is
initially empty, while the second one starts with N clients. The main result in [RV15] is
that on the �uid timescale, the system (LN1 , L

N
2 ) behaves as in Figure 5.1. To give a precise

statement and some elements of proof, we decompose the analysis of the long term behaviour
of the pair of queues into several steps. In what follows we consider large queue sizes, and so
we shorten the notation by writing ln(l) instead of ln(1 + l).

First phase: the timescale t 7→ N t, t < 1.

On this timescale, LN2 remains of the order of N + O(N t) ≈ N . Hence, LN1 is well
approximated by the Markov process (XN (t))t≥0 such that

XN → XN + 1 at rate λ1,

XN → XN − 1 at rate µ1
lnXN

lnXN + lnN
.

The in�nitesimal drift of XN is

∆XN = λ1 − µ1
lnXN

lnXN + lnN
= µ1

(
ρ1 −

(lnXN )/ lnN

1 + (lnXN )/ lnN

)
,

which is initially positive since XN starts at 0 (or 1, for the service rate to make sense) and
decreases until it reaches 0 when

(lnXN )/ lnN

1 + (lnXN )/ lnN
≈ ρ1 ⇔ lnXN

lnN
≈ ρ1

1− ρ1
=: α∗1. (5.5)
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Figure 5.1 � A �rst order picture of the network with ρ1 + ρ2 < 1, ρ1 < 1/2 and
(LN1 (0), LN2 (0)) = (0, N). During a �rst phase LN1 grows proportionally to N t, during a
second phase it behaves like an Ornstein-Uhlenbeck process around the equilibrium value Nα∗1 ,
then �nally the system (LN1 , L

N
2 ) converges to zero in a way described by Theorem 5.1.

In other words, the drift remains positive as long as XN < Nα∗1 and so initially we have
XN (N t) ∝ N t. Using the analogue of (5.2) in our case and changing variable in the integral
corresponding to the service term, we obtain that

XN (N t)

N t
≈ λ1 −

µ1

N t

∫ t

0

s lnN

(s+ 1) lnN
(lnN)N sds+

MN (N t)

N t
.

As before, the scaled martingale term vanishes in the limit as N →∞. Furthermore, changing
variable again in the integral by setting u = t− s, we obtain that the integral is equal to

µ1

∫ t

0

t− u
1 + t− u

(lnN)e−u lnNdu.

But (lnN)e−u lnN is the density of an exponential random variable with parameter lnN ,
which converges in distribution towards the Dirac mass at 0 as N → ∞. As a consequence,
the integral converges to µ1t/(1 + t). Combining all this, we obtain that(

XN (N t)

N t

)
0<t<α∗1∧1

(d)−→
(
λ1 − µ1

t

1 + t

)
0<t<α∗1∧1

,

and this convergence is in fact uniform over compact subintervals of (0, α∗1 ∧ 1). Observe that
the limiting process cancels at t = α∗1, and so nothing tells us that XN actually reaches the
value Nα∗1 . In fact it does, but in a time slightly larger than Nα∗1 .

Proposition 5.1. (Prop. 3 in [RV15]). For every a > 0, de�ne HN
a by

HN
a := inf

{
t > 0 : XN (t) ≥ a

}
.

(a) If α∗1 < 1, then for every δ ∈ (0, 1) there exists C > 0 such that for every N ≥ 1,

E
[
HN

δNα∗1

]
≤ Cδ

ln(1/δ)
Nα∗1 lnN.
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(b) If α∗1 > 1, for every small δ > 0 (so that LN2 does not vary too much over the time
interval considered) we have

lim sup
N→∞

1

N
E
[
HN
δN

]
≤ δ

λ1 − µ1/2
.

Second phase: the timescale t 7→ Nα∗1(lnN)t, t ≥ 0.

Let us suppose that α∗1 < 1 (or equivalently that ρ1 < 1/2), and that (LN1 (0), LN2 (0)) =
(δNα∗1 , N) for some δ ∈ (0, 1].

