
Supplementary Material to

Full Likelihood Inference from the Site Frequency
Spectrum based on the Optimal Tree Resolution

Raazesh Sainudiin, Amandine Véber

1 Pseudo-code

First, the global process MakeHistory producing a particle is given in Function 1. For
the update of the topology, it calls Sstep to insert the edges subtending n − 1 down to
bn/2c + 1 leaves, Hstep to insert the edges of size n/2 when n is even, Lstep to insert
the edges subtending dn/2e − 1 down to 3 leaves, and finally the functions Twostep and
Onestep (devoid of randomness) to place the 2- and 1-edges. See the Procedures 4, 5, 6, 7
and 8. All these procedures use the functions IndexSplit, finding the largest block (larger
than some quantity given as an input) in the epoch for which it is called, and BetaSplit
which computes the required conditioned Beta-splitting probabilities. They are described
here in Functions 2 and 3.

Function 1: MakeHistory(A, β, n, S, θ)
Input: A, vector of prior rates for epoch times; β, parameter for Aldous’ Beta-splitting model; n, sample size;

S, observed SFS; and θ, scaled mutation rate
Output: (F,M, T), an SFS-history of S; and its proposal weights (w,w1, w2)

Initialize : F ← 0 ∈ R(n+1)×(n+1); M ← 0 ∈ R(n+1)×(n+1); T ← 0 ∈ Rn+1; w ← 1; w1 ← 1; w2 ← 1
1 foreach k ∈ {2, . . . , n} do T[k] ← a sample from exponential(A[k]) random variable;
2 foreach k ∈ {1, 2, . . . , n− 1} do /* get control sequence C from S */

3 C[k]← 0; if S[k] > 0 then C[k]← 1;

4 if n == 2 then
5 Onestep (β, n, C, F,w); Mutate (A,n, 1, S[1], θ, F,M, T,w1, w2)
6 else if n == 3 then
7 Twostep (β, n, C, F,w); Mutate (A,n, 1, S[2], θ, F,M, T,w1, w2)
8 Onestep (β, n, C, F,w); Mutate (A,n, 2, S[1], θ, F,M, T,w1, w2)

9 else
10 foreach j ∈ {1, 2, . . . , dn/2e − 1} do
11 Sstep (β, n, j, C, F,w); Mutate (A,n, j, S[n− j], θ, F,M, T,w1, w2)

12 if (n is even) then
13 Hstep (β, n, C, F,w); Mutate (A,n, j, S[n/2], θ, F,M, T,w1, w2)
14 foreach j ∈ {bn/2c+ 1, . . . , n− 3} do
15 Lstep (β, n, j, C, F,w); Mutate (A,n, j, S[n− j], θ, F,M, T,w1, w2)

16 Twostep (β, n, C, F,w); Mutate (A,n, n− 2, S[2], θ, F,M, T,w1, w2)
17 Onestep (β, n, C, F,w); Mutate (A,n, n− 1, S[1], θ, F,M, T,w1, w2)

18 return (F,M, T,w,w1, w2);

Function 2: IndexSplit(n, k, V)
Input: n, sample size; k, index; V , vector;
Output: m, largest index greater than or equal to k with V [k] > 0, k − 1 otherwise

1 m← k − 1;
2 foreach i ∈ {n− 1, n− 2, . . . , k} do
3 if V [i] > 0 then m← i; break ;

4 return m;

Finally, the first half of the procedure Mutate places the Sn−j mutations carried by n−j
individuals on the newly inserted (n− j)-edges, in a multinomial way (if Sn−j > 0), and
updates the importance weight w1 accordingly. The second half of the procedure samples
new Gamma-values for the lengths of the epochs in which there are some (n − j)-edges,
and updates w2.

