CMAP
PUBLICATIONS
PUBLISHED AND ACCEPTED PAPERS
2025
- Y. Gu, C. Rey, Deterministic computation of quantiles in a Lipschitz framework, Journal of Computational and Applied Mathematics, 48 (2025). https://doi.org/10.1016/j.cam.2024.116344.
2024
- M. Allouche, E. Gobet, C. Lage, and E. Mangin, Structured Dictionary Learning of Rating Migration Matrices for Credit Risk Modeling, Computational Statistics (2024).https://doi.org/10.1007/s00180-023-01449-y.
- M. Allouche, S. Girard, and E. Gobet, Estimation of extreme quantiles from heavy-tailed distributions with neural networks, Statistics and Computing 34 (2024), no. 12, 1-35. https://doi.org/10.1007/s11222-023-10331-2.
- M. Allouche, J. El Methni, and S. Girard, Reduced-bias estimation of the extreme conditional tail expectation for Box-Cox transforms of heavy-tailed distributions., Journal of Statistical Planning and Inference 33 (2024), 106-189. https://doi.org/10.1016/j.jspi.2024.106189.
- J. Arbel, S. Girard, and H. Lorenzo, Shrinkage for Extreme
Partial Least Squares, Statistics and Computing
34 (2024), no. 181. https://doi.org/10.1007/s11222-024-10490-w. - C. Escribe, J. Garnier, and E. Gobet, A mean field game model
for renewable investment under
long-term uncertainty and risk aversion., Dynamic Games and Applications 14 (2024), 1093-1130.
https://doi.org/10.1007/s13235-024-00554-x. - G. Perrin and C. Soize, Reconstruction of Random Fields Concentrated on an Unknown Curve using Irregularly Sampled Data., Methodology and Computing in Applied Probability 26 (2024), no. 9. https://doi.org/10.1007/s11009-024-10079-w.
- A. Grimaud, I. Salle, and G. Vermandel, Social Learning expectations: microfoundations and a Dynare Toolbox., Journal of Economics Dynamic and Control. (2024). https://dx.doi.org/10.2139/ssrn.4437177.
- J. Arifovic, A. Grimaud, I. Salles, and G. Vermandel, Social Learning and Monetary Policy at the Effective Lower Bound., Journal of Money, Credit and Banking. (2024). https://doi.org/10.1111/jmcb.13133.
2023
- C. Albanese, S. Crepey, and S. Iabichino, Quantitative reverse
stress testing, bottom-up, Quantitative Finance
23 (2023), no. 5, 863-875. https://doi.org/10.1080/14697688.2023.2187315. - J. Arbel, S. Girard, H. Nguyen, and A. Usseglio-Carleve,
Multivariate expectile-based distribution : properties,
Bayesian inference, and applications., Journal of Statistical Planning and Inference 225 (2023), 146-170. https://doi.org/10.1016/j.jspi.2022.12.001. - D. Bastide, S. Crepey, S. Drapeau, and M. Tadese, Derivatives
Risks as Costs in a One-Period Network
Model, Frontiers of Mathematical Sciences (2023). https://doi.org/10.3934/fmf.2023014. - C. Benezet, E. Gobet, and R. Targino, Transform MCMC schemes for
sampling intractable factor
copula models, Methodology and Computing in Applied Probability 25 (2023), no. 13. https://doi.org/10.1007/s11009-023-09983-4. - G. Benmir, I. Jaccard, and G. Vermandel, Optimal monetary policy
in an estimated SIR model, European
Economic Review 156 (2023). https://doi.org/10.1016/j.euroecorev.2023.104502. - F. Bourgey, S. De Marco, P.K. Fritz, and P. Pigato, Local volatility under rough volatility, Mathematical Finance 33 (2023), no. 4, 1119-11145. https://doi.org/10.1111/mafi.12392.
