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Abstract

We outline two approaches to inference of neighbourhood size, N , and dis-
persl rate, σ2, based on either allele frequencies or on the lengths of sequence
blocks that are shared between genomes. Over intermediate timescales (10–
100 generations, say), populations that live in two dimensions approach
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a quasi-equilibrium that is independent of both their local structure and
their deeper history. Over such scales, the standardised covariance of al-
lele frequencies (i.e. pairwise FST ) falls with the logarithm of distance, and
depends only on neighbourhood size, N and a ‘local scale’, κ; the rate of
gene flow, σ2, cannot be inferred. We show how spatial dependencies can be
accounted for, assuming a Gaussian distribution of allele frequencies, giving
maximum likelihood estimates of N and κ. Alternatively, inferences can
be based on the distribution of the lengths of sequence that are identical
between blocks of genomes: long blocks (> 0.1cM, say) tell us about inter-
mediate timescales, over which we assume a quasi-equilibrium. For large
neighbourhood size, the distribution of long blocks is given directly by the
classical Wright-Malécot formula; this relationship can be used to infer both
N and σ2. With small neighbourhood size, there is an appreciable chance
that recombinant lineages will coalesce back before escaping into the distant
past. For this case, we show that if genomes are sampled from some distance
apart, then the distribution of lengths of blocks that are identical in state
is geometric, with a mean that depends on N and σ2.

Keywords: Inference, spatial structure, gene flow, F -statistics, identity in
state, recombination.

1. Introduction

1.1. Motivation
Over the past century, much of population genetics has been devoted to

making sense of spatial patterns. Genetic data can be used to estimate rates
of gene flow and to infer population history - of interest in themselves, but
also important for conservation and population management. Population
structure also interacts with selection, impeding adaptation and promoting
divergence, and a sound null model of population structure is essential if we
are to detect selection at specific loci. A wide variety of methods have been
developed for analysing genetic data from spatially structured populations,
but these are often ad hoc, with no clear relation to each other or to any
theoretical analysis.

Here, we exploit a particular feature of large spatially structured popu-
lations: the ancestral lineages of two genes sampled adjacent to one another
will either coalesce quickly, or wander away from each other, and coalesce
only in the distant past (Wakeley, 2008). This highly variable distribution
of coalescence times reflects a separation of timescales between local and
global random drift. It is seen both in the island model, and in populations

2



that are spread over two dimensions. This separation will, in principle, allow
robust inference of local population structure, based either on allele frequen-
cies from multiple loci, or on the length of sequence shared between pairs of
genomes.

A variety of models for evolution in two dimensions have been proposed.
Wright (1943b) and Malécot (1948) proposed a simple diffusion approxima-
tion, which, though ill-defined (Felsenstein, 1975), is a close approximation
to the discrete stepping stone model (Kimura and Weiss, 1964). We recently
proposed an alternative scheme, in which reproduction and dispersal occur
through local ‘extinction and recolonisation’ events, which (in order to in-
corporate large-scale demographic events) can occur over a range of scales
(Etheridge, 2008; Barton et al., 2010a,b). In all these models, over inter-
mediate timescales (large enough that we don’t see the details of the local
reproduction mechanism, but small enough that we don’t see new mutations
or the effects of selection or large-scale demographic events), genetic struc-
ture is determined by just two parameters: the rate of diffusion of single
ancestral lineages, σ2, and the ‘neighbourhood size’, N , which is inversely
proportional to the probability of ‘local’ coalescence. (We define N more
precisely in the context of the models employed here in §2.) Moreover, using
the fact that the generating function of the time to the most recent common
ancestor of two individuals can be interpreted as their probability of iden-
tity under an infinitely many alleles mutation model, we can use the classical
Wright-Malécot formula to study the coalescence time of the ancestral lin-
eages of a sample of size two taken over such intermediate spatial scales.
In all the models above the local population density is fixed. Barton et al.
(2002) investigate the probability of identity of two genes sampled from a
population which is subject to density dependent regulation of population
size. The Wright-Malécot formula remains an excellent approximation to
this probability provided that we replace the forwards in time dispersal rate
by the dispersal rate of ancestral lineages as we trace backwards in time.
This may be quite different from the forward rate: if local population density
is regulated through competition, then an individual’s ancestors may have
survived by moving rapidly away from their own close relatives (Barton
et al., 2002). For such populations our methods will yield an approximation
for this backwards dispersal rate. Indeed, this is all one can hope to infer
from any method of inference based on just the current population.

If we are interested in deep history, then only a small sample of indi-
viduals is needed - large samples will in any case soon coalesce down to a
few ancestral branches. However, many loci must be sampled (ultimately,
whole genomes), since any one locus will have an idiosyncratic history. In
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contrast, if we are interested in recent history, coalescence is unlikely in the
recent past and we have negligible information from mutation in any short
sequence. We must therefore either take large samples at multiple loci (as
in traditional surveys of FST ), or large samples of a sequence long enough
to have accumulated mutations (as in the study of Chinese mtDNA of Kong
et al. (2011)), or consider long blocks of sequence and take information from
recombination rather than mutation (Ralph and Coop, 2012). In our spatial
context, we are interested in estimating the two parameters σ2 and N . Our
aim is to illustrate how, in this setting, any of these sampling strategies
can be employed. More precisely we shall outline an approach to inferring
neighbourhood size from fluctuations in allele frequencies at a small number
of discrete loci, and then lay out an alternative scheme based on comparison
of a small sample of very long genomes, which, though it makes more restric-
tive assumptions, has the advantage of providing an approach to estimating
both parameters N and σ2.

The basic theory of allele frequency-based inference for spatially struc-
tured populations was set out by Wright (1943b) and Malécot (1948) in the
middle of the last century, yet the commonly used statistical tests are based
on the island model which fails to incorporate the limited dispersal charac-
teristic of most species (Meirmans, 2012). The most widely used statistic is
Wright’s FST , which is simply a standardised variance of allele frequency,
and contains no information on spatial location. Wright (1943b) did include
spatial structure by calculating variance over different scales, giving a hier-
archy of F statistics; this approach he applied to data on flower colour in
Linanthus (Wright, 1943a) and later work examined lethal allelism in spa-
tially continuous habitats (Paik and Sung, 1969; Wallace, 1966). However,
all these studies were limited by the difficulty of the computations and by
lack of genetic markers. We now have an abundance of computational power
and of genetic data, and yet most analyses are either descriptive (e.g. spa-
tial autocorrelation; see Epperson (2003)) or use Monte Carlo methods to
fit data (Beerli and Felsenstein, 2001; Rousset and Leblois, 2007), without
using the explicit theory developed by Wright and Malécot.

Our goal is to exploit the separation of timescales that we see in spatially
structured populations. We fix some ‘reference time’, t∗, a few hundred gen-
erations ago say, by which a significant amount of the ‘fast’ local coalescence
of ancestral lineages has taken place, but much shorter than the time taken
for those lineages that manage to escape far from one another to come back
together. We then consider samples taken from ‘intermediate’ spatial scales,
much larger than regions affected by local reproduction events, but still small
enough that we shall see some coalescence of ancestral lineages before our
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reference time. If we consider just a single locus, then we are unlikely to see
any mutations on the genealogical trees relating individuals in our sample as
we trace back t∗ generations, and so our data will consist of allele frequen-
cies, with alleles distinguished from each other by mutation much deeper
in the genealogies. We then propose an analysis based on an analogue of
FST . This approach may, at first sight, appear misguided, since it is well
known that in an island model the migration rate between discrete demes
and neighbourhood size, can only be inferred from FST if the population
has reached an equilibrium between gene flow and random drift (Whitlock
and McCauley, 1998). However, although such an equilibrium may rarely be
achieved at the level of the whole population, a ‘quasi-equilibrium’ will be
reached over intermediate spatial and temporal scales (reflecting once again
a separation of timescales). This is not a new idea (Slatkin and Barton,
1990), though it has largely been ignored. The advantage of our approach
is then that through using only genetic structure over these intermediate
scales, our estimates will be robust to the deep, and possibly complex, his-
tory of the population - and specifically to the effects of occasional major
extinctions and recolonisations. We provide some justification for this claim
at the end of §2.2.

By confining our attention to the genetic structure generated over in-
termediate time scales, we are led to a rather ‘classical’ analysis based on
allele frequencies, because we have lost the ability to date coalescence events
through mutations. However, if, instead of a few discrete loci, we sample
sufficiently long stretches of recombining genome, then we will see recom-
bination events on the genealogies generated over these time periods. Re-
combination can then be used in place of mutation to set a time scale. Two
genomes that share an ancestor t generations in the past will share a por-
tion 2−t of their genomes, in blocks of map length ∼ 1/t. Thus, sharing
exceptionally long blocks indicates recent common ancestry and the block
size gives an approximate date for that ancestry. This idea is exploited by
Ralph and Coop (2012) to identify recent shared ancestry in a sample of
2,257 Europeans (the POPRES dataset). If two genomes do share a recent
ancestor, then they are likely to share multiple blocks, so that ancestry at
different unlinked loci is not independent (Wakeley, 2008). Of course, if
the sampled genomes are close relatives, then we can estimate the pedigree
that connects them by using the fraction of alleles shared and the lengths
of shared blocks of genome. However, as before, we focus on scales of tens
to hundreds of generations, intermediate between reconstruction of pedigree
relationships, and the deep history of the population.