1

Function 3: BetaSplit(β,m, J)
Input: β, tree shape parameter; m, size of edge split; J , size of largest daughter edge;
Output: I, indicator of whether an m-edge was split into J-edge and (m− J)-edge; w, probability of this event

1 if J == dm/2e then
2 I ← 1; w ← 1;

3 else

4 p←
λm,J

1−
∑n−1

`=J+1 λm,`

; U ∼ uniform(0, 1);

5 if U < p then I ← 1; w ← p ;
6 else I ← 0; w ← 1− p ;

7 return [I, w];

Procedure 4: Sstep(β, n, j, C, F, w)
Data: β, tree shape parameter; n, sample size; j, j-th step; C, control sequence; F , tree topology; and w,

weight of F
Result: C, F and w are updated by Sstep

1 J ← n− j; F [2, n]← n;

2 if
∑n−1

i=J+1 F [2, i] == 1 then

3 F [2, J]← 0

4 else
5 if (C[J] > 0) or ((j == bn/2c) and (n is odd)) then
6 F [2, J]← 1

7 else
8 B ← BetaSplit (β, n, J); F [2, J]← B[0]; w ← w ×B[1]

9 if F [2, J] > 0 then
10 F [2, 0]← J ; C[J]← 0;

11 foreach k ∈ {3, j + 1} do
12 if

∑n−1
i=J+1 F [k, i] > 0 then

13 F [k, J]← 0

14 else
15 m← IndexSplit(n, J, F [k − 1, 0 : n]);
16 if C[J] > 0 then
17 F [k, J]← 1; F [k, n]← m; C[J]← 0;
18 if F [k − 1, J] == 0 then F [k, 0] = J ;

19 else
20 if m < J then F [k, J]← 0 ;
21 else if m == J then
22 U ← sample from uniform(0, 1) random variable;

23 q ←
m− 1

n− k + 1
;

24 if U < q then
25 F [k, J]← 0; F [k, n]← J ; w ← w × q

26 else
27 F [k, J]← 1; w ← w × (1− q)

28 else if J == dm/2e then
29 F [k, J]← 1

30 else
31 F [k, n]← m; B ← BetaSplit (β,m, J); F [k, J]← B[0];
32 if F [k, J] == 1 then F [k, 0]← J ;
33 w ← w ×B[1]

2

Procedure 5: Hstep(β, n, C, F, w)
Data: β, tree shape parameter; n, sample size; C, control sequence; F , tree topology; and w, weight of F
Result: C, F and w are updated by Hstep

1 j ← bn/2c; F [2, n]← n;

2 if
∑n−1

i=j+1 F [2, i] == 0 then F [2, j]← 2; F [2, 0]← j; C[j]← 0 ;

3 else F [2, j]← 0 ;
4 if F [2, j] == 0 then
5 foreach k ∈ {3, 4, . . . , j + 1} do
6 if

∑n−1
i=j+1 F [k, i] > 0 then F [k, j]← 0 ;

7 else
8 m← IndexSplit (n, j, F [k − 1, 0 : n]);
9 if C[j] > 0 then

10 F [k, j]← 1; F [k, n]← m; C[j]← 0;
11 if F [k − 1, j] == 0 then F [k, 0]← j ;

12 else
13 if m < j then F [k, j]← 0 ;
14 else if m == j then
15 U ← sample from uniform(0, 1) random variable;

16 q ←
m− 1

n− k + 1
;

17 if U < q then F [k, j]← 0; F [k, n]← j; w ← w × q ;
18 else F [k, j]← 1; w ← w × (1− q) ;

19 else if j == dm/2e then
20 F [k, j]← 1; F [k, 0]← j;

21 else
22 F [k, n]← m; B ← BetaSplit (β,m, j); F [k, j]← B[0];
23 if F [k, j] == 1 then F [k, 0]← j ;
24 w ← w ×B[1];

25 else
26 F [3, j]← 1; F [3, n]← j;
27 foreach k ∈ {4, 5, . . . , j + 1} do
28 m← IndexSplit (n, j, F [k − 1, 0 : n]);
29 if m < j then F [k, j]← 0 ;
30 else
31 F [k, n]← m; U ← sample from uniform(0, 1) random variable;

32 q ←
m− 1

n− k + 1
;

33 if U < q then F [k, j]← 0; w ← w × q ;
34 else F [k, j]← 1; w ← w × (1− q) ;

