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Abstract Many summary statistics currently used in population genetics and in phy-
logenetics depend only on a rather coarse resolution of the underlying tree (the num-
ber of extant lineages, for example). Hence, for computational purposes, working di-
rectly on these resolutions appears to be much more efficient. However, this approach
seems to have been overlooked in the past.

In this paper, we describe six different resolutions of the Kingman-Tajima coa-
lescent together with the corresponding Markov chains, which are essential for infer-
ence methods. Two of the resolutions are the well-known n-coalescent and the lineage
death process due to Kingman. Two other resolutions were mentioned by Kingman
and Tajima, but never explicitly formalized. Another two resolutions are novel, and
complete the picture of a multi-resolution coalescent. For all of them, we provide the
forward and backward transition probabilities, the probability of visiting a given state
as well as the probability of a given realization of the full Markov chain. We also pro-
vide a description of the state-space that highlights the computational gain obtained
by working with lower-resolution objects. Finally, we give several examples of sum-
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mary statistics that depend on a coarser resolution of Kingman’s coalescent, on which
simulations are usually based.

Keywords n-coalescent resolutions, tree shape statistics, computationally efficient
and statistically sufficient inference.
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1 Introduction

Kingman’s n-coalescent (Kingman, 1982a,b) is a process of central importance in
mathematical population genetics. It describes the genealogical relations between a
sample of n individuals in an infinite population evolving according to the neutral
Wright-Fisher model (Fisher, 1930; Wright, 1931). In addition, its robustness to small
perturbations of the reproduction mechanism makes it a rather “universal” model of
genealogies, in that it appears in fact in many other situations, including, populations
with selfing, or evolving in a fluctuating environment. See for instance Etheridge
(2011, Sects. 2.2 and 2.3).

The n-coalescent is a continuous-time Markov chain taking its values in the set Cn
of partitions of the label set L= {1,2, . . . ,n}: at time t, each block contains the labels
of individuals sampled at time 0 which have a common ancestor t units of time in the
past. The merger of several blocks at some time t ′ hence means that at time t ′ in the
past, the ancestors corresponding to these blocks have a common parent, and so all
the individuals labeled by an element of these blocks find their most recent common
ancestor. The n-coalescent thus starts at {{1}, . . . ,{n}}. We assume that only a single
pair of blocks can merge at any given time, and that each pairwise merger happens at
rate 1. The process stops when it has reached its absorbing state {{1, . . . ,n}} (i.e., the
most recent common ancestor of the whole sample has been found). If one considers
just the discrete skeleton or the embedded jump chain of this Markov chain, then
at each time step one picks two blocks of the partition at random and merges them
together, until there is just a single block after n− 1 time steps. Unless explicitly
specified, from now on we work with this discrete skeleton only (but see Sects. 1.2
and 4 for the introduction of the time component in inference methods).

In this paper, we consider six variants or genealogical resolutions of the discrete
n-coalescent process. They are briefly introduced below.

– The vintaged and labeled n-coalescent {B↑(t)} of Sect. 3.2 is the same as the
process described above except that, at all times, each block of the partition has
an associated number called the vintage, which records the time step or coalescent
epoch in which the block was created. Its state space Bn is an augmentation of Cn
with coalescent vintage tags. This is the Kingman-Tajima n-coalescent.

– The unvintaged and labeled n-coalescent {C↑(t)} of Sect. 3.3 is obtained from
{B↑(t)} by dropping the vintages. This is the standard Kingman n-coalescent.
Every sequence of states in Cn that is visited by this process is an element of Cn,
the set of n-coalescent sequences or c-sequences. A c-sequence induces a ranked,
rooted, binary tree (Definition 1) with leaves labeled by L and depicted in Fig. 2.
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– The vintaged and sized n-coalescent {D↑(t)} of Sect. 3.4 is obtained from {B↑(t)}
by keeping track only of the vintage and the size of each block of the partition,
and dropping the integer labels 1,2, . . . ,n. Its state space Dn is the space of all
ordered integer partitions.

– The vintaged and shaped n-coalescent {G↑(t)} of Sect. 3.5 is obtained from
{D↑(t)} by keeping track only of the vintages of the blocks at each time step,
and throwing away the sizes of the blocks. The state space Gn is contained in
the vertices of the hypercube {0,1}n−1. The sequence of states visited by this
process gives Tajima’s evolutionary relationships (Tajima, 1983, Figures 1-4),
which resolve genealogical histories up to ranked, rooted, binary tree shapes.
This is Tajima’s n-coalescent.

– The unvintaged and sized n-coalescent {F↑(t)} of Sect. 3.6 is obtained from
{C↑(t)} by just keeping track of how many blocks there are of each size. This
process is also known as the label-killed n-coalescent (Kingman, 1982b, (5.2))
or unlabeled n-coalescent (Sainudiin et al, 2011) or family-size process (Kendall,
1975; Tavaré, 1983, p. 136-137) on Fn, the integer partitions of n.

– The pure death process {H↑(t)} of Sect. 3.1 is obtained from any of the other five
processes above by just keeping track of the number of blocks or the number of
ancestral sample lineages in Hn = {n,n−1, . . . ,1}.

As described above and depicted in Fig. 1, these different resolutions are partially
ordered: for example, the unvintaged and sized n-coalescent on Fn can been seen
as a coarser resolution of the unvintaged and labeled n-coalescent {C↑(t)} on Cn
and of the vintaged and sized n-coalescent on Dn, since both processes contain all
the information needed to describe the evolution of {F↑(t)}. On the other hand, the
vintaged and shaped n-coalescent on Gn is not a coarser resolution of the process
{C↑(t)} since the latter does not contain the information on the vintages required in
the description of {G↑(t)}.

Here we focus on specific algebraic representations of these six Markov chains
and derive their backward-transition, sequence-specific, state-specific and forward-
transition probabilities. These derivations are straightforward and do not constitute
the main point of this work, but to the best of our knowledge they have never explic-
itly appeared in the literature for all but Kingman’s labeled n-coalescent and the pure
death process (Kingman, 1982a,b). Although several studies of the family-size pro-
cess with mutations – based on Polya-urn models – already used the idea of consider-
ing the appropriate resolution to simplify the mathematical analysis of the coalescent
with mutation (e.g. Tavaré (1983); Fu (1995)), we believe that a global description
of all these coalescent resolutions (without mutations which can be subsequently
super-imposed) in one place will be useful for their direct application to inference
or simulations. Our main goal here is to convey the idea that considering the optimal
resolution with respect to a given statistic can (i) lead to significant computational
savings in terms of time complexity (e.g., in simulation-intensive sampling proce-
dures) by directly sampling from a much smaller hidden space and (ii) help generate
samples from the conditional hidden space (given the observed statistics) by control-
ling the sampling in such a way that only trees or shapes in the hidden space that are
compatible with the observed statistics are drawn (See Sects. 1.2 and 4).
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Fig. 1 State spaces Bn,Cn,Dn,Fn,Gn,Hn and the relations between them.

Before we start our program, let us describe further motivations for this study. The
first is historical and the second is statistical as outlined in the next two subsections,
respectively.

1.1 Historical Motivation

Kingman and Tajima independently described the genealogical or evolutionary rela-
tionship of a sample of size n from a Wright-Fisher population in the early 1980s. The
relation between the genealogical objects introduced by Kingman and Tajima has not
been characterized before. Moreover, Kingman’s description has come to dominate
the literature at the expense of overlooking those of biologists such as Tajima. Here
we make the first formalization that connects the two approaches and complete the
picture by presenting finer and coarser resolutions that may be of interest in many
applications.

In another direction, phylogenetics and population genetics, despite being sub-
fields of mathematical and statistical genetics, are studied by research communi-
ties that do not entirely overlap. This is partly driven by methodological prefer-
ences between inter-species and intra-species approaches to the study of genetic inter-
relatedness. This paper attempts to use definitions and notions that are consistent
across phylogenetic and population genetic literature in order to facilitate research at
the interface of these two historically distinct fields of theoretical evolutionary genet-
ics.

For instance, we show how different resolutions of coalescent sequences are in
bijection with different kinds of phylogenetic trees. We also show that classical phy-
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logenetic tree shape statistics, such as, Colless’ index (Colless, 1982), Sackin’s index
(Sackin, 1975; Tajima, 1983), number of cherries (McKenzie and Steel, 2000), Al-
dous’ shape statistic sequence (Aldous, 2001) and runs statistics (Ford et al, 2009),
can be obtained efficiently from appropriate coarsenings of the vintaged and shaped
n-coalescent {G↑(t)}.

1.2 Statistical Motivation

The n-coalescent provides the basic probability model underlying statistical experi-
ments of interest in population genetics. It arises as a prior mixture over Cn⊗Rn

+, the
set of all binary coalescent trees with branch lengths (recall that Cn was defined as
the set of sequences of length n with values in Cn):

Cn⊗Rn
+ :=

{
c⊗ t :=

(
(cn, tn),(cn−1, tn−1), . . . ,(c1, t1)

)
: c ∈ Cn, t ∈ Rn

+

}
,

where ci gives the partition of the sample into groups of individuals having reached a
common ancestor when the sample has exactly i ancestors (i.e., cn = {{1}, . . . ,{n}}
is the initial condition, and ci arises after the n− i-th merger/step of the coalescent),
and ti gives the amount of time during which the continuous-time coalescent remains
at the value ci. In other words, ti gives the amount of time in the past during which the
sample has exactly i extant ancestors. By convention, we declare that t1 = 0. Figure 4
shows a coalescent tree for a sample of four individuals.

It is over this hidden genealogy space that one needs to integrate in order to obtain
the likelihood of a parameter φ ∈ ΦΦ on the basis of some observed data xobs:

P(xobs|φ) =
∫

Cn⊗Rn
+

P(xobs |c⊗ t,φ)dP(c⊗ t |φ)

=
∫

Cn⊗Rn
+

P(xobs|c⊗ t,φ)pφ (c⊗ t)dP(c⊗ t), (1.1)

where in the last line we assume that the n-coalescent induced, φ -specific prior law
P( · |φ) on Cn⊗Rn

+ is absolutely continuous with respect to some reference probabil-
ity measure P, and pφ denotes the corresponding density.

Computational feasibility of “full-likelihood” methods that conduct Monte Carlo
integration over the n-coalescent trees, in order to compute the likelihood of the ob-
served data via importance samplers (e.g. Bahlo and Griffiths (1996); Birkner and
Blath (2008); Griffiths and Tavare (1994, 1996); Iorio and Griffiths (2004); Slatkin
(2002); Stephens and Donnelly (2000)), scales poorly with the size of the data and
the complexity of the models in modern population genomics. For example, even
for sample sizes of the order of 10, the number of possible genealogical trees is
huge compared to the number of corresponding tree shapes (see Table 3). Further-
more, nowadays typical data sets contain DNA sequences of very large homologous
tracks of the genome for tens of individuals in a population. Using recombination
(and lengths of blocks identical by descent, in particular) instead of mutation in this
context has led to the development of methods leading to a better understanding of
the recent history of the population (e.g. Ralph and Coop (2013)). Although we shall
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not include recombination here, the computational challenge is even more substan-
tial when dealing with ancestral graphs with recombination and the philosophy ex-
pounded in this paper would certainly lead to major improvements in this respect.

Given the massive scale of current genomic data, computational biologists are
using “summary statistics” of the available data to reduce the computational burden
of the inference procedure and make it “likelihood-free” on the basis of simulations
from the finest genealogical resolutions (e.g. Beaumont et al (2009, 2002); Leuen-
berger and Wegmann (2009); Marjoram et al (2003); Pritchard et al (1999); Sisson
et al (2007); Weiss and von Haeseler (1998)). For a survey of ABC methods in a more
general setting see Marin et al (2012) and the references therein. However, these ap-
proximate Bayesian computations or ABC do not take advantage of the appropriate
and sufficient coarsening (or Markov lumping) of the hidden genealogy space for the
summary statistics being used.

Finding the appropriate resolution can be powerful in inference if the observed
statistic of interest only depends on the original chain through this lumping. This can
reduce large summations over excessively fine state spaces as noted in (Kemeny and
Snell, 1960, p. 124). The Markov lumpings of the vintaged and labeled n-coalescent,
{B↑(t)}, developed here can facilitate a computationally efficient and statistically
sufficient approach to population-genetic inference based on the exact likelihood of
various families of population-genetic summary statistics. Such a sophisticated ap-
proach to inference based on summary statistics amounts to approximate Bayesian
computation done exactly or ABCDE (Sainudiin et al, 2011).

