Annealed limit and quenched control for a diffusive disordered mean-field model with random jumps

Xavier Erny

École polytechnique (CMAP)

Centre Henri Lebesgue, Mean Field Model 12-16 juin 2023

Mathematical background

- Point processes
- Semigroup and generator

2 Model

- Neural networks model
- Definitions of the systems
- Heuristics

3 Convergence

- Result
- Finite-dimensional convergence

Point processes Semigroup and generator

Point process : definitions

Point process (or counting process) Z :

- a random countable set of \mathbb{R}_+ : $Z = \{T_i : i \in \mathbb{N}\}$
- a random point measure on \mathbb{R}_+ : $Z = \sum_{i \in \mathbb{N}} \delta_{T_i}$

周 ト イ ヨ ト イ ヨ ト

Point processes Semigroup and generator

Point process : definitions

Point process (or counting process) Z :

- a random countable set of \mathbb{R}_+ : $Z = \{T_i : i \in \mathbb{N}\}$
- a random point measure on \mathbb{R}_+ : $Z = \sum_{i \in \mathbb{N}} \delta_{T_i}$

A process λ is the **stochastic intensity** of Z if :

$$orall 0 \leq a < b, \mathbb{E}\left[Z([a,b])|\mathcal{F}_{a}
ight] = \mathbb{E}\left[\left.\int_{a}^{b}\lambda_{t}dt
ight|\mathcal{F}_{a}
ight]$$

周 ト イ ヨ ト イ ヨ

Point processes Semigroup and generator

Definitions and some property

Let $(X_t)_{t\geq 0}$ be a (homogeneous) Markov process

伺 ト イヨト イヨト

Point processes Semigroup and generator

Definitions and some property

Let $(X_t)_{t\geq 0}$ be a (homogeneous) Markov process

Semigroup of X

$$P_tg(x) = \mathbb{E}\left[g(X_t)|X_0 = x\right] = \mathbb{E}_x\left[g(X_t)\right]$$

• • = • • = •

Point processes Semigroup and generator

Definitions and some property

Let $(X_t)_{t\geq 0}$ be a (homogeneous) Markov process

Semigroup of X

$$P_tg(x) = \mathbb{E}\left[g(X_t)|X_0=x\right] = \mathbb{E}_x\left[g(X_t)\right]$$

Infinitesimal generator of X

$$Ag(x) = \left. \frac{d}{dt} P_t g(x) \right|_{t=0}$$

★ ∃ ► < ∃ ►</p>

Point processes Semigroup and generator

Definitions and some property

Let $(X_t)_{t\geq 0}$ be a (homogeneous) Markov process

Semigroup of X

$$P_t g(x) = \mathbb{E}\left[g(X_t)|X_0 = x\right] = \mathbb{E}_x\left[g(X_t)\right]$$

Infinitesimal generator of X

$$Ag(x) = \left. \frac{d}{dt} P_t g(x) \right|_{t=0}$$

Characterization of P by A

$$P_tg(x) = g(x) + \int_0^t P_s Ag(x) ds$$

3.1

Neural networks model Definitions of the systems Heuristics

Modeling in neuroscience

Neural network = directed graph

- **vertices** = neurons
- arcs = synapses

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Neural networks model Definitions of the systems Heuristics

Modeling in neuroscience

Neural network = directed graph

- **vertices** = neurons
- arcs = synapses

Neural activity = Set of spike times

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Neural networks model Definitions of the systems Heuristics

Modeling in neuroscience

Neural network = directed graph

- **vertices** = neurons
- arcs = synapses
- Neural activity = Set of spike times
 - = Point process

★ ∃ ► < ∃ ►</p>

Neural networks model Definitions of the systems Heuristics

Modeling in neuroscience

Neural network = directed graph

- **vertices** = neurons
- arcs = synapses

Neural activity = Set of spike times = Point process

Spike rate depends on the potential of the neuron

Neural networks model Definitions of the systems Heuristics

Modeling in neuroscience

Neural network = directed graph

- **vertices** = neurons
- arcs = synapses
- Neural activity = Set of spike times = Point process

Spike rate depends on the potential of the neuron

Each spike modifies the potential of the neurons

Neural networks model Definitions of the systems Heuristics

Modeling in neuroscience

Neural network = directed graph

- vertices = neurons
- arcs = synapses
- Neural activity = Set of spike times = Point process

Spike rate depends on the potential of the neuron

Each spike modifies the potential of the neurons

Network of *N* **neurons** :

- $Z_t^{N,i}$ = number of spikes of neuron *i* emitted in [0, *t*]
 - = point process with intensity $f(X_{t-}^{N,i})$
- $X^{N,i}$ = potential of neuron *i*

Neural networks model Definitions of the systems Heuristics

N-neurons network model

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{N^{\beta}} \sum_{j=1}^N u_{ji}(t) dZ_t^{N,j}$$

with :

- $Z^{N,j}$ = point process with intensity $f(X_{t-}^{N,j})$
- $\beta = 1 \text{ or } 1/2$
- $u_{ji}(t) =$ random variable (or deterministic)

・ 同 ト ・ ヨ ト ・ ヨ ト

Neural networks model Definitions of the systems Heuristics

N-neurons network model

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{N^{\beta}} \sum_{j=1}^N u_{ji}(t) dZ_t^{N,j}$$

with :

- $Z^{N,j}$ = point process with intensity $f(X_{t-}^{N,j})$
- $\beta = 1 \text{ or } 1/2$
- $u_{ji}(t) = random variable (or deterministic)$

Dynamic of $X^{N,i}$:

・ 同 ト ・ ヨ ト ・ ヨ ト

Neural networks model Definitions of the systems Heuristics

N-neurons network model

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{N^{\beta}} \sum_{j=1}^N u_{ji}(t) dZ_t^{N,j}$$

with :

- $Z^{N,j}$ = point process with intensity $f(X_{t-}^{N,j})$
- $\beta = 1 \text{ or } 1/2$
- $u_{ji}(t) = random variable (or deterministic)$

Dynamic of $X^{N,i}$:

• $X_t^{N,i} = X_s^{N,i} e^{-\alpha(t-s)}$ if the system does not jump in $[s, t[\rightarrow \alpha = \text{leakage rate}]$

・ 同 ト ・ ヨ ト ・ ヨ ト

Neural networks model Definitions of the systems Heuristics

N-neurons network model

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{N^{\beta}} \sum_{j=1}^N u_{ji}(t) dZ_t^{N,j}$$

with :

- $Z^{N,j}$ = point process with intensity $f(X_{t-}^{N,j})$
- $\beta = 1 \text{ or } 1/2$
- $u_{ji}(t) =$ random variable (or deterministic)

Dynamic of $X^{N,i}$:

- $X_t^{N,i} = X_s^{N,i} e^{-\alpha(t-s)}$ if the system does not jump in $[s, t[\rightarrow \alpha = \text{leakage rate}]$
- $X_t^{N,i} = X_{t-}^{N,i} + \frac{u^{ji}(t)}{N^{\beta}}$ if a neuron j emits a spike at $t \rightarrow u^{ji}(t)/N^{\beta} =$ synaptic weight

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト ・

Neural networks model Definitions of the systems Heuristics

Mean field limit

$$dX_t^{N,i} = b(X_t^{N,i})dt + \frac{1}{N^{\beta}}\sum_{j=1}^N u_{ji}(t)dZ_t^{N,j}$$

▲御▶ ▲ 臣▶ ▲ 臣▶

æ

Neural networks model Definitions of the systems Heuristics

Mean field limit

$$dX_t^{N,i} = b(X_t^{N,i})dt + \frac{1}{N^{\beta}}\sum_{j=1}^N u_{ji}(t)dZ_t^{N,j}$$

Scaling of the sum :

æ

Mathematical background Ner Model Der Convergence Her

Neural networks model Definitions of the systems Heuristics

Mean field limit

$$dX_t^{N,i} = b(X_t^{N,i})dt + \frac{1}{N^{\beta}}\sum_{j=1}^N u_{ji}(t)dZ_t^{N,j}$$