There is a subtlety that must be taken into account if we are to exploit
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recombination in this way. We are trying to extract information about the
genetic structure generated in the previous t∗ generations. If a recombina-
tion event occurs, then at that moment in time, the two resulting ancestral
lineages are adjacent to one another. Often they will coalesce again before
time t∗ and, since we are assuming that there will be no mutations over that
period, the recombination event will not be visible in our data. However,
with some probability, they do not coalesce by time t∗. If this happens, it is
typically because they have escaped far from one another. As a result they
only coalesce in the distant past and we do expect to see mutations on their
ancestral lineages before that time. It is these recombination events that we
can expect to detect and we shall call them effective recombination events.
Because an ‘ineffective’ recombination can change the genealogy in a way
that we cannot detect in data, the resulting distribution of detectable block
lengths is very complex. Here we consider two scenarios in which progress
can be made: in both cases the length of shared blocks will be determined
by an exponential distribution (or geometric if we consider discrete loci).
In §4.1 we shall assume that neighbourhood size is large and that we are
sampling lineages from sufficiently close to one another that the time to
coalesce is on the same order as the time to coalescence of two adjacent
lineages. Because neighbourhood size is large, almost all recombination is
effective and we shall make the approximation that all recombination events
can be detected. On the other hand, by sampling sufficiently close together,
we ensure that there is sufficient correlation between loci that there will be
some signal in the data. When all recombination is effective, we can use the
Wright-Malécot formula (6) to find the full distribution of block lengths,
and we show how to infer σ2 and N from this. Our analysis and simulations
in this section will be based on the stepping stone model, but the key ingre-
dient is the Wright-Malécot formula, and so the results will hold in much
greater generality. In §4.2 we show by simulation that this approximation
breaks down for small neighbourhood size. We then outline an approach to
calculating the effective recombination rate, at least if we sample individuals
from sufficiently far apart. In this case, with high probability, an ‘ineffective’
recombination doesn’t change the genealogy and so block lengths follow a
geometric distribution (or exponential for a continuous linear genome) and
by concentrating on the occurrence of long shared blocks we can learn about
recent ancestry. In both scenarios, crucially, we don’t investigate the genetic
structure before time t∗, but simply assume that there is enough variability
in the population at time t∗ that we have a reasonable chance of detecting
effective recombination events. Thus, just as with our inference based on
allele frequencies, these methods will be robust to the deep history of the
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population.
Our approaches share the same basic philosophy. The genetic diversity

observed today is the result of the variability present at some reference time
in the past, transported through the reproductive dynamics of the popu-
lation. Even if the population has not achieved a global equilibrium, over
smaller spatial scales it may appear to be almost stable. By restricting
ourselves to these scales, we can make inferences about the two key param-
eters, dispersal rate and neighbourhood size, that determine recent genetic
history. Whichever approach we adopt, our methods are insensitive to the
deep history of the population. Thus, when restricted to appropriate scales,
inference from spatial patterns provides robust and quantitative estimates
of population structure.

2. Methods

Our proposal in §3 rests on a variant of Wright’s FST . This classical ap-
proach to the question of inferring the parameters of the local evolution in a
spatially extended population relies on finding a measure of the correlations
between local genetic diversities using allele frequency data. A wide variety
of F -statistics have been proposed (Sokal et al., 1989; Slatkin and Barton,
1990; Slatkin and Arter, 1991; Epperson, 2003; Rousset, 2003), but for the
most part they have not been justified for application to a two-dimensional
population. Our particular choice of F -statistic will be expressed in terms of
the probability of coalescence of two ancestral lineages before our reference
time t∗. The theoretical predictions for these probabilities can be obtained
by (numerically) inverting the generating function of the coalescence time.
The generating function is determined by the classical Wright-Malécot for-
mula which, for ease of reference, we derive in §2.1. For large neighbour-
hood size there is a simple analytic approximation to the distribution of the
F -statistic which we obtain in (15). We shall perform our analysis for a
stepping stone model. It is particularly simple if dispersal is governed by
a (discretised) Gaussian density. However, our conclusions remain valid for
any of the models considered in Barton et al. (2002) (with the caveat that
we estimate the rate of diffusion of lineages ancestral to our sample, rather
than the forwards in time dispersal rate). The key requirement is again that
the motion of a single ancestral lineage can be summarised by a single vari-
ance parameter σ2 and that the ‘local’ coalescence rate can be summarised
by a single parameter N .

Our analysis of long blocks of genome in §4.1 will also rest on the Wright-
Malécot formula which will allow us to calculate the distribution of block
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lengths in the case when all recombinations are ‘effective’. These results are
only valid for large neighbourhood size. We illustrate this through simula-
tions, not of the discrete stepping stone model, but instead of a continuum
version which we have referred to in previous work as the spatial Λ-Fleming-
Viot process (Barton et al., 2010a,b). We briefly recall its description in §2.2.

The Wright-Malécot formula also provides an excellent approximation to
the probability of identity of two individuals under the spatial Λ-Fleming-
Viot model and, as an aside, at the end of §2.2, we illustrate how large scale
events, deep in the history of our population, leave identity unchanged over
small scales, even though their effects are clearly visible over large scales, in
support of the claims underlying the approach to inference of the parameters
governing local structure adopted here.

2.1. The Wright-Malécot formula
In this section we work with a stepping stone model on Z2. There are 2N

genes in each deme. We suppose that the population evolves in discrete gen-
erations. In each generation, first offspring are generated by Wright-Fisher
sampling within each deme. Next a proportion g1(x− y) of the offspring in
deme x migrate to deme y. Rather than introducing a mutation mechanism,
we think of the Wright-Malécot formula as prescribing the generating func-
tion of the number of generations back to the most recent common ancestor
of two individuals sampled at separation x (a two-dimensional vector) from
the population. Our derivation parallels the approach of Wright (1943b).

Let ψt(x) be the probability that two genes sampled at separation x had
their most recent common ancestor exactly t generations in the past. For t >
1, we decompose this quantity according to the separation of the immediate
ancestors of the two genes. If the two genes arose as migrants from the
same deme, then with probability 1/2N they have a common ancestor in
the previous generation. Thus

ψ1(x) =
1

2N
G1(x),

where G1(x) is the convolution of two copies of g1 (corresponding to mod-
elling the separation of two lineages). If, on the other hand, they have
distinct parents, at separation y, then the chance that their most recent
common ancestor was t generations in the past is ψt−1(y). For t > 1, we
arrive at the recursion

ψt(x) =
∑

y

{
G1(x− y)ψt−1(y)− 1{y=0}

2N
G1(x− y)ψt−1(0)

}
. (1)
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This can be rewritten as

ψt(x) =
1

2N

(
Gt(x)−

t−1∑

τ=1

Gt−τ (x)ψτ (0)

)
, (2)

where Gt is the t-fold convolution of G1. Writing T for the (random) time
at which the two genes share their most recent common ancestor, the gen-
erating function of T , which of course depends upon the sampling distance
between the two genes, is defined by φ(z, x) = Ex[zT ]. The subscript x in
the expectation is used to indicate that the sampling distance is x. Multi-
plying (2) by zt and summing over t yields

φ(z, x) =
G̃(z, x)

2N
(1− φ(z, 0)) ,

where G̃ denotes the Z-transform (discrete Laplace transform) of G,

G̃(z, x) =
∞∑

t=1

Gt(x)zt.

Setting x = 0 to find an expression for φ(z, 0) and substituting gives

φ(z, x) =
G̃(z, x)

2N + G̃(z, 0)
. (3)

This takes a particularly simple form if g1 is a discretised Gaussian kernel
which we can then approximate by a strictly Gaussian dispersal kernel. On
an infinite range,

1
2N

Gt(x) =
1

2N t
exp

(
− |x|2

4σ2t

)
,

where N = 4Nπσ2 is the neighbourhood size. (This corresponds to dispersal
of individual lineages at rate σ2/2, the extra factor of two arising because
G1 governs the separation between two lineages.) If we write η(x) for the
probability that two lineages at separation x will coalesce in the previous
generation, we can write

N =
2πσ2

∫
R2 η(x)dx

. (4)

With this continuous approximation to Gt,

1
2N

G̃(z, 0) =
1

2N
∞∑

t=1

zt

t
=

1
N log

(
1√

1− z

)
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and
1

2N
G̃(z, x) =

1
N

∞∑

t=1

zt

2t
exp

(
− |x|2

4σ2t

)
.