Briefly, the sufficiency of the unvintaged and sized n-coalescent for the likelihood
of a popular statistic called the site frequency spectrum or SFS is exploited by Sain-
udiin et al (2011) to conduct ABCDE. There, a controlled Markov chain is developed
in order to simulate f -sequences (instead of full coalescent trees or c-sequences) in
such a way that only f -sequences that are compatible with the observed SFS are
produced. Such inference methods based on SFS and its linear combinations, includ-
ing, the number of segregating sites (Watterson, 1975), pairwise heterozygosity, and
Tajima’s D (Tajima, 1989), are possible due to the Markov lumping F : Cn→ Fn that
facilitates efficient integration over f -sequences or sequential realisations of {F↑(t)}
in order to compute the likelihood of the SFS, as opposed to the more conventional
approach of integrating over (in importance sampling) or simulating from (in ABC)
the unnecessarily finer resolution of c-sequences or sequential realisations of {C↑(t)}.
Importance sampling using a controlled Markov chain is developed by augmenting
the forward-time unvintaged and sized n-coalescent {F↓(t)} in order to produce f -
sequences that are conditioned on the observed SFS by Sainudiin et al (2011). Such
inference algorithms are publicly available from www.math.canterbury.ac.nz/

~r.sainudiin/codes/lce/ under the terms of the GNU General Public License.
Sainudiin et al (2011) only focussed on the resolution of f -sequences in order

to extract the information in the SFS (and its linear combinations). Here, we gen-
eralize such ideas to other n-coalescent resolutions so that inferential methods that
are similar to Sainudiin et al (2011), but based on summary statistics that depend on
one of the other coarsenings of the n-coalescents, can be developed from the coales-
cent probabilities obtained in this paper. Here, we formally describe lumped Markov
processes at more resolutions of the hidden genealogy space and point out classi-

www.math.canterbury.ac.nz/~r.sainudiin/codes/lce/
www.math.canterbury.ac.nz/~r.sainudiin/codes/lce/
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cal summary statistics from phylogenetic and population genetic literature that can
be sufficiently described by appropriate Markov lumpings. The backward-transition,
state-specific, forward-transition and sequence-specific probabilities at each of our
coalescent resolutions described in this paper constitute the applied probabilistic core
of computationally efficient Monte Carlo algorithms for statistical inference in pop-
ulation genetics that can exploit the Markov lumping relations among the different
coalescent resolutions. These formulaic descriptions of the probability structures, es-
pecially at the coarser resolutions, are a prerequisite for subsequent computationally
efficient and exactly approximate inference such as ABCDE in the spirit of Sainudiin
et al (2011) but on the basis of other appropriate summary statistics. We leave the
inference algorithms that can build upon the probabilistic formulae developed here
for future research.

In his 2012 plenary address to the International Society for Bayesian Analysis,
Christian Robert said the following about the importance of lumping in simulation-
intensive inference:

Noise created by the simulation of pseudo-data is killing by orders of magni-
tude the information contained in the whole data. Therefore, it makes much
more sense to first project in a smaller space, accepting that we are loosing
information. But then because we are in a much smaller space epsilon (the
approximation error in ABC algorithms) will be close to zero.

This paper provides the first steps towards such a projection into a smaller space and
addresses the following unsolved issue with ABC methods mentioned by Marin et al
(2012, p. 1179):

The (ABC) method necessarily faces limitations imposed by large datasets
or complex models, in that simulating pseudo-data may itself become an im-
possible task. Dimension-reducing technique that would simulate directly the
summary statistics will quickly become necessary.

Finally, as early as 1960, Kemeny and Snell (1960, p. 124) observe the following
about a lumped process:

It is also often the case in applications that we are only interested in questions
which relate to this coarser analysis of the possibilities. Thus it is important to
be able to determine whether the new process can be treated by Markov chain
methods.

It is exactly this observation about a lumped Markov process in the coalescent con-
text that led to this paper. Furthermore, the transition probabilities and Markov lump-
ings we develop here allow us to consistently move between different n-coalescent
resolutions – a crucial strategy that could be exploited in simulation-intensive in-
ference methods such as ABC by first using very crude statistics that only depend
on the coarsest resolution to build the first a posteriori distribution, and then using
this as the new a priori distribution to obtain the next a posteriori distribution with
more detailed statistics corresponding to a finer resolution and so on (as described
in Sect. 4.4). Such a sequential Monte Carlo approach to simulation-intensive infer-
ence, by evolving particle systems through nested combinatorial hidden spaces given
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by the n-coalescent resolutions and their Markov lumpings, is not exploited in the
current literature. In this paper we take the necessary applied probabilistic steps to-
wards realizing the potential for computationally efficient and statistically sufficient
inference from population genetic statistics of today’s massive genomic data.

1.3 Outline

The rest of this paper is organized as follows. In Sect. 2, we introduce the main no-
tation and definitions that we will use later. In Sect. 3, we describe and study the six
coalescent resolutions described in the Introduction. In Sect. 4, we provide concrete
justifications of the interest of Markov lumpings. In particular, we give several exam-
ples of tree shape statistics depending only on a coarser resolution of the “full” King-
man coalescent. We also give an example of inference based on the coalescent with
epoch times based on the observed site frequency spectrum. Finally, all the proofs are
given in the Appendix (Sect. 5).

2 Preliminaries

Let N := {1,2,3, . . .} denote the set of natural numbers. Let Z+ := {0,1,2, . . .} and
Z− := {0,−1,−2, . . .} denote the set of non-negative and non-positive integers, re-
spectively. For any set A, let |A| denote its cardinality or the number of elements in it.
Let [n : n′]− := {n,n−1, . . . ,n′+1,n′} denote the linearly ordered descending index
set from n to n′ ≤ n, where n,n′ ∈Z and let [n]− := [n : 1]− = {n,n−1, . . . ,2,1}. Sim-
ilarly, let [n′ : n]+ := {n′,n′+1, . . . ,n−1,n} denote the linearly ordered ascending in-
dex set from n′ to n≥ n′, where n,n′ ∈Z and let [n]+ := [1 : n]+ = {1,2, . . . ,n−1,n}.

In what follows, we will consider time in two directions. A process with exponent
↑will run backwards-in-time, that is the arrow of time will point towards the past. The
basic example of this is Kingman’s n-coalescent {C↑(t)}. On the other hand, a process
with exponent ↓ will run forwards-in-time, that is from the epoch at which there is
only one ancestor to the whole sample, until the present. The fact that backwards
processes are indexed by [n]− and forwards processes by [n]+ guarantees that for
any i ∈ {1, . . . ,n}, the value at step i of both chains correspond to the period of time
during which the sample has exactly i ancestors.

The n-coalescent resolutions (except the unvintaged and sized n-coalescent, and
the lineage death process) induce well-known types of phylogenetic trees on n leaves.
We will formally define the trees we will observe throughout this paper.

Definition 1 We define the following trees as in Semple and Steel (2003, Sect. 2.4).

(i) A ranked labeled tree on n leaves is a rooted binary tree with unique leaf labels
from the label set L. The interior vertices have a total order < assigned, which
satisfies the following requirements. The root is the minimum in this order, and
if v is an interior vertex v which is on the path from an interior vertex w to a leaf,
then w < v. Then, the root of the tree is given rank 1, the second smallest element
in this total order has rank 2, etc.
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Fig. 2 Example for a ranked labeled tree with leaf label set L = {1,2,3,4,5}, a labeled tree with L =
{1,2,3,4,5}, a ranked tree shape and a tree shape (from left to right).

(ii) A labeled tree on n leaves is a ranked labeled tree where the total order with the
ranks are omitted.

(iii) A ranked tree shape on n leaves is a ranked labeled tree where the leaf labels
are omitted.

(iv) A tree shape on n leaves is a labeled tree where the leaf labels are omitted.

See Fig. 2 for an example.

3 Six coalescent resolutions

Let us now describe the six resolutions of the Kingman-Tajima coalescent on which
we will concentrate in the rest of this paper. One may observe that the forward-in-time
and backward-in-time transition probabilities are well-defined for all these genealog-
ical processes, because there is a unique initial state for each such process (so that the
probability of visiting a given state is well-defined and we can use Bayes’ formula to
find the forward-in-time transition probabilities).

3.1 The block number resolution

This is the coarsest and by far the simplest resolution of the coalescent. Indeed, since
we assume that the coalescent starts from n blocks and that only a single pairwise
merger can occur at any step, the Markov chain {H↑(t), t ∈ [n]−} is almost surely
equal to the sequence {n,n−1, . . . ,1}. In other words, the state-space Hn of all pos-
sible h-sequences is reduced to the single point {n,n−1, . . . ,1} and for every i,

P(H↑(i) = i) = 1.

Of course, the same holds for the forward chain {H↓(t)} (recall from Sect. 2 that
backward chains are indexed by [n]− and forward chains by [n]+), that is,

P(H↓(i) = i) = 1.

3.2 The vintaged and labeled resolution

At this finest resolution in this study, in each epoch, we keep track of the blocks
formed by the labels of the individuals of our sample having reached a common
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ancestor before or at this step, as well as of the epoch at which each of these ancestral
blocks was created as we follow the genealogy of our sample back through time. This
Markov process can be lumped to any other process we will introduce below.

First we derive the state space Bn. Recall that Cn denotes the set of all set parti-
tions of the label set L= {1,2, . . . ,n} of samples of size n. Let |ca| denote the number
of elements in ca ∈ Cn. Denote the set of all set partitions with i blocks by C(i)

n , so
that Cn =

⋃n
i=1C

(i)
n . Let ci := {ci,1,ci,2, . . . ,ci,i} ∈ C(i)

n denote the i elements of ci.
The partial ordering

...
≺c on Cn is based on the immediate precedence relation ≺c:

ci′ ≺c ci⇔ ci′ =
(
ci \{ci, j,ci,k}

)
∪ (ci, j ∪ ci,k) for some j 6= k, j,k ∈ {1, . . . , i}.

In words, ci′ ≺c ci, read as ci′ immediately precedes ci, means that ci′ can be obtained
from ci by coalescing a distinct pair of elements in ci. Thus, ci′ ≺c ci implies |ci′ | =
|ci|−1.

Let the coalescent epochs be labeled n,n− 1, . . . ,1 as we go back in time, with
epoch n starting at the present, and a new epoch starting with each coalescent event.
Thus, as we have already seen with the lineage death process, there are k lineages
during epoch k. We say that a lineage identified by ci, j in the i-th epoch, i.e. the
lineage that subtends the sample labels in the set ci, j, is of mi, j vintage if ci, j originated
at the start of epoch mi, j (going back in time). We also say that mi, j is the coalescent-
epoch vintage or simply the vintage of ci, j. We notate such lineage-vintage pairs,

lineage〈vintage〉, or vintaged lineages by bi, j := c
〈mi, j〉
i, j and we let

bi := {bi,1,bi,2, . . . ,bi,i} :=
{

c
〈mi,1〉
i,1 ,c

〈mi,2〉
i,2 , . . . ,c〈mi,i〉

i,i

}
denote the i vintaged lineages in epoch i formed by pairing each element ci, j of ci

with its respective vintage mi, j ∈ {n,n− 1, . . . , i}. Let the set of such bi’s be B(i)
n

and let Bn :=
⋃n

i=1B
(i)
n . Thus, Bn is a vintage augmentation of Cn. We say that bi′

immediately precedes bi and write bi′ ≺b bi, if and only if:

bi′ = bi \ {c
〈mi, j〉
i, j ,c

〈mi,k〉
i,k }

⋃
(ci, j ∪ ci,k)

〈|bi|−1〉, for some j 6= k ∈ {1,2, . . . , |bi|}.

In words, bi′ ≺b bi means that bi′ can be obtained from bi by coalescing any
distinct pair of lineages in bi and by updating the coalesced lineage’s vintage tag to
that of the new epoch label. Let b := (bn,bn−1, . . . ,b1) be a sequence of states in Bn
that consecutively satisfy the immediate precedence relation≺b and let Bn be the set
of such b-sequences. A b-sequence for n = 4 is given in Table 1.

Proposition 1 (Probabilities over Bn) Backward transition probabilities P(bi−1|bi)
of the Markov chain {B↑(k)}k∈[n]− on Bn with initial state bn = {{1}〈n〉, . . . ,{n}〈n〉}
and final absorbing state b1 = {{1, . . . ,n}〈1〉}, probability P(bi) of visiting a state bi,
forward transition probabilities P(bi|bi−1) of the Markov chain {B↓(k)}k∈[n]+ on Bn
with initial state b1 and final absorbing state bn, and probability P(b) of a b-sequence
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in Bn are:

P(bi−1|bi) =

{( i
2

)−1
if bi−1 ≺b bi,bi ∈ B(i)

n ,
0 otherwise ,

(3.1)

P(bi) =
∏

i′
j=1 |ci, j|!(|ci, j|−1)(|ci,1: j|− j−1−mi, j + i)!

n!(n−1)!(i!(i−1)!)−1
∏

i′−1
j=1 (|ci,1: j|− j−mi, j+1 + i)!

, (3.2)

P(bi|bi−1) =
P(bi)P(bi−1|bi)

P(bi−1)
, (3.3)

P(b) = P(bn−1|bn)P(bn−2|bn−1) · · ·P(b1|b2) =
2n−1

n!(n−1)!
=

1
|Bn|

,(3.4)

where if we order the blocks of bi in such a way that mi,1 ≤ mi,2 ≤ ·· · ≤ mi,i, then
ci,1: j := ci,1∪·· ·∪ ci, j and i′ := max{ j : mi, j < n}.