3

Procedure 6: Lstep(β, n, j, C, F, w)
Data: β, tree shape parameter; n, sample size; j, j-th step; C, control sequence; F , tree topology; and w,

weight of F
Result: C, F and w are updated by Lstep

1 J ← n− j; F [2, n]← n; F [2, J]← F [2, j];
2 if F [2, J] > 0 then C[J]← 0 ;
3 foreach k ∈ {3, 4, . . . , j + 1} do
4 m← 0;
5 foreach i ∈ {J + 1, J + 2, . . . , n− 1} do /* find size of the edge just split, if present */

6 if F [k − 1, i] > F [k, i] then m← i; break ;

7 if m == 0 then

8 if
(
n−

∑n−1
i=J (i× F [k − 1, i])− k + 1 +

∑n−1
i=J F [k − 1, i]

)
== 0 then

9 F [k, J]← F [k − 1, J]− 1; F [k, n]← J

10 else if (C[J] == 0) or
(∑n−1

i=J+1 F [k, i] > 0
)

or (F [k − 1, J] > 1) then

11 if F [k − 1, J] == 0 then F [k, J]← 0 ;
12 else
13 U ← sample from uniform(0, 1) random variable;

14 q ←
F [k − 1, J]× (J − 1)

n− k + 1−
∑n−1

l=J+1(F [k, l]× (l − 1))
;

15 if U < q then F [k, J]← F [k − 1, J]− 1; F [k, n]← J ; w ← w × q ;
16 else F [k, J]← F [k − 1, J]; w ← w × (1− q) ;

17 else F [k, J]← F [k − 1, J] ;

18 else if m > 2× J then
19 F [k, n]← m; F [k, J]← F [k − 1, J] + (F [k,m− J]− F [k − 1,m− J]);

20 else

21 δ ←
(∑m−1

i=J+1 F [k, i]
)
−
(∑m−1

i=J+1 F [k − 1, i]
)

;

22 if (m == 2× J) and (δ == 0) then
23 F [k, n]← m; F [k, J]← F [k − 1, J] + 2; F [k, 0]← J ;

24 else if (m <= 2× J) and (δ > 0) then
25 F [k, n]← m; F [k, J]← F [k − 1, J];

26 else if (J == dm/2e) and (δ == 0) then
27 F [k, n]← m; F [k, J]← F [k − 1, J] + 1; F [k, 0]← J ;

28 else if (m < 2× J) and (δ == 0) then
29 F [k, n]← m;
30 if (C[J] > 0) and (F [k − 1, J] == 0) then F [k, J]← 1; F [k, 0]← J ;
31 else
32 B ← BetaSplit (β,m, J); F [k, J]← F [k − 1, J] +B[0];
33 if B[0] == 1 then F [k, 0] = J ;
34 w ← w ×B[1];

4

Procedure 7: Twostep(β, n, C, F, w)
Data: β, tree shape parameter; n, sample size; C, control sequence; F , topology; and w, weight of F
Result: F and C are updated by Twostep

1 j ← n− 2; F [2, n]← n; F [2, 2]← F [2, j];
2 foreach k ∈ {3, 4, . . . , j + 1} do
3 m← 0;
4 foreach i ∈ {3, 4, . . . , n− 1} do /* find size of the edge just split, if present */

5 if F [k − 1, i] > F [k, i] then m← i; break;

6 if m == 0 then
7 F [k, 2]← F [k − 1, 2]− 1; F [k, n]← 2;

8 else if m > 4 then
9 F [k, n]← m; F [k, 2]← F [k − 1, 2] + F [k,m− 2]− F [k − 1,m− 2];

10 else if (m == 4) and (F [k, 3]− F [k − 1, 3] == 0) then
11 F [k, n]← m; F [k, 2]← F [k − 1, 2] + 2; F [k, 0]← 2;

12 else if (m == 4) and (F [k, 3]− F [k − 1, 3] > 0) then
13 F [k, n]← m; F [k, 2]← F [k − 1, 2];