Scaling of the sum :

• linear scaling $\beta = 1$ (LLN) : [Delattre et al. (2016)] (Hawkes process, $u_{ji}(t) = 1$), [Chevallier et al. (2019)] and [Agathe-Nerine (2022)] $(u_{ji}(t) = w(v_j, v_i)$ random)

▲ □ ▶ ▲ □ ▶ ▲

Mathematical background Ne Model De Convergence He

Neural networks model Definitions of the systems Heuristics

Mean field limit

$$dX_t^{N,i} = b(X_t^{N,i})dt + \frac{1}{N^{\beta}}\sum_{j=1}^N u_{ji}(t)dZ_t^{N,j}$$

Scaling of the sum :

- linear scaling $\beta = 1$ (LLN) : [Delattre et al. (2016)] (Hawkes process, $u_{ji}(t) = 1$), [Chevallier et al. (2019)] and [Agathe-Nerine (2022)] $(u_{ji}(t) = w(v_j, v_i)$ random)
- diffusive scaling $\beta = 1/2$ (CLT) $\longrightarrow u_{ji}(t)$ random and centered

伺 ト イヨト イヨト

Neural networks model Definitions of the systems Heuristics

Diffusive scaling

• Marked point processes

• Random environment

æ

Diffusive scaling

• Marked point processes $Z^{N,j} = \{(T_k, U_j(T_k)) : k \in \mathbb{N}\}$ $dX_t^{N,i} = b(X_t^{N,i})dt + N^{-1/2} \sum_{j=1}^N U_j(t)dZ_t^{N,j}$

• Random environment

→ < Ξ → <</p>

Diffusive scaling

• Marked point processes $Z^{N,j} = \{(T_k, U_j(T_k)) : k \in \mathbb{N}\}$

$$dX_t^{N,i} = b(X_t^{N,i})dt + N^{-1/2}\sum_{j=1}^{N} U_j(t)dZ_t^{N,j}$$

References : 3×[E., Löcherbach, Loukianova (2022)] **Property :** semimartingale and Markov structure

• Random environment

3.1

Diffusive scaling

• Marked point processes $Z^{N,j} = \{(T_k, U_j(T_k)) : k \in \mathbb{N}\}$ $dX_t^{N,i} = b(X_t^{N,i})dt + N^{-1/2} \sum_{j=1}^N U_j(t)dZ_t^{N,j}$

References : 3×[E., Löcherbach, Loukianova (2022)] **Property :** semimartingale and Markov structure

• **Random environment** U_{ji} iid centered $dX_t^{N,i} = b(X_t^{N,i})dt + N^{-1/2}\sum_{j=1}^N U_{ji}dZ_t^{N,j}$

Diffusive scaling

• Marked point processes $Z^{N,j} = \{(T_k, U_j(T_k)) : k \in \mathbb{N}\}$ $dX_t^{N,i} = b(X_t^{N,i})dt + N^{-1/2} \sum_{i=1}^N U_j(t)dZ_t^{N,j}$

References : 3×[E., Löcherbach, Loukianova (2022)] **Property :** semimartingale and Markov structure

• **Random environment** U_{ji} iid centered $dX_t^{N,i} = b(X_t^{N,i})dt + N^{-1/2}\sum_{j=1}^N U_{ji}dZ_t^{N,j}$

Reference :...

Property : conditional semimartingale and Markov structure

・ 同 ト ・ ヨ ト ・ ヨ

Diffusive scaling

• Marked point processes $Z^{N,j} = \{(T_k, U_j(T_k)) : k \in \mathbb{N}\}$ $dX_t^{N,i} = b(X_t^{N,i})dt + N^{-1/2} \sum_{i=1}^N U_j(t)dZ_t^{N,j}$

References : 3×[E., Löcherbach, Loukianova (2022)] **Property :** semimartingale and Markov structure

• **Random environment** U_{ji} iid centered $dX_t^{N,i} = b(X_t^{N,i})dt + N^{-1/2}\sum_{j=1}^N U_{ji}dZ_t^{N,j}$

Reference :...

Property : conditional semimartingale and Markov structure

Marked model inconsistancy :

roles of synapses can change at every spike

イロト イポト イラト イラト

Mathematical background Model Convergence Model Heuristics

Diffusive scaling, random environment, dimension 1

N-particle system U_i iid centered

$$dX_t^{N,i} = b(X_t^{N,i})dt + N^{-1/2}\sum_{j=1}^N U_j dZ_t^{N,j}$$

Mathematical background Model Convergence Model Heuristics

Diffusive scaling, random environment, dimension 1

N-particle system U_i iid centered

$$dX_t^{N,i} = b(X_t^{N,i})dt + N^{-1/2}\sum_{j=1}^N U_j dZ_t^{N,j}$$

Mathematical background Model Convergence Model Heuristics

Diffusive scaling, random environment, dimension 1

N-particle system U_i iid centered

$$dX_t^N = b(X_t^N)dt + N^{-1/2}\sum_{j=1}^N U_j dZ_t^{N,j}$$

Diffusive scaling, random environment, dimension 1

N-particle system U_j iid centered

$$dX_t^N = b(X_t^N)dt + N^{-1/2}\sum_{j=1}^N U_j dZ_t^{N,j}$$

Reference : [Pfaffelhuber, Rotter, Stiefel (2022)] 2 differences :

• X^N Hawkes process \Rightarrow not gentle process

•
$$\mathcal{L}(U_1) = 1/2\delta_1 + 1/2\delta_{-1} \Rightarrow$$
 gentle distribution

Diffusive scaling, random environment, dimension 1

N-particle system U_j iid centered

$$dX_t^N = b(X_t^N)dt + N^{-1/2} \sum_{j=1}^N U_j dZ_t^{N,j}$$

Reference : [Pfaffelhuber, Rotter, Stiefel (2022)] 2 differences :

- X^N Hawkes process \Rightarrow not gentle process
- $\mathcal{L}(U_1) = 1/2\delta_1 + 1/2\delta_{-1} \Rightarrow$ gentle distribution

Our assumption : U_j iid centered and

$$\mathbb{E}\left[e^{\alpha|U_1|}\right] < \infty \text{ for some } \alpha > \mathsf{0}; \quad \sigma^2 := \mathbb{E}\left[U_1^2\right]$$

Diffusive scaling, random environment, dimension 1

N-particle system U_j iid centered

$$dX_t^N = b(X_t^N)dt + N^{-1/2} \sum_{j=1}^N U_j dZ_t^{N,j}$$

Reference : [Pfaffelhuber, Rotter, Stiefel (2022)] 2 differences :

- X^N Hawkes process \Rightarrow not gentle process
- $\mathcal{L}(U_1) = 1/2\delta_1 + 1/2\delta_{-1} \Rightarrow$ gentle distribution

Our assumption : U_j iid centered and

$$\mathbb{E}\left[e^{\alpha|U_1|}\right] < \infty \text{ for some } \alpha > 0; \quad \sigma^2 := \mathbb{E}\left[U_1^2\right]$$

Limit system $W \sim \mathcal{N}(0, \sigma^2)$

$$dar{X}_t = b(ar{X}_t)dt + Wf(ar{X}_t)dt + \sigma \sqrt{f(ar{X}_t)dB_t}$$

Heuristics for the limit system

N-particle system

$$dX_t^N = b(X_t^N)dt + N^{-1/2}\sum_{j=1}^N U_j dZ_t^{N,j}$$

Limit system

$$dar{X}_t = b(ar{X}_t)dt + Wf(ar{X}_t)dt + \sigma\sqrt{f(ar{X}_t)}dB_t$$

• • = • • = •

Mathematical background Neural networks model Model Definitions of the systems Convergence Heuristics