Proof See Proof 1 in the Appendix.

Proposition 2 (Bijection between ranked labeled trees and b-sequences) There is
a bijection between the set of ranked labeled trees on n leaves and Bn, the set of
b-sequences.

The proof of Prop. 2 is straightforward and is therefore omitted.

3.3 Unvintaged and labeled resolution

We can obtain Kingman’s unvintaged and labeled Markov chain over Cn as a Markov
lumping of the vintaged and labeled chain {B↑(k)}k∈[n]− , by omitting the epoch vin-
tages from the states in Bn. Let c := (cn,cn−1, . . . ,c1) be a c-sequence or coalescent
sequence obtained from the sequence of states visited by a sequential realization of
the backward in time Markov chain {C↑(k)}k∈[n]− , and recall that Cn denotes the set
of such c-sequences:

Cn := {c := (cn,cn−1, . . . ,c1) : ci ∈ Ci
n, ci−1 ≺c ci, i ∈ {n,n−1, . . . ,2}}

A c-sequence for n = 4 is given in Table 1.

Proposition 3 (Probabilities over Cn) Backward transition probabilities P(ci−1|ci)
of the Markov chain {C↑(k)}k∈[n]− on Cn with initial state cn = {{1}, . . . ,{n}} and fi-
nal absorbing state c1 = {{1, . . . ,n}}, probability P(ci) of visiting a state ci, forward
transition probabilities P(ci|ci−1) of the Markov chain {C↓(k)}k∈[n]− on Cn with ini-
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tial state c1 and final absorbing state cn, and probability P(c) of a c-sequence are:

P(ci−1|ci) =

{( i
2

)−1
: if ci−1 ≺c ci, ci ∈ C(i)

n ,

0 : otherwise,
(3.5)

P(ci) =
(n− i)! i!(i−1)!

n!(n−1)!

i

∏
j=1
|ci, j|!, (3.6)

P(ci|ci−1) =
2

(n− i+1)
(|ci, j∗ |+|ci, j′∗

|
|ci, j∗ |

) , (3.7)

P(c) =
n

∏
i=2

P(ci−1|ci) =
2n−1

n!(n−1)!
=

1
|Cn|

, (3.8)

where ci, j∗ and ci, j′∗ are the two blocks created by the split of a block of ci−1 that gives
rise to ci in the forward chain {C↓(t)}.

Proof Equations (3.5) and (3.6) are established in (Kingman, 1982a, (2.2) and (2.3)),
respectively, and Eq. (3.8) follows from the Markov property of {C↑(t)} and Eq. (3.5).
See Proof 2 for proofs of Eq. (3.7) and of Eq. (3.6) from Eq. (3.2).

Proposition 4 (Bijection between ranked labeled trees and c-sequences) There is
a bijection between ranked labeled trees on n leaves and Cn, the set of c-sequences.

Again, the proof of this straightforward result is omitted.
Observe that the number of elements in Cn is the number of set partitions of a set

of size n which is Bell(n), the n-th Bell number

|Cn|= Bell(n) :=
n

∑
j=0

S( j)
n , . (3.9)

where S( j)
n is the Stirling number of the second kind with parameters n and j.

Remark 1 Our forward-in-time Markov chain {C↓(k)}k∈[n]+ on Cn is different from
Aldous’ beta-splitting model (Aldous, 2001). The beta-splitting model also produces
bipartitions of a label set forward in time as a Markov branching model. The dis-
tinguishing feature of the beta-splitting model is its recursive repetition of the same
bipartitioning or splitting process anew on elements of a partition of the label set.
Therefore the beta-splitting model only induces labeled trees, but no ranking. When
the parameter β = 0, the beta-splitting model induces the same distribution on la-
beled trees (without ranking) as the vintaged/unvintaged and labeled n-coalescent.
In Sect. 4.2 we revisit Aldous’ shape statistics that originated under the beta-splitting
model from the lumped Markov chains of Sect. 3.6, {F↑(k)}k∈[n]+ and {F↓(k)}k∈[n]+ ,
on Fn.
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3.4 Vintaged and sized resolution

Here we keep track of the sizes of the blocks (i.e., the number of descendants of each
ancestor) along with their vintages. Consider the coalescent epoch i during which
there are i blocks. Let di, j denote the size of a block with coalescent vintage j ∈
{1,2, . . . ,n− 1} during the i-th epoch (recall that there are at most one such block).
By convention, di, j = 0 if there are no such block. Then, di,n = n−∑

n−1
j=1 di, j is the

number of singleton blocks (or leaf lineages) during the i-th epoch.
Let us now represent the state of the coalescent during the i-th epoch by the vec-

tor di := (di,1,di,2, . . . ,di,n−1). The state space of such vintaged and sized ancestral
partition during the i-th epoch can be defined by the set

D(i)
n :=

di ∈ Zn−1
+ :


∑

i−1
j=1 di, j = 0,

∑
n−1
j=1 1N(di, j)+

(
n−∑

n−1
j=1 di, j

)
= i,

di,1 6= 1,di,2 6= 1, . . . ,di,n−1 6= 1

 ,

with Dn :=
⋃n

i=1D
(i)
n .

Let ei be the i-th unit vector of length n− 1. We say that di′ ≺d di ∈ D(i)
n if and

only if:

di′ =


di +(di, j +di,k)ei−1

−di, je j−di,kek for some i≤ j < k < n s.t. di, j 6= 0,di,k 6= 0, or
di +(di, j +1)ei−1−di, je j for some i≤ j < n s.t. di, j 6= 0, if di,n ≥ 1, or
di +2ei−1 if di,n ≥ 2.

.

A d-sequence d := (dn,dn−1, . . . ,d1) is obtained from a sequence of immediately
preceding states in Dn. Let Dn be the set of such d-sequences. A d-sequence for
n = 4 is given in Table 1.

For every d ∈Dn, let (d)ג be the number of cherries in d, i.e. the number of times
that we have di,n−di−1,n = 2 (corresponding to the merger of two singleton blocks)
as i varies from n to 2. More formally,

(d)ג :=
n

∑
i=2

1{2}(di,n−di−1,n).

Further, define di,1: j := ∑
j
k=1 di,k, m′i, j := min{k > j : di,k > 0} and ki, j := |{m ≤ j :

di,m > 0}|.

Proposition 5 (Probabilities over Dn) Backward transition probabilities P(di−1|di)
of the Markov chain {D↑(k)}k∈[n]− on Dn with initial state dn = (0,0, . . . ,0) and final
absorbing state d1 = (n,0,0, . . . ,0), probability P(di) of visiting a state di, forward
transition probabilities P(di|di−1) of the Markov chain {D↓(k)}k∈[n]+ with initial
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state d1 = (n,0,0, . . . ,0) and final absorbing state dn = (0,0, . . . ,0), and probabil-
ity P(d) of a a given d-sequence d are:

P(di−1|di) =

{( di,n
di,n−di−1,n

)( i
2

)−1
if di−1 ≺d di ∈ D(i)

n ,

0 otherwise.
(3.10)

P(di) =
i!(i−1)!
(n−1)!

(
∏

n−1
j=1,di, j>0(di, j−1)(di,1: j− ki, j− j−1+ i)!

∏
n−1
j=1,di, j>0(di,1: j− ki, j−m′i, j + i)!

)
,(3.11)

P(di|di−1) = P(di−1|di)
P(di)

P(di−1)
, (3.12)

P(d) =
2n−ג(d)−1

(n−1)!
. (3.13)

Proof See Proof 3 in the Appendix.

Observe that the chain {D↑(t)} is a Markov lumping of the chain {B↑(t)} based
on the map D defined as follows: for every bk ∈ B(k)

n ,

D(bk) = D
({

c
〈mk,1〉
k,1 , . . . ,c

〈mk,k〉
k,k

})
:=

(
k

∑
j=1
|ck, j|1{1}(mk, j), . . . ,

k

∑
j=1
|ck, j|1{n−1}(mk, j)

)
.

Proposition 6 (Bijection between ranked tree shapes and d-sequences) There is
a bijection between ranked tree shapes on n leaves and Dn, the set of d-sequences.

3.5 Vintaged and shaped resolution

Here we only track the vintages and forget the description of the blocks (or block
sizes). Consider the coalescent epoch i during which there are i blocks. Let gi, j denote
the presence (gi, j = 1) or absence (gi, j = 0) of a block with coalescent vintage j ∈
{1,2, . . . ,n−1} during the i-th epoch. The set of all vintaged and shaped coalescent
states during the i-th epoch is thus defined by

G(i)
n :=

{
gi ∈ {0,1}n−1 : gi,i = 1,

i−1

∑
j=1

gi, j = 0,
n−1

∑
j=1

gi, j ≤ i

}
,

and we set Gn :=
⋃n

i=1G
(i)
n . In this description of G(i)

n , the gi,i = 1 represents the
block that just arose at the beginning of the i-th epoch. Of course no blocks can carry
a vintage smaller than the current epoch i, and furthermore the number of blocks with
vintages smaller than n cannot exceed the total number i of blocks. Finally, all blocks
having vintage n are singleton blocks that have not yet coalesced, and so

gi,n = i−
n−1

∑
j=1

gi, j.
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We say that gi′ ≺g gi ∈G(i)
n if and only if:

gi′ =


gi + ei−1− e j− ek for some i≤ j < k < n s.t. gi, j = gi,k = 1, or
gi + ei−1− e j for some i≤ j < n s.t. gi, j = 1, if gi,n ≥ 1, or
gi + ei−1 if gi,n ≥ 2.

A g-sequence g := (gn,gn−1, . . . ,g1) is obtained from a sequence of immediately pre-
ceding states in Gn. Let Gn be the set of such g-sequences. A g-sequence for n = 4 is
given in Table 1.

Let (g)ג := ∑
n
i=21{2}(gi,n− gi−1,n) be the number of cherries in g, and let G :

Dn→Gn be the size-dropping map:

G (dk) = G ((dk,1, . . . ,dk,n)) := (1N(dk,1), . . . ,1N(dk,n−1)) = (gk,1, . . . ,gk,n−1).
(3.14)

This map induces a Markov lumping of the chain {D↑(t)} into the chain {G↑(t)}
described in the following Proposition.

Proposition 7 (Probabilities over Gn) Backward transition probabilities P(gi−1|gi)

of the Markov chain {G↑(k)}k∈[n]− on Gn with initial state gn = (0,0, . . . ,0) ∈ G(n)
n

and final absorbing state g1 = (1,0,0, . . . ,0) ∈ G(1)
n , probability P(gi) of visiting a

state gi, forward transition probabilities P(gi|gi−1) of the Markov chain {G↓(k)}k∈[n]+
on Gn with initial state g1 =(1,0,0, . . . ,0) and final absorbing state gn =(0,0, . . . ,0),
and probability P(g) of a g-sequence g are:

P(gi−1|gi) =

{( gi,n
gi,n−gi−1,n

)( i
2

)−1
if gi−1 ≺g gi ∈G(i)

n ,

0 otherwise,
(3.15)

P(gi) = P(G −1(gi)) = ∑
d j∈G−1(gi)

P(d j), (3.16)

P(gi|gi−1) = P(gi−1|gi)
P(gi)

P(gi−1)
, (3.17)

P(g) =
n

∏
i=2

P(gi−1|gi) =
2n−ג(g)−1

(n−1)!
. (3.18)

Proof See Proof 4 in the Appendix.

Remark 2 The space of g-sequences is in bijection with Tajima’s evolutionary rela-
tionships (Tajima, 1983, Figures 1-4) and this is why we refer to the Markov chain
{G↑(k)}k∈[n]− on Gn as Tajima’s n-coalescent. This is the first Markov description of
Tajima’s evolutionary relationships in the coalescent framework of Kingman.

Proposition 8 The number of elements in Gn is

|Gn|= Fibo(n+1) , (3.19)

where Fibo(n) is the n-th Fibonacci number.
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Proof See Proof 5 in the Appendix.

Proposition 9 (Bijection between ranked tree shapes and g-sequences) There is
a bijection between the set of ranked tree shapes on n leaves and Gn, the set of g-
sequences.

Proposition 10 (The ranked labeled trees of an g-sequence) Let g ∈ Gn be any
given g-sequence and let b ∈ (G ◦D)−1(g) := {D−1(d) : d ∈ G −1(g)} be a cor-
responding b-sequence. Then the number of b-sequences (which is the number of
ranked labeled trees) corresponding to the given g is

|(G ◦D)−1(g)|= 21−n n!(n−1)!P(g) = n!2−ג(g) , (3.20)

where (g)ג is the number of cherries of the ranked tree shape induced by g. The
conditional probability of b or c given g is

P(b|g) = P(c|g) = !n/(g)ג2 . (3.21)

Proof See Proof 6 in the Appendix.