14 else if m == 3 then
15 F [k, n]← m; F [k, 2]← F [k − 1, 2] + 1; F [k, 0]← 2;

16 C[j]← 0;

Procedure 8: Onestep(β, n, C, F, w)
Data: β, tree shape parameter; n, sample size; C, control sequence; F , topology; and w, weight of F
Result: F and C are updated by Onestep

1 j ← n− 1; F [2, n]← n; F [2, 1]← F [2, j];
2 foreach k ∈ {3, 4, . . . , j} do
3 m← 0;
4 foreach i ∈ {3, 4, . . . , n− 1} do
5 if F [k − 1, i] > F [k, i] then m← i; break;

6 if m > 2 then
7 F [k, 1]← F [k − 1, 1] + (F [k,m− 1]− F [k − 1,m− 1]); F [k, n]← m;

8 else
9 F [k, 1]← F [k − 1, 1] + 2; F [k, 0]← 1; F [k, n]← 2;

10 F [n, 1]← n;

11 F [n, n]← 2; F [n, 0]← 1; C[j]← 0;

5

Procedure 9: Mutate(A, n, j, s, θ, F,M, T, w1, w2)
Data: A, rates of a priori exponential epoch times; n, sample size; j, j-th step; s, mutations carried by n− j

individuals; θ, scaled mutation rate; F , topology; M , mutation matrix; T , epoch times; w1, weight of M
and w2, weight of T

Result: M , T , w1 and w2 are updated by Mutate

1 J ← n− j;
2 foreach i ∈ {0, 1, . . . , n} do M [i, J]← 0;
3 if s 6= 0 then

4 M [2 : j + 1, J] ∼ multinomial

(
s,

(
F [2, J]× T2∑j+1

`=2 (F [`, J]× T`)
,

F [3, J]× T3∑j+1
`=2 (F [`, J]× T`)

, . . . ,
F [j + 1, J]× Tj+1∑j+1

`=2 (F [`, J]× T`)

))
;

5 w1 ← w1 × s!
j+1∏
i=2

1

M [i, J]!

(
F [i, J]× Ti∑j+1

`=2 (F [`, J]× T`)

)M [i,J]

;

6 foreach k ∈ {2, 3, . . . , j + 1} do
7 if F [k, J] > 0 then

8 a← 1 +

n−1∑
i=J

M [k, i]; b← A[k] + θ

n−1∑
i=J

F [k, i];

9 T [k] ∼ gamma(a, b);

10 w2← w2×
ba

Γ(a)
T [k]a−1 exp(−bT [k])

2 Exposition of the Algorithm when n = 8

Let us detail how MakeHistory (the full procedure constructing a tree topology, a mutation
matrix and an epoch time vector compatible with a given SFS) works.

Suppose n = 8 and the observed SFS is S = (5, 2, 0, 0, 1, 0, 2). Let us see how our
sampler constructs a tree with mutations based on this information. We assume that
β = 0 to simplify the expression of the probabilities related to the topology of the tree.
The control sequence created at the beginning of the procedure tells us which edge sizes
need to be seen in the tree. Here, it is thus equal to C = (1, 1, 0, 0, 1, 0, 1).

Recall that during step j, the edges subtending n− j leaves are placed in the tree.

2.1 Topology Matrix F .

We start from an (n+ 1)× (n+ 1) matrix whose entries are all equal to 0 (indexed from
0 to n), and a proposal weight w = 1.

j = 1: Since C(7) = 1, Sstep forces the presence of a 7-edge in the only epoch at which
such an edge is possible, that is epoch 2. Hence, F (2, 7) := 1 and since a 7-edge now
exists in the tree, C(7) := 0. The largest edge created during the first split has size 7 and
the edge split during this step subtended 8 leaves by construction, and so F (2, 0) := 7
and F (2, 8) := 8. On the other hand, we do not know yet the size of the largest edge
created by the split of the 7-edge, so that F (3, 8) := 7 but F (3, 0) remains equal to 0 for
now. This call of Sstep ends here.