- F. Bourgey, S. De Marco, and E. Gobet, Weak approximations and
VIX option price expansions
in forward variance curve models, Quantitative Finance 23 (2023), no. 9, 1259–1283. https://doi.org/10.1080/14697688.2023.2227230. - M. Bousebata, G. Enjolras, and S. Girard, Extreme Partial
Least-Squares, Journal of Multivariate Analysis
194 (2023), 105-101. https://doi.org/10.1016/j.jmva.2022.105101. - E. Gobet and C. Lage, Optimal ecological transition path of a
credit portfolio distribution,
based on multidate Monge-Kantorovich formulation, Annals of Operations Research (2023). https://doi.org/10.1007/s10479-023-05385-4. - T. Moins, J. Arbel, S. Girard, and A. Dutfoy, Reparameterization
of extreme value framework
for improved Bayesian workflow, Computational Statistics & Data Analysis 187 (2023). https://doi.org/10.1016/j.csda.2023.107807. - Y. Jiao and N. Kolliopoulos, Well-posedness of a system of SDEs driven by jump random measures, Stochastics and Dynamics 23 (2023), no. 04. https://doi.org/10.1142/S0219493723500284.
2022
- M. Allouche, S. Girard, and E. Gobet, A generative model for fBm with deep ReLU neural networks, Journal of Complexity 73 (2022), 101–667. https://doi.org/10.1016/j.jco.2022.101667.
- M. Allouche, S. Girard, and E. Gobet,, EV-GAN : Simulation of extreme events with ReLU neural networks, Journal of Machine Learning Research 23 (2022), no. 150, 1–39. https://jmlr.org/papers/v23/21-0663.html.
- M. Allouche, J. El Methni, and S. Girard, A refined Weissman estimator for extreme quantiles, Extremes (2022). https://doi.org/10.1007/s10687-022-00452-8.
- P.-C. Aubin-Frankowski and Z. Szabo, Handling hard affine SDP shape constraints in RKHSs, Journal of Machine Learning Research 23 (2022), no. 297, 1–54. https://jmlr.org/papers/v23/21-0007.html.
- F. Bourgey and S. De Marco, Multilevel Monte Carlo simulation for VIX options in the rough Bergomi model, Journal of Computational Finance 26 (2022), no. 2, 30. https://doi.org/10.21314/JCF.2022.023.
- F. Bourgey, E. Gobet, and Y. Jiao, Bridging socioeconomics pathways of CO2 emission and credit risk, Annals of Operations Research (2022). https://doi.org/10.1007/s10479-022-05135-y.
- F. Bourgey, E. Gobet, and C. Rey, A comparative study of polynomial-type chaos expansions for indicator functions, SIAM/ASA Journal on Uncertainty Quantification 10 (2022), no. 4, 1350–1383. https://doi.org/10.1137/21M1413146.
- A. Cousin, Y. Jiao, C.Y. Robert, and O.D. Zerbib, Optimal asset allocation subject to withdrawal risk and solvency constraints, Risks 10 (2022), no. 1, 15. https://doi.org/10.3390/risks10010015.
- S. Girard, G. Stupfler, and A. Usseglio-Carleve, Nonparametric extreme conditional expectile estimation, Scandinavian Journal of Statistics 49 (2022), no. 1, 78–115. https://doi.org/10.1111/sjos.12502.
- S. Girard, G. Stupfler, and A. Usseglio-Carleve, Functional estimation of extreme conditional expectiles, Econometrics and Statistics 21 (2022), no. 1, 131–158. https://doi.org/10.1016/j.ecosta.2021.05.006.
- S. Girard, G. Stupfler, and A. Usseglio-Carleve, On automatic bias reduction for extreme expectile estimation, Statistics and Computing 32 (2022), 64. https://doi.org/10.1007/s11222-022-10118-x.
- E. Gobet and M. Grangereau, Newton method for stochastic control problems, SIAM Journal on Control and Optimization 60 (2022), no. 5, 2996–3025. https://doi.org/10.1137/21M1408567.
- E. Gobet and M. Grangereau, Extended McKean-Vlasov optimal stochastic control applied to smart grid management, ESAIM:COCV 28 (2022), no. 40, 37. https://doi.org/10.1051/cocv/2022034.
- Y. Jiao, Y. Salhi, and S. Wang, Dynamic Bivariate Mortality Modelling, Methodol. Comput. Appl. Probab. 24 (2022), 917–938. https://doi.org/10.1007/s11009-022-09955-0.
- C. Martini and A. Mingone, No arbitrage SVI, SIAM Journal on Financial Mathematics 13 (2022), no. 1, 227–261. https://doi.org/10.1137/20M1351060.