3.6 Unvintaged and sized resolution

Here we track the sizes of the blocks and disregard their labels and vintages. The
unvintaged and sized resolution is mentioned as a lumped Markov chain of the un-
vintaged and labeled resolution and termed the ‘label-killed’ process by Kingman
(1982b, 5.2). Tavaré (1983, p. 136-137) calls it the ‘family-size process’ as part of the
nomenclature of a more general birth-death-immigration process of Kendall (1975).
The transition probabilities of this Markov chain {F↑(k)}k∈[n]− are not explicitly de-
veloped in Kingman (1982b) or Tavaré (1983). They have been developed in Sain-
udiin et al (2011) to resolve the hidden genealogy space just enough to prescribe the
likelihood of a popular classical statistic called the site frequency spectrum and its lin-
ear combinations. We briefly retrace {F↑(k)}k∈[n]− and its companion chains to show
that they can provide the sampling distribution of a large family of shape statistics in-
cluding several classical ones. The significantly smaller state space of {F↑(k)}k∈[n]−
allows for a computationally efficient and statistically sufficient inference based on
these statistics.

Consider the coalescent epoch at which there are i lineages. Let fi, j denote the
number of blocks of size j (or lineages ancestral to j individuals) at this epoch. Let
us summarize these numbers by the vector fi := ( fi,1, fi,2, . . . , fi,n). Then, the space of
fi’s is the set of integer partitions of n composed of i positive integers and is defined
by

F(i)
n :=

{
fi := ( fi,1, fi,2, . . . , fi,n) ∈ Zn

+ :
n

∑
j=1

j fi, j = n,
n

∑
j=1

fi, j = i

}
.

Let the set of such frequencies over all epochs be Fn :=
⋃n

i=1F
(i)
n , the frequency

representation of the integer partitions of n, i.e. the solutions to the Diophantine equa-
tion {(p1, p2, . . . , pn) ∈ Zn

+ : ∑
n
i=1 ipi = n}. Thus, the cardinality of Fn is the number

of integer partitions of n:
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|Fn|= 1+
bn/2c

∑
k=1

p(k,n− k), where

p(k,n) =


0 if k > n
1 if k = n
p(k+1,n)+p(k,n− k) otherwise.

(3.22)

Let us define an f -sequence f as follows:

f := ( fn, fn−1, . . . , f1) ∈Fn :=
{

f : fi ∈ F(i)
n , fi−1 ≺ f fi, ∀i ∈ {2, . . . ,n}

}
,

where ≺ f is the immediate precedence relation defined by (here, e j denotes the j-th
unit vector of length n):

fi′ ≺ f fi⇔ fi′ = fi− e j− ek + e j+k for some 1≤ j,k ≤ n.

Thus, Fn is the set of f -sequences with sample size n. One can see Fn as the set of
the frequencies of the cardinalities of c-sequences in Cn. Indeed, if we define the map
F : Cn→ Fn by

F (ci) :=

(
i

∑
h=1

1{1}(|ci,h|), . . . ,
i

∑
h=1

1{n}(|ci,h|)

)
, (3.23)

then F induces a Markov lumping of the chain {C↑(t)} into the chain {F↑(t)}.
An f -sequence f written as ( fn, fn−1, . . . , f1) is an n×n matrix:

f :=


f1
f2
...

fn−1
fn

 :=


f1,1 f1,2 · · · f1,n−1 f1,n
f2,1 f2,2 · · · f2,n−1 f2,n
...

...
. . .

...
...

fn−1,1 fn−1,2 · · · fn−1,n−1 fn−1,n
fn,1 fn,2 · · · fn,n−1 fn,n


Note that Fn indexes an equivalence class in Cn via the inverse map F−1.

Before detailing the transition probabilities of the unvintaged and sized coales-
cent, let us define a shape statistic triple of any f ∈Fn. Let us denote the entry-wise
maximum or minimum of a vector x by max〈x〉 and min〈x〉, respectively. There are
n−1 coalescence events in any f . Define )ג f ) as the number of events resulting from
the coalescence of a pair of singleton blocks (or leaves). As in the previous para-
graphs, such an event is called a cherry. Next, define k( f ) as the number of events
that arise from coalescing two blocks of distinct sizes. Let the number of the remain-
ing events in f be defined as î( f ). Thus, î( f ) is the number of events resulting from
the coalescence of two blocks of equal size that are not cherries. A distinctly-sized
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split of a block of size i gives rise to two blocks of size i1 and i2, such that i1 6= i2 and
i = i1 + i2. In formulae, the above is,

)ג f ) :=
n

∑
i=2

1{1}( fi−1,2− fi,2), (3.24)

k( f ) :=
n

∑
i=2

1{1}(max〈 fi− fi−1〉), (3.25)

î( f ) := n−1−k( f )− )ג f ). (3.26)

Denoting the entry-wise or Hadamard product by �, let us define f̈i as the number
of blocks having the same size as the block that was split at the beginning of the i-th
epoch (forward in time) and the corresponding split frequency vector Λ̈( f ) = f̈ :=
( f̈2, f̈3, . . . , f̈n). For a given f -sequence f , we have

f̈i := fi−1,−min〈( fi− fi−1)�(1,2,...,n)〉.

For example, if there were four blocks of size three each and one of these four blocks
splits at the beginning of the i-th epoch, then f̈i = 4.

Proposition 11 (Probabilities over Fn) Backward transition probabilities P( fi−1| fi)

of the Markov chain {F↑(k)}k∈[n]− on Fn with initial state fn = (n,0, . . . ,0)∈F(n)
n and

final absorbing state f1 = (0,0, . . . ,1) ∈ F(1)
n , probability P( fi) of visiting a state fi,

forward transition probabilities P( fi| fi−1) of the Markov chain {F↓(k)}k∈[n]+ on Fn

with initial state f1 = (0,0, . . . ,1) and final absorbing state fn = (n,0, . . . ,0), and
probability P( f ) of an f -sequence f are:

P( fi−1| fi) =


fi, j fi,k

( i
2

)−1
if fi−1 = fi− e j− ek + e j+k, j 6= k( fi, j

2

)( i
2

)−1
if fi−1 = fi−2e j + e2 j,

0 otherwise,

. (3.27)

P( fi) =
i!

∏
i
j=1 fi, j!

(
n−1
i−1

)−1

, (3.28)

P( fi| fi−1) =


2 fi−1, j+k(n− i+1)−1 if fi = fi−1 + e j + ek− e j+k, j 6= k,
fi−1,2 j(n− i+1)−1 if fi = fi−1 +2e j− e2 j, j = k,
0 otherwise,

(3.29)

P( f ) =
2k( f )

(n−1)!

n

∏
i=2

f̈i, . (3.30)

Proof See Proof 7 in the Appendix.

We have seen earlier in the section that {F↑(t)}was a Markov lumping of {C↑(t)}
through the function F defined in Eq. (3.23). It can also be considered as a coarsening
(or Markov lumping) of {D↑(t)} via the following vintage-dropping map F ′ : Dn→
Fn:

F ′(dk) :=

(
n−

n−1

∑
j=1

dk, j,
n−1

∑
j=1

1{2}(dk,i), . . . ,
n−1

∑
j=1

1{n}(dk,i)

)
. (3.31)
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Proposition 12 (The ranked labeled trees of an f -sequence) Let f ∈Fn be any
given f -sequence and let F−1( f ) be the set of all corresponding c-sequences. Then
the cardinality of F−1( f ) (which is also the number of ranked labeled trees corre-
sponding to the given f ) is

|F−1( f )|= 21−n n!(n−1)!P( f ) = n!2k( f )+1−n
n

∏
i=2

f̈i, (3.32)

and the conditional probability of c ∈F−1( f ) given f is

P(c| f ) = 2−k( f )+n−1

n!

n

∏
i=2

f̈−1
i =

1
|F−1( f )|

. (3.33)

Proof See Proof 8 in the Appendix.

Proposition 13 (The ranked tree shapes of an f -sequence) Let f ∈ Fn be any
given f -sequence and let d ∈F ′−1( f ) and g∈G (F ′−1( f )) := {G (d) : d ∈F ′−1( f )}
be a corresponding d- and g-sequence, respectively. The number of ranked tree shapes
corresponding to the given f is

|F ′−1
( f )|= |G (F ′−1

( f ))| = 2−î( f )
n

∏
i=2

f̈i , (3.34)

and the conditional probability of g given f is

P(g| f ) = 2î( f )

(
n

∏
i=2

f̈i

)−1

. (3.35)

Proof See Proof 9 in the Appendix.

3.7 Examples

Next we provide some concrete examples of n-coalescent sequences at various resolu-
tions for small n and calculate P( f ), |F−1( f )|, P(g), |(G ◦D)−1(g)| and |F ′−1( f )|
based on Eqs. (3.30), (3.32), (3.18), (3.20) and (3.34), respectively.

The d-, g- and f -sequences when n is 2, 3, and 4 are shown along with the corre-
sponding ranked tree shape and the four shape statistics, namely, =ג )ג f ), k=k( f ),
î= î( f ) and f̈ = Λ̈( f ) in Table 1.

When n = 3 we tabulate the state spaces, (backward) transition diagrams, the
sequences and their probabilities at six resolutions of the n-coalescent in Table 4.

Example 1 (Samples of size 3) When there are samples of size 3, we have 3 b-
sequences, 3 c-sequences, 1 d-sequence, 1 g-sequence and 1 f -sequence. In Table 4,
we tabulate the state-space, (backward) transition diagram, sequences and the corre-
sponding probabilities at each of the six n-coalescent resolutions.

There is only one f -sequence, with k( f ) = 1, Λ̈( f ) = f̈ = (1,1) and ∏
3
i=2 f̈i = 1.

Thus, P( f ) = (21/(3− 1)!) = 1 and |F−1( f )| = 3! 21+1−3 = 3. Again, there is
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n ranked tree shape d-sequence g-sequence f -sequence ג k î f̈

2
2

d =

(
2
0

)
g =

(
1
0

)
f =

(
0 1
2 0

)
1 0 0 (1)

3
2

1

d =

3 0
0 2
0 0

 g =

1 0
0 1
0 0

 f =

0 0 1
1 1 0
3 0 0

 1 1 0 (1,1)

4 3
2

1

dh =


4 0 0
0 3 0
0 0 2
0 0 0

 gh =


1 0 0
0 1 0
0 0 1
0 0 0

 fh =


0 0 0 1
1 0 1 0
2 1 0 0
4 0 0 0

 1 2 0 (1,1,1)

4 3
2

1

d∧ =


4 0 0
0 2 2
0 0 2
0 0 0

 g∧ =


1 0 0
0 1 1
0 0 1
0 0 0

 f∧ =


0 0 0 1
0 2 0 0
2 1 0 0
4 0 0 0

 2 0 1 (1,2,1)

Table 1 The ranked tree shape and shape statistics of d-, g- and f -sequences when n is 2, 3, and 4.

only one f - and g-sequence with one cherry, i.e. )ג f ) = (g)ג = 1, and î( f ) :=
n−1−k( f )− )ג f ) = 3− 1− 1− 1 = 0. Therefore, P(g) = 23−1−1/(3−1)! = 1,
|(G ◦D)−1(g)|= 3!2−1 = 3 and |F ′−1( f )|= 2−0 1 = 1.

Example 2 (Samples of size 4) In the case of samples of size 4, there are 18 b-
sequences, 18 c-sequences, 2 d-sequence, 2 g-sequence and 2 f -sequence. We pro-
vide the d-, g- and f -sequences in Table 1. Out of the 18 c-sequences in C4, it is
possible to apply Eq. (3.23) and find that 12 c-sequences map to fh and 6 map to f∧.
Note that the ranked tree shapes corresponding to all the c-sequences F−1( fh) is the
completely unbalanced g-sequence gh and that corresponding to all the c-sequences
F−1( f∧) is the completely balanced g-sequence g∧. Finally, the shape statistic triple
for the two f -sequences are:

)ג) fh),k( fh), î( fh)) = (1,2,0) and )ג) f∧),k( f∧), î( f∧)) = (2,0,1) .

Let us examine the two f -sequences closely. For f∧ with

k( f∧) = 0,Λ̈( f∧) = f̈∧ = (1,2,1) and
4

∏
i=2

f̈∧i = 2,

we obtain P( f∧) = (20/(4− 1)!)× 2 = 1/3, |F−1( f∧)| = 4!× 20+1−4× 2 = 6 and
|F ′−1( f∧)|= 2−1×2 = 1. Similarly, for fh with

k( fh) = 2,Λ̈( fh) = f̈h = (1,1,1) and
4

∏
i=2

f̈hi = 1, we obtain

P( fh) = 22/(4−1)! = 2/3, |F−1( fh)|= 4! 22+1−4 = 12 and |F ′−1( fh)|= 2−0 =
1.

