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Tutorials for ”Mathématiques pour les études scientifiques II” 2019-2020
Sorbonne Université, L1, 18h.
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Introduction

My research interests are concerned with the boundary between PDE’s and probability
theory. I work especially on the Keller-Segel PDE and the Keller-Segel particle system in
both the critical and supercritical cases.

Simple proof of non explosion for measure of the Keller-Segel equation

We introduce the following equation modeling chemotaxis in R2 introduced by Keller
and Segel [31] (see also Patlak [40]), with unkown (f, c),

∂tft +∇ · (ft∇ct) = ∆ft, (1)

∆ct = −ft. (2)

Chemotaxis is the biologic phenomenon where bacterias diffuse in their environement and
emit a chemoattractant which attracts themselves. At time t > 0 and position x ∈ R2 we
denote by ft(x) the density of cells and by ct(x) the density of chemoattractant. One can
informally observe that since (2) is a Poisson equation, we get ∇ct = K ? ft where for
x ∈ R2 \ {0}, K(x) = −x/(2π‖x‖2) and K(0) = 0. We can thus write

∂tft +∇ · (ftK ? ft) = ∆ft. (3)

Moreover since the right hand side of (1) can be expressed as the divergence of a vector,
the total mass of the solution must be constant, so we can setM :=

∫
R2 f0(dx) =

∫
R2 ft(dx)

for all t ≥ 0.



This model is interesting because of the tight competition between diffusion and
attraction. As shown rigourously in Jäger Luckhaus [29], the conclusion of this competition
depends on M . Setting Vt =

∫
R2 ‖x‖2ft(dx) we formally get by using multiple integration

by part that V ′t = M(4−M/(2π)). This suggests that there are three cases:

• If M < 8π (the subcritical case), then Vt > 0 for all t > 0, so the diffusion should
win over the concentration and the equation should be well posed,

• if M > 8π (the supercritical case), then there must have blow up in finite time
since V must be nonnegative for all time, more precisely we expect the emergence
of a Dirac mass,

• if M = 8π (the critical case), then the objects should be well posed since V is
constant.

In particular, it is not clear that a solution exists, especially in the supercritical case
where a blow up must occurs in finite time, in the sense of the emergence of a Dirac mass.

Biler-Karch-Laurençot-Nadzieja [4]-[5] build a global weak solution in the radially
symmetric case for all M such that M ≤ 8π and all measure inital condition.

Blanchet-Dolbeault-Perthame [6] proved the existence of a global weak free energy
solution to (1)-(2) for initial conditions f0 ∈ L1(R2) for all M such that M < 8π.

Bedrossian-Masmoudi [3] have shown that there exists a local mild solution (which is
stronger than a weak solution) for all measure initial condition f0 satisfying the property
that maxx∈R2 f0({x}) < 8π. Observe that whenever M < 8π, this condition always holds.
Moreover, Wei [46] proved the existence of a global mild solution for all f0 ∈ L1(R2) in
the subcritical and critical cases, and local solution in the supercritical case. Combining
these two results, one can find that we can build global mild solution if f0 is a measure
initial data such that f0(R2) ≤ 8π and maxx∈R2 f0({x}) < 8π.

The following result proved in Fournier-Tardy [24] is weaker, but the arguments are
much simpler, and more robust in that the same strategy can be applied to approximate
the solution by particle systems.

Theorem 1. Consider a nonnegative measure f0 on R2 with mass M strictly smaller
than 8π. There exists a global weak solution f to (3) with initial condition f0. Moreover,
for all γ ∈ (M/(4π), 2), there is a constant AM,γ > 0 depending only on M and γ such
that for all T > 0,∫ T

0

∫
R2

∫
R2

‖x− y‖γ−2fs(dx)fs(dy)ds ≤ AM,γ(1 + T ). (4)

The idea of the proof is to use a two-particle moment argument, implying an a priori
bound with the same flavor as (4).

