Chaire Modélisation Mathématique et Biodiversité

École Polytechnique, Muséum national d'Histoire naturelle
Fondation de l'École Polytechnique
VEOLIA Environnement

Logo du CMAP

Logo du MNHN

Logo du MNHN

Rencontre de la chaire

13 Octobre 2022 matin

Amphithéatre de la Grande Galerie de l'Evolution (Museum National d'histoire Naturelle).

Programme:

abstract: Despite predictions that self-fertilisation should favour the purging or fixation of deleterious recessive mutations, inbred populations often retain moderate to high segregating load, resulting in higher than expected inbreeding depression. True overdominance could generate balancing selection strong enough to sustain inbreeding depression even within inbred populations, but this is considered rare. However, arrays of deleterious recessives linked in repulsion could generate appreciable pseudo-overdominance that would also sustain segregating load. Using simulations, we explore whether POD can indeed be stable enough over time to explain empirical observations of residual heterozygosity and inbreeding depression in self-fertilising populations. This work was carried out in collaboration with Donald Waller (Univ. Wisconsin).

abstract: Nous commencerons par introduire le système SKT (pour Shigesada, Kawasaki et Teramoto) proposé en 1979 pour modéliser les phénomènes de ségrégation entre différentes espèces. Nous tenterons ensuite de présenter les questions mathématiques récentes qui se posent sur ce type de systèmes ainsi que leurs interprétation du point de vue du modèle.

abstract : When a large number of networks is observed, we may wish to identify groups of networks with similar topology. This is a challenging task as networks are complex objects and of varying size and thus difficult to compare. We propose a statistical model-based approach to partition a collection of observed networks into a finite number of homogeneous clusters. This is done by a mixture of stochastic block models. Moreover, we propose a greedy agglomerative algorithm based on the integrated classification likelihood to perform the clustering. While the method is a general approach for clustering networks in any field of application, we present results obtained for foodwebs. We illustrate that the method provides relevant clusterings and that a hierarchy of the clusters is automatically provided by the algorithm. In addition, the estimated model parameters are highly interpretable and useful in practice.