Let us examine the two g-sequences closely. For g∧ with (∧g)ג = 2, P(g∧) =
24−1−2/(4−1)! = 1/3 and |(G ◦D)−1(g∧)|= 4!2−2 = 6 and for gh with (gh)ג = 1,
P(gh) = 24−1−1/(4−1)! = 2/3 and |(G ◦D)−1(gh)|= 4!2−1 = 12.
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ranked tree shape d-sequence g-sequence f -sequence ג k î f̈

1

4

3

2

da =


5 0 0 0
0 4 0 0
0 0 3 0
0 0 0 2
0 0 0 0

 ga =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 f a =


0 0 0 0 1
1 0 0 1 0
2 0 1 0 0
3 1 0 0 0
5 0 0 0 0

 1 3 0 (1,1,1,1)

1

4

2

3 db =


5 0 0 0
0 2 3 0
0 0 3 0
0 0 0 2
0 0 0 0

 gb =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1
0 0 0 0

 f b =


0 0 0 0 1
0 1 1 0 0
2 0 1 0 0
3 1 0 0 0
5 0 0 0 0

 2 2 0 (1,1,1,1)

1
2

4
3

dc =


5 0 0 0
0 3 2 0
0 0 2 2
0 0 0 2
0 0 0 0

 gc =


1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0

 f cd =


0 0 0 0 1
0 1 1 0 0
1 2 0 0 0
3 1 0 0 0
5 0 0 0 0

 2 2 0 (1,1,2,1)

1
2

3
4

dd =


5 0 0 0
0 3 0 2
0 0 2 2
0 0 0 2
0 0 0 0

 gd =


1 0 0 0
0 1 0 1
0 0 1 1
0 0 0 1
0 0 0 0

 f cd =


0 0 0 0 1
0 1 1 0 0
1 2 0 0 0
3 1 0 0 0
5 0 0 0 0

 2 2 0 (1,1,2,1)

1
2

3

4
de =


5 0 0 0
0 4 0 0
0 0 2 2
0 0 0 2
0 0 0 0

 ge =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1
0 0 0 0

 f e =


0 0 0 0 1
1 0 0 1 0
1 2 0 0 0
3 1 0 0 0
5 0 0 0 0

 2 1 1 (1,1,2,1)

Table 2 The d-, g- and f -sequences when n = 5 are shown along with the corresponding ranked tree shape
and the four shape statistics, namely, =ג )ג f ), k= k( f ), î= î( f ) and f̈ = Λ̈( f ). Note that the third and
forth row have the same f -sequence.

Example 3 (Samples of size 5) In the case of samples of size 5, there are 180 b-
sequences, 180 c-sequences, 5 d-sequence, 5 g-sequence and 4 f -sequence. As shown
in Table 2, we denote the g-sequences as ga, gb, gc, gd and ge, the d-sequences as da,
db, dc, dd and de, and the f -sequences as f a, f b, f cd and f e. Note that gc and gd as
well as dc and dd map to the same f -sequence f cd. Finally, the shape statistic triples
for the four f -sequences are:

)ג) f a),k( f a), î( f a)) = (1,3,0), )ג) f b),k( f b), î( f b)) = (2,1,1),

)ג) f cd),k( f cd), î( f cd)) = (2,2,0), )ג) f e),k( f e), î( f e)) = (2,2,0).

For the four f -sequences: f a, f b, f cd and f e, and the five g-sequences: ga, gb, gc,
gd and ge, we apply their shape statistics:

k( f a) = 3 k( f b) = 1 k( f cd) = k( f e) = 2

(ga)ג = 1 (gb)ג = (gc)ג = (gd)ג = (ge)ג = 2
5

∏
i=2

f̈ ai =
5

∏
i=2

f̈ ei = 14 = 1
5

∏
i=2

f̈ bi =
5

∏
i=2

f̈ cdi = 2,
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to obtain the probabilities and cardinalities as follows:

P( f a) = (23/(5−1)!) = P( f cd) = (22/(5−1)!)×2 = 1/3
P( f b) = (21/(5−1)!)×2 = P( f e) = (22/(5−1)!) = 1/6

|F−1( f a)|= 5! 23+1−5 = |F−1( f cd)|= 5! 22+1−5×2 = 60
|F−1( f b)|= 5! 21+1−5×2 = |F−1( f e)|= 5! 22+1−5 = 30

P(ga) = 25−1−1/(5−1)! = 1/3
P(gb) = P(gc) = P(gd) = P(ge) = 25−1−2/(5−1)! = 1/6

|(G ◦D)−1(ga)|= 5!2−1 = 60

|(G ◦D)−1(gb)|= |(G ◦D)−1(gc)|= 5!2−2 = 30

|(G ◦D)−1(gd)|= |(G ◦D)−1(ge)|= 5!2−2 = 30

|F ′−1
( f a)|= |F ′−1

( f e)|= 2−0 = 1

|F ′−1
( f b)|= 2−1×2 = 1

|F ′−1
( f cd)|= 2−0×2 = 2.

Applications of Eqs. (3.18) and (3.20) to the g-sequences of Examples 1, 2 and 3
above are consistent with those of Tajima’s evolutionary relationships (Tajima, 1983,
Figs. 1-3).

4 Why lump?

4.1 Nature and extent of Markov lumpings

Here we give some arguments showing the efficiency of looking at the appropriate
resolution as discussed in Sect. 1.2. As a start, let us consider statistics of ranked
labeled trees. We have seen that there is a bijection from Bn, the set of b-sequences,
as well as from Cn, the set of c-sequences, to the set of ranked labeled trees. We
introduced b-sequences since there are Markov lumpings from b-sequences to all
other resolutions, but since the space Cn is much smaller than Bn (there are no vintage
tags), we will only consider c-sequences when the object of interest in inference is a
ranked labeled tree.

Let us first gain some insight on the extent of lumpings between Cn, Gn and Fn.
Note that the cardinality of Cn, |Cn|, is the n-th Bell number in Eq. (3.9). Further, the
cardinality of Gn, |Gn|, is the (n+1)-th Fibonacci number in Eq. (3.19). The cardinal-
ity of Fn, |Fn|, is the number of integer partitions of n in Eq. (3.22). The approximate
values of |Cn|, |Gn| and |Fn| are shown in Table 3 for typical sample sizes of interest
to us. In fact, |Fn|/|Gn| → 0 and |Gn|/|Cn| → 0 as n→ ∞. Furthermore, Props. 10
and 12 precisely describe the number of c-sequences or b-sequences or ranked labeled
trees that are coarsened into any specific g- or f -sequence, respectively. This can be
advantageous during integrations, involving dynamic programming or sequential par-
ticle filtering algorithms (Del Moral, 2004; Doucet and Johansen, 2009), over paths
of the Markov chain on Gn or Fn instead of Cn or over paths on Fn instead of Gn, pro-
vided the coarser resolution preserves the likelihood of the statistic of interest. That
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is, the sampling distribution of this statistic should depend on the (hidden) c-sequence
only through its coarsening F (c) = f or G (c) = g. Coming back to Eq. (1.1), we can
then write for instance (extending the notation of Sect. 1.2 in an obvious way)

P(xobs|φ) =
∫

Fn⊗Rn
+

P(xobs| f ⊗ t,φ)pφ ( f ⊗ t)dP( f ⊗ t),

where this time the integration is carried out over the much smaller space Fn⊗Rn
+

instead of Cn⊗Rn
+.

Table 3 Cardinalities of the state spaces Cn, Gn and Fn.

n = |Hn| 4 10 30 60 90 120
|Cn| 15 1.2×105 8.5×1023 9.8×1059 1.4×10101 5.1×10145

|Gn| 5 88 1.3×106 2.5×1012 4.7×1018 8.7×1024

|Fn| 5 42 5.6×103 9.7×105 5.7×107 1.8×109

Let us now turn to statistics of ranked tree shapes. As we have seen earlier, there
is a bijection from Dn, the set of d-sequences, as well as from Gn, the set of g-
sequences, to the set of ranked tree shapes. Again, since the state space of g-sequences
is much smaller (as we do not track the size of components), we will only consider
g-sequences when the object of interest in inference is a ranked tree shape. Moreover,
for various shape statistics (of ranked tree shapes) whose likelihood only depends on
the hidden f -sequence (as described below in Sect. 4.2), it is preferable to study the
lumped Markov chain on Fn as opposed to that on Gn (since here again f -sequences
contain the minimal information required to reconstruct the statistic of interest). Re-
call that Prop. 13 gives the number of g-sequences or d-sequences or ranked tree
shapes that are coarsened into any specific f -sequence.

We now provide a few examples of statistics for which the appropriate coarsening
of Kingman’s coalescent may be used to simplify the desired computations.

4.2 Shape statistics where f -sequences are sufficient

We show that any f -sequence f realized under the unvintaged and sized n-coalescent
captures a considerable amount of information about the ranked tree shapes in the
equivalence class of c-sequences F−1( f ) or in G (F ′−1( f )). For instance, various
tree shape statistics are further summaries of the f -sequence. We will make the for-
mer sentence precise by showing that several tree-shape statistics in the literature are
functions of a sequence of n−1 ordered pairs obtained from f -sequences.

For a given c-sequence c := (cn,cn−1, . . . ,c1), the corresponding Aldous’ shape
statistic sequence (Aldous, 2001) or s̃-sequence is defined as s̃ := (s̃n, s̃n−1, . . . , s̃1),
where s̃i := (s̃i,1, s̃i,2). The i-th ordered pair (s̃i,1, s̃i,2) of the s̃-sequence is the size
of the block ci−1, j that was created at the end of the i-th coalescent epoch and the
size of the smaller of the two blocks that coalesced to create ci−1, j. The s̃-sequence
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is then obtained directly from an f -sequence f through the following mapping S̃ :
( fn, fn−1, . . . , f1) 7→ s̃ := (s̃n, s̃n−1, . . . , s̃2), with

s̃i := (s̃i,1, s̃i,2)

:=
(

max(D fi),max(D fi)+min(D fi)2−1{0}(max(D fi)+2min(D fi))
)
,

where D fi := { j( fi−1, j− fi, j) : j ∈ {1,2, . . . ,n}}. (4.1)

In words, D fi is the i-th “difference” vector whose j-th coordinate is 0 if no block
of size j is created or coalesces between the i-th and (i− 1)-st coalescent epochs,
equals j if a block of size j is created during this step, equals − j if a block of
size j coalesces with a block of different size during this step, or equals −2 j if two
blocks of size j coalesced between the i-th and (i− 1)-st epochs (hence the factor
2−1{0}(max(D fi)+2min(D fi)) to obtain the size of the smallest block in this case). There-
fore, f -sequences contain all the information on s̃-sequences. Aldous (2001) con-
structs the s̃-sequence forward in time using a tree-splitting model. This is partly mo-
tivated by a description of tree-shape imbalance via median-regression over a scatter-
plot of the ordered pairs (s̃i,1, s̃i,2)’s obtained from phylogenetic trees that were esti-
mated from DNA sequences of extant taxa (Aldous, 2001).

Next, let us show that several classical scalar-valued tree shape statistics are func-
tions of s̃ = S̃( f ). First, consider the following family of statistics indexed by the
nonempty subsets of {2,3, . . . ,n}:

Qn :=
{

QI : s̃ 7→
n

∑
i=2

s̃i,11I(s̃i,1) : I⊂ {2,3, . . . ,n}, I 6= /0
}
.

When I = {2, . . . ,n}, Q{2,3,...,n}(s̃) = ∑
n
i=2 s̃i,1 is Sackin’s index which is the sum of

the number of leaves subtended by each internal node (Sackin, 1975; Tajima, 1983).
Then, Q{2}/2 is the number of cherries, i.e., the number of internal nodes that subtend
exactly 2 leaves (McKenzie and Steel, 2000). There are 2n−1−3 other scalar-valued
shape statistics in the family Qn for the n-coalescent. Another scalar-valued statistic
that needs more information than the number of leaves subtended by the set of internal
nodes is the Colless’ index (Colless, 1982). It is the sum of the absolute difference
between the number of leaves subtended by the two branches bifurcating from each
internal node up to a constant factor. The Colless’ index of an f -sequence f only
depends on its Aldous’ shape statistic sequence S̃( f ) = s̃ and is given by (n2−3n+
2)−1

∑
n
i=2(s̃i,1−2s̃i,2).

Thus, we have shown that any f -sequence f captures a lot of information about
the ranked tree shapes in G (F ′−1( f )). However, some information is lost about the
ranked tree shapes in the coarsening as one f -sequence may encode several distinct
g-sequences (recall that 2 distinct g-sequences mapped to the same f -sequence in
Example 3).

4.3 Shape Statistics where g-sequences are sufficient

In the previous section, we showed that sampling distributions of f -sequences are
sufficient to obtain that of several tree shape statistics. However, there are statistics
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based on ranked tree shapes for which the n-coalescent resolution of f -sequences
is not sufficient. In Ford et al (2009), the runs statistic was proposed for detecting
lineage-specific bursts within a population or between species.

f -sequence τ τ ′


0 0 0 0 0 1
0 1 0 1 0 0
0 3 0 0 0 0
2 2 0 0 0 0
4 1 0 0 0 0
6 0 0 0 0 0

 . 4

1
2

3

1
2

3

4
5

5

Fig. 3 Two ranked tree shapes on six leaves. Note that τ , the ranked tree shape in the middle panel, has
runs statistic 4 while τ ′ on the right has runs statistic 5. However, both ranked tree shapes have the same
f -sequence on the left.