Precise study of the collisions

Since we will use a probabilistic approach, we slightly reformulate the problem. Until
now we consider the equivalent formulation of (3):

∂tft + 2πθ∇ · (ftK ? ft) =
1

2
∆ft, (5)

with initial mass
∫
R2 f0(dx) = 1. Indeed, by a change of variable, one can show that the

threshold 8π we had on the mass becomes the threshold 2 on the attractivity parameter
θ.



An interesting way to study the equation (5) is to use the Lagrangian point of view
by following the motion of one typical cell immersed in an infinite amount of cells. We
consider the following SDE

dXt = dBt + 2πθK ? ft(Xt)dt, (6)

where ft = L(Xt) for all t ≥ 0 and (Bt)t≥0 is a 2-dimensionnal Brownian motion.
Informally, ft must solve (5). We consider the classical mean-field approximation of (6)
in R2,

dXi,N
t = dBi

t −
θ

N

N∑
j=1

Xi,N
t −Xj,N

t

‖Xi,N
t −Xj,N

t ‖2
dt, (7)

where (Bt)t≥0 := (B1
t , . . . , B

N
t )t≥0 is a 2N -dimensionnal Brownian motion. Since x 7→

−x/‖x‖2 is a very singular kernel, the existence of the process (7) is not guaranted. In
fact, in the case where θ ≥ 2, one can prove the existence of such a process as long as
there is no collision, but it can’t exist in the classical sense for all times, because of the
emergence of a cluster of particle which stay glued together once they collide. Thus we
need to use the Dirichlet form theory to give a sense to (6), at least as long as there is
no sticky collision. For the sake of conciseness and clarity we will act as if there was a
classical solution to (7) and ignore subtilities implied by the use of the Dirichlet form
theory.

We set for all L ⊂ [[1, N ]], all x = (x1, . . . , xN ) ∈ (R2)N ,

SL(x) =
1

|L|
∑
i∈L

xi and RL(x) =
∑
i∈L
‖xi − SL(x)‖2. (8)

Moreover we say for all L ⊂ [[1, N ]] that a L-collision occurs at time t if RL(XN
t ) = 0

and for all i /∈ L, RL∪{i}(X
N
t ) > 0.

The question of the behaviour of the collisions of the process (XN
t )t≥0 is a difficult one

because of the tight competition between the diffusion of the Brownian motion and the
attraction due to the attractive and singular kernel. We present our result about this
problem proved in Fournier-Tardy [25].

Informally, using the Itô formula, one gets that for all L ⊂ [[1, N ]], (RL(Xt))t≥0 is
almost a squared Bessel process with dimension dθ,N (|L|), where for all k ∈ [[1, N ]],

dθ,N (k) = (k − 1)
(

2− θk

N

)
.

One has to compare the dimensions with 0 and 2. Indeed, according to Revuz-Yor [42],
a squared Bessel process of dimension δ will

• never hit 0 if δ ≥ 2,

• hit 0 infinitely many and then immediately be reflected if δ ∈ (0, 2), we speak of
reflective collision

• hit 0 and stay at 0 if δ ≤ 0, we speak of sticky collision.



Figure 1: Plot of dθ,N (k) as a function of k ∈ [[2, N ]] with N = 9 and with θ = 2.35

(left) and θ = 2.42 (right).

k0 = 8, k1 = 7, k2 = 7 k0 = 8, k1 = 7, k2 = 6

Fixing N and θ, we plot dN,θ(k) as a function of k, see Figure 1.

We will place ourselves in the case where N and θ are chosen such that 2 > dθ,N (k2) ≥
dθ,N (k1) ≥ dθ,N (k0) where k0 = d2N/θe, k1 = k0 − 1 and k2 = k0 − 2 (this correspond to
the second picture.)