2021
- C. Albanese, S. Crepey, and S. Iabichino, Chapter 17 : Capital and collateral simula- tion for reverse stress testing, Reverse Stress Testing in Banking, 2021, pp. 349–360. https://doi.org/10.1515/9783110647907-017.
- M. Chataigner, A. Cousin, S. Crepey, M. Dixon, and D. Gueye, Short communication : Beyond surrogate modeling: Learning the local volatility via shape constraints, SIAM Journal on Financial Mathematics 12 (2021), no. 3, SC58-SC69. https://doi.org/10.1137/20M1381538.
- A. Daouia, S. Girard, and G. Stupfler, ExpectHill estimation, extreme risk and heavy tails, Journal of Econometrics 221 (2021), no. 1, 97–117. https://doi.org/10.1016/j.jeconom.2020.02.003.
- S. De Marco, On the harmonic mean representation of the implied volatility, SIAM J. Finan. Math. 12 (2021), no. 2, 551–565. https://doi.org/10.1137/20M1352120.
- H. Drees and A. Sabourin, Principal Component Analysis for Multivariate Extremes, Electron. J. Statist. 15 (2021), no. 1, 908–943. https://doi.org/10.1214/21-EJS1803.
- L. Gardes and S. Girard, On the estimation of the variability in the distribution tail, Test 30 (2021), no. 2, 884–907. https://doi.org/10.1007/s11749-021-00754-2.
- S. Girard, G. Stupfler, and A. Usseglio-Carleve, Extreme Conditional Expectile Estima- tion in Heavy-Tailed Heteroscedastic Regression Model, Annals of Statistics 49 (2021), no. 6, 3358–3382. https://doi.org/10.1214/21-AOS2087.
- S. Girard, G. Stupfler, and A. Usseglio-Carleve, Extreme Lp - quantile kernel regression, Advances in contemporary Statistics and Econometrics (2021), 197–219. https://doi.org/10.1007/978-3-030-73249-3 11.
- Y. Jiao, C. Ma, S. Scotti, and C. Zhou, The Alpha-Heston stochastic volatility model, Mathematical Finance 31 (2021), no. 3, 943–978. https://doi.org/10.1111/mafi.12306.
- A. Lambert, S. Parekh, Z. Szabo, and F. Alche-Buc, Emotion transfer using vector-valued infinite task learning, CoRR (2021). https://doi.org/10.13140/RG.2.2.27032.93442.
2020
- A. Ahmad, E. Deme, A. Diop, S. Girard, and A. Usseglio Carleve, Estimation of extreme quantiles from heavy-tailed distributions in a location-dispersion regression model, Electronic Journal of Statistics 14 (2020), no. 2, 4421–4456. https://doi.org/10.1214/20-EJS1779.
- C. Albanese, Y. Armenti, and S. Crepey, XVA Metrics for CCP optimisation, Statistics & Risk Modeling 37 (2020), no. 1-2, 25–53. https://doi.org/10.1515/strm-2017-0034.
- C. Albert, A. Dutfoy, and S. Girard, Asymptotic behavior of the extrapolation error associated with the estimation of extreme quantiles, Extremes 23 (2020), no. 2, 349–380. https://doi.org/10.1007/s10687-019-00370-2.
- M. Arnaudon and P. Del Moral, A second order analysis of McKean-Vlasov semigroups, Annals of Applied Probability 30 (2020), no. 6, 2613–2664. https://doi.org/10.1214/20-AAP1568.
- P.-C. Aubin-Frankowski and Z. Szabo, Hard shape-constrained kernel machines, Advances in Neural Information Processing Systems (NeurIPS), December 2020, pp. 384–395. https://proceedings.neurips.cc/paper files/paper/2020.
- P.-C. Aubin-Frankowski and Z. Szabo, Hard Shape-Constrained Kernel Regression, Joint Structures and Common Foundations of Statistical Physics, Information Geometry and Inference for Learning (SPIG-2020), Jul. 2020. https://franknielsen.github.io/SPIG-LesHouches2020/Aubin-SPIGL2020.pdf.
- P.-C. Aubin-Frankowski, N. Petit, and Z. Szabo, Kernel Regression for Vehicle Trajectory Reconstruction under Speed and Inter-vehicular Distance Constraints, IFAC-PapersOnLine 53 (2020), no. 2, 15084-15089. https://doi.org/10.1016/j.ifacol.2020.12.2030.