Heuristics for the limit system

N-particle system $\tilde{Z}_t^{N,j} := Z_t^{N,j} - \int_0^t f(X_s^{N,j}) ds$ local martingale

$$dX_t^N = b(X_t^N)dt + N^{-1/2}\sum_{j=1}^N U_j dZ_t^{N,j}$$

Limit system

$$d\bar{X}_t = b(\bar{X}_t)dt + Wf(\bar{X}_t)dt + \sigma\sqrt{f(\bar{X}_t)}dB_t$$

- 4 同 1 4 三 1 4 三 1
Mathematical background Neural networks model Model Definitions of the systems Convergence Heuristics

Heuristics for the limit system

N-particle system $\tilde{Z}_t^{N,j} := Z_t^{N,j} - \int_0^t f(X_s^{N,j}) ds$ local martingale

$$dX_{t}^{N} = b(X_{t}^{N})dt + N^{-1/2} \sum_{j=1}^{N} U_{j}d\tilde{Z}_{t}^{N,j} + \left(N^{-1/2} \sum_{j=1}^{N} U_{j}\right) f(X_{t}^{N})dt$$

Limit system

$$dar{X}_t = b(ar{X}_t)dt + Wf(ar{X}_t)dt + \sigma\sqrt{f(ar{X}_t)}dB_t$$

- 4 同 1 4 三 1 4 三 1

Mathematical background Neural networks model Model Definitions of the systems Convergence Heuristics

Heuristics for the limit system

N-particle system $\tilde{Z}_t^{N,j} := Z_t^{N,j} - \int_0^t f(X_s^{N,j}) ds$ local martingale

$$dX_{t}^{N} = b(X_{t}^{N})dt + N^{-1/2} \sum_{j=1}^{N} U_{j}d\tilde{Z}_{t}^{N,j} + \left(N^{-1/2} \sum_{j=1}^{N} U_{j}\right) f(X_{t}^{N})dt$$

Limit system

$$d\bar{X}_t = b(\bar{X}_t)dt + Wf(\bar{X}_t)dt + \sigma\sqrt{f(\bar{X}_t)}dB_t$$

- 4 同 1 4 三 1 4 三 1

Mathematical background Model Definitions of the system Convergence Heuristics

CLT coupling from KMT result

Proposition

Let U_j $(j \ge 1)$ iid centered, for some $\alpha > 0$,

$$\mathbb{E}\left[e^{\alpha|U_1|}\right] < \infty \text{ and } \sigma^2 := \mathbb{E}\left[U_1^2\right]$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Mathematical background Neural networks model Model Definitions of the systems Convergence Heuristics

CLT coupling from KMT result

Proposition

Let U_j $(j \ge 1)$ iid centered, for some $\alpha > 0$,

$$\mathbb{E}\left[e^{\alpha |U_1|}\right] < \infty \text{ and } \sigma^2 := \mathbb{E}\left[U_1^2\right]$$

Then there exist $W^{[N]}$ i.d.~ $\mathcal{N}(0,\sigma^2)$ and K such that :

$$\left|\frac{1}{\sqrt{N}}\sum_{j=1}^{N}U_{j}-W^{[N]}\right|\leq K\frac{\ln N}{\sqrt{N}} \text{ and } \mathbb{E}\left[e^{\gamma K}\right]<\infty \text{ for some } \gamma>0$$

Mathematical background Neural networks model Model Definitions of the systems Convergence Heuristics

CLT coupling from KMT result

Proposition

Let U_j $(j \ge 1)$ iid centered, for some $\alpha > 0$,

$$\mathbb{E}\left[e^{\alpha |U_1|}\right] < \infty \text{ and } \sigma^2 := \mathbb{E}\left[U_1^2\right]$$

Then there exist $W^{[N]}$ i.d.~ $\mathcal{N}(0,\sigma^2)$ and K such that :

$$\left|\frac{1}{\sqrt{N}}\sum_{j=1}^{N}U_{j}-W^{[N]}\right|\leq K\frac{\ln N}{\sqrt{N}} \text{ and } \mathbb{E}\left[e^{\gamma K}\right]<\infty \text{ for some } \gamma>0$$

Proof. consequence of :

- KMT theorem [Komlós, Major, Tusnády (1976)]
- reasonning of [Ethier, Kurtz (2005)]

Result Finite-dimensional convergence

Main result : annealed convergence and quenched control

Theorem

• X^N converges to \bar{X} in distribution in $D(\mathbb{R}_+,\mathbb{R})$

Result Finite-dimensional convergence

Main result : annealed convergence and quenched control

Theorem

- X^N converges to \bar{X} in distribution in $D(\mathbb{R}_+,\mathbb{R})$
- For all $t > 0, g \in C^3_b(\mathbb{R})$,

$$\left|\mathbb{E}\left[g(X_{t}^{N})
ight]-\mathbb{E}\left[g(ar{X}_{t})
ight]
ight|\leq C_{g,t}rac{\ln N}{\sqrt{N}}$$

Result Finite-dimensional convergence

Main result : annealed convergence and quenched control

Theorem

- X^N converges to \bar{X} in distribution in $D(\mathbb{R}_+,\mathbb{R})$
- For all $t > 0, g \in C^3_b(\mathbb{R})$,

$$\left|\mathbb{E}\left[g(X_t^N)\right] - \mathbb{E}\left[g(\bar{X}_t)\right]\right| \leq C_{g,t} \frac{\ln N}{\sqrt{N}}$$

• For all $t>0,g\in C^3_b(\mathbb{R}),$ almost surely,

$$\left|\mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N})
ight] - \mathbb{E}_{\mathcal{E}}\left[g(ar{X}_{t}^{N})
ight]
ight| = \mathcal{O}\left(rac{(\ln N)^{C_{t}}}{\sqrt{N}}
ight)$$

with $\mathcal{E} = \sigma(U_{j}: j \ge 1) \lor \sigma(W^{[N]}: N \ge 1)$

Result Finite-dimensional convergence

Main result : annealed convergence and quenched control

Theorem

- X^N converges to $ar{X}$ in distribution in $D(\mathbb{R}_+,\mathbb{R})$
- For all $t > 0, g \in C^3_b(\mathbb{R})$,

$$\left|\mathbb{E}\left[g(X_t^N)\right] - \mathbb{E}\left[g(\bar{X}_t)\right]\right| \leq C_{g,t} \frac{\ln N}{\sqrt{N}}$$

• For all $t>0,g\in C^3_b(\mathbb{R}),$ almost surely,

$$\left| \mathbb{E}_{\mathcal{E}} \left[g(X_t^N) \right] - \mathbb{E}_{\mathcal{E}} \left[g(\bar{X}_t^N) \right] \right| = \mathcal{O} \left(\frac{(\ln N)^{C_t}}{\sqrt{N}} \right)$$

with $\mathcal{E} = \sigma(U_j : j \ge 1) \lor \sigma(W^{[N]} : N \ge 1)$

Remark : same convergence speed for FIDI distribution

Result Finite-dimensional convergence

Infinitesimal generator

N-particle system

$$dX_t^N = b(X_t^N)dt + N^{-1/2} \sum_{j=1}^N U_j \int_0^\infty \mathbb{1}_{\{z \le f(X_{t-}^N)\}} d\pi^j(t,z)$$

Limit system $d\bar{X}_t^N = b(\bar{X}_t^N)dt + W^{[N]}f(\bar{X}_t^N)dt + \sigma\sqrt{f(\bar{X}_t^N)}dB_t$

Result Finite-dimensional convergence

Infinitesimal generator

N-particle system

$$dX_t^N = b(X_t^N)dt + N^{-1/2}\sum_{j=1}^N U_j \int_0^\infty \mathbb{1}_{\left\{z \le f(X_{t-}^N)
ight\}} d\pi^j(t,z)$$

$$A_{\mathcal{E}}^{N}g(x) = b(x)g'(x) + f(x)\sum_{j=1}^{N} \left[g\left(x + \frac{U_{j}}{\sqrt{N}}\right) - g(x)\right]$$