This gives us the intuition that only collisions of k particles occur with k ∈ {2, k2, k1, k0},
which seems original. Moreover, we succeeded to show more precisely the following
behaviour: a cluster of precisely k0 particle will emerge and the Dirichlet form theory
can’t be applied beyond this time, which seems to coincide with our intuition that
once k0 particle collide together, they stay glued together forever. This instant is called
the explosion of the process (XN

t )t≥0. Before the explosion, there are infinitely many
k1-collision of every subset of k1 particles from the k0 particles involved in the cluster
of the explosion. Moreover, before each of these k1-collisions, there are infinitely many
k2-collisions of every subset of k2 particles from the k1 particle involved in the k1-collision.
Finally, the same behaviour occurs for 2-collisions before each k2-collisions. Another
remarkable fact is that there is no k-collision for k ∈ [[3, k2 − 1]] which seems rather
counterintuitive.

Mean-field limit in both subcritical and critical cases

Another interesting question is to understand if the approximation of (6) by (7) is relevant.
More precisely, we want to show that µNt =

∑N
i=1 δXi,N

t
converges in some sense to (ft)t≥0

as N →∞.

This kind of question was first raised by Kac [30] in the view of justifying rigorously
the Boltzman equation. McKean [35], Méléard [36] and Mischler-Mouhot [38] brought
significant contributions to the theory.

The first result dealing with the Keller-Segel particle system in particular is the one
of Godinho-Quininao [27], replacing K by −x/‖x‖1+α with α ∈ (0, 1), which is a less
singular kernel (there is no tight competition anymore between diffusion and attraction).
Then Olivera-Richard-Tomasevic [39] where roughly, K is replaced by −x/(‖x‖2 + εN )
with εN very large in front of N−1/d. The technics used are inspired by a method
developped by Flandoli [22] based on semigroups. In the (very) subcritical case θ < 1/2,
Fournier-Jourdain [23] proved it up to the extraction of a subsequence. Finally, Bresch-
Jabin-Wang [7] proved a convergence with quantitative estimates using a modulated free
entropy method in the case where θ < 2. The convergence is not up to the extraction of
a subsequence, but it holds only for regular initial data, i.e f0 ∈W 2,∞, and they simplify
the problem by replacing R2 by a torus.



We now introduce our result in the subcritical case proved in [45].

Theorem 2. Let θ ∈ (0, 2) and f0 ∈ P(R2). For each N ≥ N0 := (1 + d2/(2− θ)e) ∨ 5,
consider FN0 ∈ P∗sym,1((R2)N ) and a KS(θ,N)-process (Xi,N

t )t≥0,i∈[[1,N ]] with initial law

FN0 , as well as the empirical measure for all t ≥ 0, µNt := N−1
∑N

i=1 δXi,N
t

, which a.s.

belongs to P(R2). We assume that µN0 goes weakly to f0 in probability as N →∞.

(i) The sequence ((µNt )t≥0)N≥N0 is tight in C([0,∞),P(R2)).

(ii) For any sequence (Nk)k≥0 such that (µNk
t )t≥0 goes in law in C([0,∞),P(R2)) as

k →∞ to some (µt)t≥0, this limit (µt)t≥0 is a.s a weak solution to (1)-(2) starting from
µ0 = f0. Moreover, for all T > 0, all γ ∈ (θ, 2).

E
[ ∫ T

0

∫
R2

∫
R2

‖x− y‖γ−2µt(dx)µt(dy)dt
]
<∞.

The proof is very similar to the proof of Theorem 1.

We derive the same result in the critical case by using the same proof but with the
additionnal difficulty that a cluster must emerge in the particle system (with N being
fixed) but not in the PDE (when N →∞). We use our understanding of the collisions,
in particular we use that if one wants to see a collision in the critical case which is not a
collision between 2 particles, one needs to have at least N − 2 particles at the same place
(because as explained befor, and since k0 = N , there are only collisions of k particles with
k ∈ {2, N − 2, N − 1, N}). However if the number of particle tends to infinity, there will
always be some particles with an original trajectory which will deviate too much from the
other particles and this means that at the limit, we will never see any (N − 2)-collisions
on a reasonnable time interval.
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