The runs statistic is calculated recursively from a ranked tree shape τ . Note that
the ranking on a tree shape is simply a total order of the interior vertices of the tree
shape. By deleting the root of τ , we obtain two ranked tree shapes τ1 and τ2. The
ranked tree shape τ is induced by these two ranked tree shapes τ1 and τ2 together
with a shuffle on the interior vertices of τ1 and τ2. A shuffle puts the n1 interior
vertices in τ1 and the n2 interior vertices in τ2 in order, e.g. 1112 means that first we
have three bifurcations in τ1, followed by one bifurcation in τ2. The number of runs
of a shuffle is the number of times we switch from i to j (i 6= j) plus one. Hence, our
shuffle 1112 has two runs. The number of runs of a ranked tree shape τ is defined
recursively by

R(τ) = R(τ1)+R(τ2)+ s(τ) ,

where s(τ) is the number of runs in the shuffle on the interior vertices of τ1 and τ2.
For further details, see Ford et al (2009).

As g-sequences can be mapped to ranked tree shapes via a bijection (Prop. 9),
the g-sequences are sufficient for determining the runs statistic. On the other hand,
the runs statistic cannot be obtained from f -sequences. For example, let us consider
τ1 and τ2, the two ranked tree shapes in Fig. 3. There are 4 runs in τ (since R(τ) =
R(τ1)+R(τ2)+ s(τ) = 2+0+2 = 4) whereas τ ′ has 5 runs (since R(τ ′) = R(τ ′1)+
R(τ ′2)+ s(τ ′) = 2+0+3 = 5). However, both τ and τ ′ have the same f -sequence.

4.4 Statistics of Observed Mutations

Recall from Sect. 1.2 that a continuous coalescent tree c⊗ t, realized under the n-
coalescent, describes the labeled ancestral history of the sampled individuals as a
binary tree. Figure 4 shows a coalescent tree for a sample of four individuals. In the
rest of this section, let us consider the following neutral models indexed by a param-
eter φ = (φ1,φ2) ∈ ΦΦ , in which mutations are independently super-imposed upon
the coalescent trees at each site according to the infinitely-many-sites (IMS) model
(Watterson, 1975). Under this model, independent mutations are super-imposed on



26 R. Sainudiin et al.

the coalescent tree c⊗ t at each site according to a homogeneous Poisson process
with rate φ1, where φ1 := 4Neµ , Ne is the effective population size, and µ is the mu-
tation rate per generation per site. We further stipulate that at most one mutation is
allowed per site. The ancestral state is coded as 0 and the derived or mutant state is
coded as 1.

The parameter φ2 is the exponential growth rate of the population. That is, we
assume that the whole population alive t units of time in the past was e−φ2(t−s) as big
as the population alive s< t units of time in the past. This parameter will appear in the
computation of the likelihood of the continuous tree in Sect. 4.4.3. We keep the model
simple with just two parameters in order to emphasize the advantages of working
with the appropriate Markov lumping of the hidden genealogy space (depending on
the statistics of the observed mutations that are being used to infer the parameters).
But our ideas generalize in a straightforward manner to more complex demographic
scenarios involving multiple independent loci that are evolving under the infinitely-
many-sites model of mutation.

4.4.1 Binary Incidence Matrix.

Let us first describe the most precise observation of mutations we can obtain from the
DNA sequence of n individuals at the present time under such a model. To this end,
let us assume that the ancestral nucleotides are known, and that at most one derived
nucleotide occurs at each site among the n sampled sequences (such bi-allelic data
is common and sites showing both ancestral and derived characters are commonly
referred to as single nucleotide polymorphisms or SNPs). Then from the aligned se-
quence data u, we obtain a binary incidence matrix, or BIM, v ∈ V m

n := {0,1}n×m by
replacing all ancestral states with 0 and derived states with 1.

BIM data is modeled by super-imposing the infinitely-many-sites model of mu-
tation onto an n-coalescent sample genealogy (Kingman, 1982a,b). We can conduct
inference on the basis of the observed BIM v using established importance sampling
methods (Bahlo and Griffiths, 1996; Birkner and Blath, 2008; Griffiths and Tavare,
1994, 1996; Iorio and Griffiths, 2004; Slatkin, 2002; Stephens and Donnelly, 2000).
However, the only resolutions of the coalescent containing all the information in BIM
are the vintaged and unvintaged labeled n-coalescent. Inference based on the like-
lihood of BIM does not computationally scale well with realistic increases in the
sample size and/or model complexity. Thus, computational population geneticists in-
creasingly rely on summary statistics of BIM in order to conduct computationally
feasible inference using simulation-intensive and “likelihood-free” methods such as
ABC but with admittedly less information than that in the available BIM data. Hence,
in this study we are not interested in direct inference on the basis of the observed BIM,
but instead on further summary statistics of BIM.

4.4.2 Site Frequency Spectrum.

We can obtain the site frequency spectrum x from the BIM v via its site sum spectrum
or SSS w. With w denoting the vector of column sums of v, the SFS x is the vector
of frequencies of occurrences of each positive integer in w. Thus the i-th entry of x
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records at how many sites exactly i sequences in u show the derived state (in other
words, how many mutations are carried by exactly i individuals in our sample). We
assume that no site displays only the derived state. Thus, x has only n− 1 entries.
Figure 4 depicts the BIM v, SSS w and SFS x on the right for a sample of four
individuals with the genealogical and mutational history on the left.

Fig. 4 At most one mutation per site under the infinitely-many-sites model are super-imposed as a homo-
geneous Poisson process upon the realization of identical coalescent trees at nine homologous sites labeled
{1,2, . . . ,9} that constitute a non-recombining locus from four individuals labeled {1,2,3,4}.

4.4.3 Inference based on statistics of observed mutations.

Let us now describe the basic probability models required to compute the likelihood
of the SFS.

Recall from the beginning of Sect. 4.4 that the continuous parameter indexing
our illustrative model is two-dimensional, i.e., the state-space ΦΦ satisfies ΦΦ :=
( ΦΦ 1, ΦΦ 2) ⊂ R2

+. The second parameter φ2 is the growth rate of our population,
whose size is growing exponentially from the past. In our models, this translates into
the property that at time t in the past, the instantaneous rate of coalescence of each
pair of ancestral blocks is equal to 1/e−φ2t , the inverse of the (relative) population size
at this time. As a consequence, if there are i such blocks at that time, the instantaneous
rate at which a pair of them coalesces is equal to

( i
2

)
eφ2t . Calling Ti the length of the

epoch during which there are i distinct ancestors to our sample (or blocks in the
continuous-time coalescent), we thus have that for every τi, ti ≥ 0,

P(Ti > ti |Tn + · · ·+Ti+1 = τi,φ2) = exp
{
−
(

i
2

)∫
τi+ti

τi

eφ2u du
}

= exp
{
−
(

i
2

)
1
φ2

eφ2τi (eφ2ti −1)
}
,
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so that the Lebesgue density of the vector (Tn, . . . ,T2) is given by

pφ2(tn, . . . , t2) =
n

∏
i=2

[(
i
2

)
eφ2(tn+···+ti+1+ti) exp

{
−
(

i
2

)
1
φ2

eφ2τi (eφ2ti −1)
}]

. (4.2)

Note that if φ2 = 0 (i.e., the population does not grow), we recover the density

p0(tn, . . . , t2) =
n

∏
i=2

[(
i
2

)
e−(

i
2)ti

]
of the epoch times in the standard Kingman coalescent.

The first parameter φ1 is the per-locus mutation rate scaled by the effective pop-
ulation size and is often denoted by θ in the population genetics literature. Once
the (continuous-time) genealogical tree is realized, we assume that mutations fall on
this tree at rate φ1. Hence, if a given portion of the tree has length `, the number of
mutations it carries is a Poisson random variable with parameter φ1`.

This way, we have defined our family of models indexed by (φ1,φ2) ∈ R2
+. For

Bayesian decisions, we allow our parameter to be a random vector Φ := (Φ1,Φ2)
with a Lebesgue-dominated density p(φ) and realizations φ := (φ1,φ2). This prior
density p(φ) is taken to be a uniform density over a compact rectangle to allow simple
interpretations from Bayesian, frequentist and information-theoretic schools of infer-
ence. We are interested in approximately sufficient statistics in the sense of Le Cam
(1964) for the purpose of computational efficiency. Recall that, informally, a statistic
Z of the full experiment E = (C,M) (say, the coalescent with mutations) is called
sufficient if for every c,m and z,

P
(
(C,M) = (c,m) |Z = z,φ

)
is independent of φ . In our models, this happens in particular when the statistic of
interest depends on the full c-sequence only through a coarser resolution, say the
corresponding f -sequence, on top of which mutations are super-imposed. In this case,
we obtain Bayes’ sufficiency in the sense of Kolmogorov (1942), in terms of the
following posterior identity:

P(φ |c) = P(φ |F (c) = f ).

To carry on with our example, take the statistic of interest to be the full SFS X ,
which depends only on the information contained in f -sequences and on φ . For every
φ ∈ ΦΦ and x ∈ Zn−1

+ , we have

P(φ |X = x) =
P(X = x,φ)

P(X = x)
=

∑ f∼x P(X = x,F = f ,φ)

∑ f∼x
∫

ΦΦ
P(X = x,F = f ,φ)dφ

=
∑ f∼x P(X = x |F = f ,φ)P(F = f )p(φ)

∑ f∼x
∫

ΦΦ
P(X = x |F = f ,φ)P(F = f )p(φ)dφ

, (4.3)

where F is the random f -sequence describing the discrete-time genealogy, and f ∼ x
means that the SFS x is compatible with the f -sequence f (so that x may arise if
mutations are super-imposed on f ). Since we can compute all the terms appearing in
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the above r.h.s., there remains only to sum over all possible f -sequences to compute
P(φ |X = x).

As the number of f -sequences is much smaller than that of c-sequences, we have
two cases to consider when estimating the above sum. Either n is small and we can
scan the space Fn of all f -sequences exhaustively, or n is sufficiently large for the
exhaustive method to be prohibitive. In the former case, the variance induced by the
construction of the f -sequence is zero. In the latter case, one can sample at random
a large number of f -sequences, as one would do with Kingman trees. Observe that
sampling an f -sequence is not more difficult or computationally expensive than sam-
pling a full c-sequence (or tree), since the transition probabilities of the former are
simply a multiple of those of the latter. In addition, the number of possible transi-
tions from a given state in Cn is always larger than the number of possible moves
from the corresponding state in Fn. Finally, even in the case where sampling a tree or
the corresponding f -sequence are computationally equivalent, the expression for the
probability of a given statistics or for simulating it is usually a more direct function
of the f -sequence than of the c-sequence. For example, the full SFS is only a func-
tion of the vector (L1, . . . ,Ln−1) giving the total length of edges ancestral to exactly
1, ..., n− 1 individuals in the sample. In terms of f -sequences represented as dense
matrices, these quantities are expressed as

Lk =
n

∑
i=2

Ti fik,

requiring 2(n− 1) operations to be computed. However, most of the entries in f -
sequences are zero and their density, given by the proportion of non-zero entries,
approaches zero as n approaches infinity. We can take advantage of this sparsity of
f -sequences and encode them as sparse matrices and thereby make the computational
cost of obtaining (L1, . . . ,Ln−1) simply proportional to the number of non-zero ele-
ments in them (Fig. 5 gives the sample mean of the number of non-zero entries based
on 100 f -sequences drawn from the coalescent).

On the other hand, in terms of c-sequences, we have

Lk =
n

∑
i=2

Ti

( i

∑
j=1

1{|ci, j |=k}

)
,

which requires n(n− 1) operations. Using a tree with nodes that contain at least the
following data members: (i) pointer to parent node, (ii) time of node creation, and (iii)
number of descendents of the node, requires about 13n−11 dereferencing, initializ-
ing, adding and subtracting operations via post-order tree traversals, in order to obtain
(L1, . . . ,Ln−1) as a random-access container (see Fig. 5). Overall, we see that with the
exhaustive method the gain in the summation is huge compared to the classical for-
mula where the sum is over all possible c-sequences, and in the case of a reasonably
large n, sampling f -sequences is at worst equivalent to sampling the same number
of c-sequences. Furthermore, in the large n case at least the technique is all the more
interesting if one is able to set up a controlled algorithm yielding only f -sequences
that are compatible with the observed SFS as in Sainudiin et al (2011). Here again,



30 R. Sainudiin et al.

0 200 400 600 800 1000 1200
0

2000

4000

6000

8000

10000

12000

14000

sample size

n
u
m

b
e
r 

o
f 
o
p
e
ra

ti
o
n
s

 

 

using tree for c−sequence

using sparse matrix for f−sequence

Fig. 5 Number of operations needed to obtain (L1, . . . ,Ln−1), the total length of the edges that are an-
cestral to 1, . . . ,n− 1 individuals, as a function of sample size n using data structures based on trees for
c-sequences (dashed line) and those based on sparse matrices for f -sequences (solid line).

working on the appropriate resolution is of great help in designing a computationally
feasible controlled sampling procedure.