Limit system $d\bar{X}_{t}^{N} = b(\bar{X}_{t}^{N})dt + W^{[N]}f(\bar{X}_{t}^{N})dt + \sigma\sqrt{f(\bar{X}_{t}^{N})}dB_{t}$ $\bar{A}_{\mathcal{E}}^{N}g(x) = b(x)g'(x) + W^{[N]}f(x)g'(x) + \frac{1}{2}\sigma^{2}f(x)g''(x)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Result Finite-dimensional convergence

Infinitesimal generator

N-particle system

$$dX_t^N = b(X_t^N)dt + N^{-1/2}\sum_{j=1}^N U_j \int_0^\infty \mathbb{1}_{\left\{z \le f(X_{t-}^N)
ight\}} d\pi^j(t,z)$$

$$A_{\mathcal{E}}^{N}g(x) = b(x)g'(x) + f(x)\sum_{j=1}^{N} \left[g\left(x + \frac{U_{j}}{\sqrt{N}}\right) - g(x)\right]$$

Limit system $d\bar{X}_t^N = b(\bar{X}_t^N)dt + W^{[N]}f(\bar{X}_t^N)dt + \sigma\sqrt{f(\bar{X}_t^N)}dB_t$ $\bar{A}_{\mathcal{E}}^N g(x) = b(x)g'(x) + W^{[N]}f(x)g'(x) + \frac{1}{2}\sigma^2 f(x)g''(x)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Infinitesimal generator

$$\begin{aligned} N-\text{particle system} \\ dX_t^N &= b(X_t^N)dt + N^{-1/2} \sum_{j=1}^N U_j \int_0^\infty \mathbb{1}_{\{z \le f(X_{t-}^N)\}} d\pi^j(t,z) \\ \mathcal{A}_{\mathcal{E}}^N g(x) &= b(x)g'(x) + f(x)g'(x) \left(\frac{1}{\sqrt{N}} \sum_{j=1}^N U_j\right) \\ &+ f(x)g''(x) \left(\frac{1}{2N} \sum_{j=1}^N U_j^2\right) + O\left(N^{-1/2}\right) \end{aligned}$$

Limit system

$$d\bar{X}_t^N = b(\bar{X}_t^N)dt + W^{[N]}f(\bar{X}_t^N)dt + \sigma \sqrt{f(\bar{X}_t^N)dB_t}$$

$$\bar{A}_{\mathcal{E}}^{N}g(x) = b(x)g'(x) + W^{[N]}f(x)g'(x) + \frac{1}{2}\sigma^{2}f(x)g''(x)$$

æ

∃ ► < ∃ ►</p>

Infinitesimal generator

$$N-\text{particle system} dX_{t}^{N} = b(X_{t}^{N})dt + N^{-1/2} \sum_{j=1}^{N} U_{j} \int_{0}^{\infty} \mathbb{1}_{\left\{z \le f(X_{t-}^{N})\right\}} d\pi^{j}(t,z)$$
$$A_{\mathcal{E}}^{N}g(x) = b(x)g'(x) + f(x)g'(x) \left(\frac{1}{\sqrt{N}} \sum_{j=1}^{N} U_{j}\right) + f(x)g''(x) \left(\frac{1}{2N} \sum_{j=1}^{N} U_{j}^{2}\right) + O\left(N^{-1/2}\right)$$

Limit system

$$d\bar{X}_t^N = b(\bar{X}_t^N)dt + W^{[N]}f(\bar{X}_t^N)dt + \sigma \sqrt{f(\bar{X}_t^N)dB_t}$$

$$\bar{A}_{\mathcal{E}}^{N}g(x) = b(x)g'(x) + W^{[N]}f(x)g'(x) + \frac{1}{2}\sigma^{2}f(x)g''(x)$$

æ

∃ ► < ∃ ►</p>

Result Finite-dimensional convergence

Difference of generators

$$\begin{aligned} \left| A_{\mathcal{E}}^{N} g(x) - \bar{A}_{\mathcal{E}}^{N} g(x) \right| &\leq f(x) \left(\left| \frac{1}{\sqrt{N}} \sum_{j=1}^{N} U_{j} - W^{[N]} \right| \cdot |g'(x)| \right. \\ &\left. + \frac{1}{2} \left| \frac{1}{N} \sum_{j=1}^{N} U_{j}^{2} - \sigma^{2} \right| \cdot |g''(x)| \right. \\ &\left. + \frac{1}{6N\sqrt{N}} \sum_{j=1}^{N} |U_{j}|^{3} \cdot ||g'''||_{\infty} \right) \end{aligned}$$

포 🛌 포

14 / 19

Result Finite-dimensional convergence

Difference of generators

$$\begin{aligned} \left| A_{\mathcal{E}}^{N} g(x) - \bar{A}_{\mathcal{E}}^{N} g(x) \right| &\leq f(x) \left(\left| \frac{1}{\sqrt{N}} \sum_{j=1}^{N} U_{j} - W^{[N]} \right| \cdot |g'(x)| \right. \\ &\left. + \frac{1}{2} \left| \frac{1}{N} \sum_{j=1}^{N} U_{j}^{2} - \sigma^{2} \right| \cdot |g''(x)| \right. \\ &\left. + \frac{1}{6N\sqrt{N}} \sum_{j=1}^{N} |U_{j}|^{3} \cdot ||g'''||_{\infty} \right) \end{aligned}$$

포 🛌 포

Result Finite-dimensional convergence

Difference of generators

$$\begin{split} \left| A_{\mathcal{E}}^{N} g(x) - \bar{A}_{\mathcal{E}}^{N} g(x) \right| &\leq f(x) ||g||_{3,\infty} \left(\left| \frac{1}{\sqrt{N}} \sum_{j=1}^{N} U_{j} - W^{[N]} \right| \right. \\ &\left. + \frac{1}{2} \left| \frac{1}{N} \sum_{j=1}^{N} U_{j}^{2} - \sigma^{2} \right| \right. \\ &\left. + \frac{1}{6N\sqrt{N}} \sum_{j=1}^{N} |U_{j}|^{3} \right) \end{split}$$

æ

Result Finite-dimensional convergence

Difference of generators

$$\begin{aligned} \mathcal{A}_{\mathcal{E}}^{N}g(x) - \bar{\mathcal{A}}_{\mathcal{E}}^{N}g(x) \Big| \leq & f(x)||g||_{3,\infty} \left(\left| \frac{1}{\sqrt{N}} \sum_{j=1}^{N} U_{j} - W^{[N]} \right| \right. \\ & \left. + \frac{1}{2} \left| \frac{1}{N} \sum_{j=1}^{N} U_{j}^{2} - \sigma^{2} \right| \right. \\ & \left. + \frac{1}{6N\sqrt{N}} \sum_{j=1}^{N} |U_{j}|^{3} \right) \\ \leq & ||f||_{\infty} ||g||_{3,\infty} \epsilon_{N}(\mathcal{E}) \end{aligned}$$

æ

∃ ► < ∃ ►</p>

Semigroup

$$\left(\bar{P}_{\mathcal{E},t}^{N}-P_{\mathcal{E},t}^{N}\right)g(x)=\int_{0}^{t}P_{\mathcal{E},t-s}^{N}\left(\bar{A}_{\mathcal{E}}^{N}-A_{\mathcal{E}}^{N}\right)\bar{P}_{\mathcal{E},s}^{N}g(x)ds$$

Semigroup

$$\left(\bar{P}_{\mathcal{E},t}^{N}-P_{\mathcal{E},t}^{N}\right)g(x)=\int_{0}^{t}P_{\mathcal{E},t-s}^{N}\left(\bar{A}_{\mathcal{E}}^{N}-A_{\mathcal{E}}^{N}\right)\bar{P}_{\mathcal{E},s}^{N}g(x)ds$$

Sketch of proof : $u(s) := P^N_{\mathcal{E},t-s} \overline{P}^N_{\mathcal{E},s} g(x)$

