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1 Introduction

We consider the design of adaptive, nonparametric statistical
tests of dependence: that is, tests of whether a joint distribu-
tion Pxy factorizes into the product of marginals PxPy with
the null hypothesis that H0 : X ∈ X ⊆ Rdx and Y ∈ Y ⊆ Rdy

are independent. While classical tests of dependence, such
as Pearson’s correlation and Kendall’s τ , are able to detect
monotonic relations between univariate variables, more mod-
ern tests can address complex interactions. Key to many
recent tests is to examine covariance or correlation between
data features. These interactions become significantly harder
to detect, and the features are more difficult to design, when
the data reside in high dimensions.

The approach we take is most closely related to HSIC [1]
on a finite set of features. Assume that k : X × X → R
and l : Y × Y → R are positive definite kernels, satisfying
some smoothness conditions. The Finite Set Independence
Criterion (FSIC) is defined as

FSIC2(X,Y) :=
1

J

J∑
i=1

cov2
(x,y)∼Pxy

[k(x,vi), l(y,wi)],

which is an average of covariances of smooth functions de-
fined on each of X and Y , parametrized by some features
{(vi,wi)}Ji=1 ⊂ X × Y. With some mild conditions, we can
show that FSIC2(X,Y ) = 0 if and only if X and Y are inde-
pendent. Also, a normalized version of the statistic (NFSIC)
yields an asymptotic test threshold independent of Pxy.

Our test is consistent, despite a finite number (J) of fea-
tures being used, via a generalization of arguments in [2]. As
in recent work on two-sample testing by [3], our test is adap-
tive in the sense that we choose our features on a held-out
validation set to optimize a lower bound on the test power;
the result is a parsimonious and interpretable indication of
how and where the null hypothesis is violated. The compu-
tational complexity of our tests is linear in the sample size.

2 Experiment

We consider a subset of the Million Song Data,1 in which
each song (X) out of 515,345 is represented by 90 features,
of which 12 features are timbre average (over all segments)
of the song, and 78 features are timbre covariance. The goal
is to detect the dependency between each song and its year
of release (Y ). We use Gaussian kernels, set the significance
level α := 0.01, and repeat for 300 trials where the full sample
is randomly subsampled to n points in each trial. We com-
pare the proposed test with automatic parameter optimiza-

1Million Song Data subset: https://archive.ics.uci.edu/ml/

datasets/YearPredictionMSD.
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Figure 1: Probability of rejecting H0 as n increases in the
Million Song Data problem.

tion (NFSIC-opt) to five multivariate nonparametric tests.
The NFSIC test without optimization (NFSIC-med) acts as
a baseline, allowing the effect of parameter optimization to
be clearly seen. QHSIC is the quadratic-time HSIC test of
[1]. Nyström HSIC (NyHSIC), and Finite-feature HSIC (FH-
SIC) are other variants of HSIC which run in linear time.
Finally, the Randomized Dependence Coefficient (RDC) (an
O(n log n) test) proposed in [4] is also considered.

Figure 1 shows the test powers (rejection rate) as the sam-
ple size varies. We observe that NFSIC-opt has the highest
test power among all the linear-time tests for all the sam-
ple sizes. Its test power is second to only QHSIC. The fact
that there is a vast power gain from 0.4 (NFSIC-med) to 0.8
(NFSIC-opt) at n = 500 suggests that the optimization pro-
cedure can perform well even at a lower sample sizes.

In the full paper [5], we further demonstrate the perfor-
mance of our tests on several other challenging problems, in-
cluding detection of dependence between videos and captions,
and artificial problems with interacting features. In these ex-
periments, we outperform competing linear and O(n log n)
time tests. Also, when H0 holds, the proposed test has cor-
rect false-positive rate.
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