To finish with a concrete (though rather trivial) example, let us be less ambi-
tious and consider the total number of mutations seen in the sample. That is, our
new statistic is S = ∑

n−1
i=1 Xi. This time, since we do not care about the size of the

blocks on which the mutations fall, this statistic depends only on the lineage death
process {H↑(t)} and on φ . Since there is only one possible h-sequence, namely
h∗ = {n,n− 1, . . . ,1}, the total length of the tree is equal to ∑

n
i=2 iTi (whose law

depends on φ2 only) and conditionally on this length, the number of mutations on the
tree is a Poisson random variable with parameter φ1 ∑

n
i=2 iTi. Thus, we obtain that for

every s ∈ Z+,

P(φ |S = s) =
P(S = s |H = h∗,φ)P(H = h∗)p(φ)∫

ΦΦ
P(S = s |H = h∗,φ)P(H = h∗)p(φ)dφ

. (4.4)

Now, recalling Eq. (4.2) we have

P(S = s |H = h∗,φ) = P
(

Poisson
(

φ1

n

∑
i=2

iTi

)
= s
∣∣∣∣φ2

)
=
∫
Rn−1
+

P
(

Poisson
(

φ1

n

∑
i=2

iti
)
= s
)

pφ2(tn, . . . , t2)dtn · · ·dt2

=
∫
Rn−1
+

e−(φ1 ∑
n
i=2 iti) (φ1 ∑

n
i=2 iti)s

s!
pφ2(tn, . . . , t2)dtn · · ·dt2,

and there only remains to plug this equality in the r.h.s. of Eq. (4.4) to obtain an
expression for the probability of φ =(φ1,φ2) under the observed number of mutations
s.
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A strategy similar to those outlined above for computing the likelihood of the site
frequency spectrum and the number of mutations can be applied to obtain the like-
lihood of other summary statistics by integrating over the appropriate and minimal
coalescent resolution of hidden genealogies. Moreover, the Markov lumping maps
and their inverse images along with the probabilities at each coalescent resolution
described here allow for the design of novel sequential Monte Carlo algorithms, us-
ing particle systems (Del Moral, 2004; Doucet and Johansen, 2009) in the hidden
genealogy spaces, that can consistently and adaptively move through increasingly
refining coalescent resolutions in synchrony with increasingly refining statistics of
the observed mutations. More precisely, the different resolutions can be used incre-
mentally (from the coarsest to the finest) to calibrate the sampling algorithms and
develop Bayesian updating schemes involving iterations between prior (given by the
posterior of the previous coarser statistic) and posterior (further informed by the cur-
rent finer statistic). For example, the total number of mutations S depends only on
the h-sequence (n,n− 1, . . . ,1) and on the epoch time vector (T1, . . . ,Tn). Thus, as
in Eq. (4.4) the knowledge of S gives us a first posterior distribution P(φ |S = s) on
the parameter space. We can then turn this into our updated a priori law and use the
more detailed statistic X and Eq. (4.3) to obtain a “finer” posterior distribution for the
parameters φ , and so on.
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5 Appendix

Proof 1 (of Prop. 1) We first prove Eq. (3.1). When there are i vintaged lineages in
the i-th coalescent epoch, a coalescence event can reduce the number of lineages to
i−1 by coalescing one of

( i
2

)
many pairs of vintaged lineages uniformly at random.

Hence, the inverse
( i

2

)−1
appears in the transition probabilities. The conditions that

bi−1 ≺b bi and bi ∈ Bi
n for each i ∈ {n,n− 1, . . . ,3,2} ensure that our b-sequence

b = (bn, . . . ,b1) remains in Bn as we go backwards in time from the i-th coalescent
epoch with sample size i to the (i−1)-th coalescent epoch.

Next, we prove Eq. (3.4) and Eq. (3.2). Without loss of generality, let us chrono-
logically list bi = {c

〈mi,1〉
i,1 ,c

〈mi,2〉
i,2 , . . . ,c〈mi,i〉

i,i }, such that mi,1 ≤ mi,2 ≤ ·· · ≤ mi,i. Let
ci,1: j := ci,1∪ ci,2∪·· ·∪ ci, j, where the ci, j’s are the unvintaged blocks in the chrono-
logically listed bi. For a b-sequence b∈Bn define bn:i := (bn,bn−1, . . . ,bi+1,bi). Then
by Eq. (3.1) and the Markov property of {B↑(t)},

P(bn:i) := P((bn, . . . ,bi)) = P(bn−1|bn) . . .P(bi|bi+1) =
2n−ii!(i−1)!

n!(n−1)!
.

In particular, each sequence bn:i is equally likely and the case i = 1 yields Eq. (3.4).
Let Ni be the number of bn:i-sequences which lead to bi = {c

〈mi,1〉
i,1 ,c

〈mi,2〉
i,2 , . . . ,c〈mi,i〉

i,i }.
Determining Ni establishes the probability for bi, since each bn:i-sequence is equally
likely, i.e.

P(bi) = P(bn:i)Ni. (5.1)

Recall that i′ = max{ j : mi, j < n}. For a vintaged lineage bi, j = c
〈mi, j〉
i, j in epoch i, the

number of possible b-sequences in B|ci, j | using Eq. (3.4) is:

|B|ci, j ||=
|ci, j|!(|ci, j|−1)!

2|ci, j |−1 . (5.2)
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In order to calculate Ni, let us define Ni, j as the number of b-sequences on the label
set ci,1: j stopped when all but j lineages coalesced, respecting (i) a fixed b-sequence
on the label set ci,1: j−1 stopped when all but j−1 lineages coalesced, and (ii) a fixed
b-sequence on the label set ci, j, j ≤ i′ stopped when all lineages coalesced. We have

Ni = |B|ci,1||× |B|ci,2||×Ni,2×|B|ci,3||×Ni,3×·· ·× |B|ci,i′ ||×Ni,i′ . (5.3)

We will now determine Ni, j. Note that there are |ci,1: j−1|− ( j−1) coalescent events
on ci,1: j−1 up to epoch i. There are |ci, j| − 1 coalescent events on ci, j. The coales-
cent events in epoch i, i+ 1, . . . ,mi, j − 1 happen on ci,1: j−1, while by definition the
coalescent event in epoch mi, j happens on ci, j. The remaining elements are shuffled
together arbitrarily, the number of possible shuffles equals Ni, j, which is,

Ni, j =

(
|ci,1: j−1|− ( j−1)− (mi, j− i)+ |ci, j|−2

|ci, j|−2

)
. (5.4)

So overall, using Equations (5.1) – (5.4), we obtain,

P(bi) = P(bn:i)Ni

= 2n−i i!(i−1)!
n!(n−1)!

i′

∏
j=1

|ci, j |!(|ci, j |−1)!

2|ci, j |−1

i′

∏
j=2

(
|ci,1: j−1|− ( j−1)− (mi, j− i)+ |ci, j |−2

|ci, j |−2

)

=
i!(i−1)!
n!(n−1)!

(
i′

∏
j=1
|ci, j |!

)
(|ci,1|−1)!

(
i′

∏
j=2

(|ci, j |−1)(|ci,1: j |− j−1− (mi, j− i))!
(|ci,1: j−1|− j+1− (mi, j− i))!

)

=
i!(i−1)!
n!(n−1)!

(
i′

∏
j=1
|ci, j |!

)
(|ci,1|−1)!

(
i′

∏
j=2

(|ci, j |−1)

)(
∏

i′
j=2(|ci,1: j |− j−1− (mi, j− i))!

∏
i′−1
j=1 (|ci,1: j |− j− (mi, j+1− i))!

)

=
i!(i−1)!
n!(n−1)!

(
i′

∏
j=1
|ci, j |!(|ci, j |−1)

)(
∏

i′
j=1(|ci,1: j |− j−1−mi, j + i)!

∏
i′−1
j=1 (|ci,1: j |− j−mi, j+1 + i)!

)

=
i!(i−1)!
n!(n−1)!

(
∏

i′
j=1 |ci, j |!(|ci, j |−1)(|ci,1: j |− j−1−mi, j + i)!

∏
i′−1
j=1 (|ci,1: j |− j−mi, j+1 + i)!

)

which completes the proof of Eq. (3.2).
Finally, Eq. (3.3) is obtained by Bayes’ rule.

Proof 2 (of Eqs. (3.7) and (3.6)) First, Eq. (3.7) is a direct application of Bayes’ rule
to Eq. (3.5) and Eq. (3.6). Indeed, if ci−1 ≺c ci with ci ∈ Ci

n and j∗, j′∗, j′′∗ such that
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ci, j∗ ∪ ci, j′∗ = ci−1, j′′∗ ∈ ci−1, then

P(ci|ci−1) =
P(ci−1|ci)P(ci)

P(ci−1)

=
(n− i)! i!(i−1)!∏

i
j=1 |ci, j|!n!(n−1)!( i

2

)
n!(n−1)!(n− i+1)!(i−1)!(i−2)!∏

i−1
j=1 |ci−1, j|!

=
2∏

i
j=1 |ci, j|!

(n− i+1)∏
i−1
j=1 |ci−1, j|!

=
2 |ci, j∗ |! |ci, j′∗ |!

(n− i+1)|ci−1, j′′∗ |!

=
2 |ci, j∗ |! |ci, j′∗ |!

(n− i+1)(|ci, j∗ |+ |ci, j′∗ |)!
=

2

(n− i+1)
(|ci, j∗ |+|ci, j′∗

|
|ci, j∗ |

) .
If we do not have ci−1 ≺c ci, then P(ci|ci−1) = 0.

For completeness and to exemplify the coarsening relating b- and c-sequences,
we next show that P(ci) can also be obtained from P(bi) in Eq. (3.2). Since we are
not interested in the coalescent vintage of any of our lineages, the quantity of interest
in Eq. (5.4) becomes (

|ci,1: j−1|− ( j−1)+ |ci, j|−1
|ci, j|−1

)
as we allow any shuffle of the |ci,1: j−1|− ( j−1) coalescent events with the |ci, j|−1
coalescent events. Let i′ = max{ j : mi, j < n}. We have,

P(ci) = 2n−i i!(i−1)!
n!(n−1)!

i′

∏
j=1

|ci, j |!(|ci, j |−1)!

2|ci, j |−1

i′

∏
j=2

(
|ci,1: j−1|− ( j−1)+ |ci, j |−1

|ci, j |−1

)

=
i!(i−1)!
n!(n−1)!

(
i′

∏
j=1
|ci, j |!

)
(|ci,1|−1)!

(
i′

∏
j=2

(|ci,1: j |− j)!
(|ci,1: j−1|− ( j−1))!

)

=
i!(i−1)!
n!(n−1)!

(
i′

∏
j=1
|ci, j |!

)(
∏

i′
j=1(|ci,1: j |− j)!

∏
i′−1
j=1 (|ci,1: j |− j)!

)

=
i!(i−1)!
n!(n−1)!

(
i′

∏
j=1
|ci, j |!

)
(n− i)!

since (|ci,1:i′ | − i′)! = (n− (i− i′)− i′)! and |ci, j| = 1 if mi, j = n. Therefore, P(ci)
can be obtained from P(bi), the probability that a vintaged and labeled n-coalescent
visits a particular vintaged partition bi in Bi

n.

Proof 3 (of Prop. 5) We first prove Eq. (3.10). The number of leaf lineages that
coalesced at the end of epoch i is di,n−di′,n, where Di−1

n 3 di′ ≺d di ∈ Di
n. Note that

(di,n− di′,n) ∈ {0,1,2}, for any i ∈ {2,3, . . . ,n}. Therefore, three type of coalescent
events need to be discriminated among the

( i
2

)
many pairs from i distinct lineages

during epoch i. First, when (di,n−di′,n) = 0 we have a coalescent event between two
specific non-leaf lineages, each with coalescent vintage smaller than n. Thus, there is
exactly

(di,n
0

)
= 1 such event among

( i
2

)
possibilities. Second, when (di,n−di′,n) = 1

we have a coalescent event between one specific non-leaf lineage and any one of di,n
many leaf lineages (which we do not discriminate at this resolution). Thus, there are
exactly

(di,n
1

)
= di,n many events among

( i
2

)
possibilities of the second type. Third,
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when (di,n−di′,n) = 2 we have a coalescent event between any two of di,n many leaf
lineages. Thus, there are exactly

(di,n
2

)
many events among

( i
2

)
possibilities of the

third type. All three types of events are accounted for in Eq. (3.10).
Next we prove that the probability of {D↑(k)}k∈[n]− visiting a state di ∈ Di

n is
given by Eq. (3.11), where di,1: j := ∑

j
k=1 di,k and m′i, j := min{k > j : di,k > 0} and

ki, j := |{m≤ j : di,m > 0}|. We exploit the Markov lumping from Bn to Dn and derive
P(di) from P(bi) in Eq. (3.2), where di ∈Di

n and bi ∈Bi
n such that dropping the labels

in each subset of bi (but retaining the size and vintage) yields di = D(bi). We count
the number of possible labelings of an element di. This is n!

