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This handout is a brief introduction to the main ideas developped in [LSJ16].
Monte Carlo Markov Chains (MCMC) are algorithms that enable to sample from
a probability distribution whose normalizing constant is unknown. Their interest
is thus widely acknowledged in the Bayesian setting, in combinatorics and sta-
tistical physics. The basic idea behind MCMC methods is to create a Markov
chain whose stationary distribution is the target distribution. It is fairly easy to
create such a Markov chain; besides, its simulation does not need the knowledge
of the normalizing constant (see Metropolis-Hastings algorithm on Wikipedia). Of
course, numerous other Markov chains are eligible, in the sense that they have
the target distribution as stationary distribution. One of the most famous one,
besides the Metropolis-Hastings algorithm, is the Gibbs sampler (see the webpage
on Wikipedia). The principal problematic with MCMC methods is the analysis of
the number of samples necessary to reach the equilibrium (that is, the stationary
distribution).

[LSJ16] answers this question in a particular framework. The state space is
finite of the form 2V , where V = {0, . . . , N}. The target distribution is πC ∝
exp(βF (S))1 {S ∈ C} where S ∈ 2V , F : 2V → R and C is a set of constraints.
Denote by π the unconstrained distribution. The cases tackled by the authors are:

1. π is a strongly Rayleigh distribution.

2. C is a set of bases of a special matroid, i.e. C =
{
S ∈ 2V | |S| = k

}
for k ∈

{0, . . . , N} and |S| is the cardinal of S, or S obeys a partition constraint.

3. |S| ≤ k.

For applications, see the introduction of [LSJ16]. The first case covers Determi-
nantal Point Processes (DPP) used in machine learning (see the references in the
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article). The constraints for the two other cases are understandable. A matroid
is like a ”group” structure, that guarantees that the Markov chain (here a Gibbs
sampler) stays in the constraint set.

To prove convergence of a Markov chain, numerous techniques exist. In this
article, spectral methods are used and we refer the reader to [LPW09, chapters
12,13,14] for an introduction. The book is available online. The aim is to lower
bound the spectral gap for the two first cases and a coupling argument is de-
velopped for the third case. For all cases, they rely on the Gibbs sampler. The
interested reader should look at the detailed proofs of [LSJ16] in the supplementary
material. More precisely, the strategies used by the authors are

1. direct application of [AGR16] using a symmetrisation procedure on π that
preserves its strongly Rayleigh property. Clever but it is a ”trick” and the
curious reader should better read [AGR16]. Strongly Rayleigh distributions
exhibit the strongest form of negative dependence and they enjoy nice prop-
erties. Their definition is quite recent and we refer to [BBL09] for their main
properties. To know more about negative dependence, one can also read
[Pem00], [PP14].

2. relies on a multicommodity flow argument to lower bound the spectral gap.
See [Sin92] and [GHK15]. The convergence properties of the Gibbs sampler
are ”translated” in a problem of flows and capacities on a graph. The proof
is based on combinatorics and is quite elegant. See also [LPW09, Section
13.4].

3. relies on a coupling argument, see [LPW09, Chapter 14]. The coupling is
quite intricate.

Except for the strongly Rayleigh distribution, the bound on the number of
samples to reach equilibrium depends on unknown quantities related to F . It
could be useful to study cases where these quantities are explicitly known (under
additional assumptions if necessary).
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