Provided that |x|√1− z/σ is not too small, |x|/σ > 2, say, and z > 0.5, this
latter quantity is approximately

1
N K0

( |x|
σ

√
1− z

)
,

where K0 is the modified Bessel function of the second kind of degree
zero. However, as |x| ↓ 0, N G̃(z, x)/(2N) tends to log(1/

√
1− z) whereas

K0(|x|
√

1− z/σ) diverges.
We now have the ingredients for the generating function of the coales-

cence times:
φ(z, 0) = E0[zT ] =

1
1− 2N

log(1−z)

, (5)

and, at least for sufficiently large |x| and z sufficiently close to 1,

φ(z, x) = Ex[zT ] =
G̃(z, x)

2N + G̃(z, 0)
≈

K0

( |x|
σ

√
1− z

)

N − log(
√

1− z)
. (6)

Essentially the same derivation can be applied to any dispersal distribu-
tion, including nearest neighbour random walk. Of course, the expression (6)
cannot apply for very small |x| as it has the problem, inherited from K0,
of divergence at x = 0. The exact solution for these very small sampling
distances will depend upon the details of the dispersal mechanism. For Gaus-
sian dispersal, Malécot (1948) finds the exact expression as an integral with
respect to a Bessel function. Durrett (2008) (Theorem 5.7) considers the
case where migration of ancestral lineages is governed by nearest neighbour
random walk. One can establish a similar recursion to (1) for populations
that are distributed across a spatial continuum (Barton et al., 2002). Some
care is needed to write down models that do not suffer from Felsenstein’s
‘pain in the torus’ (Felsenstein, 1975), but the spatial Λ-Fleming-Viot pro-
cess of §2.2 provides one such continuum model. When working in a spatial
continuum, to circumvent the divergence of the Bessel function in (6) it is
often convenient to proceed as in Barton et al. (2002) and declare there to be
a local scale κ over which the generating function is approximately constant
and equal to φ̃(z, 0). Writing equation (6) as

φ(z, x) =
1− φ̃(z, 0)

N K0

( |x|
σ

√
1− z

)
,
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equating φ(z, κ) to φ̃(z, 0) and rearranging (using that K0(y) ≈ − log y as
y ↓ 0) we obtain

φ(z, x) ≈
K0

( |x|
σ

√
1− z

)

N − log
(

κ
σ

√
1− z

) . (7)

It is more usual to set z = e−2µ with µ representing a mutation rate (per
individual per generation) under an infinitely many alleles mutation model.
The quantity φ(z, x) then tells us the probability that two alleles sampled at
separation x are identical in state. Substituting in (7) we obtain the more
familiar version of the Wright-Malécot formula:

φ(e−2µ, x) = Ex[e−2µT ] ≈ K0(x/`µ)
N + log(`µ/κ)

, for |x| > κ, (8)

where `µ = σ/
√

2µ and

φ(e−2µ, 0) =
log(`µ/κ)

N + log(`µ/κ)
.

It is to this version of the Wright-Malécot formula that we compare the
probability of identity under the spatial Λ-Fleming-Viot process in §2.2,
with a value of κ numerically evaluated as κ ≈ 1.34113.

2.2. The spatial Λ-Fleming-Viot process
Our simulations of long genomes and small neighbourhood size and our

analysis in §4.2 is based on the spatial Λ-Fleming-Viot process which was
introduced, and for which some preliminary analyses were carried out, in a
series of recent papers (Etheridge, 2008; Barton et al., 2010a,b; Etheridge
and Véber, 2012; Berestycki et al., 2012). A survey can be found in Barton
et al. (2012). Here we restrict ourselves to a brief description of a special
case of the model.

We suppose that the population is distributed across two dimensional
Euclidean space R2. In the absence of large scale extinction-recolonisation
events our model can be thought of as a continuum analogue of the stepping
stone model on Z2 (Kimura and Weiss, 1964). Just as the stepping stone
model specifies allele frequencies at each time and at each point of Z2 (that is
in each deme), so our model specifies allele frequencies at every point in R2.
It is convenient to think of the vector of frequencies as a probability measure
on a type space (and indeed the model makes perfectly good sense if alleles
are indexed by an infinite space such as [0, 1] when this formulation becomes
essential). Let us write K for the space of all possible alleles and mt(x, dk)
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for the probability measure on K which tells us the frequencies of each of
the alleles in the population at x at time t. Here we describe what happens
at a single locus. In Appendix A we provide a mathematical description of
the intuitively clear extension to multiple loci with recombination between
them.

The novelty of the model is that reproduction is not based on individ-
uals in the population, but instead on a random sequence of events which
prescribe the spatial region in which reproduction takes place. It is this
that overcomes the difficulties with the approaches of Wright (1943b) and
Malécot (1948) identified by Felsenstein (1975).

More precisely, we fix a rate λ > 0, a radius R > 0, a non-negative integer
ν, and a parameter u ∈ (0, 1). We then define a random sequence of events
Π = {(ti, xi), i ∈ N} as a Poisson point process on R+ × R2 with intensity
measure λdt⊗ dx. That is, the number of pairs which fall within any time-
space region [s1, s2] × C (where C ⊂ R2) has a Poisson distribution with
parameter λ(s2 − s1)|C|, where |C| denotes the area of C, and the number
of pairs falling in disjoint subsets of R+ × R2 are independent.

For each pair (ti, xi) ∈ Π, a reproduction event occurs within the ball
B(xi, R). That is

• ν locations z1,. . . , zν are chosen independently and uniformly at ran-
dom within B(xi, R), and types κ1 . . . , κν are sampled according to
the distributions mti−(z1, dk), . . . ,mti−(zν , dk). This determines the
types of ν parents.

• At every site y ∈ B(xi, R), a proportion u of individuals is killed and
replaced by offspring, a proportion 1/ν of which are of type κj for each
j = 1, . . . , ν. That is

mti(y, dk) = (1− u)mti−(y, dk) +
u

ν

ν∑

j=1

δκj , for all y ∈ B(xi, R).

In fact, in most of our previous work we have assumed that just one
parent is sampled at each reproduction event. In order to incorporate re-
combination, it is convenient to sample ν ≥ 2 parental chromosomes and
produce offspring through a process of crossing over which is described in
detail in Appendix A.

If we restrict ourselves to a single locus, then it is a simple matter to
describe the genealogical trees relating individuals in a sample from the
population. First consider a single ancestral lineage. The Poisson process Π
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that determines where and when reproduction events take place is reversible.
Tracing backwards in time, there will be a first time ti at which the lineage
lies in B(xi, R) (the region affected by an event). There is a probability u
that our lineage is among the ‘offspring’ of the event, and, if so, its position
will jump to the position of its ‘parent’ (sampled from z1, z2, . . . , zν with
equal probabilities). By construction this position is uniformly distributed
on B(xi, R). Continuing in this way we see that the lineage moves in a
series of jumps. The rate of jumps is the rate at which an event falls for
which the lineage lies in B(xi, R), multiplied by the probability u that it
jumps during the event, that is λuπR2. Jumps are symmetric about the
current location of the lineage and bounded above in magnitude by 2R. In
fact, as a special case of the computations of §6.1 of Barton et al. (2010a),
the variance-covariance matrix of the displacement of a single lineage in one
unit of time takes the form σ2Id where Id denotes the identity matrix and

σ2 =
λuπR4

2
. (9)

Now let us consider a larger sample. Because their motion is driven
by the same random process Π of events, the ancestral lineages will not
evolve independently. However, because Π is a Poisson process, dependence
only comes into play when more than one lineage can fall within the region
affected by an event. When this happens, each lineage in B(xi, R) will,
independently, be an offspring of the event with probability u. Offspring
choose their parent at random from the ν available. All offspring that choose
the same parent coalesce into a single lineage, located at a point chosen
uniformly at random from B(xi, R). Notice that more than two lineages
can coalesce in a single event.

As a special case of this, suppose that we have two lineages at separation
x with |x| < 2R. Without loss of generality, we suppose that one of them
is at the origin. They are both in the region affected by any events whose
centres lie in B(0, R)∩B(x,R) and during such an event they coalesce with
probability u2/ν (the factor of 1/ν is because they must both choose the
same parent). Thus when two lineages are at separation x, their instanta-
neous rate of coalescence is η(x) = λu2Vol (B(0, R) ∩B(x,R)) /ν. We now
define neighbourhood size, N , as

N :=
2πσ2

∫
R2 η(x) dx

=
ν

u
. (10)

Notice that this corresponds to the definition of neighbourhood size for the
stepping stone model in (4).
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In much the same way as we arrived at the recursion (1) for the stepping
stone model, by considering the behaviour of the ancestral lineages over an
infinitesimal time interval, it is elementary to derive an equation for the
probability of identity, φµ(x) ≡ φ(e−2µ, x) for two individuals sampled at
separation x:

−2µ

λ
φµ(x) + (1− φµ(x))

u2

ν
LR(x)

+
∫

R2

2u

πR2

(
LR(y)− uLR(x, y)

)(
φµ(x− y)− φµ(x)

)
dy

+ u2
(
1− 1

ν

)
LR(x)

∫ 2

0
f(z)

(
φµ(Rz)− φµ(x)

)
dz = 0, (11)

where LR(y) denotes the volume of the intersection B(0, R)∩B(y,R), LR(x, y)
for that of the intersection B(0, R) ∩B(x, R) ∩B(y, R) and

f(x) =
x

π

(
4 arccos(x/2)− x

√
4− x2

)
, x ∈ [0, 2], (12)

is the density function of the distance between two points sampled indepen-
dently and uniformly at random within the unit disc (c.f. Alagar (1976)).
See e.g. Equation (2) in (Barton et al., 2010b) for the derivation of the
evolution equation of the probability of identity in state in a very similar
context. This can be solved numerically, but as illustrated in Fig. 1, the
Wright-Malécot formula provides an excellent approximation.