j = 2: Because of the presence of a 7-edge at epoch 2 (i.e., F (2, 7) > 0), there cannot be
an edge of size 6 at this epoch and F (2, 6) = 0. Next, C(6) = 0 and so the algorithm may
or may not split the 7-edge into a 6- and a 1-edge. Let us say that it creates no 6-edges,
which happens with probability 1/3 when β = 0. Hence, F (3, 6) = 0 and F (3, 0) (the size

6

of the largest edge created by the split of the 7-edge) remains equal to 0 too. Also, the
weight w associated to the tree is multiplied by the above probability, that is w := 1/3
after this step. This call of Sstep ends here.

j = 3: Again, there can be no 5-edge at epoch 2. Next, C(5) = 1 and so the 7-edge needs
to be split into a 5-edge and a 2-edge. Since at this step Sstep updates only the entries
corresponding to the 5-edges, we obtain F (3, 5) := 1, F (3, 0) := 5 and C(5) := 0. In
epoch 4, IndexSplit (see Section A) gives the size of the largest edge present in epoch 3,
that is 5. Since a 5-edge has already been placed in the previous epoch, the presence or
absence of this 5-edge in epoch 4 is random. With probability 4/5, we decide that it is
absent, and so F (4, 5) = 0 and w := 1/3 × 4/5 = 4/15. This means that the 5-edge at
epoch 3 was split and so F (4, 8) := 5. This call of Sstep stops here.

j = n/2 = 4: Because
∑7

l=5 F (2, l) > 0 and
∑7

l=5 F (3, l) > 0, there cannot be a 4-edge in
epochs 2 and 3. Next IndexSplit returns 5, the size of the largest edge present in epoch
3. Since

∑7
l=5 F (4, l) = 0 and C(4) = 0, the presence of a 4-edge in epoch 4 is random.

Let us say that such an edge is created by the split of the 5-edge, which happens with
probability 1/2. Thus, F (4, 4) := 1, F (4, 0) := 4 and w := 4/15× 1/2 = 2/15. Using the
same procedure (with IndexSplit returning 4 now), the 4-edge is not split at the beginning
of the next epoch with probability 1/4, so that F (5, 4) := 1 and w := 1/30. Finally, since
there cannot be a 4-edge in epoch k ≥ 6, Hstep forces the split of this edge, F (6, 4) = 0
and F (6, 8) := 4 (while w remains the same). This call of Hstep stops here.

j = 5: First, F (2, 3) := F (2, 5) = 0. Next, in each epoch, Lstep looks for the size m of
the edge split just before this epoch, if it has been already decided. This size is m = 7
for epoch 3. Since 7 > 2 × 3, the largest edge created by this split has already been
decided and F (3, 3) := F (2, 3) + F (3, 7 − 3) − F (2, 7 − 3) = 0. In epoch 4, m = 5 and
F (4, 4) − F (3, 4) > 0 (a 4-edge has been created), and so F (4, 3) := F (3, 3) = 0. Then,
m < 4 and F (4, 3) = 0, hence F (5, 3) remains equal to 0 with probability 1. The edge
split at the beginning of epoch 6 has size m = 4, we do not know yet the size of the
largest edge created by this split and C(3) = 0, hence the presence of a 3-edge in epoch
6 is random. Let us say that it is absent, which happens with probability 1/3: we thus
have F (6, 3) = 0 and w := 1/90. This call of Lstep stops here.

The last two steps (placing 2- and 1-edges) are fully deterministic and so the final
weight of the tree topology obtained is w = 1/90.

j = 6: First, F (2, 2) := F (2, 6) = 0. Next, in each epoch, Twostep again looks for the size
m of the edge split at its beginning, if such an edge already exists (otherwise m = 0).
Hence, in epoch 3 we have m = 7 > 4 and so F (3, 2) := F (2, 2) + F (3, 5) − F (2, 5) = 1.
In epoch 4, m = 5 and F (4, 2) := F (3, 2) + F (4, 3)− F (3, 3) = 1. In epoch 5, m = 0 and
so a 2-edge needs to be split: F (5, 2) = 0 and F (5, 8) = 2. In epoch 6, m = 4 and since
no 3-edge was created by this split, we have F (6, 2) := F (5, 2) + 2 = 2 and F (6, 0) = 2.
In epoch 7, m = 0 and so F (7, 2) = F (6, 2) − 1 = 1 and F (7, 8) = 2. Finally, F (8, 2)
remains equal to 0 (there are only 1-edges) and F (8, 8) := 2.