- F. Bourgey, E. Gobet, and C. Rey, Meta-model of a large credit risk portfolio in the Gaussian copula model, SIAM Journal on Financial Mathematics 11 (2020), no. 4, 1098-1136. https://doi.org/10.1137/19M1292084.
- F. Bourgey, S. De Marco, E. Gobet, and A. Zhou, Multilevel Monte-Carlo methods and lower–upper bounds in Initial Margin computations, Monte Carlo methods and Applications 2 (2020), no. 26, 131–161. https://doi.org/10.1515/mcma-2020-2062.
- L. Chamakh, E. Gobet, and Z. Szabo, Orlicz Random Fourier Features, Journal of Machine Learning Research 21 (2020), no. 145, 1–37. https://jmlr.org/papers/v21/19-1031.html.
- S. Crepey and M. Dixon, Gaussian Process Regression for Derivative Portfolio Modeling and Application to CVA Computations, Journal of Computational Finance 24 (2020), no. 1, 47–81. https://doi.org/10.21314/JCF.2020.386.
- S. Crepey, G. Fort, E. Gobet, and U. Stazhynski, Uncertainty Quantification for Stochas- tic Approximation Limits Using Chaos Expansion, SIAM/ASA Journal on Uncertainty Quantification 8 (2020), no. 3, 1061–1089. https://doi.org/10.1137/18M1178517.
- A. Daouia, S. Girard, and G. Stupfler, Tail expectile process and risk assessment, Bernoulli 26 (2020), no. 1, 531–556. https://doi.org/10.3150/19-BEJ1137.
- L. Gardes, S. Girard, and G. Stupfler, Beyond tail median and conditional tail expectation: extreme risk estimation using tail Lp-optimisation, Scandinavian Journal of Statistics 47 (2020), no. 3, 922–949. https://doi.org/10.1111/sjos.12433.
2019
- J. Arbel, M. Crispino, and S. Girard, Dependence properties and Bayesian inference for asymmetric multivariate copulas, Journal of Multivariate Analysis 174 (2019), 104–530. https://doi.org/10.1016/j.jmva.2019.06.008.
- M. Arnaudon and P. Del Moral, A variational approach to nonlinear and interacting diffusions, Stochastic Analysis and Applications 37 (2019), no. 5, 717–748. https://doi.org/10.1080/07362994.2019.1609985.
- D. Barrera and E. Gobet, Quantitative bounds for concentration-of-measure inequalities and empirical regression: the independent case, Journal of Complexity 52 (2019), 45–81. https://doi.org/10.1016/j.jco.2019.01.003.
- P. Del Moral and S.S. Singh, A forward-backward stochastic analysis of diffusion flows, Research Report INRIA (2019). https://hal.inria.fr/hal-02161914v5.
IN
PROGRESS (PREPRINTS, SUBMITTED PAPERS)
- M. Allouche, S. Girard, and E. Gobet, Learning out-of-sample expected shortfall and conditional tail moments with neural networks. Application to cryptocurrency data., preprint (2024). https://hal.science/hal-04347859.
- M. Allouche, S. Girard, and E. Gobet, On the simulation of extreme events with neural networks., preprint (2024). https://hal.science/hal-04416809.
- D. Barrera, S. Crepey, E. Gobet, H.-D. Nguyen, and B. Saadeddine, Statistical of value-at-risk and expected shortfall, preprint (2024). https://arxiv.org/abs/2209.06476.
- D. Barrera and E. Gobet, Generalization bounds for nonparametric regression with β-mixing samples, preprint (2021). https://hal.archives-ouvertes.fr/hal-03311506.
- D. Bastide and S. Crepey, Provisions and economic capital for credit losses, preprint (2024). arXiv:2401.07728.
- D. Bastide, S. Crepey, S. Drapeau, and M. Tadese, Resolving a clearing member’s default: A Radner equilibrium approach, In minor revision at Mathematics and Financial Economics (2023). arXiv:2310.02608.
- G. Benmir, I. Jaccard, and G. Vermandel, Green asset pricing, In minor revision at Journal of Finance (2023).
- A. Bezat, E. Gobet, C. Guivarch, Y. Jiao, and E. Ndiaye, Optimal
business model adaptation plan for a
company under a transition scenario, preprint (2024). https://hal.science/hal-04682824/. - J. Bullard, A. Grimaud, I. Salle, and G. Vermandel, Soft Landing and Inflation Scares, preprint (2024).
