strategy parameters like population size and learning rates.
Example
>>> import cma
>>> es = cma.CMAEvolutionStrategy(20 * [0.1], 1)
(6_w,12)-CMA-ES (mu_w=3.7,w_1=40%) in dimension 20 (seed=504519190) # the seed is "random" by default
>>>
>>> type(es.sp)
<class 'cma._CMAParameters'>
>>>
>>> es.sp.disp()
{'CMA_on': True,
'N': 20,
'c1': 0.004181139918745593,
'c1_sep': 0.034327992810300939,
'cc': 0.17176721127681213,
'cc_sep': 0.25259494835857677,
'cmean': 1.0,
'cmu': 0.0085149624979034746,
'cmu_sep': 0.057796356229390715,
'cs': 0.21434997799189287,
'damps': 1.2143499779918929,
'mu': 6,
'mu_f': 6.0,
'mueff': 3.7294589343030671,
'popsize': 12,
'rankmualpha': 0.3,
'weights': array([ 0.40240294, 0.25338908, 0.16622156, 0.10437523, 0.05640348,
0.01720771])}
>>>
>> es.sp == cma._CMAParameters(20, 12, cma.CMAOptions().evalall({'N': 20}))
True
|
__init__(self,
N,
opts,
ccovfac=1,
verbose=True)
Compute strategy parameters, mainly depending on
dimension and population size, by calling set |
source code
|
|
|
set(self,
opts,
popsize=None,
ccovfac=1,
verbose=True)
Compute strategy parameters as a function
of dimension and population size |
source code
|
|
|
|
Inherited from object :
__delattr__ ,
__format__ ,
__getattribute__ ,
__hash__ ,
__new__ ,
__reduce__ ,
__reduce_ex__ ,
__repr__ ,
__setattr__ ,
__sizeof__ ,
__str__ ,
__subclasshook__
|