j = 7: Onestep considers each split, epoch by epoch, and checks whether the number of
1-edges remains the same, or increases by 1 or 2 (the latter being the consequence of the
split of a 2-edge). Hence, F (2, 1) = F (3, 1) := 1, F (4, 1) := 2, F (5, 1) = F (6, 1) := 4,
F (7, 1) := 6 and F (8, 1) := 8. Also, F (5, 0) = F (7, 0) = F (8, 0) := 1.

7

The tree topology we obtain is thus (recall that F (k, 8) gives the size of the edge split
at the beginning of epoch k and F (k, 0) that of the largest edge created by this split):



0 1 2 3 4 5 6 7 8

2 7 1 0 0 0 0 0 1 8
3 5 1 1 0 0 1 0 0 7
4 4 2 1 0 1 0 0 0 5
5 1 4 0 0 1 0 0 0 2
6 2 4 2 0 0 0 0 0 4
7 1 6 1 0 0 0 0 0 2
8 1 8 0 0 0 0 0 0 2


See Figure 1 for a tree representation of this topology.

2.2 Mutation Matrix M and Epoch Time Vector T .

We present the construction of the mutation matrix M and of the epoch time vector T
in a separate paragraph for the sake of clarity, but in fact the mutations carried by n− j
individuals in the sample are placed just after the j-th partial update of the topology
matrix F .

We start from an (n + 1)× (n + 1) matrix M whose entries are all 0, and an (n + 1)
vector T such that Tk is a realization of an exponential random variable with parameter
Ak.

For j ranging from 1 to n, after the j-th update of the topology we first check whether
there are (n − j)-mutations to place (i.e., S(n − j) > 0). If it is the case, we use the
distribution of the (n − j)-edges just obtained and the current value of the epoch time
vector T to give a weight W to each epoch and distribute the mutations in a multinomial
way. For example, for j = 1, there is only one edge in epoch 2 subtending n − 1 = 7
leaves, and this edge is split at the beginning of epoch 3. Consequently, the only possible
allocation of the S7 = 2 mutations carried by 7 individuals is to declare that M(2, 7) = 2
and M(k, 7) = 0 for k > 2. The time T (2) is then updated by taking an independent
sample from a G(1 + 2, A2 + θ) distribution. The importance weight w2 is multiplied by
the likelihood of the sampled value, and no other epoch times are updated.

Likewise, the only edge subtending 5 leaves is placed during step j = 3 in epoch 3 and
it is split at the beginning of epoch 4. This imposes that M(3, 5) = 1 and M(k, 5) = 0 for
k 6= 3, and T (3) is replaced by an independent sample from a G(1+1, A3 +θ) distribution.
The weight w2 is updated accordingly.

As concerns the S2 = 2 mutations carried by 2 individuals, during the (n−2)nd update
of the topology we inserted 1 2-edge in epoch 3, 1 in epoch 4 (the continuation of that in
epoch 3), 2 in epoch 6, 1 in epoch 7 and 0 in epochs 2, 5 and 8. This gives the weights

W (3) = T (3), W (4) = T (4), W (6) = 2T (6), W (7) = T (7)

to the epochs in which we see some 2-edges, and W (k) = 0 otherwise. Writing L2 =∑n
k=2W (k) for the total length of 2-edges in the partial topology constructed up to step

8

Figure 1: Tree with mutations corresponding to the result of the sampling described in the
example. The F -matrix fully characterizes the tree topology, while the mutation pattern
shown here is only one instance of the possible mutation placements corresponding to the
matrix M . For example, the single mutation carried by a singleton lineage in epoch 8
(M(8, 1) = 1) may actually be carried by any of the 8 extant branches in epoch 8.

n− 2 (included), we then sample the second column of the mutation matrix according to
the following multinomial distribution:

(
M(2, 2),M(3, 2), . . . ,M(8, 2)

)
∼ Multinomial

(
S2 ;

W (2)

L2

,
W (3)

L2

, . . . ,
W (8)

L2

)
.

