Page personnelle de Flore Nabet
Publications

Articles

  1. F. Boyer, S. Krell, F. Nabet,
    Inf-Sup stability of the Discrete Duality Finite Volume method for the 2D Stokes problem, Math. Comp., Vol. 84, pp. 2705-2742 (2015) Preprint HAL or Published on-line
  2. F. Nabet,
    Convergence of a Finite-Volume scheme for the Cahn-Hilliard equation with dynamic boundary conditions, IMA Journal of Numerical Analysis, Vol. 36, no 4, pp. 1898-1942 (2016) Published on-line
  3. P. Bousquet, F. Boyer, F. Nabet,
    On a functional inequality arising in the analysis of finite volume methods, Calcolo, Vol. 53, no 3, pp. 363-397 (2016) Preprint HAL or Published on-line
  4. F. Boyer, F. Nabet,
    A DDFV method for a Cahn-Hilliard/Stokes phase field model with dynamic boundary conditions , M2AN, Vol. 51, no 5, pp. 1691-1731 (2017) Preprint HAL or Published on-line
  5. C. Cancès, D. Matthes, F. Nabet,
    A two-phase two-fluxes degenerate Cahn-Hilliard model as constrained Wasserstein gradient flow, Arch. Rational Mech. Anal., Vol. 233, no 2, pp 837–866 (2019) Preprint HAL or Published on-line
  6. C. Cancès, F. Nabet, M. Vohralík,
    Convergence and a posteriori error analysis for energy-stable finite element approximations of degenerate parabolic equations, Math. Comp., Vol. 90, pp 517-563 (2021) Preprint HAL or Published on-line
  7. C. Cancès, F. Nabet,
    Finite Volume approximation of a two-phase two fluxes degenerate Cahn-Hilliard model, M2AN, Vol. 55, no 3, pp 969--1003 (2021) Preprint HAL or Published on-line
  8. A. Lefebvre-Lepot, F. Nabet,
    Numerical simulation of rigid particles in Stokes flow: lubrication correction for any (regular) shape of particles, MMNP, Vol. 16, Art no 45, 26 pp (2021), Preprint HAL or Published on-line
  9. F. Nabet,
    An error estimate for a finite-volume scheme for the Cahn-Hilliard equation with dynamic boundary conditions, Numerische Mathematik, Vol. 149, no 1, pp 185--226 (2021) Preprint HAL or Published on-line

Proceedings

  1. F. Nabet,
    Finite-Volume method for the Cahn-Hilliard equation with dynamic boundary conditions, Congrés SMAI 2013, ESAIM : Proceedings and Surveys, Vol. 45, p 502-511, (2014) Preprint HAL or Published on-line
  2. F. Nabet,
    Finite-Volume analysis for the Cahn-Hilliard equation with dynamic boundary conditions, Proceedings of the 7th international symposium of Finite Volumes for Complex Applications VII (FVCA 7) - Methods and Theoretical Aspects, Springer Proceedings in Mathematics & Statistics, Vol. 77, p 401-409 (2014) Preprint HAL or Published on-line
  3. C. Cancès, F. Nabet,
    Finite Volume Approximation of a degenerate immiscible two-phase flow model of Cahn-Hilliard type, Proceedings of the 8th international symposium of Finite Volumes for Complex Applications VIII (FVCA 8) - Methods and Theoretical Aspects, Vol. 199, pp. 431-438 (2017) Preprint HAL or Published on-line
  4. F. Boyer, S. Krell, F. Nabet,
    Benchmark Session: The 2D Discrete Duality Finite Volume Method, Proceedings of the 8th international symposium of Finite Volumes for Complex Applications VIII (FVCA 8) - Methods and Theoretical Aspects, Vol. 199, pp. 163-180 (2017) Published on-line
  5. C. Cancès, F. Nabet,
    Energy stable discretization for two-phase porous media flows, Proceedings of the 9th international symposium of Finite Volumes for Complex Applications IX (FVCA 9) - Methods, Theoretical Aspects, Examples, Vol. 323, p 213-221 (2020) Preprint HAL or Published on-line
  6. C. Bauzet, F. Nabet,
    Convergence of a finite-volume scheme for a heat equation with a multiplicative stochastic force, Proceedings of the 9th international symposium of Finite Volumes for Complex Applications IX (FVCA 9) Preprint HAL or Published on-line

Thèse

Schémas volumes finis pour des problèmes multiphasiques or https://tel.archives-ouvertes.fr/tel-01110741

Mémoire de M2

Stage de Master 2 (6 mois) encadré par F. Boyer,
Stabilité Inf-Sup de schémas numériques pour le problème de Stokes

TER de M1

Réalisé en trinôme avec M. De Segonzac et C. Gautier, dirigé par F. Boyer,
A la découverte des lois de conservation scalaires non-linéaires