We have presented the spatial Λ-Fleming-Viot process in the special
case in which the dynamics of the population are determined entirely by
‘small-scale’ (indeed fixed radius) reproduction events. In fact, part of the
original motivation for the model was to provide a framework in which one
can readily incorporate the large-scale extinction-recolonisation events which
dominate the demographic histories of many species. For a slight variant of
this model (in which instead of replacing a fixed proportion of individuals in
the disc B(x,R), one replaces individuals according to a Gaussian density
centred on x), Barton et al. (2010b) investigate the effect of such large-scale
events on the probability of identity. Here we perform a similar investiga-
tion for the ‘disc model’ in which we allow just two different values of R.
Small reproduction events happen frequently, large extinction-recolonisation
events happen rarely. The result is in Fig. 2. We see that although the prob-
ability of identity is changed over large scales, over intermediate scales - not
so small that the Wright-Malécot approximation breaks down, but not so
big that the large scale events start to matter - the rate of decay of identity
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Figure 1: Probability of identity in state plotted against distance for the spatial Λ-Fleming-
Viot model with parameters ν = 1, R = 1.5, λ = 1, u = 0.5 with a mutation rate µ = 10−4

on a torus of diameter 64. The numerical solution of φµ(x), simulations and the Wright-
Malécot solution (with κ ≈ 1.34), are shown. Simulation results report the mean identity
over 105 replicates.
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Figure 2: The probability of identity under the spatial Λ-Fleming-Viot process when we
allow a mixture of frequent small-scale reproduction events and rare large scale events.
Here, small events with R = 1 fall at rate 1, with ν = 1 and u = 0.5. Large events with
R = 10 fall at rate 0.1, with ν = 1 and u = 0.05.

is almost the same with and without the large scale events. In other words,
by sampling over such intermediate scales we should be able to infer the
parameters that govern the Wright-Malécot formula for a population driven
entirely by small-scale reproduction events, namely dispersal rate and neigh-
bourhood size. This adds credence to the approach we adopt in this paper.

3. Inference based on allele frequencies

In this section we present an approach to inferring neighbourhood size
from allele frequencies in the population through an appropriate F -statistic.
For simplicity, we shall present our results for the stepping stone model, but
they will remain valid whenever the motion of a single ancestral lineage can
be summarised by a single variance paramater σ2 and the ‘local’ coalescence
rate can be summarised by a single parameter N .

In the following section, we use the duality between allele frequencies
(at a single locus) and genealogies to express the correlations between local
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genetic diversities in terms of the probability of coalescence of two ancestral
lineages by time t∗. We then define a statistic F and in §3.2 we use this as
the basis for a maximum likelihood approach to estimating N . A separate
estimate for σ2 cannot be found.

3.1. Identity in state and measures of FST

Suppose we are able to sample perfectly from the local population di-
versity at a given point (or rather in a small area around a given point);
in an analysis of real data, sampling variance can readily be incorporated
in the inference method we derive in §3.2. We assume that we observe ex-
actly a distinct alleles in our sample and we write p(x, i) for the frequency
of the ith allele in deme x. In keeping with the classical F -statistics, we
shall compare correlations in allele frequencies between individuals sampled
at a specific separation to those observed over a larger ‘patch’. This patch,
which we denote by A, is assumed to be such that its diameter satisfies
Diam(A) ¿ σ

√
t∗. We suppose that mutation is sufficiently rare that no

new mutations have arisen in the region of size σ
√

t∗ during the time since
t∗ (and so the types of individuals in A have been inherited from ancestors
at time t∗ without mutation). We shall write Px,y for the distribution of
the lineages ancestral to two individuals sampled from locations x, y ∈ A
and T for the random time at which they coalesce. We assume that if the
two lineages have not coalesced by time t∗, then the chance that they are
of different types is independent of their initial separation and is given by
H(t∗), the heterozygosity at time t∗. If |x− y| = r, we write

1−Hr = E

[
a∑

i=1

p0(x, i)p0(y, i)

]

= Px,y[T ≤ t∗] + Px,y[T > t∗](1−H(t∗)),

from which, in an obvious notation,

Hr = Pr[T > t∗]H(t∗).

We shall also write HA for the heterozygosity in A at the present time, that
is

HA = 1− 1
|A|2

∫

A

∫

A

a∑

i=1

p(x, i)p(y, i)dxdy.

Writing, PA for the distribution of the two lineages ancestral to two individ-
uals sampled independently and uniformly at random from A, HA = PA[T >
t∗]H(t∗).
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Our analogue of Wright’s FST is defined by

F (r) =
HA −Hr

HA
=
PA[T > t∗]− Pr[T > t∗]

PA[T > t∗]
. (13)

Notice, in particular, that this is independent of H(t∗).

Remark 1. Our approach differs from the standard one in which one does
not fix t∗, but instead works with an infinitely many alleles mutation model
with mutation rate µ and compares heterozygosity at different separations.
This corresponds to replacing t∗ by an exponentially distributed random vari-
able with parameter 2µ, and following Slatkin (1991), the F -statistic becomes

(
1− EA[e−2µT ]

)− (
1− Er[e−2µT ]

)

1− EA[e−2µT ]
≈ EA[T ]− Er[T ]

EA[T ]
,

which (analogous to the independence of H(t∗) in (13) above) is independent
of µ. However, we are working on an infinite range and so Er[T ] = ∞. One
can try to circumvent this by working instead on a large (but finite) range.
However, the terms in both the numerator and denominator will grow very
rapidly. We shall see an analogue of the numerator in our calculations
in (15) below.

To understand the form of the corresponding statistic, let us write pi(t∗)
for the probability that an individual sampled from the population in the
region that we are supposing to be at ‘quasi-equilibrium’ at time t∗ before
the present is of type i and pij(t∗) for the probability that sampling two
individuals at time t∗ results in types i and j. We also write p̄i for the
expected value of the allele frequencies over the patch A at the current
time. Of course the notation is redundant since p̄i = pi(t∗), but this will
allow us to emphasize which sampling time we refer to, and will make it
clear how to construct a statistic from data collected at the present time.
We shall also exploit the fact that for i 6= j,

p̄ip̄j = PA[T > t∗]pij(t∗). (14)

Now consider

F(x, y) =
1

a− 1

a∑

i=1

(pi(x)− p̄i) (pi(y)− p̄i)
p̄i
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and write r = |x− y|. Expanding the brackets and using (14) in the penul-
timate line,

F(x, y) =
1

a− 1

a∑

i=1

pi(x)pi(y)
p̄i

− 1
a− 1

=
1

a− 1

a∑

i=1

(
Pr[T < t∗]

pi(t∗)
p̄i

+ P[T > t∗]
pii(t∗)

p̄i

)
− 1

a− 1

= 1− a

a− 1
Pr[T > t∗] +

1
a− 1

Pr[T > t∗]
a∑

i=1

pii(t∗)
p̄i

= 1− a

a− 1
Pr[T > t∗]

+
1

a− 1
Pr[T > t∗]

a∑

i=1

1
p̄i


pi(t∗)−

a∑

j=1,j 6=i

pij(t∗)




= 1− 1
a− 1

Pr[T > t∗]
a∑

i=1

a∑

j=1,j 6=i

1
p̄i

p̄ip̄j

PA[T > t∗]

= 1− Pr[T > t∗]
PA[T > t∗]

.

Thus F(x, y) provides a statistic on which to perform maximum likelihood.
In practice we don’t know p̄i and so we must also estimate that from the
data. The distribution of F(x, y) can be obtained numerically from the
generating function obtained in (5), (6).

If neighbourhood size is large, since we are sampling from a region A with
Diam(A) ¿ σ

√
t∗, the distribution of F(x, y) takes a particularly simple

form. First observe that

1− F (0) =
P0[T > t∗]
PA[T > t∗]

.

We now compare P0[T > t∗] to Pr[T > t∗].
Let us write Lt∗(r) for the total time that a random walk with variance

2σ2, started at distance r from the origin, spends at the origin up until time
t∗. Then Pr[T > t∗] = E[exp(−Lt∗(r)/N)] and so

Pr[T > t∗]− P0[T > t∗] = E
[
e−(Lt∗ (0)/N)

(
e(Lt∗ (0)−Lt∗ (r))/N − 1

)]

≈ E
[
e−(Lt∗ (0)/N)

(
Lt∗(0)− Lt∗(r)

N

)]

≈ 1
N
P0[T > t∗]E[Lt∗(0)− Lt∗(r)]. (15)
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As t∗ →∞, E[Lt∗(0)−Lt∗(r)] → a(r), the potential kernel of the random
walk (see e.g. Lawler and Limic (2010)). This function takes the form

a(r) = 2C log r +O(1),

where C = 1/(4πσ2) (there is an extra factor of two in the denominator
here since we are interested in the random walk governing the separation of
two lineages, not the motion of a single lineage). To see where this comes
from, since we are assuming that t∗ À r2, by the time of order r2 when the
random walk starting at separation r hits zero for the first time, the random
walker started from the origin has spent ∼ ∑

n<r2 1/n ∼ 2C log r units of
time at 0, where C = 1/(4πσ2). From that time onwards, the walk started
from r behaves like a walk started from zero. We refer to Lawler and Limic
(2010) for more details. Combining the above we see that

F (r) ≈ 1− F (0)
N log

( c

r

)
,

where c is determined by the geometric mean of the separation of individuals
sampled from A.