We multiply the importance weight w1 by the probability of the mutation allocation
sampled. We then update the values of T (k) by taking independent samples from G

(
1 +∑7

l=2 M(k, l), Ak + θ
∑7

l=2M(k, l)
)

distributions, only for k = 3, 4, 6, 7. The weight w2 is
multiplied by the likelihood of this 4-sample of times.

We proceed in the same way to arrange the 5 mutations carried by a single individual
on the final topology and update the epoch times and importance weights accordingly. In
the end, a possible mutation matrix created by the procedure is the following:



1 2 3 4 5 6 7

2 0 0 0 0 0 0 2
3 1 0 0 0 1 0 0
4 0 1 0 0 0 0 0
5 1 0 0 0 0 0 0
6 1 0 0 0 0 0 0
7 1 1 0 0 0 0 0
8 1 0 0 0 0 0 0



9

3 Conditioned Gamma variables

In this section, we provide a short (standard) proof of the fact that if T follows a Gamma
distribution with parameters (k, λ), then the law of T conditional on Poisson(θT) = m is
again a Gamma distribution with parameters (k +m,λ+ θ). Indeed, we have

P
[
Poisson(θT) = m

]
=

λk

Γ(k)

∫ ∞
0

tk−1e−λtP
[
Poisson(θt) = m

]
dt

=
λk

Γ(k)

∫ ∞
0

tk−1e−λt
e−θt(θt)m

m!
dt

=
λkθm

Γ(k)m!

∫ ∞
0

tk+m−1e−(λ+θ)tdt

=
λkθmΓ(k +m)

Γ(k)(m!)(λ+ θ)k+m
,

and so the density of T conditional on Poisson(θT) = m is equal to

1

P
[
Poisson(θT) = m

] λk

Γ(k)
tk−1e−λt

e−θt(θt)m

m!
=

(λ+ θ)k+m

Γ(k +m)
tk+m−1e−(λ+θ)t

on R∗+. This is the density of the G(k +m,λ+ θ) distribution.

4 Example using ms

In this example, we considered a rather complex historical scenario of a stepping-stone
model with a recent barrier (as given in Fig. 3 of the documentation for ms, available
from https://uchicago.box.com/s/l3e5uf13tikfjm7e1il1eujitlsjdx13). There are
six subpopulations that exchange migrants in a stepping-stone model. At a time T =
2 time units in the past a barrier to gene flow arose, such that no further gene flow
occurs between subpopulation 3 and subpopulation 4. We quote the exact command we
used in our simulation with explanation quoted directly from the ms documentation for
concreteness.

ms 15 100 -t 10.0 -I 6 0 7 0 0 8 0 -m 1 2 2.5 -m 2 1 2.5 -m 2 3 2.5

-m 3 2 2.5 -m 4 5 2.5 -m 5 4 2.5 -m 5 6 2.5 -m 6 5 2.5 -em 2.0 3 4

2.5 -em 2.0 4 3 2.5

The phrase, -I 6 0 7 0 0 8 0, sets up 6 subpopulations with zero migration
rate between them and establishes that a sample of size 7 is taken from sub-
population 2 and a sample of size 8 is taken from subpopulation 5. (In the
output the first 7 haplotypes are from subpopulation 2 and the next 8 are
from subpopulation 5. The -m commands set up migration, 4Nm = 2.5 , be-
tween the neighboring subpopulations (except between subpopulation 3 and
4). The -em commands modify the migration matrix at time 2.0 in the past
such that pastward of this time, migration at rate 4Nm = 2.5 occurs also
between subpopulation 3 and 4.

10