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Semigroup

$$\left(\bar{P}_{\mathcal{E},t}^{N}-P_{\mathcal{E},t}^{N}\right)g(x)=\int_{0}^{t}P_{\mathcal{E},t-s}^{N}\left(\bar{A}_{\mathcal{E}}^{N}-A_{\mathcal{E}}^{N}\right)\bar{P}_{\mathcal{E},s}^{N}g(x)ds$$

Sketch of proof :
$$u(s) := P_{\mathcal{E},t-s}^N \bar{P}_{\mathcal{E},s}^N g(x)$$

 $\left(\bar{P}_{\mathcal{E},t}^N - P_{\mathcal{E},t}^N\right) g(x) = u(t) - u(0)$

Semigroup

$$\left(\bar{P}_{\mathcal{E},t}^{N}-P_{\mathcal{E},t}^{N}\right)g(x)=\int_{0}^{t}P_{\mathcal{E},t-s}^{N}\left(\bar{A}_{\mathcal{E}}^{N}-A_{\mathcal{E}}^{N}\right)\bar{P}_{\mathcal{E},s}^{N}g(x)ds$$

Sketch of proof :
$$u(s) := P_{\mathcal{E},t-s}^{N} \overline{P}_{\mathcal{E},s}^{N} g(x)$$

 $\left(\overline{P}_{\mathcal{E},t}^{N} - P_{\mathcal{E},t}^{N}\right) g(x) = u(t) - u(0)$
 $= \int_{0}^{t} u'(s) ds$

イロト イボト イヨト イヨト

Semigroup

$$\left(\bar{P}_{\mathcal{E},t}^{N}-P_{\mathcal{E},t}^{N}\right)g(x)=\int_{0}^{t}P_{\mathcal{E},t-s}^{N}\left(\bar{A}_{\mathcal{E}}^{N}-A_{\mathcal{E}}^{N}\right)\bar{P}_{\mathcal{E},s}^{N}g(x)ds$$

Sketch of proof :
$$u(s) := P_{\mathcal{E},t-s}^{N} \bar{P}_{\mathcal{E},s}^{N} g(x)$$

 $\left(\bar{P}_{\mathcal{E},t}^{N} - P_{\mathcal{E},t}^{N}\right) g(x) = u(t) - u(0)$
 $= \int_{0}^{t} u'(s) ds$
 $= \int_{0}^{t} \left[-\frac{d}{du} \left(P_{\mathcal{E},u}^{N} \bar{P}_{\mathcal{E},s}^{N} g(x) \right) \Big|_{u=t-s} + \frac{d}{du} \left(P_{\mathcal{E},t-s}^{N} \bar{P}_{\mathcal{E},u}^{N} g(x) \right) \Big|_{u=s} \right] ds$

Semigroup

$$\left(\bar{P}_{\mathcal{E},t}^{N}-P_{\mathcal{E},t}^{N}\right)g(x)=\int_{0}^{t}P_{\mathcal{E},t-s}^{N}\left(\bar{A}_{\mathcal{E}}^{N}-A_{\mathcal{E}}^{N}\right)\bar{P}_{\mathcal{E},s}^{N}g(x)ds$$

Sketch of proof :
$$u(s) := P_{\mathcal{E},t-s}^{N} \bar{P}_{\mathcal{E},s}^{N} g(x)$$

 $\left(\bar{P}_{\mathcal{E},t}^{N} - P_{\mathcal{E},t}^{N}\right) g(x) = u(t) - u(0)$
 $= \int_{0}^{t} u'(s) ds$
 $= \int_{0}^{t} \left[-\frac{d}{du} \left(P_{\mathcal{E},u}^{N} \bar{P}_{\mathcal{E},s}^{N} g(x) \right) \Big|_{u=t-s} + \frac{d}{du} \left(P_{\mathcal{E},t-s}^{N} \bar{P}_{\mathcal{E},u}^{N} g(x) \right) \Big|_{u=s} \right] ds$
 $= \int_{0}^{t} \left[-P_{\mathcal{E},t-s}^{N} A_{\mathcal{E}}^{N} \bar{P}_{\mathcal{E},s}^{N} g(x) + P_{\mathcal{E},t-s}^{N} \bar{A}_{\mathcal{E}}^{N} \bar{P}_{\mathcal{E},s}^{N} g(x) \right] ds$

Result Finite-dimensional convergence

Semigroup convergence

$$\left|\left(\bar{P}_{\mathcal{E},t}^{N}-P_{\mathcal{E},t}^{N}\right)g(x)\right|\leq\int_{0}^{t}\left|P_{\mathcal{E},t-s}^{N}\left(\bar{A}_{\mathcal{E}}^{N}-A_{\mathcal{E}}^{N}\right)\bar{P}_{\mathcal{E},s}^{N}g(x)\right|\,ds$$

16/19

æ

Result Finite-dimensional convergence

Semigroup convergence

$$\begin{split} \left| \left(\bar{P}_{\mathcal{E},t}^{N} - P_{\mathcal{E},t}^{N} \right) g(x) \right| &\leq \int_{0}^{t} \left| P_{\mathcal{E},t-s}^{N} \left(\bar{A}_{\mathcal{E}}^{N} - A_{\mathcal{E}}^{N} \right) \bar{P}_{\mathcal{E},s}^{N} g(x) \right| ds \\ &\leq \int_{0}^{t} \mathbb{E}_{\mathcal{E},X_{0}^{N} = x} \left[\left| \left(\bar{A}_{\mathcal{E}}^{N} - A_{\mathcal{E}}^{N} \right) \bar{P}_{\mathcal{E},s}^{N} g(X_{t-s}^{N}) \right| \right] ds \end{split}$$

æ

16/19

Result Finite-dimensional convergence

Semigroup convergence

$$\begin{split} \left| \left(\bar{P}_{\mathcal{E},t}^{N} - P_{\mathcal{E},t}^{N} \right) g(x) \right| &\leq \int_{0}^{t} \left| P_{\mathcal{E},t-s}^{N} \left(\bar{A}_{\mathcal{E}}^{N} - A_{\mathcal{E}}^{N} \right) \bar{P}_{\mathcal{E},s}^{N} g(x) \right| ds \\ &\leq \int_{0}^{t} \mathbb{E}_{\mathcal{E},X_{0}^{N}=x} \left[\left| \left(\bar{A}_{\mathcal{E}}^{N} - A_{\mathcal{E}}^{N} \right) \bar{P}_{\mathcal{E},s}^{N} g(X_{t-s}^{N}) \right| \right] ds \\ &\leq ||f||_{\infty} \left(\int_{0}^{t} \left| \left| \bar{P}_{\mathcal{E},s}^{N} g \right| \right|_{3,\infty} ds \right) \epsilon_{N}(\mathcal{E}) \end{split}$$

æ

16/19

Result Finite-dimensional convergence

Semigroup convergence

$$\begin{split} \left| \left(\bar{P}_{\mathcal{E},t}^{N} - P_{\mathcal{E},t}^{N} \right) g(x) \right| &\leq \int_{0}^{t} \left| P_{\mathcal{E},t-s}^{N} \left(\bar{A}_{\mathcal{E}}^{N} - A_{\mathcal{E}}^{N} \right) \bar{P}_{\mathcal{E},s}^{N} g(x) \right| ds \\ &\leq \int_{0}^{t} \mathbb{E}_{\mathcal{E},X_{0}^{N}=x} \left[\left| \left(\bar{A}_{\mathcal{E}}^{N} - A_{\mathcal{E}}^{N} \right) \bar{P}_{\mathcal{E},s}^{N} g(X_{t-s}^{N}) \right| \right] ds \\ &\leq ||f||_{\infty} \left(\int_{0}^{t} \left| \left| \bar{P}_{\mathcal{E},s}^{N} g \right| \right|_{3,\infty} ds \right) \epsilon_{N}(\mathcal{E}) \end{split}$$