Using the same type of arguments as for the �rst phase, and writing LN1 (Nα∗1(lnN)t) =
hN (t)Nα∗1 , we obtain that the in�nitesimal drift of LN1 on this timescale is given by

∆LN1 (Nα∗1(lnN)t) = (Nα∗1 lnN)

(
λ1 − µ1

lnhN (t) + α∗1 lnN

lnhN (t) + (1 + α∗1) lnN

)
≈ − µ1

(1 + α∗1)2
Nα∗1(lnN)

lnhN (t)

lnN
,

where the approximation uses the fact that α∗1/(1 + α∗1) = ρ1 and a Taylor expansion in
(lnhN (t))/(lnN). Consequently, we expect that when N is large, we should have that hN

satis�es (hN )′(t) = −(µ1/(1 + α∗1)2) lnhN (t). These heuristics are good:

Proposition 5.2. (Prop. 4 in [RV15]). If ρ1 < 1/2 and if (LN1 (0), LN2 (0)) = (δNα∗1 , N)
for some δ ∈ (0, 1], then the sequence of processes(

LN1 (Nα∗1(lnN)t)

Nα∗1

)
t≥0

converges in distribution to (h(t))t≥0 de�ned by h(t) ≡ 1 if δ = 1, and if δ 6= 1 by∫ h(t)

δ

du

lnu
= − µ1t

(1 + α∗1)2
.

Notice that this result is not completely intuitive, since from the Poisson process formula-
tion we would expect the �uctuations of LN1 to be of the order of Nα∗1 lnN on this timescale.
Note also that h(t) tends to 1 as t → ∞. A natural next question is to look for a central
limit theorem which would give some hindsight on the behaviour LN1 close to the equilibrium
value Nα∗1 . That is, we would like to obtain a sort of Central Limit Theorem describing the
asymptotic behaviour of (

LN1 (Nα∗1(lnN)t)− h(t)Nα∗1
√
Nα∗1 lnN

)
t≥0

.

However, we can show that the convergence of hN to h is too slow and we have to replace h(t)
in the above by some function hN which converges to h at rate 1/ lnN .

Proposition 5.3. (Prop. 5 in [RV15]). Suppose that for some δ ∈ (0, 1], we have

LN1 (0)− δNα∗1
√
Nα∗1 lnN

−→ y ∈ R as N →∞.

Then (
LN1 (Nα∗1(lnN)t)− hN (t)Nα∗1

√
Nα∗1 lnN

)
t≥0

(d)−→ (R(t))t≥0,
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where hN (0) = δ,

(hN )′(t) = − µ1

1 + α∗1

ln hN (t)

α∗1 + 1 + (ln hN (t))/(lnN)

and (R(t))t≥0 is the solution to the stochastic di�erential equation

dR(t) =
√

2λ1dBt −
µ1

(1 + α∗1)2

R(t)

h(t)
dt, R(0) = y.

When δ = 1, we have h ≡ 1, hN ≡ 1 and so (Nα∗1 lnN)−1/2(LN1 ((Nα∗1 lnN)·) − Nα∗1)
converges to an Ornstein-Uhlenbeck process.

Third phase: the �uid timescale t 7→ Nt, t ≥ 0.

Suppose now that (LN1 (0), LN2 (0)) = (Nα∗1 , N). Initially, the in�nitesimal drift of LN1 is

∆LN1 (0) = λ1 − µ1
ln(Nα∗1)

ln(Nα∗1) + lnN
= 0

= µ1

(
ρ1 −

ln((LN2 (0))α
∗
1)

ln((LN2 (0))α
∗
1) + ln(LN2 (0))

)
.