3.2. A maximum likelihood approach to inference
In general the method of the last section leads us to

F (r) ≈ log(r̄/r)
N + log(r̄/κ)

, (16)

where the ‘local scale’ κ is chosen so that

F (0) ≈ log(r̄/κ)
N + log(r̄/κ)

,

and r̄ is the geometric mean of the separation of individuals sampled uni-
formly at random from A except that we replace all separations of less than
κ by κ.

This immediately suggests that we can obtain an estimate for N and κ
through regression of F (r) on log r. First if we sample n distinct locations
from A, then the geometric mean sampling distance that we need to calculate
F corresponds to n(n− 1) ordered non-zero pairs and n on-diagonal terms,
each of which we replace by κ. Thus

n2 log r̄ = n(n− 1) log(r̄∗) + n log κ,
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where r̄∗ is the geometric mean based on the n(n− 1) non-zero pairs. Sub-
stituting in (16),

log
( r̄

κ

)
=

(
1− 1

n

)
log

(
r̄∗

κ

)
=

F (0)
1− F (0)

N .

We also have that the regression of F (r) on log r has slope

m =
1

N + log (r̄/κ))
=

1− F (0)
N .

This allows us to estimate

N ∼ 1− F (0)
m

, κ ∼ r̄∗ exp
(
−F (0)

m

n

n− 1

)
.

Since the relationship is only logarithmic, there may be little power in
a method based on regression. We expect to obtain a better estimate by
using maximum likelihood based on the F (r) to estimate the parameter N .
We make the approximation that fluctuations in allele frequencies are small,
so that we can approximate them by a multivariate Gaussian distribution.
Suppose that we sample from a given set of n locations. We write FST for the
resulting matrix of standardised covariances. We write F̃ for the observed
covariances and F ∗ for the expected covariances, then the log-likelihood
function takes the form

log(L) = −1
2


log(det(F ∗)) +

∑

j,k

F̃j,kF
∗
j,k
−1


 .

We approximate FST as in (16), replacing r by κ on the diagonal. Since we
have estimated the mean allele frequency from the data, the covariance of
deviations from the mean is

F ∗
j,k = FST j,k − FST j,∗ − FST ∗,k + FST ∗∗,

where ∗ represents an average over an index. This matrix is singular, having
one zero eigenvalue, and so det(F ∗) is calculated as the product of the n−1
positive eigenvalues. For a given set of locations, F ∗ depends only on κ and
the maximum likelihood estimator for N can be found explicitly:

N̂ =
n− 1∑

j,k F̃j,kF
∗
j,k

− log(r̄/κ).
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Figure 3: Standardised covariance of allele frequencies, F , against distance under a step-
ping stone model. A 40 × 40 toroidal grid of demes, each with 2N = 20 haploid indi-
viduals, was simulated for 200 generations; there was migration between each of the four
nearest neighbours at rate m/2 = 0.125. There were three alleles, with initial frequencies
{0.1, 0.4, 0.5}, and no mutation. Dots show the average of 10 independent replicates at
times 10, 20, 50, 100, 200 (bottom to top); lines join the theoretical prediction for this
discrete-space model, allowing for estimation of the population mean from the realised
values. Agreement is close, apart from a small underestimation of F (0). This simulation
represents sampling of ten independent loci from a population of 40 × 40 demes.

3.3. Results based on allele frequencies
Figure 3 shows the standardised covariance of allele frequencies as a func-

tion of separation for a stepping stone model on Z2 with nearest neighbour
migration. After 200 generations, for deme spacings of less than about 7,
it is very close to the logarithmic approximation (16), as demonstrated in
Fig. 4.

Figure 5 shows the result of using regression of F (r) on log r to estimate
N for simulations of the stepping stone model. Finally, Fig. 6 shows the
likelihood surface for the parameters N and κ obtained by implementing
the scheme of §3.2 for the population simulated in Fig. 3.

4. Estimation based on patterns of recombination

Our approach based on allele frequencies only allowed us to estimate
neighbourhood size and not the other key parameter, dispersal rate. We
now turn to our second approach, based on a small sample (two in what
follows) of long genomes. The idea is that, although we have confined our
attention to sufficiently small scales that genealogies cannot be reconstructed

22



5 10
r

0.02

0.04

0.06

FHrL

Figure 4: The covariance against distance for a 10 × 10 subsample of demes, taken from
ten realisations of the 40 × 40 population of Fig. 3; this can be thought of as sampling
from ten independent loci. Each dot is the mean over ten replicates; different dots are
different locations of the 10 × 10 grid. The red line is the theoretical prediction, and
the black line, the simple prediction assuming F (r) = (1− F (0))/N log(c/r), F (0) being
estimated from the sample. This is independent of the constant c. It can be rewritten
as log(r̄/r)/(N + log(r̄/κ)) where κ = 0.57 is estimated from r̄ exp(−NF (0)/(1− F (0)).
The theoretical prediction fits well: it is jagged because F ({1, 1}) is slightly lower than
F ({0, 2}) even though the points are nominally closer. The black curve is the naive
logarithmic prediction, fitted to the observed F (0) = 0.062. It declines slightly less steeply
than expected: F (0) = 0.106 estimated from the regression of F on log r which should
have slope (1− F (0))/N .
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Figure 5: Estimates of N , each based on ten independent realisations (representing ten
independent loci). These estimates are derived from the slope of the regression of FST on
log r. The distribution shows 49 replicate 10×10 patches, taken from the same 40×40 pop-
ulation, but starting at {{1, 1}, {6, 1}, . . . , {6, 1}, . . . , {31, 31}}; this represents the varia-
tion in estimates that would be obtained by sampling from different places within a station-
ary distribution; since the replicates are correlated, this underestimates the variation be-
tween independent realisations. The black arrow shows the true N = 4π×10×0.25 = 31.4
and the red arrow the mean across replicates which is a slight overestimate, 33.2; this bias
is smaller than the scatter between different patches from the same population.

from patterns of mutation at a single locus, nonetheless, if we are considering
sufficiently long blocks of genome, we can use recombination to determine
the timescale of coalescence. As outlined in §1, we shall consider pairs of
long genomes sampled from our population and investigate the lengths of
shared blocks of sequence.

Suppose that a pair of genes coalesce t generations in the past (so that
the genealogy relating them has length 2t). Moving out from the focal locus
in either direction, the distance along the genome (measured in Morgans,
where 1M is the block length over which we see one recombination per time
unit on average) before we encounter a recombination event is exponentially
distributed with density 2te−2tb. The total length of the block around the
focal locus which is bordered by these two recombination events is therefore
Gamma-distributed with density 4t2be−2bt. This represents a size-biased
pick from the distribution of block lengths, because we effectively condition
on the focal locus being within the block. The distribution of the length of a
randomly chosen block (as opposed to the block around a randomly chosen
point) is exponential with density 2te−2tb. It is not at all obvious which of
these distributions is the most relevant. However, each can be derived in
essentially the same way as what follows and so to keep things simple we are
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Figure 6: Likelihood surface based on ten ‘loci’ sampled from a 10 × 10 patch within the
40 × 40 population of Fig. 3; log likelihood is plotted against N (x-axis) and κ (y-axis).
The MLE is N = 34.75, κ = 0.475; the true N = 31.4, κ = 0.48, with log-likelihood lower
by 1.5. Contours are spaced at 2 units of log-likelihood, so that he inner circle indicates
the support limits for each parameter.
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going to work with the joint distribution of B and T where B is the length
of a ‘half-block’, that is the distance we move in just one direction before
encountering the next recombination, and T is the coalescence time. The
distribution of the coalescence time of lineages ancestral to two individuals
sampled at separation x, ψt(x), was derived in §2.1 and the joint density of
B and T becomes 2te−2btψt(x).

As outlined in the introduction, analyses of shared blocks are compli-
cated by the fact that we may not be able to detect all recombination events
in our data. Such recombinations were called ‘ineffective’. In order to make
progress, we shall assume in §4.1 that neighbourhood size is large. Under
this hypothesis, we can expect to detect essentially all recombination events
that effect either of the genomes in our sample before time t∗ and so the
Wright-Malécot formula can be used to write down the distribution of the
lengths of shared blocks. In §4.2 we show (by simulation) that this ap-
proximation breaks down for small neighbourhood size and then outline a
preliminary analysis in that setting. However, the results will only apply
if we sample the genomes from sufficiently far apart that if the ancestral
lineages at a locus coalesce before time t∗, then they do so at a time close
to t∗, and if a recombinant lineage coalesces back into the genealogy before
time t∗, then with overwhelming probability it coalesces with the lineage
from which it split off and therefore the genealogy of the recombinant block
is the same as that of the focal locus. The difficulty is that one would like
to base a method of inference on long shared blocks, but sampling at these
separations, such blocks are very rare.