Control of $||\bar{P}_{\mathcal{E},s}^{N}g(x)||_{3,\infty}$ $\bar{P}_{\sigma}^{N}\sigma(x) = \mathbb{E}_{\sigma,\bar{x}N} \left[\sigma(\bar{X}^{N})\right]$

$$P_{\mathcal{E},s}^{N}g(x) = \mathbb{E}_{\mathcal{E},\bar{X}_{0}^{N}=x}\left[g(X_{s}^{N})\right]$$

Result Finite-dimensional convergence

Semigroup convergence

$$\begin{split} \left| \left(\bar{P}_{\mathcal{E},t}^{N} - P_{\mathcal{E},t}^{N} \right) g(x) \right| &\leq \int_{0}^{t} \left| P_{\mathcal{E},t-s}^{N} \left(\bar{A}_{\mathcal{E}}^{N} - A_{\mathcal{E}}^{N} \right) \bar{P}_{\mathcal{E},s}^{N} g(x) \right| ds \\ &\leq \int_{0}^{t} \mathbb{E}_{\mathcal{E},X_{0}^{N}=x} \left[\left| \left(\bar{A}_{\mathcal{E}}^{N} - A_{\mathcal{E}}^{N} \right) \bar{P}_{\mathcal{E},s}^{N} g(X_{t-s}^{N}) \right| \right] ds \\ &\leq ||f||_{\infty} \left(\int_{0}^{t} \left| \left| \bar{P}_{\mathcal{E},s}^{N} g \right| \right|_{3,\infty} ds \right) \epsilon_{N}(\mathcal{E}) \end{split}$$

Control of $||\bar{P}^{N}_{\mathcal{E},s}g(x)||_{3,\infty}$

$$\bar{P}_{\mathcal{E},s}^{N}g(x) = \mathbb{E}_{\mathcal{E},\bar{X}_{0}^{N}=x}\left[g(\bar{X}_{s}^{N})\right] = \mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{s}^{N}(x))\right]$$

э

Result Finite-dimensional convergence

Semigroup convergence

$$\begin{split} \left| \left(\bar{P}_{\mathcal{E},t}^{N} - P_{\mathcal{E},t}^{N} \right) g(x) \right| &\leq \int_{0}^{t} \left| P_{\mathcal{E},t-s}^{N} \left(\bar{A}_{\mathcal{E}}^{N} - A_{\mathcal{E}}^{N} \right) \bar{P}_{\mathcal{E},s}^{N} g(x) \right| ds \\ &\leq \int_{0}^{t} \mathbb{E}_{\mathcal{E},X_{0}^{N}=x} \left[\left| \left(\bar{A}_{\mathcal{E}}^{N} - A_{\mathcal{E}}^{N} \right) \bar{P}_{\mathcal{E},s}^{N} g(X_{t-s}^{N}) \right| \right] ds \\ &\leq ||f||_{\infty} \left(\int_{0}^{t} \left| \left| \bar{P}_{\mathcal{E},s}^{N} g \right| \right|_{3,\infty} ds \right) \epsilon_{N}(\mathcal{E}) \end{split}$$

$$\begin{split} \bar{P}_{\mathcal{E},s}^{N}g(x) = & \mathbb{E}_{\mathcal{E},\bar{X}_{0}^{N}=x}\left[g(\bar{X}_{s}^{N})\right] = \mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{s}^{N}(x))\right]\\ \partial_{x}\bar{P}_{\mathcal{E},s}^{N}g(x) = & \mathbb{E}_{\mathcal{E}}\left[(\partial_{x}\bar{X}_{s}^{N}(x))g'(\bar{X}_{s}^{N}(x))\right] \end{split}$$

Result Finite-dimensional convergence

Semigroup convergence

$$\begin{split} \left| \left(\bar{P}_{\mathcal{E},t}^{N} - P_{\mathcal{E},t}^{N} \right) g(x) \right| &\leq \int_{0}^{t} \left| P_{\mathcal{E},t-s}^{N} \left(\bar{A}_{\mathcal{E}}^{N} - A_{\mathcal{E}}^{N} \right) \bar{P}_{\mathcal{E},s}^{N} g(x) \right| ds \\ &\leq \int_{0}^{t} \mathbb{E}_{\mathcal{E},X_{0}^{N}=x} \left[\left| \left(\bar{A}_{\mathcal{E}}^{N} - A_{\mathcal{E}}^{N} \right) \bar{P}_{\mathcal{E},s}^{N} g(X_{t-s}^{N}) \right| \right] ds \\ &\leq ||f||_{\infty} \left(\int_{0}^{t} \left| \left| \bar{P}_{\mathcal{E},s}^{N} g \right| \right|_{3,\infty} ds \right) \epsilon_{N}(\mathcal{E}) \end{split}$$

$$\begin{split} \bar{P}_{\mathcal{E},s}^{N}g(x) = & \mathbb{E}_{\mathcal{E},\bar{X}_{0}^{N}=x}\left[g(\bar{X}_{s}^{N})\right] = \mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{s}^{N}(x))\right]\\ \partial_{x}\bar{P}_{\mathcal{E},s}^{N}g(x) = & \mathbb{E}_{\mathcal{E}}\left[(\partial_{x}\bar{X}_{s}^{N}(x))g'(\bar{X}_{s}^{N}(x))\right]\\ |\partial_{x}\bar{P}_{\mathcal{E},s}^{N}g(x)| \leq & ||g'||_{\infty}\sup_{x}\mathbb{E}_{\mathcal{E}}\left[|\partial_{x}\bar{X}_{s}^{N}(x)|\right] \end{split}$$

Result Finite-dimensional convergence

Semigroup convergence

$$\begin{split} \left| \left(\bar{P}_{\mathcal{E},t}^{N} - P_{\mathcal{E},t}^{N} \right) g(x) \right| &\leq \int_{0}^{t} \left| P_{\mathcal{E},t-s}^{N} \left(\bar{A}_{\mathcal{E}}^{N} - A_{\mathcal{E}}^{N} \right) \bar{P}_{\mathcal{E},s}^{N} g(x) \right| ds \\ &\leq \int_{0}^{t} \mathbb{E}_{\mathcal{E},X_{0}^{N}=x} \left[\left| \left(\bar{A}_{\mathcal{E}}^{N} - A_{\mathcal{E}}^{N} \right) \bar{P}_{\mathcal{E},s}^{N} g(X_{t-s}^{N}) \right| \right] ds \\ &\leq ||f||_{\infty} \left(\int_{0}^{t} \left| \left| \bar{P}_{\mathcal{E},s}^{N} g \right| \right|_{3,\infty} ds \right) \epsilon_{N}(\mathcal{E}) \end{split}$$

$$\begin{split} \bar{P}_{\mathcal{E},s}^{N}g(x) = & \mathbb{E}_{\mathcal{E},\bar{X}_{0}^{N}=x}\left[g(\bar{X}_{s}^{N})\right] = \mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{s}^{N}(x))\right]\\ \partial_{x}\bar{P}_{\mathcal{E},s}^{N}g(x) = & \mathbb{E}_{\mathcal{E}}\left[(\partial_{x}\bar{X}_{s}^{N}(x))g'(\bar{X}_{s}^{N}(x))\right]\\ |\partial_{x}\bar{P}_{\mathcal{E},s}^{N}g(x)| \leq & ||g'||_{\infty}\sup_{x}\mathbb{E}_{\mathcal{E}}\left[|\partial_{x}\bar{X}_{s}^{N}(x)|\right] \leq C_{s}||g'||_{\infty}e^{C_{s}|W^{[M]}|} \end{split}$$