Besides, when LN1 (Nt) is larger than LN2 (Nt)α
∗
1 , this drift is negative while it is positive when

LN1 (Nt) < LN2 (Nt)α
∗
1 . Thus, LN1 is kept in a neighbourhood of (LN2 )α

∗
1 . Indeed, the Ornstein-

Uhlenbeck-type force which brings back LN1 to its equilibrium value (together with the fact that
LN1 � N and so it can respond in much less time than LN2 needs to change in a macroscopic
way) counteracts the e�ect of the Poissonian �uctuations. Assuming that LN1 (Nt) ≈ LN2 (Nt)α

∗
1

at all times, we obtain that on the �uid scale, the in�nitesimal drift of LN2 /N is

∆
LN2
N

= λ2 − µ2
ln(LN2 )

ln((LN2 )α
∗
1) + ln(LN2 )

= λ2 − µ2(1− ρ1) = µ2(ρ2 + ρ1 − 1).

This gives us the following result.

Theorem 5.1. (Th. 3 in [RV15]). Suppose that (LN1 (0), LN2 (0)) = (0, N), ρ1 < 1/2 and
ρ1 + ρ2 < 1. Then as N →∞,(

LN1 (Nt)

Nα∗1
,
LN2 (Nt)

N

)
0<t<t∗

(d)−→
(
γ(t)α

∗
1 , γ(t)

)
0<t<t∗

,

where γ(t) = 1− µ2(1− ρ1 − ρ2)t and t∗ = 1/(µ2(1− ρ1 − ρ2)).

In particular, we see that if we had scaled LN1 by N as in standard �uid limit results, the
limit would be 0. Thus, despite the fact that the size of queue 1 is negligible compared to that
of the other queue, the expression of γ(t) shows that node 1 receives the fraction ρ1 of the
server's capacity. This enables it to remain at equilibrium by allowing all the pending requests
in queue 1 to be treated. Only the fraction 1 − ρ1 of the server's capacity is allocated to the
largest queue, which consequently does not monopolise the server.

When J > 2, the �rst J − 1 queues start with 0 clients and the J-th one with N clients,
Figure 5.2 shows the asymptotic behaviour of the system on the timescale t → N t. Indeed,
if ρ1 < ρ2 < · · · < ρJ and ρ1 + · · · + ρJ < 1, until time t1 := ρ1/(1 − (J − 1)ρ1) all initially
empty queues grow in proportion of N t. Then the �rst queue reaches its equilibrium value
N t1 and remains in a neighbourhood of it until the �uid timescale. This queue captures a
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Figure 5.2 � The network with J nodes on the timescale t 7→ N t (when all equilibria are
reached before the �uid timescale).

fraction ρ1 of the service capacity to maintain this equilibrium, and the remaining fraction
1 − ρ1 is allocated to the other queues which carry on increasing proportionally to N t, until
time t2 := ρ2/(1− ρ1− (J − 2)ρ2) at which the second queue reaches its equilibrium, etc. The
proof of this result is not fully given in [RV15], because it can be easily adapted from the proof
of the more di�cult results obtained in [RV16].

5.2 Star-shaped network of incompatibilities

In this second work, which corresponds to the preprint [RV16], we consider a star network
of incompatibilities with J + 1 nodes. This can be used for instance to model interfering
communication channels in wireless networks, as depicted in Figure 5.3. We assume that
the central node 0 cannot transmit at the same time as any of the peripheral nodes, which
themselves can transmit at the same time. Let again Li be the current number of pending
messages at node i. In idle state, node 0 tries to transmit at rate K log(1+L0), for some large
constant K. The attempt is successful only if all the channels are free, i.e. if none of the
nodes with index greater than or equal to 1 are currently transmitting at that time. When
no communication is active, node 0 is therefore in competition with all the other nodes for
transmission. Consequently, it succeeds at rate K log(1+L0) or one of the other nodes starts
transmitting at rate K(log(1+L1) + log(1+L2) + · · ·+ log(1+LJ)).