4.1. Large neighbourhood size
In this section we shall suppose that neighbourhood size is large so that

essentially all recombination is ‘effective’. That is, if a recombination oc-
curs before our reference time t∗, then we can ignore the probability that
the resulting lineages coalesce (either with each other or with the lineage
ancestral to the other individual in the sample) by time t∗. In this setting,
the probability density function corresponding to the distribution of lengths
of blocks of genomes that are shared between the two individuals in our
sample can be determined from the Wright-Malécot formula. If we sample
two adjacent genomes, then using equation (5),

E[2Te−2bT ] = − ∂

∂b

(
1

1− 2N/ log(1− e−2b)

)

=
2N

(e2b − 1)
(
2N − log(1− e−2b)

)2 . (17)
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In Fig. 7(a), we show the resulting distribution of block sizes for two genomes
sampled adjacent to one another. We also show the cumulative contribution
due to coalescence events in successive generations as we trace back in time.
This can be calculated from (2). In our numerical examples we have taken
dispersal to be governed by a discretised Gaussian. We also implemented
nearest neighbour dispersal and the results were indistinguishable from those
displayed here. We see that very many short blocks can be attributed to
coalescence events in the distant past, but such events make a negligible
contribution to long blocks. A similar approach yields the distribution of
block lengths shared between individuals sampled at different separations.
This is illustrated in Fig. 7(b). In Fig. 8 we show the density of block sizes
for different separations. Since the chance of a very recent coalescent event
declines rapidly with separation, we see a deficit of large blocks between
well-separated genomes.

Equation (6) with z = e−2b provides an expression for the probability
that two genomes share a half-block of length at least b. As we have seen,
substantial blocks are determined by recent ancestry and we only see this
if we sample our two genomes from relatively close to one another. In this
setting we can approximate K0(r

√
1− z/σ) by − log(r

√
1− z/σ). Then the

probability that a randomly chosen block has length at least b is

Er[e−2bT ] ≈ − log r − log(
√

1− e−2b/σ)
N − log(

√
1− e−2b)

.

Thus plotting this probability against log r we obtain a graph which, over
these local scales, is approximately a straight line with slope

1
N − log(

√
1− e−2b)

and intercept
− log(

√
1− e−2b/σ)

N − log(
√

1− e−2b)
.

These can then be used to infer both N and σ. In Fig. 9 we plot the propor-
tion of blocks of length at least 0.1M against the logarithm of the sampling
distance for the parameters of Fig. 8. The result is indeed approximately a
straight line, at least provided the sampling distance is not too large. To test
the feasibility of performing inference in this way, we truncated the graphs
in Fig. 9 and fitted the parameters. This resulted in an estimate for σ of
1.17 (true value σ = 1) and for N of 5.05, 10.09, 20.17 (true values 5, 10,

27



(a)

0.001 0.01 0.1 1 10
x

0.2

0.4
CDF

(b)

0.001 0.01 0.1 1
x

0.1

0.2

CDF

Figure 7: (a) The CDF of block size for two genes sampled at the same place and with
N = 5. The top line shows the total distribution, and the lower lines the contribution up
to times 1, 2, 4, . . . , 64, 128 generations. Note that distant generations make a negligible
contribution to the distribution of large blocks. For example, blocks greater than 0.1 in
length are almost all contributed by coalescence within ∼ 10 generations. However, there
are very many small blocks contibuted by very distant coalescence. (b) The same, but for
genes separated by r = 4σ. Now, the first few generations make hardly any contribution,
but later generations contribute in essentially the same way.
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Figure 8: This shows the density of block size, for separations r = 0, 1, 2, 4, 8, 16 (top to
bottom). The density of small blocks is independent of separation, but there is a deficit
of large blocks between well-separated genes.
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Figure 9: This shows the logarithmic regime, where the CDF is proportional to log r, with
slope 1/(N − log(

√
1− e−2x)). The three lines are the probability of a half-block being

longer than 0.01 for N = 5, 10, 20 (top to bottom).
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20 respectively). Of course, since the relationship between the cumulative
distribution of block length and sampling distance is only logarithmic, this
method may have little power and certainly, for real data it would be better
to fit the actual formula. Nonetheless, this suggests that one can use the
prevalance of long shared blocks to infer our two key parameters of local
evolution.

4.2. Small neighbourhood size
The approach of §4.1 will break down for small or moderate neighbour-

hood size since then we expect that there will be recombinant lineages that
coalesce back into the genealogy before time t∗. As a result, not only will
there be recombination events which we do not detect in our data, but we
also see correlations in block lengths as we scan along the genome. In Fig. 10
we illustrate this through a simulation of the spatial Λ-Fleming-Viot pro-
cess. It is this model which will form the basis of both our simulations and
analysis in this section.

Since our simulations of long genomes assume discrete loci arranged
along a linear genome (instead of the continuous genome of the previous
section), our analysis in this section will assume discrete loci with ‘links’
between. The intuitively clear, but notationally challenging, incorporation
of recombination into our spatial Λ-Fleming-Viot process is spelled out in
detail in Appendix A. The mechanism is simple. From the point of view of
genealogies, when a lineage experiences a reproduction event, there is a fixed
probability, which we denote by ρ, that there is a crossover event between
any two adjacent loci. We sample the individual with which the lineage
recombines uniformly at random from the region affected by the reproduc-
tion event. Starting at a focal locus, we select one of the two recombinant
lineages as parent. Scanning along the genome, whenever we encounter a
crossover event, we switch to the other parent.

The philosophy is as before. We suppose that we sample two genomes at
separation δ, assumed to be large compared to the radius R of a reproduction
event. Whenever two recombinant lineages are created, either they coalesce
very quickly, or they manage to ‘escape’ from one another and only coalesce
in the distant past, by which time they have accumulated many mutations.
In order for two loci to be identical in state, they must have coalesced in
the recent past, and we are interested in the length of blocks of consecutive
loci that are identical in state. Our first task is to define what we mean by
quick, or ‘early’ coalescence. Since the spatial Λ-Fleming-Viot process has
overlapping generations, it is natural to replace the fixed reference time t∗

by an exponentially distributed time. If we are sampling two genomes at
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Figure 10: Breakdown of the Wright-Malécot approximation to block length distribution
when neighbourhood size is small. To find the empirical distribution of block lengths we
simulate the ancestry of two individuals with 5×104 loci sampled at distance δ = 10 from
each other on a torus of diameter 1000, with R = 1, u = 0.75, ν = 2 and ρ = 10−5. This
model is simulated backwards in time for 1010 events, and we then calculate the ECDF of
the length of blocks across 200 independent replicates. Loci that have not coalesced are
discarded. Note that 1M corresponds to ρ−1 = 105 loci here and that a distance δ in the
simulations of the spatial Λ-Fleming-Viot process corresponds to r = (δ

√
2)/R.
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separation δ, then the time that the lineages ancestral to any given locus
require to come together is O(δ2/(2σ2)). We shall define a coalescence to
be early if it takes place before an exponentially distributed time, Tζ , with
mean ζ ≡ δ2/(2σ2). We are interested in the lengths of blocks of genome
which are identical by descent, which, under the assumption that we can
detect all ‘ineffective recombination events’ in our data, in this terminology
correspond to blocks of consecutive loci, all of which experience an early
coalescence. The following result is proved in Appendix B.

Theorem 1. Suppose that we sample two individuals at separation δ and let
X be the length of a block of consecutive loci at which the two individuals are
identical in state. Then X follows (approximately) a geometric distribution
with parameter γ(δ) given by

γ(δ) =
ρeff(δ)

ρeff(δ) + ζ(δ)

(
1− K0(

√
2)

N + log(δ/(κ
√

2))

)
, (18)

where K0 and κ are as in (8), N = ν/u is again the neighbourhood size, and

ρeff(δ) = (ΛuπR2ρ) α(δ),

the quantity α(δ) being the ‘escape’ probability of two recombinant lineages
for which we find a characterisation in Appendix B.2.

Although the parameters R and u appear in the formulation of this result,
at least for sufficiently large δ, as we argue below, the quantity γ(δ) depends
only σ and N . Obviously, for this result to hold we need δ to be large enough
that K0(

√
2)/{N + log(δ/(κ

√
2))} is less than one. The quantity ρeff(δ) is

proportional to, but not equal to, the local recombination rate λuπR2ρ. It
is the effective recombination rate, described in §1.

The proof of Theorem 1 is given in Appendix B, but let us give here
an outline of it. We are sampling individuals from so far apart that if the
ancestral lineages at a locus coalesce early, they do so close to the time
Tζ . If a recombinant lineage is created which coalesces back into the focal
genealogy before time Tζ , then with high probability it coalesces with the
lineage from which it split off. Thus for every locus at which we see an
early coalescence, the chance of an effective recombination event between
that locus and the adjacent locus (thus bringing an end to the block) is
approximately the same. We denote it by ρeff(δ). For a given pair of adjacent
loci, the ratio

ρeff(δ)
ρeff(δ) + ζ(δ)
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Figure 11: Block lengths due to early coalescence; (a) plots mean block length against
sampling distance δ and (b) shows the distribution of block lengths for δ = 20. Simulations
trace the ancestry of two individuals sampled at distance δ until time Tζ in the past, where
Tζ is an exponentially distributed value with rate 2σ2/δ2 chosen independently for each
replicate. Model parameters are otherwise identical to the simulations of Figure 10. The
length of blocks of loci are then calculated in two different ways: we have early and equal
blocks. An early block is defined as a set of contiguous loci that have coalesced by time
Tζ . An equal block is a set of contiguous loci that have coalesced by Tζ and have equal
coalescence times. In (a) we have ∼ 106 early blocks and ∼ 1.2 × 106 equal blocks from
7911 independent simulations (many simulations have no early coalescences); there is an
excellent correspondence between the predicted block length 1/γ(δ) and the length of
equal blocks. Panel (b) shows the CDF of the length of equal blocks for δ = 20, and
compares the ECDF of block lengths from simulations with a geometric distribution with
parameter γ(20). Also shown is the geometric distribution with parameter estimated from
simulation data; this agrees very closely with the predicted value.

simply gives the probability that an effective recombination occurs before
the timescale of early coalescence. The second term in the definition of γ(δ)
is the probability that the ancestral lineages at locus j + 1 do not coalesce
early, bringing the block X to an end.