Result Finite-dimensional convergence

Semigroup convergence

$$\begin{split} \left| \left(\bar{P}_{\mathcal{E},t}^{N} - P_{\mathcal{E},t}^{N} \right) g(x) \right| &\leq \int_{0}^{t} \left| P_{\mathcal{E},t-s}^{N} \left(\bar{A}_{\mathcal{E}}^{N} - A_{\mathcal{E}}^{N} \right) \bar{P}_{\mathcal{E},s}^{N} g(x) \right| ds \\ &\leq \int_{0}^{t} \mathbb{E}_{\mathcal{E},X_{0}^{N}=x} \left[\left| \left(\bar{A}_{\mathcal{E}}^{N} - A_{\mathcal{E}}^{N} \right) \bar{P}_{\mathcal{E},s}^{N} g(X_{t-s}^{N}) \right| \right] ds \\ &\leq ||f||_{\infty} \left(\int_{0}^{t} \left| \left| \bar{P}_{\mathcal{E},s}^{N} g \right| \right|_{3,\infty} ds \right) \epsilon_{N}(\mathcal{E}) \\ &\leq C_{g,t} e^{C_{t} |W^{[N]}|} \epsilon_{N}(\mathcal{E}) \end{split}$$

$$\begin{split} \bar{P}_{\mathcal{E},s}^{N}g(x) = & \mathbb{E}_{\mathcal{E},\bar{X}_{0}^{N}=x}\left[g(\bar{X}_{s}^{N})\right] = \mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{s}^{N}(x))\right]\\ \partial_{x}\bar{P}_{\mathcal{E},s}^{N}g(x) = & \mathbb{E}_{\mathcal{E}}\left[(\partial_{x}\bar{X}_{s}^{N}(x))g'(\bar{X}_{s}^{N}(x))\right]\\ |\partial_{x}\bar{P}_{\mathcal{E},s}^{N}g(x)| \leq & ||g'||_{\infty}\sup_{x}\mathbb{E}_{\mathcal{E}}\left[|\partial_{x}\bar{X}_{s}^{N}(x)|\right] \leq C_{s}||g'||_{\infty}e^{C_{s}|\mathcal{W}^{[M]}|} \end{split}$$

Result Finite-dimensional convergence

Annealed convergence and quenched control

$$\left| \left(\bar{P}_{\mathcal{E},t}^{N} - P_{\mathcal{E},t}^{N} \right) g(x) \right| \leq C_{g,t} e^{C_{t} |W^{[N]}|} \epsilon_{N}(\mathcal{E})$$

Result Finite-dimensional convergence

Annealed convergence and quenched control

$$\left|\left(\bar{P}_{\mathcal{E},t}^{N}-P_{\mathcal{E},t}^{N}\right)g(x)\right|\leq C_{g,t}e^{C_{t}|W^{[N]}|}\epsilon_{N}(\mathcal{E})$$

Result Finite-dimensional convergence

Annealed convergence and quenched control

$$\left|\mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N})\right] - \mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N})\right]\right| \leq C_{g,t}e^{C_{t}|W^{[N]}|}\epsilon_{N}(\mathcal{E})$$

.⊒ →
Result Finite-dimensional convergence

Annealed convergence and quenched control

$$\left|\mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N})\right] - \mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N})\right]\right| \leq C_{g,t}e^{C_{t}|W^{[N]}|}\epsilon_{N}(\mathcal{E})$$

Annealed convergence

$$\left| \mathbb{E}\left[\left| \mathbb{E}_{\mathcal{E}}\left[g(X_t^N) \right] - \mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_t^N) \right] \right| \right] \leq C_{g,t} \mathbb{E}\left[\epsilon_N(\mathcal{E})^2 \right]^{1/2}$$

< ∃ →

17 / 19

Annealed convergence and quenched control

$$\left|\mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N})\right] - \mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N})\right]\right| \leq C_{g,t}e^{C_{t}|W^{[N]}|}\epsilon_{N}(\mathcal{E})$$

$$\begin{split} & \left[\mathbb{E}\left[\left| \mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N}) \right] - \mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N}) \right] \right| \right] \leq C_{g,t} \mathbb{E}\left[\epsilon_{N}(\mathcal{E})^{2} \right]^{1/2} \right] \\ & \text{with } \epsilon_{N}(\mathcal{E}) \leq C\left(\left| \frac{1}{\sqrt{N}} \sum_{j=1}^{N} U_{j} - W^{[N]} \right| + \left| \frac{1}{N} \sum_{j=1}^{N} U_{j}^{2} - \sigma^{2} \right| + N^{-3/2} \sum_{j=1}^{N} |U_{j}|^{3} \right) \end{split}$$

Annealed convergence and quenched control

$$\left|\mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N})\right] - \mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N})\right]\right| \leq C_{g,t}e^{C_{t}|W^{[N]}|}\epsilon_{N}(\mathcal{E})$$

$$\begin{split} & \left[\mathbb{E}\left[\left| \mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N}) \right] - \mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N}) \right] \right| \right] \leq C_{g,t} \mathbb{E}\left[\epsilon_{N}(\mathcal{E})^{2} \right]^{1/2} \right] \\ & \text{with } \epsilon_{N}(\mathcal{E}) \leq C\left(\left| \frac{1}{\sqrt{N}} \sum_{j=1}^{N} U_{j} - W^{[N]} \right| + \left| \frac{1}{N} \sum_{j=1}^{N} U_{j}^{2} - \sigma^{2} \right| + N^{-3/2} \sum_{j=1}^{N} |U_{j}|^{3} \right) \end{split}$$

Result Finite-dimensional convergence

Annealed convergence and quenched control

$$\left|\mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N})\right] - \mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N})\right]\right| \leq C_{g,t}e^{C_{t}|W^{[N]}|}\epsilon_{N}(\mathcal{E})$$

$$\frac{\left|\mathbb{E}\left[\left|\mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N})\right] - \mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N})\right]\right|\right] \leq C_{g,t}\mathbb{E}\left[\epsilon_{N}(\mathcal{E})^{2}\right]^{1/2}}{\text{with }\epsilon_{N}(\mathcal{E}) \leq C\left(\frac{\kappa \frac{\ln N}{\sqrt{N}} + \left|\frac{1}{N}\sum_{j=1}^{N}U_{j}^{2} - \sigma^{2}\right| + N^{-3/2}\sum_{j=1}^{N}|U_{j}|^{3}\right)}{\frac{1}{N}}$$

Mathematical background Model Convergence Result Finite-dimens

Result Finite-dimensional convergence

Annealed convergence and quenched control

$$\left|\mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N})\right] - \mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N})\right]\right| \leq C_{g,t}e^{C_{t}|W^{[N]}|}\epsilon_{N}(\mathcal{E})$$

$$\frac{\left|\mathbb{E}\left[\left|\mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N})\right] - \mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N})\right]\right|\right] \leq C_{g,t}\mathbb{E}\left[\epsilon_{N}(\mathcal{E})^{2}\right]^{1/2}}{\text{with }\epsilon_{N}(\mathcal{E}) \leq C\left(K\frac{\ln N}{\sqrt{N}} + \left|\frac{1}{N}\sum_{j=1}^{N}U_{j}^{2} - \sigma^{2}\right| + N^{-3/2}\sum_{j=1}^{N}|U_{j}|^{3}\right)$$

Result Finite-dimensional convergence

Annealed convergence and quenched control

$$\left|\mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N})\right] - \mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N})\right]\right| \leq C_{g,t}e^{C_{t}|W^{[N]}|}\epsilon_{N}(\mathcal{E})$$

with
$$\epsilon_N(\mathcal{E}) \leq C\left(K\frac{\ln N}{\sqrt{N}} + \left|\frac{1}{N}\sum_{j=1}^N U_j^2 - \sigma^2\right| + N^{-3/2}\sum_{j=1}^N |U_j|^3\right)$$