This situation will be represented as follows. Suppose the transmission times of requests
at node i are exponentially distributed with rate µi and the state of the J+1 queues sitting
at the nodes of the network is L = (Li, 0 ≤ i ≤ J). Then in our model, any non-empty node
with index greater than or equal to 1 receives the instantaneous capacity W (L) to transmit
and node 0 receives 1−W (L) (the total capacity of the channel is assumed to be 1), where

W (L) :=
log(1+L1) + · · ·+ log(1+LJ)

log(1+L0) + log(1+L1) + · · ·+ log(1+LJ)
. (5.6)

In particular, for every i ∈ {1, . . . , J} (resp., i = 0), node i completes a transmission at rate
µiW (L) (resp. µ0(1 −W (L))). This model assumes that K is su�ciently large so that the
waiting times to try to access the channel are negligible.

As before, requests arrive at node i ∈ {0, . . . , J} at rate λi, we write ρi for the load λi/µi
of queue i and we de�ne

α∗i =
ρi

1− ρi
.



126 CHAPTER 5. QUEUES WITH LOG-POLICIES

Figure 5.3 � Star Network with J + 1=6.

Figure 5.4 � Evolution of log(LNi (N t))/ logN , the exponent in N of LNi on the time scale
(N t, t ∈ (0, 1)). Here J=3, ρ1<ρ2<ρ3 and the initial state is (N, 0, 0, 0).

Without loss of generality, we assume that ρ1 < · · · < ρJ . We want to understand the �uid
limit of this system when one of the queues, say the central one, becomes very big (the same
arguments would enable us to analyse the easier case of the initially large queue being a
peripheral one). Thus, let us suppose that LN0 (0) = N , while LNi (0) = 0 for i ∈ {1, . . . , J}.
Our main result gives the large-N asymptotic behaviour of the queues which is illustrated by
Figure 5.4. In fact, we obtain more than the convergence of the exponents in N of the size of
each queue depicted in Figure 5.4. Theorem 5 in [RV16] describes the appropriate scalings of
each LNi which give rise to a non-trivial limiting process for any value of J . In particular, it
shows that the stability condition for the system of queues is now

ρ0 + max{ρi, 1 ≤ i ≤ J} < 1.

For simplicity we consider only the case J = 2 (hence with 3 nodes). The formal result we
want to show is the following.

Theorem 5.2. (Th. 2 in [RV16]). The following convergences of processes hold on the time
interval (0, t0).

1. If α∗1/2 > 1, then t0 = 3/(µ0−3λ0)+ and

lim
N→∞

(
LN0 (Nt)

N
,
LN1 (Nt)

N
,
LN2 (Nt)

N

)
=

(
1+µ0

(
ρ0−

1

3

)
t, µ1

(
ρ1−

2

3

)
t, µ2

(
ρ2−

2

3

)
t

)
.
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2. If α∗1/2 < 1 < α∗1, then t0 = 1/(1−ρ0−ρ1)+ and

lim
N→∞

(
LN0 (Nt)

N
,
LN1 (Nt)

Nα∗1−1
,
LN2 (Nt)

N

)
=

(
1+µ0(ρ0+ρ1−1)t,

1

µ2(ρ2−ρ1)t
, µ2(ρ2−ρ1)t

)
.

3. If α∗1 < 1 < α∗2, then t0 = 1/(µ0(1/2− ρ0))+ and

lim
N→∞

(
LN0 (Nt)

N
,
LN1 (Nt)

(logN)3
,
LN2 (Nt)

N

)
=

(
1+µ0

(
ρ0−

1

2

)
t, 0, µ2

(
ρ2−

1

2

)
t

)
.

4. If α∗2 < 1, then t0 = +∞ and

lim
N→∞

(
LN0 (Nt)

N
,
LN1 (Nt)

(logN)3
,
LN2 (Nt)

Nα∗2

)
=
(
(γ(t), 0, γ(t)α

∗
2)
)
,

with γ(t) = (1+µ0(ρ0+ρ2−1)t)+.

To sketch the proof of Theorem 5.2, we again decompose the evolution of the system of
queues on the �uid timescale into several phases.

First phase: The timescale t 7→ N t, t < α∗1 ∧ 1.