- F. Bourgey and S. De Marco, Small-time asymptotics for American options in local volatility models, preprint (2020).
- F. Bourgey, E. Gobet, and Y. Jiao, An Efficient SSP-based
Methodology for Assessing Climate Risks of a
Large Credit Portfolio, preprint (2024). https://hal.science/hal-04665712/. - L. Chamakh, E. Gobet, and J.P. Lemor, Non-asymptotic comparison of covariance matrix inputs in dynamic minimum variance portfolio, in revision for Frontiers in Mathematical Finance (2022).
- L. Chamakh, E. Gobet, and W. Liu, Orlicz norms and concentration inequalities for α-heavy tailed random variables, in revision for Bernoulli (2022). https://hal.science/hal-03175697v3.
- C. Crofils, E. Gallic, and G. Vermandel, The Dynamic Effects of Weather Shocks on Agricultural Production, in revision for Journal of Environmental and Management. (2024). https://dx.doi.org/10.2139/ssrn.4724174.
- L. Dubois, J.G. Sahuc, and G. Vermandel, A General Equilibrium Approach to Carbon Permit Banking, in revision for Journal of Environmental and Management. (2024). https://dx.doi.org/10.2139/ssrn.4649914.
- S. Girard and J. El Methni, A refined extreme quantile estimator for Weibull tail-distributions., to appear in REVSTAT - Statistical Journal (2024). https://hal.science/hal-04022982v3.
- S. Girard, T. Opitz, and A. Usseglio-Carleve, ANOVEX: ANalysis of Variability for heavy-tailed EXtremes., preprint (2024). https://hal.science/hal-04200300.
- S. Girard and E. Gobet, Estimation of the largest tail-index and extreme quantiles from a mixture of heavy-tailed distributions, preprint (2022). https://theses.hal.science/MIAI/hal-03235031v1.
- S. Girard, E. Gobet, and J. Pachebat, Deep generative modeling
of multivariate dependent extremes, preprint
(2024). https://hal.science/hal-04700084/. - E. Gobet, D. Metivier, and S. Parey, Interpretable Seasonal Hidden Markov Model for spatio-temporal stochastic rain generation in France, preprint (2024). https://hal.science/hal-04621349.
- E. Gobet, M. Lerasle, and D. Métivier, Mean estimation for Randomized Quasi Monte Carlo method, in revision for Journal of Complexity (2022). https://hal.archives-ouvertes.fr/hal-03631879v2.
- E. Gobet and M. Grangereau, Federated stochastic control of numerous heterogeneous energy storage systems, preprint (2021). https://hal.archives-ouvertes.fr/hal-03108611.
- Y. Gu and C. Rey, Deterministic computation of quantiles in a lipschitz framework, preprint (2024). https://hal.archives-ouvertes.fr/hal-04582532v1.
- C. Hillairet and A. Réveillac, On the chaotic expansion for counting processes., preprint (2022). https://arxiv.org/abs/2209.01972.
- E. Jondeau, G. Levieuge, J.G. Sahuc, and G. Vermandel, Environmental Subsidies to Mitigate Net-Zero Transition Costs., to appear in American Economic Journal: macroeconomics (2024).
- A. Mingone and C. Martini, Explicit no arbitrage domain for sub-SVIs via reparametrization, preprint (2021). https://arxiv.org/abs/2106.02418.
- T. Moins, J. Arbel, A. Dutfoy, and S. Girard, on the use of a local ˆR to improve MCMC convergence diagnostic, to appear in Bayesian Analysis (2024). https://arxiv.org/abs/2205.06694.
- G. Perrin, V. Chabridon, and J. Reygner, Enhancing Reliability Analysis with Limited Observations: A Statistical Framework for System Safety Margins, to appear in SIAM-JUQ (2024).
- G. Perrin and R. Le Riche, Bayesian optimization with derivatives acceleration., to appear in TMLR (2023). https://hal.science/hal-04259693.
- C. Poirier and G. Vermandel, Reallocation and Heterogeneous Elasticities in Production Networks., preprint (2024). https://dx.doi.org/10.2139/ssrn.4429307.
- J.G. Sahuc, F. Smets, and G. Vermandel, The new keynesian
climate model., preprint (2024).