Finite-dimensional convergence

Annealed convergence and quenched control

$$\left|\mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N})\right] - \mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N})\right]\right| \leq C_{g,t}e^{C_{t}|W^{[N]}|}\epsilon_{N}(\mathcal{E})$$

$$\begin{split} & \mathbb{E}\left[\left|\mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N})\right] - \mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N})\right]\right|\right] \leq C_{g,t}\frac{\ln N}{\sqrt{N}} \\ & \text{with } \epsilon_{N}(\mathcal{E}) \leq C\left(K\frac{\ln N}{\sqrt{N}} + \left|\frac{1}{N}\sum_{j=1}^{N}U_{j}^{2} - \sigma^{2}\right| + N^{-3/2}\sum_{j=1}^{N}|U_{j}|^{3}\right) \\ & \text{Quenched control} \\ & \bullet \epsilon_{N}(\mathcal{E}) = \mathcal{O}\left(\frac{\ln N}{\sqrt{N}}\right) + \mathcal{O}\left(\sqrt{\frac{\ln \ln N}{N}}\right) + \mathcal{O}\left(\frac{1}{\sqrt{N}}\right) \end{split}$$

Finite-dimensional convergence

Annealed convergence and quenched control

$$\mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N})\right] - \mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N})\right] \leq C_{g,t}e^{C_{t}|W^{[N]}|}\epsilon_{N}(\mathcal{E})$$

$$\begin{split} & \left| \mathbb{E} \left[\left| \mathbb{E}_{\mathcal{E}} \left[g(X_t^N) \right] - \mathbb{E}_{\mathcal{E}} \left[g(\bar{X}_t^N) \right] \right| \right] \leq C_{g,t} \frac{\ln N}{\sqrt{N}} \right] \\ & \text{with } \epsilon_N(\mathcal{E}) \leq C \left(\left| \frac{\ln N}{\sqrt{N}} + \frac{1}{N} \sum_{j=1}^N U_j^2 - \sigma^2 \right| + N^{-3/2} \sum_{j=1}^N |U_j|^3 \right) \\ & \text{Quenched control} \\ & \bullet \epsilon_N(\mathcal{E}) = \mathcal{O} \left(\frac{\ln N}{\sqrt{N}} \right) + \mathcal{O} \left(\sqrt{\frac{\ln \ln N}{N}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{N}} \right) = \mathcal{O} \left(\frac{\ln N}{\sqrt{N}} \right) \end{split}$$

Annealed convergence and quenched control

$$\left|\mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N})\right] - \mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N})\right]\right| \leq C_{g,t}e^{C_{t}|W^{[N]}|}\epsilon_{N}(\mathcal{E})$$

Annealed convergence

$$\begin{split} & \left| \mathbb{E} \left[\left| \mathbb{E}_{\mathcal{E}} \left[g(X_t^N) \right] - \mathbb{E}_{\mathcal{E}} \left[g(\bar{X}_t^N) \right] \right| \right] \leq C_{g,t} \frac{\ln N}{\sqrt{N}} \right] \\ & \text{with } \epsilon_N(\mathcal{E}) \leq C \left(\left| \frac{\ln N}{\sqrt{N}} + \frac{1}{N} \sum_{j=1}^N U_j^2 - \sigma^2 \right| + N^{-3/2} \sum_{j=1}^N |U_j|^3 \right) \\ & \text{Quenched control} \\ & \bullet \epsilon_N(\mathcal{E}) = \mathcal{O} \left(\frac{\ln N}{\sqrt{N}} \right) + \mathcal{O} \left(\sqrt{\frac{\ln \ln N}{N}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{N}} \right) = \mathcal{O} \left(\frac{\ln N}{\sqrt{N}} \right) \\ & \bullet \text{ There exists } \beta \text{ BM, } |W^{[N]}| = |\beta_N| / \sqrt{N} = \mathcal{O}(\sqrt{\ln \ln N}) \end{split}$$

∃ ► < ∃ ►</p>

Model Convergence

Finite-dimensional convergence

Annealed convergence and quenched control

$$\mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N})\right] - \mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N})\right] \leq C_{g,t}e^{C_{t}|W^{[N]}|}\epsilon_{N}(\mathcal{E})$$

$$\begin{split} & \left| \mathbb{E} \left[\left| \mathbb{E}_{\mathcal{E}} \left[g(X_t^N) \right] - \mathbb{E}_{\mathcal{E}} \left[g(\bar{X}_t^N) \right] \right| \right] \leq C_{g,t} \frac{\ln N}{\sqrt{N}} \right] \\ & \text{with } \epsilon_N(\mathcal{E}) \leq C \left(\left| \frac{\ln N}{\sqrt{N}} + \frac{1}{N} \sum_{j=1}^N U_j^2 - \sigma^2 \right| + N^{-3/2} \sum_{j=1}^N |U_j|^3 \right) \\ & \text{Quenched control} \\ & \bullet \epsilon_N(\mathcal{E}) = \mathcal{O} \left(\frac{\ln N}{\sqrt{N}} \right) + \mathcal{O} \left(\sqrt{\frac{\ln \ln N}{N}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{N}} \right) = \mathcal{O} \left(\frac{\ln N}{\sqrt{N}} \right) \\ & \bullet \text{ There exists } \beta \text{ BM, } |W^{[N]}| = |\beta_N| / \sqrt{N} = \mathcal{O}(\sqrt{\ln \ln N}) \end{split}$$

$$\left|\mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N})\right] - \mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N})\right]\right| \leq C_{g,t} e^{C_{t}|\mathcal{W}^{[N]}|} \epsilon_{N}(\mathcal{E})$$

Mathematical background Model Convergence Result Finite-dimensional convergence

Annealed convergence and quenched control

$$\left|\mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N})\right] - \mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N})\right]\right| \leq C_{g,t}e^{C_{t}|W^{[N]}|}\epsilon_{N}(\mathcal{E})$$

$$\begin{split} & \mathbb{E}\left[\left|\mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N})\right] - \mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N})\right]\right|\right] \leq C_{g,t}\frac{\ln N}{\sqrt{N}} \\ & \text{with } \epsilon_{N}(\mathcal{E}) \leq C\left(K\frac{\ln N}{\sqrt{N}} + \left|\frac{1}{N}\sum_{j=1}^{N}U_{j}^{2} - \sigma^{2}\right| + N^{-3/2}\sum_{j=1}^{N}|U_{j}|^{3}\right) \\ & \text{Quenched control} \\ & \bullet \epsilon_{N}(\mathcal{E}) = \mathcal{O}\left(\frac{\ln N}{\sqrt{N}}\right) + \mathcal{O}\left(\sqrt{\frac{\ln \ln N}{N}}\right) + \mathcal{O}\left(\frac{1}{\sqrt{N}}\right) = \mathcal{O}\left(\frac{\ln N}{\sqrt{N}}\right) \\ & \bullet \text{ There exists } \beta \text{ BM, } |W^{[N]}| = |\beta_{N}|/\sqrt{N} = \mathcal{O}(\sqrt{\ln \ln N}) \end{split}$$

$$\left|\mathbb{E}_{\mathcal{E}}\left[g(\bar{X}_{t}^{N})\right] - \mathbb{E}_{\mathcal{E}}\left[g(X_{t}^{N})\right]\right| \leq C_{g,t}\mathcal{O}\left((\ln N)^{C_{t}} \cdot (\ln N)/\sqrt{N}\right)$$

Bibliography

- E. (2022) Annealed limit for a diffusive disordered mean-field model with random jumps. HAL, ArXiv.
- Delattre, Fournier, Hoffman (2016). Hawkes processes on large networks. Ann. Appl. Probab.
- Chevallier, Duarte, Löcherbach, Ost (2019). Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels. Stoch. Proc. Appl.
- Agathe-Nerine (2022). Multivariate Hawkes processes on inhomogeneous random graphs. Stoch. Proc. Appl.
- Pfaffelhuber, Rotter, Stiefel (2022) Mean-field limits for non-linear Hawkes processes with excitation and inhibition. Stoch. Proc. Appl.
- Komlós, Major, Tusnády (1976). An approximation of partial sums of independent RV's, and the sample DF. II. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete.

Thank you for your attention !

 ${\sf Questions}\,?$

æ

伺 ト イヨト イヨト