∏
n−1
j=1 di, j!

. Let bi be such

a labeling. By Eq. (3.2) and the fact that any partial b-sequence is equally likely to
occur (see Proof 1), we have

P(di) = P(bi)
n!

∏
n−1
j=1,di, j>0 di, j!

=
i!(i−1)!
n!(n−1)!

(
∏

n−1
j=1,di, j>0 di, j!(di, j−1)(di,1: j− ki, j−1− j+ i)!

∏
n−1
j=1,di, j>0(di,1: j− ki, j−m′i, j + i)!

)
n!

∏
i
j=1,di, j>0 di, j!

=
i!(i−1)!
(n−1)!

(
∏

n−1
j=1,di, j>0(di, j−1)(di,1: j− ki, j− j−1+ i)!

∏
n−1
j=1,di, j>0(di,1: j− ki, j−m′i, j + i)!

)
.

From Eq. (3.10) and Eq. (3.11) we get Eq. (3.12) by Bayes rule.
Finally we prove Eq. (3.13).

P(d) =
n

∏
i=2

P(di−1|di) =
n

∏
i=2

(
di,n

di,n−di−1,n

)(
i
2

)−1

=
n

∏
i=2

di,n!
di−1,n!(di,n−di−1,n)!

(
i
2

)−1

= dn,n!
n

∏
i=2

1
(di,n−di−1,n)!

(
i
2

)−1

= n!

(
n

∏
i=2

((di,n−di−1,n)!)
−1

)(
n

∏
i=2

(
i
2

)−1
)

= n!

(
∏

j=0,1,2
( j!)−∑

n
i=2 1{ j}(di,n−di−1,n)

)
n

∏
i=2

(
i
2

)−1

= n!
(

1×1×2−∑
n
i=2 1{2}(di,n−di−1,n)

) n

∏
i=2

(
i
2

)−1

=
n!

(d)ג2

n

∏
i=2

(
i
2

)−1

=
2n−ג(d)−1

(n−1)!
.

Proof 4 (of Prop. 7) First we prove that the transition probability of the jump Markov
chain {G↑(k)}k∈[n]− on Gn is given by Eq. (3.15), where gi,n is the number of leaves
that have not coalesced by epoch i. The proof follows the same lines as the proof of
Eq. (3.10). The initial state of the chain is gn = (0,0, . . . ,0) ∈ Gn

n and the final ab-
sorbing state is g1 = (1,0,0, . . . ,0) ∈G1

n. The number of leaf lineages that coalesced



Finding the best resolution for the Kingman-Tajima coalescent: theory and applications 37

from epoch i to epoch i−1 is gi,n−gi−1,n, where G(i−1)
n 3 gi−1 ≺g gi ∈G(i)

n . Note that
(gi,n− gi−1,n) ∈ {0,1,2}, for any i ∈ {2,3, . . . ,n}. Out of the

( i
2

)
many choices for

coalescent events among a pair of i lineages during epoch i, only three type of events
need to be discriminated in Gn. First, when (gi,n− gi−1,n) = 0 we have a coalescent
event between two specific non-leaf lineages, each with coalescent vintage smaller
than n. Thus, there is exactly one such event among

( i
2

)
possibilities. Second, when

(gi,n−gi−1,n) = 1 we have a coalescent event between one specific non-leaf lineage
and any one of gi,n many leaf lineages. Thus, there are exactly

(gi,n
1

)
= gi,n many

events among
( i

2

)
possibilities of the second type. Third, when (gi,n−gi−1,n) = 2 we

have a coalescent event between any two of gi,n many leaf lineages. Thus, there are
exactly

(gi,n
2

)
many events among

( i
2

)
possibilities of the third type. All three types of

events are accounted for in Eq. (3.15) and thus we have proved Eq. (3.15).
The probability that gi ∈Gi

n is visited by the chain is obtained by considering the
inverse images, G −1(gi):

P(gi) = P(G −1(gi)) = ∑
d j∈G−1(gi)

P(d j).

with P(d j) given in Eq. (3.11). The probability P(gi) = P(G −1(gi)) can be written
explicitly as follows. Let L = i− gi,n be the number of non-leaf lineages in epoch i.
Let also f be the mapping defined by f(gi, j1, . . . , jL) = di ∈D(i)

n , where di, j = 0 if and
only if gi, j = 0, di,n = gi,n and di, j = jk ≥ 2 if and only if gi, j is the k-th entry which
is bigger than zero. In words, the function f creates an element di ∈ D(i)

n compatible
with gi by assigning block sizes j1, . . . , jL to the blocks with vintages less than n (the
blocks of vintage n being singletons by construction). The probability P(gi) is then

P(gi) =
n−gi,n−2(L−1)

∑
j1=2

n−gi,n− j1−2(L−2)

∑
j2=2

. . .

n−gi,n−∑
L−2
i=1 ji−2

∑
jL−1=2

P
(
f

(
gi, j1, . . . , jL−1,n−gi,n−

L−1

∑
i=1

ji

))
. (5.5)

The transition probabilities of the forward jump chain {G↓(k)}k∈[n]+ can be ob-
tained from Bayes’ rule as follows:

P(gi|gi−1) =

{
P(gi−1|gi)

P(gi)
P(gi−1)

if gi−1 ≺g gi ∈Gi
n

0 otherwise.
.

The probability of a g-sequence in Eq. (3.18) can be obtained as follows:

P(g) =
2

∏
i=n

P(gi−1|gi) =
2

∏
i=n

(
gi,n

gi,n−gi−1,n

)(
i
2

)−1

=
n!

(g)ג2

n

∏
i=2

(
i
2

)−1

=
2n−ג(g)−1

(n−1)!
. (5.6)
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The proof is similar to that of Eq. (3.13). Note that Tajima (1983, Eqn. 1) obtains
P(g) by another argument.

Proof 5 (of Prop. 8) First we prove that the number of elements in G(i)
n is, for i < n,

|G(i)
n |=

i−1

∑
k=0

(
n− i−1

k

)
, (5.7)

with the convention that
(a

b

)
= 0 if a< b. For i= n, we only have one element, namely

a sequence of only 0s, and so |G(n)
n |= 1.

Now let i < n and let gi ∈ G(i)
n . Since we have i lineages in epoch i, we have at

the most i non-zero entries in gi. In gi, we have gi, j = 0 for j = 1, . . . , i−1. Further,
gi,i = 1. The remaining n− 1− i elements are 0 or 1, with at most i− 1 1s. For k
non-zero entries in the remaining elements, we have

(n−1−i
k

)
possibilities to assign

the 0s and 1s. Summing over all possible k-values yields Eq. (5.7).
From Eq. (5.7) we have, by summing over all i,

|Gn|=
n

∑
i=1
|G(i)

n |=
n−1

∑
i=1

i−1

∑
k=0

(
n− i−1

k

)
+1.

By basic properties of the binomial coefficient, we get,

n−1

∑
i=1

i−1

∑
k=0

(
n− i−1

k

)
=

n−2

∑
k=0

n−2−k

∑
j=k

(
j
k

)
=

n−2

∑
k=0

(
n− k−1

k+1

)

=
n−1

∑
k=1

(
n− k

k

)
= Fibo(n+1)−1 (5.8)

which proves Eq. (3.19).

Proof 6 We derived P(g), the probability of a g-sequence, in Prop. 7. Recall that
|Bn| = n!(n− 1)!2−(n−1) and that b-sequences are drawn according to the uniform
law on Bn. Hence, P(g)=P(G ◦D({B↑(t)})= g)= |(G ◦D)−1(g)|/|Bn|. This gives
us

|(G ◦D)−1(g)|= 2−(n−1) n!(n−1)!P(g) = 2−(n−1) n!(n−1)!
2n−ג(g)−1

(n−1)!
= n!2−ג(g).

Thus, Eq. (3.20) gives us the number of ranked labeled trees that map to any given
g-sequence g based on ,(g)ג the number of cherries of g. Due to the bijection from
Bn to Cn and the uniform distribution on Bn and Cn, the probability P(c|g) = P(b|g)

P(c|g) = P(c,g)
P(g)

=
P(c)
P(g)

=
P(B−1(c))

P(g)
=

P(b)
P(g)

=
P(b,g)
P(g)

= P(b|g) .

Now,

P(b|g) = P(c|g) = P(c)
P(g)

=
2n−1(n!(n−1)!)−1

2n−ג(g)−1((n−1)!)−1 = !n/(g)ג2 .
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Proof 7 (of Prop. 11) Equations (3.27), (3.28) and (3.29) have been derived by Sain-
udiin et al (2011). The probability that {F↑(k)}k∈[n]− visits a particular fi ∈ Fi

n at the
i-th epoch in Eq. (3.28) has also been given by Tavaré (1983, Equation (7.11)).

Now we prove that the probability of an f -sequence in terms of its shape statistics
is given by Eq. (3.30). This probability is given by the product:

P( f ) =
n

∏
i=2

P( fi| fi−1) . (5.9)

For any f ∈Fn, we can simplify P( f ) given by Eqs. (5.9) and (3.29), as follows:

P( f ) =
n

∏
i=2

P( fi| fi−i) =
n

∏
i=2

(
21{1}max〈 fi− fi−1〉 f̈i (n− i+1)−1

)
=

2∑
n
i=21{1}max〈 fi− fi−1〉

(n−1)!

n

∏
i=2

f̈i =
2k( f )

(n−1)!

n

∏
i=2

f̈i .

We get Eq. (3.30) from the definition of k( f ) in Eq. (3.25) as the number of distinctly-
sized lineage splits in f .

Proof 8 (of Prop. 12) The uniform probability on Cn given by 2n−1(n!(n− 1)!)−1

invokes the probability on f -sequences in Fn via the inverse image of F−1, i.e.,

P( f ) = P(F−1( f )) = |F−1( f )|2n−1(n!(n−1)!)−1

and we have the first equality in Eq. (3.32). The second equality in Eq. (3.32) follows
from substituting P( f ) by the expression in Eq. (3.30). The probability P(c| f ) at
Eq. (3.33) follows from

P(c| f ) = P(c, f )
P( f )

=
P(c)
P( f )

.

Proof 9 (of Prop. 13) The first equality in Eq. (3.34) is due to the bijection be-
tween Dn and Gn. For the second equality in Eq. (3.34), we establish |F ′−1( f )| =
2−î( f )

∏
n
i=2 f̈i next. Recall that out of the n−1 splits in an f , )ג f ) many of them are

cherries and directly lead to leaves while k( f ) many of them lead to distinctly-sized
splits. The number of remaining splits in f is î( f ) := n−1−k( f )− )ג f ).

Let us highlight the following two facts: (1) for any b,b′ ∈ D−1(F ′−1( f )) =
C−1(F−1( f )) ⊆ Bn, P(b) = P(b′) = 2n−1(n!(n− 1)!)−1, and (2) for any d,d′ ∈
F ′−1( f ) and any g,g′ ∈G (F ′−1( f )), P(d)=P(d′)=P(g)=P(g′)= 2n−1−ג( f )/(n−
1)!, since )ג f ) = ∑

n
i=2 fi,2 = (d)ג = (′d)ג = (g)ג = .(′g)ג Therefore, the number of

ranked tree shapes mapped by a given f -sequence is the number of ranked labeled
trees of an f -sequence divided by the number of ranked labeled trees of a g- or d-
sequence with the same number of cherries as the f -sequence:

|F ′−1
( f )|= |G (F ′−1

( f ))|= |C
−1(F−1( f ))|
|D−1(G −1(g))|

=
|F−1( f )|
n!2−ג(g)

=
|F−1( f )|
n!2−ג( f )

= 2k( f )ג+( f )+1−n
n

∏
i=2

f̈i,
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where we use Eq. (3.20) for the third-last equality and Eq. (3.32) for the last equality.
Finally, Eq. (3.34) follows from the definition of î( f ) := n−1−k( f )− )ג f ). We
get Eq. (3.35) from P(g) in Eq. (3.18), P( f ) at Eq. (3.30) and the definition of î( f )
as follows:

P(g| f ) = P(g, f )
P( f )

=
P(g)
P( f )

=
2n−ג(g)−1((n−1)!)−1

2k( f )((n−1)!)−1 ∏
n
i=2 f̈i

=
2n−1−k( f )ג−( f )

∏
n
i=2 f̈i

= 2î( f )

(
n

∏
i=2

f̈i

)−1

.
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Table 4 When n = 3 we tabulate the state spaces, (backward) transition diagrams, the sequences and their
probabilities at six resolutions of the n-coalescent.
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