Using the same arguments as in the analysis of the �rst phase in Section 5.1, we see that
LN0 remains approximately equal to N whereas the other queues grow proportionally to N t.
That is:

Proposition 5.4. (Prop. 2 in [RV16]). As N →∞, we have(
LN1 (N t)

N t
,
LN2 (N t)

N t

)
0<t<(α∗1/2)∧1

(d)−→
(
λ1 − µ1

2t

1 + 2t
, λ2 − µ2

2t

1 + 2t

)
0<t<(α∗1/2)∧1

,

uniformly over compact subintervals of (0, α∗1/2 ∧ 1).

Since ρ1 < ρ2 by assumption, the �rst coordinate of the limiting process is the �rst one to
cancel. Assuming that α∗1/2 < 1, we now have to show that `after' the timescale Nα∗1/2, LN2
keeps on increasing while LN1 decreases to 0. More precisely, we want to show that

Theorem 5.3. (Th. 1 in [RV16]). Under the assumption that α∗1/2 < 1, as N → ∞ we
have (

LN1 (N t)

Nα∗1−t
,
LN2 (N t)

N t

)
α∗1/2<t<α

∗
1∧1

=

(
1

µ2(ρ2 − ρ1)
, µ2(ρ2 − ρ1)

)
α∗1/2<t<α

∗
1∧1

,

uniformly over compact subintervals of (α∗1/2, α
∗
1 ∧ 1).

This is where the new di�culty appears compared to the proof of Theorem 5.1. Indeed,
instead of keeping a constant equilibrium value, LN1 remains in equilibrium with LN2 by adapt-
ing its value in such a way that the product LN1 L

N
2 remains constant over time. The intrinsic

reason why this convergence holds is again that whenever ln(LN1 ) + ln(LN2 ) > α∗1 lnN , the
in�nitesimal drift of LN1 satis�es

∆LN1 = λ1 − µ1
ln(LN1 ) + ln(LN2 )

ln(LN1 ) + ln(LN2 ) + lnN
< λ1 − µ1

α∗1
α∗1 + 1

= 0
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(recall that α∗1/(1 + α∗1) = ρ1), and whenever ln(LN1 ) + ln(LN2 ) < α∗1 lnN , ∆LN1 > 0. Now,
just after time Nα∗1 , the in�nitesimal drift of LN2 is still positive, which means that it keeps
on increasing proportionally to N t on the timescale N t. Thus, on this timescale LN1 becomes
rapidly much smaller than LN2 and the behaviour of the in�nitesimal drift expounded just
above implies that LN1 can quickly adjust for the product LN1 L

N
2 to come back to Nα∗1 . But

then the in�nitesimal drift of LN2 remains approximately equal to

∆LN2 = λ2 − µ2
α∗1

α∗1 + 1
= µ2

(
ρ2 − ρ1

)
> 0,

and so LN2 (N t) ≈ µ2(ρ2 − ρ1)N t until LN1 reaches a neighbourhood of 0.
The rigourous proof of Theorem 5.3 uses two main arguments. First, we prove the following

extension of a result of Kingman [66] on subcritical birth and death processes.

Proposition 5.5. (Prop. 1 in [RV16]).
(a) If (X(s)) is a birth and death process on Z starting at 1 with birth rate λ and death

rate µ > λ, then for any integer x ≥ 0,

P
(

sup
s≥0

X(s) ≥ x
)
≤
(
λ

µ

)x
.

(b) If (X+(s)) denotes the process with the same transitions as (X(s)) but with a re�ection
at 0, then for any T > 0,

P

(
sup

0≤s≤T
X+(s) ≥ x

)
≤ (λT + 1)

(
λ

µ

)x
and

E

(
sup

0≤s≤T
X+(s)2

)
≤ 2(λT + 1)

µ2

(µ− λ)2
.