In Fig. 11 we show that the geometric block length distribution predicted
by Theorem 1 is reasonably accurate if we sample from far enough apart.
Somewhat surprisingly, we see that the geometric distribution obtained in
Theorem 1 fits the empirical distribution of the length of a block of loci
having exactly the same coalescence time better. Although we have no
explanation for this fact, one should notice that the discrepancy between
early blocks and equal blocks vanishes as the sampling distance grows, and
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so the meaning of Theorem 1 remains clear for reasonably large sampling
distances.

4.3. Inference for small neighbourhood sizes
Because of the similarity between Equation (11) defining the Laplace

transform of the coalescence time T and Equation (B.2) defining α(δ), we
expect the function ρeff to depend only on σ, N and κ, at least for large
δ’s. Indeed, as explained in Appendix B, α(δ) is the probability that two
lineages starting at distance O(R) separate at distance δ before they coalesce
again. If δ is large compared to R, this probability is essentially the same
as the probability that two lineages starting at distance κ do not coalesce
before the time O(δ2/σ2) that they need to travel a distance δ. Hence, using
the Wright-Malécot formula (8) with 2µ̃ = (δ2/σ2)−1 (and so `µ̃ = δ/

√
2),

we arrive at
α(δ) ≈ 1− log(`µ̃/κ)

N + log(`µ̃/κ)
,

which in fact depends on the precise evolution mechanism only through the
two parameters N and κ.

Similarly, since ρ is the ‘per hit’ recombination probability, the prod-
uct λuπR2ρ is the total rate at which two neighbouring loci recombine.
When dealing with real data, this compound term should be replaced by
an estimate of the recombination rate. Overall, the function γ(δ) is really
a function of σ, κ and N alone, and so can, in principle, be used as a basis
for the inference of these parameters.

However, several problems must be overcome if we are to devise a robust
inference scheme based on the results of §4.2 (or even §4.1). First, because we
want to sample only a few individuals, it is natural to try to use the empirical
distribution of lengths of blocks which are identical by descent between pairs
to estimate the distribution of the parameter γ(δ) of Theorem 1. But recall
that the genealogical trees at different loci are all embedded in a single
pedigree. Very long blocks of identical sequence are due to very recent
coalescence, and so many portions of the genome are still carried by the
same ancestor at that time. Hence, the formation of a very long sequence
is rare, but when it occurs, several long sequences are produced at the
same time. Due to these correlations, the empirical distribution obtained
in a single run of simulations either overestimates or underestimates the
probability of a very long sequence (depending on whether such a sequence
was created or not), while the empirical distribution obtained by merging
several runs of simulations will in general overestimate the probability of
very long sequences.
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Second, in theory, the dichotomy between recent and distant coalescence
that underlies our approach should be sufficient to detect precisely the parts
of the genome in which coalescence was early. Of course it is not entirely
true that such a dichotomy holds in our model, or even in practice, since we
cannot find a precise timescale t∗ such that lineages that have not coalesced
before t∗ need more that 100t∗ (say) to find a common ancestor. Hence, it
is not yet clear which portion of the tail of the distribution of block length
should be used to infer γ.

In conclusion, our results represent first steps towards the design of an
alternative inference method based on recombination patterns, but a non-
negligible amount of work will be required before arriving at a satisfactory
scheme.

5. Discussion

Interpretation of spatial genetic data is dominated by two distinct, and
indeed, incompatible approaches. Pairwise relationships, measured by FST

and spatial correlation, are interpreted on the assumption that populations
are at equilibrium between random drift and gene flow; patterns at different
loci are then independent, and in aggregate yield estimates of neighbourhood
size. In contrast, phylogeography attempts to infer the specific history of
the whole population from genealogies sampled at one or more loci. This
approach requires that loci share a common signal that reflects the history
of the whole population. The recent flood of genetic data has motivated
other approaches, which can be seen as intermediate between these two, in
that they use explicit population genetic models to reconstruct the history of
population subdivision and mixing (e.g. Beerli and Felsenstein (2001); Pinho
and Hey (2010); Patterson et al. (2006)). However, these model discrete
demes or species, whereas here we focus on populations that are spread
across two dimensions.

Our central argument is that these different approaches are appropriate
over different scales. We cannot hope to infer all the details of local pop-
ulation history, but neither can we assume that populations have reached
equilibrium over large spatial and temporal scales. Indeed, we know that in
high latitudes at least, species’ ranges have changed drastically over times
much shorter than those set by species-wide coalescence and by mutation.
However, by focusing on samples taken over modest patches (a few tens of
dispersal ranges across) and on long blocks of shared genome (longer than
∼ 0.1cM, say), we can make robust estimates by assuming a local quasi-
equilibrium.
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Inferences based on fluctuations in allele frequency, and on lengths of
shared sequence, both depend on the underlying distribution of times when
genes sampled from some distance r apart shared common ancestry. Wright
(1943b) argues that this distribution of coalescence times can be found sim-
ply by imagining the ancestors of each lineage, t generations back, as being
distributed in a Gaussian with variance σ2t; lineages coalesce at a rate pro-
portional to the overlap of their ancestral distributions. Thus, neighbouring
genes have probability ∼ 1

N t of coalescing at time t, and this probability
falls away with log(1/r). We show that if we sample over local patches (of
area ∼ σ2T , where the population has been diffusing steadily for time ∼ T ),
then we can only estimate neighbourhood size, N : information about the
rate of gene flow, σ2, is lost. The logarithmic relation with distance must
break down over sufficiently small scale, ∼ κ, since the identity has an up-
per bound, F (0). However, this local scale κ may be substantially different
from the long-term rate of diffusion of ancestral lineages, σ; it depends on
the idiosyncrasies of local population regulation, and seems to us to be of
little general interest. In contrast, neighbourhood size gives the relative rate
of local drift and gene flow, and determines the rate of shifts between al-
ternative adaptive peaks in Wright’s ‘shifting balance’ theory (Rouhani and
Barton, 1987; Coyne et al., 1997). It is important to appreciate, however,
that neighbourhood size has only a weak influence on the rate of spread of
favourable alleles, and on the long-term rate of drift of the population as a
whole.

How should we estimate neighbourhood size from allele frequencies? The
simplest method is to regress pairwise Fst against the logarithm of distance
(Rousset, 1997, 2003). (Actually, Rousset suggests regressing Fst/ (1− Fst)
against log r, whereas our derivation suggests that regressing Fst on log r is
more natural; this makes little difference in practice, however, unless Fst is
unusually large). The n2 points in this regression are not independent, but
the accuracy of estimates can be found by bootstrapping (Rousset, 1997).
Rousset and Leblois (2007) have implemented a Monte Carlo method which
uses coalescent simulations to take account of the full distribution of al-
lele frequencies. However this is computationally demanding (especially in
two dimensions), and we argue here that it is unlikely to yield information
about more than just N . In principle, there is information in higher-order
relationships - for example, in the rates of multiple mergers, which may be
significant in two-dimensional populations with small N . However, we are
concerned with local patterns, for which current mutation is negligible: all
that we can observe are the frequencies of alleles that are distinguished by
mutations that occurred far back. Unless Fst is unusually high, the distri-
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bution of allele frequencies will be close to multivariate normal, and so we
cannot go beyond pairwise relationships, which essentially depend only on
N .

Assuming normality, we can account for spatial dependencies by fitting
a covariance matrix; moreover, if we sample over patches small enough that
identity falls with log(1/r), this matrix has a unique form that depends on
the known locations of the sampled genes, plus a single ‘local scale’, κ. This
is straightforward, and more transparent than a simulation-based approach;
it extends to allow for fluctuations in selected clines and across barriers to
gene flow (Barton and Gale, 1993; Barton, 2008); it is implemented in the
ANALYSE package (Barton, N.H. and S.J.E. Baird 1996. Software for the
analysis of geographic variation and hybrid zones. University of Edinburgh,
UK. Available via http://helios.bto.ed.ac.uk/evolgen/). However, this ap-
proach has hardly been applied, even theoretically (though see Barton and
Wilson (1995); Tufto et al. (1996)). A thorough comparison of different
statistical methods for estimating N is needed.