These results enable us to control the excursions of LN1 away from Nα∗1/LN2 over an interval
of time during which LN2 does not change much, and to show that(

ln(LN1 (N t))

lnN
+

(lnLN2 (N t))

lnN

)
−→ (α∗1)

as N tends to in�nity, uniformly of compact time intervals. The second ingredient is a mar-
tingale argument in the spirit of the stochastic averaging results (see e.g. Chapter 1.7 in [44]).
Indeed, if we de�ne a function F : N2 × R+ → R by

F (l1, l2, t) :=
1

2

(
l2
N t
− µ2(ρ2 − ρ1)

)2

− µ2

µ1

l1
N t

(
l2
N t
− µ2(ρ2 − ρ1)

)
, (5.7)

with some courage we can compute that the generator GN of the process (LN1 (N t), LN2 (N t), t)
(assuming that LN0 ≡ N) applied to F can be written as

GNF (l1, l2, t) = −(lnN)

(
l2
N t
− µ2(ρ2 − ρ1)

)2

+O
(
l1
N t

)
.

Using the associated martingale problem, a good control of the last term in the r.h.s. and �nally
Gronwall's inequality, we can show that LN2 (N t)/N t converges in L2 norm to µ2(ρ2 − ρ1) for
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any �xed t ∈ (α∗1/2, α
∗
1 ∧ 1). We then elaborate on this result to show the uniform pathwise

convergence of (LN2 (N t)/N t), using again the martingale problem for F (LN1 (N t), LN2 (N t), t).
Finally, another chain of arguments based on Proposition 5.5 enables us to conclude the

proof of Theorem 5.3.

Second phase: the timescale t 7→ N t, t ∈ (α∗1, 1+].

Assuming that α∗1 < 1, at the end of the last phase LN1 approaches 0. But its service rate
remains identical to that of LN2 when it is not empty. Since LN2 is proportional to a power of
N , all requests arriving at node 1 are treated very quickly and LN1 remains of order at most
O((lnN)2) for the rest of the evolution (cf. Proposition 3 in [RV16]). This implies that ln(LN1 )
remains negligible compared to lnL on this timescale and the system (LN0 , L

N
2 ) is equivalent

to the system of two queues studied in the previous section, which enables us to complete the
proof of Theorem 5.2.

More than three nodes.

The above analysis remains valid when J > 2 and ρ1 < ρ2 < · · · < ρJ , except that the
time t at which LN1 (N t)/N t ≈ 0 is now α∗1/J and since all the other queues carry on increasing
`after' the timescale Nα∗1/J , we �nd that the time t at which LN1 (N t) = O((lnN)2) is now
α∗1/(J − 1). Again, after this timescale, the �rst queue takes advantage of the fact that it is
coupled with the very large queues LN2 , . . . , L

N
J to receive a nonnegligible fraction of the service

capacity and remain in a neighbourhood of 0. The remaining J queues (including the central
one) then form a system of interacting queues of the same form as the initial (J + 1)-system,
but with one less queue. We can thus proceed by induction.

5.3 Perspectives

In the two studies presented above, we have explored two particular networks of service
incompatibilities. We have seen that the resilience properties of the system depended on the
precise form of the network. We could imagine more general graphs of interference representing
the di�erent clients in a wireless network using the same resources to transmit their messages.
For example, the clients could be placed at the nodes of a �nite subset of Z2, with interference
between clients at distance less than some δ. Already in the case of a one-dimensional torus of
odd size with nearest neighbour incompatibilities, the formulation of the service rate at queue i
is not obvious. Indeed, considering a torus with 5 nodes, we see that client 1 can transmit
at the same time as client 3 or client 4, but not both since clients 3 and 4 interfere. It is
thus a �rst question to be able to write down a model for such a network. The next question
is of course to explore the properties of this system, in particular when one of the clients is
particularly demanding (i.e., the size of one of the queues is very large). Lastly, we could
also ask the same questions when the clients move in space but the servers are �xed, as in a
mobile phone network. For example, each client may use the closest server if it is not already
transmitting, which would locally correspond to the system analysed in Section 5.1 until the
client moves in space and switches server.
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