Recombination between linear genomes occurs, in effect, over a wide
range of scales, ranging from rates between adjacent bases that are similar to
mutation, up to multiple crossovers per generation over the whole genome.
This extra clock allows us to use lengths of shared blocks to estimate σ2

as well as N . However, we cannot simply regress squared distance, r2,
on coalescence time, as has occasionally been proposed (Neigel and Avise,
1993; Lemmon and Lemmon, 2008). Estimation is complicated by the fact
that the distribution of blocks shared between any two genomes reflects
their particular ancestry, and so we need to sample many genomes in order
to estimate N and σ2 reliably. These parameters essentially measure the
fraction of close relatives, and their spatial dispersion, and so the accuracy
of estimates depends on the number of related pairs that we can identify.
Of course, for the past few generations, we can directly reconstruct the
pedigree. However, it is not clear how far back we could do this, even given
full genomes. Our aim here is to use the distribution of moderately large
blocks, reflecting shared ancestry 10 − 100 generations back, to estimate
N , σ2; it is unclear whether we could ever estimate more than these two
parameters.

Li and Durbin (2011) have recently proposed an ingenious method for
finding the size of an ancestral population through time, N(t). They ap-
proximate the ancestral recombination graph by a hidden Markov model,
in which the coalescence time between a pair of genomes jumps whenever
there is an (effective) recombination event; this is reflected by jumps in the
rate of heterozygous SNPs along the genome. We expect that this method
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will be robust to two-dimensional population structure: that would reduce
the rate of coalescence over very recent times, but not by much if Fst ¿ 1.
Since ancestral lineages spend most of their time wandering across the whole
species’ range, a model that assumes a single rate of coalescence, 1/(2N(t)),
should be accurate. This method is based on the distribution of very short
blocks of sequence identity, which we discard when estimating N , σ2.

Our results depend on the decrease in identity with log r, which is pe-
culiar to isolation by distance in two dimensions: this leads to significant
fluctuations over a wide range of scales. We have deliberately discarded in-
formation from large scales, by sampling over small patches and by discard-
ing small blocks. Barton et al. (2010b) develop a model that can account for
large-scale patterns generated by extinction and recolonisation. However, in
practice it will not be possible to estimate the parameters of this model,
since the unique history of the population affects all loci. Estimation of a
few parameters that describe local structure is possible because loci fluctu-
ate independently under isolation by distance, whereas the deeper history is
reflected in patterns common across loci.

The theory of isolation by distance originated by Wright and Malécot
gives a robust framework for understanding spatial patterns in two dimen-
sions, but the exact relationship between the biparental pedigree, distribu-
tions of allele frequency, and shared sequence identity along the genome,
remains to be explored. The Wright-Malécot theory provides a clear null
model against which to detect the effects of selection at specific loci (Lewon-
tin and Krakauer, 1973; Beaumont and Balding, 2004): signals of selection
may be more reliably detected from local signals than from large-scale pat-
terns. The ideas sketched here leave open many questions for the future.
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Appendix A. Incorporating recombination in the spatial Λ-Fleming-
Viot process

In this section we provide a formal mathematical definition of the Λ-
Fleming-Viot process with recombination. For our purposes below, the type
of an individual will be its type at L loci which we take to be arranged
along a linear genome. It is convenient then to represent the type space K
as K ≡ [0, 1]L. For simplicity, we suppose that during each reproduction
event, the probability of a crossover event between any two adjacent loci is
ρ, independent of all other loci.

Offspring are created from two parents through a process of crossing
over. The type of each offspring constructed from κ1 and κ2 is obtained
by assigning the type at the first locus to be determined by κ1 or κ2 with
equal probability and then working along the genome, allowing each link
between two adjacent loci to be broken by recombination with probability
ρ. This choice is made independently between different pairs of loci. Hence,
the type of this newborn consists of a first block of loci all inherited from
its first parent, then a block of loci inherited from its second parent, then
again a block inherited from its first parent, and so on. Formally, the new
state of our local population at y after a reproduction event is then given
by

mti(y, dk) := (1− u) mti−(y, dk)

+
u

ν(ν − 1)

∑

j 6=j′

∑
κ∈κj⊕κj′

ρ|κ|(1− ρ)L−1−|κ| δκ,

where κj ⊕ κj′ denotes the collection of 2L different types which can be
obtained by combining κj and κj′ (with the appropriate multiplicity, see
Example 1), and |κ| denotes the number of links broken to obtain the com-
bination κ. Note that there are ν(ν − 1)/2 unordered pairs of different
parents, but the additional choice of the parent at the first locus (which
then decides the parents at all the other loci) adds a factor 1/2 in front of
the sum.

Example 1. If L = 3, ν = 2, κ1 = (0, 0, 0) and κ2 = (1, 1, 0), then
(1, 1, 0) ∈ κ1 ⊕ κ2 can be obtained through no recombination at all and the
choice of κ2 as the parental type (with probability (1 − ρ)2/2), or through
the combination of the first two loci of κ2 and the third locus of κ1 (with
probability (1 − ρ)ρ/2). Applying the same reasoning for all the possible
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combinations, we obtain that at any site in the area of the event

mt(y, dk) = (1− u) mt−(y, dk) +
u

2

{(
(1− ρ)2 + (1− ρ)ρ

)(
δ(1,1,0) + δ(0,0,0)

)

+
(
ρ2 + (1− ρ)ρ

)(
δ(0,1,0) + δ(1,0,0)

)}

= (1− u) mt−(y, dk) +
u(1− ρ)

2
(
δ(1,1,0) + δ(0,0,0)

)

+
uρ

2
(
δ(0,1,0) + δ(1,0,0)

)
.

Appendix B. Proof of Theorem 1

We fix δ, and write ξj,1 and ξj,2 for the ancestral lineages of our two
individuals at locus j, and T j for their coalescence time. Let us suppose
that at a given locus j − 1, the two individuals are identical in state due
to an early coalescence of ξj−1,1 and ξj−1,2. For the lineages ξj,1 and ξj,2

corresponding to locus j not to coalesce early, one needs that:

1. Either ξj,1 or ξj,2 recombines away and become well-separated from
ξj−1,1 or ξj−1,2 respectively, in less time than ξj−1,1 and ξj−1,2 need
to coalesce. We shall call this step an effective recombination.

2. Once Step 1 has been completed, ξj,1 and ξj,2 do not coalesce early.

Let us explain why we want the lineages to become well separated during
the first step. Recalling how recombination works from Appendix A, we see
that during each event affecting a given individual, recombination breaks
the link between loci j − 1 and j with probability ρ. In this case, the com-
mon ancestral lineage of the two loci splits into two lineages, with locations
independently and uniformly distributed over a ball of radius R ¿ δ. Hence,
even though the lineages recombine away from each other, they remain close
enough for their behaviours to be highly correlated for a while (they may
coalesce again quickly, for instance). If neither ξj,1 nor ξj,2 managed to
become well-separated from its former adjacent locus before the early coa-
lescence of ξj−1,1 and ξj−1,2, then with high probability the event causing
that coalescence would also, with high probability, result in the coalescence
of ξj,1 and ξj,2. Consequently, we make the following definition.

Definition 1. We call a recombination effective if the two recombinants
become separated by distance δ before coalescing again.

Remark 2. Here we make the approximation that if ξj,1 manages to become
decorrelated from ξj−1,1, it is also decorrelated from every ξj−i,1, i ≤ j − 1.
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Indeed, all the lineages corresponding to a locus k ≤ j − 1 that are still
correlated remain close together, whereas decorrelation implies separation at
large distances. In addition, for reasonably small N , the number of nearby
lineages is limited since most of them would coalesce quickly. Hence, ξj−1,1

is in fact trying to become decorrelated from a small cloud of very nearby
lineages, which is essentially the same as escaping from a single one. Of
course, this approximation becomes worse and worse as neighbourhood size
increases.

Step 1 focuses mainly on the decorrelation of the ancestral lines of two
adjacent loci while Step 2 deals with the coalescence of two lineages which
are initially far from each other. We examine each step separately.

Appendix B.1. Probability of an early coalescence
Recall that ‘well-separated’ in Step 1 means ‘at distance δ’. The defini-

tion of an early coalescence yields directly

Pδ[ early coal. ] = Eδ

[
e−2ζT

]
,

and using (8) with ζ = (σ/δ)2 and thus `µ = δ/
√

2, we obtain

Pδ[not an early coal.] = 1− K0(
√

2)
N + log(δ/(κ

√
2))

.

This gives us the second term in the expression for γ(δ).

Appendix B.2. Escape probability
Following Definition 1, we need to compute the probability α(δ) that

two recombinants separate to distance δ before coalescing again. Let us
write gD(x) for the probability that two lineages starting at distance x > 0
separate to a distance at least D before coalescing. Of course gD(x) = 1
for any x ≥ D, and writing f(y)dy for the distribution of the distance
between two points sampled independently and uniformly at random in the
ball B(0, 1), we have

α(δ) =
∫ 2

0
f(y)gδ(Ry) dy. (B.1)

Now, using the description of the evolution of two lineages (c.f. §2.2), we
obtain an equation similar to (11):

− gD(x)
u2

ν
LR(x) +

∫

R2

2u

πR2

(
LR(y)− uLR(~x, y)

)(
gD(|~x− y|)− gD(x)

)
dy

+ u2
(
1− 1

ν

)
LR(x)

∫ 2

0
f(z)

(
gD(Rz)− gD(x)

)
dz = 0, (B.2)
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with boundary condition gD(x) = 1 for every x ≥ D. This equation can be
written as a Fredholm equation of the second kind and can thus be solved
numerically.
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